Dietrich et al., 2017 - Google Patents
Power Electronics for LED Based General IlluminationDietrich et al., 2017
View PDF- Document ID
- 1685347369622308639
- Author
- Dietrich S
- Heinen S
- Publication year
- Publication venue
- Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management: Advances in Analog Circuit Design 2016
External Links
Snippet
Abstract This work presents a 7.5-W output power 96% efficiency capacitor-free single- inductor 4-channel all-digital integrated DC-DC LED driver in a 0.18 µm technology, with up to 24 V input voltage and 1-A LED current for general lighting. It is based on the use of …
- 238000005286 illumination 0 title description 5
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/08—Circuit arrangements not adapted to a particular application
- H05B33/0803—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
- H05B33/0806—Structural details of the circuit
- H05B33/0809—Structural details of the circuit in the conversion stage
- H05B33/0815—Structural details of the circuit in the conversion stage with a controlled switching regulator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/08—Circuit arrangements not adapted to a particular application
- H05B33/0803—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
- H05B33/0806—Structural details of the circuit
- H05B33/0821—Structural details of the circuit in the load stage
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/08—Circuit arrangements not adapted to a particular application
- H05B33/0803—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
- H05B33/0842—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials with control
- H05B33/0845—Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials with control of the light intensity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
- Y02B20/34—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED] inorganic LEDs
- Y02B20/341—Specially adapted circuits
- Y02B20/346—Switching regulators
- Y02B20/347—Switching regulators configured as a current source
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9791110B2 (en) | High efficiency driver circuit with fast response | |
JP5981337B2 (en) | Low cost power supply circuit and method | |
US8432104B2 (en) | Load current balancing circuit | |
US9584028B2 (en) | Apparatus, system and method for cascaded power conversion | |
Arias et al. | High-efficiency LED driver without electrolytic capacitor for street lighting | |
Lo et al. | Design and implementation of RGB LED drivers for LCD backlight modules | |
Zhang et al. | A precise passive current balancing method for multioutput LED drivers | |
Hu et al. | LED driver with self-adaptive drive voltage | |
US8400123B2 (en) | Voltage converter and voltage conversion method | |
US20170027030A1 (en) | Led driving circuit | |
US9526140B2 (en) | Compact driver for a light emitting diode having an auxiliary output | |
TW201008382A (en) | Transient suppression for boost regulator | |
JP2009520331A (en) | Method and apparatus for controlling the current supplied to an electronic device | |
US20140265885A1 (en) | Multiple power outputs generated from a single current source | |
US20140049730A1 (en) | Led driver with boost converter current control | |
EP3047565A1 (en) | Compact driver, notably for a light emitting diode, having an integrated dual output | |
Zhang et al. | A high-efficiency quasi-two-stage LED driver with multichannel outputs | |
Hwu et al. | Nonisolated two-phase interleaved LED driver with capacitive current sharing | |
US9585210B2 (en) | Reduced flicker driver circuit for LED systems | |
Burgardt et al. | Dimmable flicker‐free power LEDs lighting system based on a SEPIC rectifier using a regenerative snubber | |
Zhao et al. | High efficiency hybrid current balancing method for multi-channel LED drive | |
Dietrich et al. | A capacitor-free single-inductor multiple-output LED driver | |
Dietrich et al. | Power Electronics for LED Based General Illumination | |
Rahman | Design of led driver with power factor correction for multi-color lighting system | |
Thomas et al. | Power-transfer of isolated converter with integrated power sharing for LED-lighting system dependent on transformer coupling |