[go: up one dir, main page]

Satthamsakul et al., 2024 - Google Patents

Contamination Measurement Techniques in Hydraulic Fluid Based on Hall Effect Sensor

Satthamsakul et al., 2024

Document ID
14402499581053242980
Author
Satthamsakul S
Khummongkol R
Publication year
Publication venue
2024 8th International Conference on Information Technology (InCIT)

External Links

Snippet

This paper proposed two methods to examine metal particles in fluid using Hall Effect Sensor under the condition of nondestructive testing based on two conditions: test of particles in oil samples, and test of particles in industrial machinery simulation. Hall Effect …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel
    • G01N33/2858Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel metal particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
    • G01N27/023Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material where the material is placed in the field of a coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects thereof, e.g. onconductivity or capacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution; Measuring field distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids

Similar Documents

Publication Publication Date Title
Zhu et al. Lubricating oil conditioning sensors for online machine health monitoring–A review
Du et al. A high throughput inductive pulse sensor for online oil debris monitoring
Ma et al. High-sensitivity distinguishing and detection method for wear debris in oil of marine machinery
Qian et al. Ultrasensitive inductive debris sensor with a two-stage autoasymmetrical compensation circuit
Pham et al. Importance of magnetizing field on magnetic flux leakage signal of defects
Shi et al. An ultrasensitive microsensor based on impedance analysis for oil condition monitoring
Du et al. Inductive Coulter counting: detection and differentiation of metal wear particles inlubricant
Bai et al. A wear particle sensor using multiple inductive coils under a toroidal magnetic field
Qian et al. Interference reducing by low-voltage excitation for a debris sensor with triple-coil structure
Wu et al. Ferromagnetic metal particle detection including calculation of particle magnetic permeability based on micro inductive sensor
Wu et al. Solid particles, water drops and air bubbles detection in lubricating oil using microfluidic inductance and capacitance measurements
Hong Review of application cases of machine condition monitoring using oil sensors
de Macedo Silva et al. Evaluation of the magnetic permeability for the microstructural characterization of a duplex stainless steel
Xie et al. An asymmetric micro-three-coil sensor enabling non-ferrous metals distinguishment
Shi et al. A novel distinction method of metal debris material based on inductive sensor with multi-sensing units
Li et al. Discrimination method of wire rope fault signal based on Holzer sensor for multi array weak magnetic detection
Satthamsakul et al. Contamination Measurement Techniques in Hydraulic Fluid Based on Hall Effect Sensor
Chaiyachit et al. Hall Effect sensor for measuring metal particles in lubricant
Ilerioluwa et al. A multi-parameter microfluidic particle sensor based on permalloy for high sensitivity
Zhang et al. A three-coil wear particle sensor based on radial magnetic field
Lovrec et al. The importance of the electrical properties of hydraulic fluids
Myshkin et al. Wear prediction for tribosystems based on debris analysis
Talebi et al. Design and fabrication of an online inductive sensor for identification of ferrous wear particles in engine oil
Brauer et al. Defect detection in conducting materials using eddy current testing techniques
Liu et al. Research on the influence of different microchannel position on the sensitivity of inductive sensor