Saleh et al., 2024 - Google Patents
Advanced Techniques for Enhancing Low-Noise Amplifier Performance: A Review.Saleh et al., 2024
View PDF- Document ID
- 14534920953660220469
- Author
- Saleh S
- Mohammed K
- Yaseen M
- Hausien H
- Publication year
- Publication venue
- Al-Rafadain Engineering Journal
External Links
Snippet
This paper reviews prior investigations into low noise amplifier (LNA) design. In this work, various modern LNA architectures will be examined, with a focus on five technologies: Cascode Distributed LNA, Coupled-Line Feedback in 0.15-m GaAs pHEMT Technology …
- 238000000034 method 0 title abstract description 41
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
- H03F3/45188—Non-folded cascode stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45197—Pl types
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/08—Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
- H03F1/22—Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
- H03F1/223—Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/191—Tuned amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/195—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45704—Indexing scheme relating to differential amplifiers the LC comprising one or more parallel resonance circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45361—Indexing scheme relating to differential amplifiers the AAC comprising multiple transistors parallel coupled at their drains only, e.g. in a cascode dif amp, only those forming the composite common source transistor
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45481—Indexing scheme relating to differential amplifiers the CSC comprising only a direct connection to the supply voltage, no other components being present
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/294—Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/60—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/34—Negative-feedback-circuit arrangements with or without positive feedback
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/372—Noise reduction and elimination in amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation | |
Fang et al. | Supply-scaling for efficiency enhancement in distributed power amplifiers | |
Perumana et al. | Resistive-feedback CMOS low-noise amplifiers for multiband applications | |
Kargaran et al. | Design and Analysis of 2.4 GHz $30~\mu\text {W} $ CMOS LNAs for Wearable WSN Applications | |
Hsu et al. | Design of low power UWB LNA based on common source topology with current-reused technique | |
Ma et al. | A high-linearity wideband common-gate LNA with a differential active inductor | |
Yan et al. | A compact 1.0–12.5-GHz LNA MMIC with 1.5-dB NF based on multiple resistive feedback in 0.15-μm GaAs pHEMT technology | |
Wan et al. | Design of 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current reuse technique | |
Park et al. | Design of a 1.8 GHz low-noise amplifier for RF front-end in a 0.8/spl mu/m CMOS technology | |
Nikandish et al. | Design and analysis of broadband Darlington amplifiers with bandwidth enhancement in GaAs pHEMT technology | |
Shekhar et al. | A CMOS 3.1-10.6 GHz UWB LNA employing stagger-compensated series peaking | |
Meaamar et al. | A 3–8 GHz low-noise CMOS amplifier | |
Chen et al. | A wideband LNA based on current-reused CS-CS topology and gm-boosting technique for 5G application | |
Lee et al. | A D-band variable gain low noise amplifier in a 28-nm CMOS process for 6G wireless communications | |
Reja et al. | An area-efficient multistage 3.0-to 8.5-GHz CMOS UWB LNA using tunable active inductors | |
Deferm et al. | A 94GHz differential power amplifier in 45nm LP CMOS | |
Saha et al. | Analysis and design of a 3–26 GHz low-noise amplifier in SiGe HBT technology | |
Nguyen et al. | A RF CMOS amplifier with optimized gain, noise, linearity and return losses for UWB applications | |
Luo et al. | A 2.99 dB NF 15.6 dB Gain 3-10GHz Ultra-wideband low-noise amplifier for UWB systems in 65 nm CMOS | |
Zhang et al. | A 0.5-5.6 GHz inductorless wideband LNA with local active feedback | |
Saleh et al. | Advanced Techniques for Enhancing Low-Noise Amplifier Performance: A Review | |
Luo et al. | A 21-41 ghz compact wideband low-noise amplifier based on transformer-feedback technique in 65-nm CMOS | |
An et al. | A 2: 8 GHz to 12: 8 GHz UWB LNA using transformer wide-band input matching for IR-UWB radar applications | |
Huang et al. | An inductor-coupling resonated CMOS low noise amplifier for 3.1–10.6 GHz ultra-wideband system | |
Yi et al. | A Q-band CMOS LNA with noise cancellation |