Martinello et al., 2015 - Google Patents
Dual aperture photography: Image and depth from a mobile cameraMartinello et al., 2015
View PDF- Document ID
- 11365602656779260960
- Author
- Martinello M
- Wajs A
- Quan S
- Lee H
- Lim C
- Woo T
- Lee W
- Kim S
- Lee D
- Publication year
- Publication venue
- 2015 IEEE International Conference on Computational Photography (ICCP)
External Links
Snippet
Conventional cameras capture images with limited depth of field and no depth information. Camera systems have been proposed that enable additional depth information to be captured with the image. These systems reduce the resolution of the captured image or …
- 230000000694 effects 0 abstract description 7
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/232—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
- H04N5/23229—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles comprising further processing of the captured image without influencing the image pickup process
- H04N5/23232—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles comprising further processing of the captured image without influencing the image pickup process by using more than one image in order to influence resolution, frame rate or aspect ratio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/232—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
- H04N5/23212—Focusing based on image signal provided by the electronic image sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/335—Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infra-red radiation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
- G06T5/001—Image restoration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/21—Circuitry for suppressing or minimising disturbance, e.g. moiré, halo, even if the automatic gain control is involved
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic or multiview television systems; Details thereof
- H04N13/02—Picture signal generators
- H04N13/0203—Picture signal generators using a stereoscopic image camera
- H04N13/0207—Picture signal generators using a stereoscopic image camera involving a single 2D image pickup sensor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
- G06T5/50—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image by the use of more than one image, e.g. averaging, subtraction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/04—Picture signal generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Martinello et al. | Dual aperture photography: Image and depth from a mobile camera | |
US10645368B1 (en) | Method and apparatus for estimating depth of field information | |
CN108141528B (en) | Phase detection autofocus noise reduction | |
CN108141527B (en) | Phase Detection Autofocus Algorithm | |
TWI480583B (en) | System and method for extending depth of field in a lens system by use of color-dependent wavefront coding | |
Cossairt et al. | When does computational imaging improve performance? | |
CN103430551B (en) | Use the imaging system and its operating method of the lens unit with axial chromatic aberration | |
US20160286199A1 (en) | Processing Multi-Aperture Image Data for a Compound Imaging System | |
US20160042522A1 (en) | Processing Multi-Aperture Image Data | |
US20130033579A1 (en) | Processing multi-aperture image data | |
US9071737B2 (en) | Image processing based on moving lens with chromatic aberration and an image sensor having a color filter mosaic | |
WO2011096157A1 (en) | Imaging device and method, and image processing method for imaging device | |
KR20120068655A (en) | Method and camera device for capturing iris or subject of good quality with one bandpass filter passing both visible ray and near infra red ray | |
US20220237813A1 (en) | Image fusion for scenes with objects at multiple depths | |
CN112866549A (en) | Image processing method and device, electronic equipment and computer readable storage medium | |
EP4167134A1 (en) | System and method for maximizing inference accuracy using recaptured datasets | |
Wang et al. | Stereoscopic dark flash for low-light photography | |
CN107431754A (en) | Image processing method, image processing apparatus and picture pick-up device | |
McCloskey | Masking light fields to remove partial occlusion | |
Cao et al. | Digital multi-focusing from a single photograph taken with an uncalibrated conventional camera | |
Rego et al. | Deep camera obscura: an image restoration pipeline for pinhole photography | |
Honda et al. | Make my day-high-fidelity color denoising with near-infrared | |
JP6976754B2 (en) | Image processing equipment and image processing methods, imaging equipment, programs | |
Liang et al. | Guidance network with staged learning for image enhancement | |
TW202433948A (en) | Method and image processor unit for processing image data |