Talli et al., 2006 - Google Patents
Hybrid DWDM-TDM long-reach PON for next-generation optical accessTalli et al., 2006
- Document ID
- 16557381186968532142
- Author
- Talli G
- Townsend P
- Publication year
- Publication venue
- Journal of lightwave technology
External Links
Snippet
A novel long-reach passive optical network (PON) architecture based on hybrid dense wavelength-division multiplexing (DWDM) and time-division multiplexing (TDM) is presented as a possible candidate for the next generation of optical access networks. The approach …
- 230000003287 optical 0 title abstract description 46
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
- H04J14/0242—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
- H04J14/0245—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
- H04J14/0246—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
- H04J14/0242—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
- H04J14/0245—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
- H04J14/0247—Sharing one wavelength for at least a group of ONUs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0256—Optical medium access at the optical channel layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0267—Optical signaling or routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0282—WDM tree architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0221—Power control, e.g. to keep the total optical power constant
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Talli et al. | Hybrid DWDM-TDM long-reach PON for next-generation optical access | |
Kani | Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems | |
Wong et al. | Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks | |
Wey et al. | Physical layer aspects of NG-PON2 standards—Part 1: Optical link design | |
Shea et al. | Long-reach optical access technologies | |
Iwatsuki et al. | Access and metro networks based on WDM technologies | |
KR100921797B1 (en) | Passive Optical Subscriber Network System with Wavelength Division Multiplexing | |
US7706688B2 (en) | Wavelength reconfigurable optical network | |
US7680416B2 (en) | WDM-PON having optical source of self-injection locked fabry-perot laser diode | |
Ossieur et al. | Demonstration of a 32$\,\times\, $512 Split, 100 km Reach, 2$\,\times\, $32$\,\times\, $10 Gb/s Hybrid DWDM-TDMA PON Using Tunable External Cavity Lasers in the ONUs | |
CN101444017A (en) | Passive Optical Network Based on Reflective Semiconductor Optical Amplifier | |
Reichmann et al. | An eight-wavelength 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers | |
Talli et al. | Feasibility demonstration of 100km reach DWDM SuperPON with upstream bit rates of 2.5 Gb/s and 10Gb/s | |
Li et al. | Compatible TDM/WDM PON using a single tunable optical filter for both downstream wavelength selection and upstream wavelength generation | |
Schrenk et al. | Demonstration of a remotely dual-pumped long-reach PON for flexible deployment | |
Shea et al. | Architecture to integrate multiple PONs with long reach DWDM backhaul | |
Iannone et al. | An 8-× 10-Gb/s 42-km high-split TWDM PON featuring distributed Raman amplification and a remotely powered intelligent splitter | |
Fàbrega et al. | Modulated Grating Y-Structure Tunable Laser for $\lambda $-Routed Networks and Optical Access | |
Lee et al. | Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity | |
US8233808B2 (en) | Optical transmission system using four-wave mixing | |
Pöhlmann et al. | Low cost TWDM by wavelength-set division multiplexing | |
Lee et al. | Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT, L-band ONU, and U-band monitoring | |
Berrettini et al. | Colorless WDM-PON architecture for Rayleigh backscattering and path-loss degradation mitigation | |
Urban et al. | 1.25-Gb/s transmission over an access network link with tunable OADM and a reflective SOA | |
Schrenk et al. | Dual-operability and bandwidth partitioning enabled by an ONU with tandem-modulator |