Park et al., 2020 - Google Patents
Ultra-low power CMOS image sensor with two-step logical shift algorithm-based correlated double sampling schemePark et al., 2020
- Document ID
- 15533817331518356173
- Author
- Park K
- Yeom S
- Kim S
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
This article presents an ultra-low power counter structure for a column-parallel single-slope analog-to-digital converter (SS-ADC) in CMOS image sensors. The proposed counter employs a two-step logical shift algorithm-based correlated double sampling (CDS) scheme …
- 238000005070 sampling 0 title abstract description 8
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/40—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
- H03M1/403—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
- H03M1/802—Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
- H03M1/0678—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
- H03M1/068—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/44—Sequential comparisons in series-connected stages with change in value of analogue signal
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/145—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/36—Analogue value compared with reference values simultaneously only, i.e. parallel type
- H03M1/361—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/68—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
- H03M1/682—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type
- H03M1/685—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type the quantisation value generators of both converters being arranged in a common two-dimensional array
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/742—Simultaneous conversion using current sources as quantisation value generators
- H03M1/745—Simultaneous conversion using current sources as quantisation value generators with weighted currents
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/662—Multiplexed conversion systems
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0602—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/50—Analogue/digital converters with intermediate conversion to time interval
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices using field-effect transistors
- H03K17/693—Switching arrangements with several input- or output-terminals
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Ultra-low power CMOS image sensor with two-step logical shift algorithm-based correlated double sampling scheme | |
Lin et al. | A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS | |
Park et al. | Low power CMOS image sensors using two step single slope ADC with bandwidth-limited comparators & voltage range extended ramp generator for battery-limited application | |
Kim et al. | An area-efficient and low-power 12-b SAR/single-slope ADC without calibration method for CMOS image sensors | |
Chung et al. | A 12-bit 40-MS/s SAR ADC with a fast-binary-window DAC switching scheme | |
CN111556266A (en) | High dynamic range reading circuit based on back-illuminated image sensor | |
Chung et al. | A 16-bit calibration-free SAR ADC with binary-window and capacitor-swapping DAC switching schemes | |
Wang et al. | Low-power single-ended SAR ADC using symmetrical DAC switching for image sensors with passive CDS and PGA technique | |
Zhang et al. | A 12-bit two-step single-slope ADC with a constant input-common-mode level resistor ramp generator | |
Haenzsche et al. | A 12-b 4-MS/s SAR ADC with configurable redundancy in 28-nm CMOS technology | |
Lu et al. | A 10-bits 50-MS/s SAR ADC based on area-efficient and low-energy switching scheme | |
Wei et al. | A 63.2 μW 11-bit column parallel single-slope ADC with power supply noise suppression for CMOS image sensors | |
CN110518911A (en) | A kind of 1.5 gradual approaching A/D converters of a step | |
Kaur et al. | A 12-bit, 2.5-bit/phase column-parallel cyclic ADC | |
Jung et al. | A 0.5 V 10 b 3 MS/s 2-then-1b/cycle SAR ADC with digital-based time-domain reference and dual-mode comparator | |
Liu et al. | A conversion mode reconfigurable SAR ADC for multistandard systems | |
Arafa et al. | Successive Approximation Register Analog‐to‐Digital Converter (SAR ADC) for Biomedical Applications | |
Gao et al. | A 2.44 μs row conversion time 12-bit high-speed differential single-slope ADC with TDC applied to CMOS image sensor | |
Shen et al. | An energy-efficient SAR ADC with a coarse-fine bypass window technique | |
Hwang et al. | A 20 k-to-100kS/s Sub-$\mu $ W 9.5 b-ENOB Asynchronous SAR ADC for Energy-Harvesting Body Sensor Node SoCs in 0.18-$\mu $ m CMOS | |
Jun et al. | IC Design of 2Ms/s 10-bit SAR ADC with Low Power | |
Tang et al. | An area-efficient column-parallel digital decimation filter with pre-BWI topology for CMOS image sensor | |
Zheng et al. | A 12-bit 100MS/s SAR ADC with equivalent split-capacitor and LSB-averaging in 14-nm CMOS FinFET | |
Shetty et al. | A 14-bit high speed 125ms/s low power SAR ADC using dual split capacitor DAC architecture in 90nm CMOS technology | |
Gu et al. | No calibration required two-step double-data-rate counter for low-power SS ADC in CMOS image sensors |