[go: up one dir, main page]

Ferdinand et al., 1995 - Google Patents

Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the European BRITE/EURAM STABILOS project

Ferdinand et al., 1995

View PDF
Document ID
14620676172271929671
Author
Ferdinand P
Ferragu O
Lechien J
Lescop B
Magne S
Marty V
Rougeault S
Kotrotsios G
Neuman V
Depeursinge Y
Michel J
Van Uffelen M
Varelas D
Berthou H
Pierre G
Renouf C
Jarret B
Verbandt Y
Stevens W
Voet M
Toscano D
Publication year
Publication venue
Journal of lightwave technology

External Links

Snippet

Recent developments of stability control in mines, essentially based on Ge-doped fiber Bragg gratings (FBG) are reported including results about the different aspects of the system: accurate characterizations of FBG, sensor network topology and multiplexing method, user …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/266Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress in general
    • G01L1/24Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/16Measuring arrangements characterised by the use of optical means for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/226Optoseismic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency
    • G01K11/125Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency using change in reflectance

Similar Documents

Publication Publication Date Title
Ferdinand et al. Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the European BRITE/EURAM STABILOS project
Gholamzadeh et al. Fiber optic sensors
US5726744A (en) Rosette-type optical microsystem of strain gauges having dielectric guides for measuring a longitudinal strain in a planar structure
Inaudi et al. Low-coherence deformation sensors for the monitoring of civil-engineering structures
Ferraro et al. On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring
Culshaw et al. Fiber-optic sensing: A historical perspective
US6621947B1 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US6256090B1 (en) Method and apparatus for determining the shape of a flexible body
CN109238355A (en) The device and method of optical fiber distributed type sound state property while sensing measurement
Peng et al. Tilt sensor with FBG technology and matched FBG demodulating method
Hongo et al. Applications of fiber Bragg grating sensors and high‐speed interrogation techniques
CN101852626A (en) Narrowband Distributed Feedback Laser Wavelength Scanning Fiber Bragg Grating Sensing Device
Bock et al. Development of a polarimetric optical fiber sensor for electronic measurement of high pressure
Peters et al. Fiber optic sensors for assessing and monitoring civil infrastructures
EP1110065B1 (en) Seismic sensing and acoustic logging systems using optical fiber, transducers and sensors
EP1630527B1 (en) Optical displacement transducer, displacement measurement system and method
CN101271242A (en) A method and device for demodulating a fiber grating sensor network
Ferdinand et al. Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EURAM STABILOS project
Suleiman et al. Interrogation of fiber Bragg grating dynamic strain sensors by self-mixing interferometry
Fusiek et al. Temperature-independent high-speed distributed voltage measurement using intensiometric FBG interrogation
Culshaw Fiber-optic sensors: applications and advances
US5750901A (en) Optical fiber apparatus and method for measuring geological strains
Zhao et al. Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop
CN101105404A (en) A Method for Simultaneous Measurement of Temperature and Strain Using a Single Fiber Bragg Grating
Froggatt et al. High density strain sensing using optical frequency domain reflectometry