[go: up one dir, main page]

Saleh et al., 2024 - Google Patents

Advanced Techniques for Enhancing Low-Noise Amplifier Performance: A Review.

Saleh et al., 2024

View PDF
Document ID
14534920953660220469
Author
Saleh S
Mohammed K
Yaseen M
Hausien H
Publication year
Publication venue
Al-Rafadain Engineering Journal

External Links

Snippet

This paper reviews prior investigations into low noise amplifier (LNA) design. In this work, various modern LNA architectures will be examined, with a focus on five technologies: Cascode Distributed LNA, Coupled-Line Feedback in 0.15-m GaAs pHEMT Technology …
Continue reading at iasj.rdd.edu.iq (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45704Indexing scheme relating to differential amplifiers the LC comprising one or more parallel resonance circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45361Indexing scheme relating to differential amplifiers the AAC comprising multiple transistors parallel coupled at their drains only, e.g. in a cascode dif amp, only those forming the composite common source transistor
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45481Indexing scheme relating to differential amplifiers the CSC comprising only a direct connection to the supply voltage, no other components being present
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Similar Documents

Publication Publication Date Title
Wu et al. Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation
Fang et al. Supply-scaling for efficiency enhancement in distributed power amplifiers
Perumana et al. Resistive-feedback CMOS low-noise amplifiers for multiband applications
Kargaran et al. Design and Analysis of 2.4 GHz $30~\mu\text {W} $ CMOS LNAs for Wearable WSN Applications
Hsu et al. Design of low power UWB LNA based on common source topology with current-reused technique
Ma et al. A high-linearity wideband common-gate LNA with a differential active inductor
Yan et al. A compact 1.0–12.5-GHz LNA MMIC with 1.5-dB NF based on multiple resistive feedback in 0.15-μm GaAs pHEMT technology
Wan et al. Design of 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current reuse technique
Park et al. Design of a 1.8 GHz low-noise amplifier for RF front-end in a 0.8/spl mu/m CMOS technology
Nikandish et al. Design and analysis of broadband Darlington amplifiers with bandwidth enhancement in GaAs pHEMT technology
Shekhar et al. A CMOS 3.1-10.6 GHz UWB LNA employing stagger-compensated series peaking
Meaamar et al. A 3–8 GHz low-noise CMOS amplifier
Chen et al. A wideband LNA based on current-reused CS-CS topology and gm-boosting technique for 5G application
Lee et al. A D-band variable gain low noise amplifier in a 28-nm CMOS process for 6G wireless communications
Reja et al. An area-efficient multistage 3.0-to 8.5-GHz CMOS UWB LNA using tunable active inductors
Deferm et al. A 94GHz differential power amplifier in 45nm LP CMOS
Saha et al. Analysis and design of a 3–26 GHz low-noise amplifier in SiGe HBT technology
Nguyen et al. A RF CMOS amplifier with optimized gain, noise, linearity and return losses for UWB applications
Luo et al. A 2.99 dB NF 15.6 dB Gain 3-10GHz Ultra-wideband low-noise amplifier for UWB systems in 65 nm CMOS
Zhang et al. A 0.5-5.6 GHz inductorless wideband LNA with local active feedback
Saleh et al. Advanced Techniques for Enhancing Low-Noise Amplifier Performance: A Review
Luo et al. A 21-41 ghz compact wideband low-noise amplifier based on transformer-feedback technique in 65-nm CMOS
An et al. A 2: 8 GHz to 12: 8 GHz UWB LNA using transformer wide-band input matching for IR-UWB radar applications
Huang et al. An inductor-coupling resonated CMOS low noise amplifier for 3.1–10.6 GHz ultra-wideband system
Yi et al. A Q-band CMOS LNA with noise cancellation