Jarvis et al., 2012 - Google Patents
Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulantsJarvis et al., 2012
View PDF- Document ID
- 15062346742094135105
- Author
- Jarvis P
- Sharp E
- Pidou M
- Molinder R
- Parsons S
- Jefferson B
- Publication year
- Publication venue
- Water research
External Links
Snippet
Coagulation in drinking water treatment has relied upon iron (Fe) and aluminium (Al) salts throughout the last century to provide the bulk removal of contaminants from source waters containing natural organic matter (NOM). However, there is now a need for improved …
- 239000000701 coagulant 0 title abstract description 101
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5263—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/105—Phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/04—Oxidation reduction potential [ORP]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jarvis et al. | Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants | |
Ghernaout et al. | Sweep flocculation as a second form of charge neutralisation—a review | |
Lin et al. | Effect of Al (III) speciation on coagulation of highly turbid water | |
Xu et al. | Effect of shear force and solution pH on flocs breakage and re-growth formed by nano-Al13 polymer | |
Zhao et al. | The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride (TiCl4) | |
Chen et al. | Removal of humic acids from water by hybrid titanium-based electrocoagulation with ultrafiltration membrane processes | |
Cao et al. | Effects of pH on coagulation behavior and floc properties in Yellow River water treatment using ferric based coagulants | |
Wang et al. | Effect of pH on humic acid removal performance in coagulation–ultrafiltration process and the subsequent effects on chlorine decay | |
Li et al. | Coagulation behavior of kaolin-anionic surfactant simulative wastewater by polyaluminum chloride-polymer dual coagulants | |
CA2992099A1 (en) | Electrocoagulation using oscillating electrodes | |
Mukherjee et al. | Clarification of rubber mill wastewater by a plant based biopolymer–Comparison with common inorganic coagulants | |
Zhao et al. | The impacts of coagulant aid-polydimethyldiallylammonium chloride on coagulation performances and floc characteristics in humic acid–kaolin synthetic water treatment with titanium tetrachloride | |
Xu et al. | Role of Al13 species in removal of natural organic matter from low specific UV absorbance surface water and the aggregates characterization | |
Zhao et al. | Study of Enteromorpha polysaccharides as a new-style coagulant aid in dye wastewater treatment | |
Wei et al. | Strength and regrowth properties of polyferric-polymer dual-coagulant flocs in surface water treatment | |
Wang et al. | Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process | |
Zhao et al. | Floc characteristics of titanium tetrachloride (TiCl4) compared with aluminum and iron salts in humic acid–kaolin synthetic water treatment | |
Cañizares et al. | Electrochemically assisted coagulation of wastes polluted with Eriochrome Black T | |
Wang et al. | The disinfection by-products precursors removal efficiency and the subsequent effects on chlorine decay for humic acid synthetic water treated by coagulation process and coagulation–ultrafiltration process | |
Zhao et al. | Titanium tetrachloride for silver nanoparticle-humic acid composite contaminant removal in coagulation-ultrafiltration hybrid process: floc property and membrane fouling | |
Santander-Muñoz et al. | Removal of sulfate ions by precipitation and flotation | |
Sun et al. | Comparison of epichlorohydrin–dimethylamine with other cationic organic polymers as coagulation aids of polyferric chloride in coagulation–ultrafiltration process | |
Ahmad et al. | Comparison of coagulation, electrocoagulation and biological techniques for the municipal wastewater treatment | |
Madi et al. | Basic red dye removal by coupling electrocoagulation process with biological treatment. | |
Li et al. | Enhanced production of in situ keggin Al137+ polymer by a combined Fe-Al coagulation process for the treatment of high alkalinity water |