Örüklü et al., 2022 - Google Patents
A peak current mode controlled SEPIC LED driver design considering power factor and flickerÖrüklü et al., 2022
View PDF- Document ID
- 17383806143045325667
- Author
- Örüklü K
- Yıldırım D
- Publication year
- Publication venue
- Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering
External Links
Snippet
In this paper, a peak current mode controlled single ended primary inductor converter (SEPIC) LED driver is proposed to control the brightness of the LED. One string of 37 series connected LEDs is adopted as output of the circuit. The proposed control strategy is based …
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/08—Circuit arrangements not adapted to a particular application
- H05B33/0803—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
- H05B33/0806—Structural details of the circuit
- H05B33/0809—Structural details of the circuit in the conversion stage
- H05B33/0815—Structural details of the circuit in the conversion stage with a controlled switching regulator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
- Y02B20/34—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED] inorganic LEDs
- Y02B20/341—Specially adapted circuits
- Y02B20/346—Switching regulators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/08—Circuit arrangements not adapted to a particular application
- H05B33/0803—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
- H05B33/0842—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials with control
- H05B33/0845—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials with control of the light intensity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
- Y02B20/34—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED] inorganic LEDs
- Y02B20/341—Specially adapted circuits
- Y02B20/348—Resonant bridges
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
- Y02B70/12—Power factor correction technologies for power supplies
- Y02B70/126—Active technologies
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/39—Controlling the intensity of light continuously
- H05B41/392—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
- H05B41/3921—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/282—With semiconductor devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies
- Y02B20/16—Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
- Y02B20/18—Low pressure and fluorescent lamps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chiu et al. | A high-efficiency dimmable LED driver for low-power lighting applications | |
KR101733394B1 (en) | Dimming of led driver | |
Arias et al. | High-efficiency LED driver without electrolytic capacitor for street lighting | |
Chuang et al. | Single-stage power-factor-correction circuit with flyback converter to drive LEDs for lighting applications | |
US8076920B1 (en) | Switching power converter and control system | |
Ye et al. | Single-stage offline SEPIC converter with power factor correction to drive high brightness LEDs | |
Ye et al. | Design considerations of a high power factor SEPIC converter for high brightness white LED lighting applications | |
Ye et al. | A topology study of single-phase offline AC/DC converters for high brightness white LED lighting with power factor pre-regulation and brightness dimmable | |
Shrivastava et al. | A novel wall-switched step-dimming concept in LED lighting systems using PFC zeta converter | |
Rodrigues et al. | Comparative analysis of power LEDs dimming methods | |
CN202535592U (en) | MR16LED lamp driving circuit and MR16LED lamp lighting system using the same | |
TW200915922A (en) | Supply circuit, in particular for LEDs | |
US9338843B2 (en) | High power factor, electrolytic capacitor-less driver circuit for light-emitting diode lamps | |
Liu et al. | Flicker-free single-switch quadratic boost LED driver compatible with electronic transformers | |
TianFu et al. | An improved single-stage flyback PFC converter for high-luminance lighting LED lamps | |
Agrawal et al. | A review of different DC/DC converters for power quality improvement in LED lighting load | |
Cosetin et al. | Comparison of single stage SEPIC and integrated SEPIC-Buck converter as off-line LED drivers | |
Yadlapalli et al. | Efficieny analysis of Quadratic buck converter for LED lamp driver applications | |
Narasimharaju | Unity power factor buck-boost led driver for wide range of input voltage application | |
Örüklü et al. | A peak current mode controlled SEPIC LED driver design considering power factor and flicker | |
Huang et al. | A single-stage SEPIC PFC converter for multiple lighting LED lamps | |
Wang et al. | Design and implementation of a single-stage high-efficacy LED driver with dynamic voltage regulation | |
Ye et al. | Offline SEPIC converter to drive the high brightness white LED for lighting applications | |
Liu et al. | A valley-fill driver with current balancing for parallel LED strings used for high-frequency ac power distribution of vehicle | |
de Britto et al. | Zeta DC/DC converter used as led lamp drive |