DeCamp et al., 1989 - Google Patents
Synthesis of (+)-dihydromevinolin by selective reduction of mevinolinDeCamp et al., 1989
- Document ID
- 12887442648688532790
- Author
- DeCamp A
- Verhoeven T
- Shinkai I
- Publication year
- Publication venue
- The Journal of Organic Chemistry
External Links
Snippet
The fungal metabolites mevinolin (Mevacor)(la) 1 and compactin (lb) 1 2 have attracted considerable attention due to their hypocholesterolemic activity. They function as extremely potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate …
- PCZOHLXUXFIOCF-BXMDZJJMSA-N Lovastatin   C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 0 title abstract description 26
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/16—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D309/28—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D309/30—Oxygen atoms, e.g. delta-lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2101/00—Systems containing only non-condensed rings
- C07C2101/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2101/16—The ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O-metal, -CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/67—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O-metal, -CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/26—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D307/30—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/32—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2102/00—Systems containing two condensed rings
- C07C2102/02—The rings having only two atoms in common
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2103/00—Systems containing at least three condensed rings
- C07C2103/02—Ortho- or ortho- and peri-condensed systems
- C07C2103/04—Ortho- or ortho- and peri-condensed systems containing three rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2101/00—Systems containing only non-condensed rings
- C07C2101/06—Systems containing only non-condensed rings with a five-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/58—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulfur atoms in positions 2 or 4
- C07D311/70—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulfur atoms in positions 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C403/00—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
- C07C403/02—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains containing only carbon and hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/30—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/587—Unsaturated compounds containing a keto groups being part of a ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic System
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C-Si linkages
- C07F7/18—Compounds having one or more C-Si linkages as well as one or more C-O-Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
- C07F7/1812—Compounds having Si-O-C linkages having (C1)a-Si-(OC2)b linkages, a and b each being >=1 and a+b = 4, C1 and C2 being hydrocarbon or substituted hydrocarbon radicals
- C07F7/1844—Compounds having Si-O-C linkages having (C1)a-Si-(OC2)b linkages, a and b each being >=1 and a+b = 4, C1 and C2 being hydrocarbon or substituted hydrocarbon radicals a being 3, b being 1
- C07F7/1848—C1 being an unsubstituted acyclic saturated hydrocarbon radical containing less than six carbon atoms, a benzyl radical, a phenyl radical, or a methyl substituted phenyl radical
- C07F7/1856—C2 containing cycloaliphatic, heterocyclic or condensed aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C35/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
- C07C35/02—Monocyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2527535B2 (en) | Method for α-C-alkylation of 8-acyl groups in mevinolin and analogues thereof | |
Theisen et al. | Improved procedure for preparation of optically active 3-hydroxyglutarate monoesters and 3-hydroxy-5-oxoalkanoic acids | |
Roush et al. | Application of the steric directing group strategy to the stereoselective synthesis of the octahydronaphthalene substructure of kijanolide and tetronolide | |
US4293496A (en) | 6(R)-[2-(8-Hydroxy-2,6-dimethylpolyhydronaphthyl-1)-ethyl]-4(R)-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-ones | |
Jacobi et al. | Total synthesis of (.+-.)-gnididione and (.+-.)-isognididione | |
Askin et al. | Synthesis of synvinolin: extremely high conversion alkylation of an ester enolate | |
US6278001B1 (en) | Method for preparing (+) compactin and (+) mevinolin analog compounds having a β-hydroxy-δ-lactone grouping | |
Sakai et al. | Highly enantioselective reduction of ethyl 2-acyloxy-3-oxobutanoate with immobilized Baker's yeast. | |
Klein et al. | New cascade reactions starting from acetylenic ω-ketoesters: an easy access to electrophilic allenes and to 1, 3-bridgehead ketones | |
DeCamp et al. | Synthesis of (+)-dihydromevinolin by selective reduction of mevinolin | |
CA3057520A1 (en) | Synthesis of thapsigargin, nortrilobolide, and analogs thereof | |
Narasaka et al. | Asymmetric Intramolecular Ene Reaction Catalyzed by a Chiral Titanium Reagent and Synthesis of (—)‐ε‐Cadinene | |
Marshall et al. | Stereoselective synthesis of a nonracemic hydronaphthalene subunit of kijanolide | |
Kurashina et al. | Stereoselective Synthesis of a Protected Form of (6R, 7E, 9S, 10R, 12Z)-6, 9, 10-Trihydroxy-7, 12-hexadecadienoic Acid | |
Mazur et al. | Enantioselective synthesis of PsiA. beta., a sporogenic metabolite of Aspergillus nidulans | |
SU860708A1 (en) | Method of preparing steroids | |
HUT62254A (en) | Process for producing 6-(hydronaphthyl-1-ethyl)-4-hydroxy-3,4,5,6-tetrahydro-2h-pyran-2-ones and the corresponding hydroxy acids | |
KITA et al. | A Novel Oxidative Intramolecular [4+ 2] Cycloaddition of Silylene-Protected Dihydroxystyrene Derivatives Leading to peri-Hydroxy Polycyclic Aromatic Compounds: A Synthesis of the ABCD Ring System of Frederucamycin A | |
US5177104A (en) | 6-α-hydroxy derivatives of mevinic acids | |
US4833258A (en) | Intermediates useful in the preparation of HMG-COA reductase inhibitors | |
Colombo et al. | Detours en route to a total synthesis of (+)-cassiol | |
Marcos et al. | Synthesis of (+)-limonidilactone and 12-epi-limonidilactone | |
Yoshida et al. | Synthesis of dl-vincadifformine, dl-eburcine and dl-3-epieburcine. Introduction of methoxycarbonyl function to c (3)-position of aspidosperma skeleton | |
US4925956A (en) | Novel process for manufacturing optically active carbacyclin intermediates | |
US5919952A (en) | Method for preparing swainsonine |