Kothari et al., 2007 - Google Patents
Adaptive flow control: An extension to delayed fast recoveryKothari et al., 2007
View PDF- Document ID
- 16344555025033368348
- Author
- Kothari N
- Gambhava B
- Dasgupta K
- Publication year
- Publication venue
- 15th International Conference on Advanced Computing and Communications (ADCOM 2007)
External Links
Snippet
The integration of wireless links (terrestrial and satellite) with terrestrial wired networks has been a subject of extensive research keeping in view the performance issues of TCP with wireless links. Performance improvement in SACK TCP has been shown earlier by delaying …
- 238000011084 recovery 0 title abstract description 49
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
- H04L47/193—Flow control or congestion control at layers above network layer at transport layer, e.g. TCP related
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/26—Explicit feedback to the source, e.g. choke packet
- H04L47/263—Source rate modification after feedback
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/30—Flow control or congestion control using information about buffer occupancy at either end or transit nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/32—Packet discarding or delaying
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2602—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/14—Flow control or congestion control in wireless networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/12—Congestion avoidance or recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/163—Adaptation of TCP data exchange control procedures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/16—Arrangements for monitoring or testing packet switching networks using threshold monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Floyd | A report on recent developments in TCP congestion control | |
Krishnan et al. | Explicit transport error notification (ETEN) for error-prone wireless and satellite networks | |
Xu et al. | TCP-Jersey for wireless IP communications | |
Gurtov et al. | Responding to spurious timeouts in TCP | |
Zhang et al. | Understanding the End-to-End Performance Impact of RED in aHeterogeneous Environment | |
Verma et al. | An adaptive congestion control algorithm | |
Yang et al. | TCP bulk repeat | |
Prasanthi et al. | An enhanced tcp mechanism for detecting and differentiating the loss of retransmisssions over wireless networks | |
Kothari et al. | Adaptive flow control: An extension to delayed fast recovery | |
Rojviboonchai et al. | RM/TCP: Protocol for reliable multi-path transport over the internet | |
Roseti et al. | TCP Noordwijk: TCP-based transport optimized for web traffic in satellite networks | |
Kliazovich et al. | TCP Westwood+ enhancement in high-speed long-distance networks | |
Jiong et al. | TP-satellite: A new transport protocol for satellite IP networks | |
Khurshid et al. | Modified TCP newreno for wireless networks | |
Seddik-Ghaleb et al. | TCP WELCOME TCP variant for Wireless Environment, Link losses, and COngestion packet loss ModEls | |
Sharma et al. | Performance evaluation of TCP variants under different node speeds using OPNET simulator | |
Leung et al. | TCP-Swift: an end-host enhancement scheme for TCP over satellite IP networks | |
Gambhava et al. | Mathematical modelling of packet transmission during reclamation period in NewReno TCP and CTCP | |
Wang et al. | Robust TCP congestion recovery | |
Park et al. | TCP Hybla+: making TCP more robust against packet loss in satellite networks | |
Wang et al. | Performance enhancement of TCP in dynamic bandwidth wired and wireless networks | |
Rodríguez Herlein et al. | Burst Error Analysis Introduced in Multiple Traffic of Protocols TCP Reno, Cubic, Westwood and Vegas on a Model of Hybrid Topology | |
Mondal et al. | Upgrading mice to elephants: effects and end-point solutions | |
Taleb et al. | REFWA Plus: Enhancement of REFWA to combat link errors in LEO satellite networks | |
Pentikousis et al. | On the resource efficiency of explicit congestion notification |