[go: up one dir, main page]

Hawashin et al., 2020 - Google Patents

An efficient hybrid similarity measure based on user interests for recommender systems

Hawashin et al., 2020

Document ID
12490107282548953500
Author
Hawashin B
Lafi M
Kanan T
Mansour A
Publication year
Publication venue
Expert Systems

External Links

Snippet

Recommender systems are used to suggest items to users based on their interests. They have been used widely in various domains, including online stores, web advertisements, and social networks. As part of their process, recommender systems use a set of similarity …
Continue reading at onlinelibrary.wiley.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • G06F17/30864Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
    • G06F17/30867Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • G06F17/30595Relational databases
    • G06F17/30598Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30017Multimedia data retrieval; Retrieval of more than one type of audiovisual media
    • G06F17/30023Querying
    • G06F17/30029Querying by filtering; by personalisation, e.g. querying making use of user profiles
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30634Querying
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/01Social networking

Similar Documents

Publication Publication Date Title
Hawashin et al. An efficient hybrid similarity measure based on user interests for recommender systems
Eke et al. A survey of user profiling: State-of-the-art, challenges, and solutions
Anandhan et al. Social media recommender systems: review and open research issues
Lu et al. a web‐based personalized business partner recommendation system using fuzzy semantic techniques
Wilcke et al. The knowledge graph as the default data model for learning on heterogeneous knowledge
Shokeen et al. Social recommender systems: techniques, domains, metrics, datasets and future scope
Salehi et al. Personalized recommendation of learning material using sequential pattern mining and attribute based collaborative filtering
Lucas et al. A hybrid recommendation approach for a tourism system
Bellogín et al. A comparative study of heterogeneous item recommendations in social systems
Marinho et al. Social tagging recommender systems
Yadav et al. Dealing with Pure New User Cold‐Start Problem in Recommendation System Based on Linked Open Data and Social Network Features
US20110010366A1 (en) Hybrid recommendation system
Minkov et al. Graph‐based recommendation integrating rating history and domain knowledge: Application to on‐site guidance of museum visitors
Wu et al. Context-aware recommendation via graph-based contextual modeling and postfiltering
Morawski et al. A fuzzy recommender system for public library catalogs
Sun et al. A hybrid approach for article recommendation in research social networks
Sánchez-Moreno et al. Using social tag embedding in a collaborative filtering approach for recommender systems
Madisetty Event recommendation using social media
Castillo et al. ExUP recommendations: Inferring user's product metadata preferences from single-criterion rating systems
Loizou How to recommend music to film buffs: enabling the provision of recommendations from multiple domains
Liu et al. Personalized recommendation with adaptive mixture of markov models
Lee Personalized recommendations based on users' information-centered social networks
Prasad et al. An efficient framework for the similarity prediction with query recommendation in E‐learning system
Zamani et al. A language model-based framework for multi-publisher content-based recommender systems
Maleszka A method for knowledge integration of ontology-based user profiles in personalised document retrieval systems