Jungmaier et al., 2006 - Google Patents
On SCTP multi-homing performanceJungmaier et al., 2006
- Document ID
- 16612765189509423169
- Author
- Jungmaier A
- Rathgeb E
- Publication year
- Publication venue
- Telecommunication Systems
External Links
Snippet
Abstract The Stream Control Transmission Protocol (SCTP) is a general purpose transport protocol featuring multi-homing support, message oriented and more flexible data delivery mechanisms than TCP, and an increased protection against well-known attacks. Originally …
- 238000004088 simulation 0 abstract description 29
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. van Duuren system; ARQ protocols
- H04L1/1867—Arrangements specific to the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
- H04L47/193—Flow control or congestion control at layers above network layer at transport layer, e.g. TCP related
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/163—Adaptation of TCP data exchange control procedures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/161—Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
- H04L69/322—Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2425—Service specification, e.g. SLA
- H04L47/2433—Allocation of priorities to traffic types
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/32—Packet discarding or delaying
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/18—Multi-protocol handler, e.g. single device capable of handling multiple protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/02—Communication control; Communication processing contains provisionally no documents
- H04L29/06—Communication control; Communication processing contains provisionally no documents characterised by a protocol
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2537301B1 (en) | Control of packet transfer through a multipath session comprising a single congestion window | |
US9621384B2 (en) | Systems and methods for communicating data over parallel data paths | |
KR100785293B1 (en) | TCCP Congestion Control System and Method Using Multiple TCCP Acknowledgments | |
Fu et al. | TCP Veno: TCP enhancement for transmission over wireless access networks | |
Liu et al. | ATCP: TCP for mobile ad hoc networks | |
Iyengar et al. | Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths | |
US7979577B2 (en) | Arrangement in a multi-homed transport endpoint for selecting a source address based on source-destination address pair metrics | |
Ghani et al. | TCP/IP enhancements for satellite networks | |
US7369498B1 (en) | Congestion control method for a packet-switched network | |
Argyriou et al. | Bandwidth aggregation with SCTP | |
Caro et al. | Retransmission policies with transport layer multihoming | |
Alheid et al. | An analysis of the impact of out-of-order recovery algorithms on MPTCP throughput | |
Vangala et al. | The TCP SACK-aware snoop protocol for TCP over wireless networks | |
Natarajan et al. | Concurrent multipath transfer using transport layer multihoming: Performance under network failures | |
Jungmaier et al. | On SCTP multi-homing performance | |
Fiore et al. | An adaptive transport protocol for balanced multihoming of real-time traffic | |
Iyengar et al. | Making SCTP more robust to changeover | |
Saadawi et al. | A transport layer load sharing mechanism for mobile wireless hosts | |
Lane et al. | Best-effort network layer packet reordering in support of multipath overlay packet dispersion | |
Qiao et al. | SCTP performance issue on path delay differential | |
Ayar et al. | A transparent reordering robust TCP proxy to allow per-packet load balancing in core networks | |
Zhan et al. | Improving TCP performance with periodic disconnections over wireless links | |
Qiao et al. | Path selection of SCTP fast retransmission in multi-homed wireless environments | |
Liu et al. | Mpmtp-ar: Multipath message transport protocol based on application-level relay | |
Jungmaier et al. | A novel method for SCTP load sharing |