Rivera et al., 2005 - Google Patents
Comparison of recoated fiber Bragg grating sensors under tension on a steel couponRivera et al., 2005
View PDF- Document ID
- 14601488562172940284
- Author
- Rivera E
- Thomson D
- Mufti A
- Publication year
- Publication venue
- Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV
External Links
Snippet
One of the key elements in a structural health monitoring system is the sensing element and data acquisition system. One type of fiber optic sensor used to measure strain is the fiber Bragg grating. Bragg gratings are fabricated using different methods. One method involves …
- 239000000835 fiber 0 title abstract description 55
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
- G01L1/241—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet by photoelastic stress analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
- G01L1/242—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet the material being an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes
- G01L5/0047—Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes measuring forces due to residual stresses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/20—Measuring force or stress in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electro-kinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electro-kinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency
- G01K11/125—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency using change in reflectance
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmission, scattering or fluorescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmission, scattering or fluorescence in optical fibres at discrete locations in the fibre, e.g. by means of Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic means
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic means for measuring deformation in a solid, e.g. by resistance strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N21/774—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B3/00—Instruments as specified in the subgroups and characterised by the use of mechanical measuring means
- G01B3/20—Slide gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/16—Measuring arrangements characterised by the use of optical means for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Majumder et al. | Fibre Bragg gratings in structural health monitoring—Present status and applications | |
Bosia et al. | Characterization of the response of fibre Bragg grating sensors subjected to atwo-dimensional strain field | |
Kang et al. | The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths | |
Ling et al. | Viability of using an embedded FBG sensor in a composite structure for dynamic strain measurement | |
Motwani et al. | Experimental investigation of strain sensitivity for surface bonded fibre optic sensors | |
Quiertant et al. | Deformation monitoring of reinforcement bars with a distributed fiber optic sensor for the SHM of reinforced concrete structures | |
Tian et al. | Torsion measurement using fiber Bragg grating sensors | |
Floris et al. | Effects of bonding on the performance of optical fiber strain sensors | |
Du et al. | Fiber Bragg grating sensor | |
Kalamkarov et al. | On the processing and evaluation of pultruded smart composites | |
Fisser et al. | Method for $ In-Situ $ Strain Transfer Calibration of Surface Bonded Fiber Bragg Gratings | |
Rivera et al. | Comparison of recoated fiber Bragg grating sensors under tension on a steel coupon | |
Yu et al. | A full-optical strain FBG sensor for in-situ monitoring of fatigue stages via tunable DFB laser demodulation | |
CN101221043A (en) | Strain measurement method at low temperature using fiber grating sensor | |
Tahir et al. | A study of FBG sensor and electrical strain gauge for strain measurements | |
Chapeleau et al. | Determination of strain distribution and temperature gradient profiles from phasemeasurements of embedded fibre Bragg gratings | |
Yan et al. | Development of flexible pressure sensing polymer foils based on embedded fibre Bragg grating sensors | |
Kalamkarov et al. | Smart pultruded composite reinforcements incorporating fiber optic sensors | |
Sampath et al. | Fiber-optic sensor for simultaneous strain and temperature monitoring in composite materials at cryogenic condition | |
Bosia et al. | Characterization of embedded fiber Bragg grating sensors written in high-birefringent optical fibers subjected to transverse loading | |
Okabe et al. | Detection of transverse cracks in composites by using embedded FBG sensors | |
Takeda et al. | Application of chirped FBG sensors for detection of local delamination in composite laminates | |
Kinet et al. | Temperature and strain effects discrimination inside composite materials with embedded weakly tilted fibre Bragg grating | |
Serovaev et al. | The analysis of the stress-strain state in the PCM–optical-fiber system | |
Voet et al. | High strain monitoring during fatigue loading of thermoplastic composites using imbedded draw tower fibre bragg grating sensors |