[go: up one dir, main page]

Qayyum et al., 2022 - Google Patents

Mobility-aware hierarchical fog computing framework for Industrial Internet of Things (IIoT)

Qayyum et al., 2022

View HTML @Full View
Document ID
16880097216959879188
Author
Qayyum T
Trabelsi Z
Waqar Malik A
Hayawi K
Publication year
Publication venue
Journal of Cloud Computing

External Links

Snippet

Abstract The Industrial Internet of Things (IIoTs) is an emerging area that forms the collaborative environment for devices to share resources. In IIoT, many sensors, actuators, and other devices are used to improve industrial efficiency. As most of the devices are …
Continue reading at link.springer.com (HTML) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/1014Server selection in load balancing based on the content of a request
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/32Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/28Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/16Service discovery or service management, e.g. service location protocol [SLP] or Web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Mobile application services or facilities specially adapted for wireless communication networks
    • H04W4/02Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/50Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
    • H04L41/5041Service implementation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models

Similar Documents

Publication Publication Date Title
Luo et al. Resource scheduling in edge computing: A survey
Wang et al. A survey and taxonomy on task offloading for edge-cloud computing
Alizadeh et al. Task scheduling approaches in fog computing: A systematic review
Alqahtani et al. Reliable scheduling and load balancing for requests in cloud-fog computing
Kar et al. Offloading using traditional optimization and machine learning in federated cloud–edge–fog systems: A survey
Gasmi et al. A survey on computation offloading and service placement in fog computing-based IoT
Hosseinioun et al. aTask scheduling approaches in fog computing: A survey
Wang et al. MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems
Qayyum et al. Mobility-aware hierarchical fog computing framework for Industrial Internet of Things (IIoT)
Sun et al. Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II
Mora et al. Multilayer architecture model for mobile cloud computing paradigm
Li et al. MEC-based dynamic controller placement in SD-IoV: A deep reinforcement learning approach
Lin et al. A novel utility based resource management scheme in vehicular social edge computing
Kar et al. A survey on offloading in federated cloud-edge-fog systems with traditional optimization and machine learning
Fahimullah et al. Machine learning-based solutions for resource management in fog computing
JP2024514057A (en) Automatic container migration system
Abu-Amssimir et al. A QoS-aware resource management scheme over fog computing infrastructures in IoT systems
Mahmoudi et al. SDN-DVFS: an enhanced QoS-aware load-balancing method in software defined networks
Kim New application task offloading algorithms for edge, fog, and cloud computing paradigms
Alqarni et al. A survey of computational offloading in cloud/edge-based architectures: Strategies, optimization models and challenges
Javadpour et al. Mapping and embedding infrastructure resource management in software defined networks
Qin et al. Optimal workload allocation for edge computing network using application prediction
Zare et al. Imperialist competitive based approach for efficient deployment of IoT services in fog computing
Vijayalakshmi et al. Reinforcement learning-based multi-objective energy-efficient task scheduling in fog-cloud industrial IoT-based systems
Lu et al. QoS-aware online service provisioning and updating in cost-efficient multi-tenant mobile edge computing