Ji et al., 2002 - Google Patents
A novel scheduling algorithm for IP traffic in adaptive modulation systemJi et al., 2002
- Document ID
- 11341623498675596910
- Author
- Ji Y
- Li Y
- Zhang P
- Hu J
- Publication year
- Publication venue
- Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No. 02CH37367)
External Links
Snippet
One property, bandwidth uneven distributed with time slots (BUDTS) in the adaptive modulation wireless system destroys an implicit assumption of traditional traffic scheduling algorithm that the bandwidth is evenly distributed with time slots. Therefore, new scheme fit …
- 230000000051 modifying 0 title abstract description 20
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2441—Flow classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2408—Different services, e.g. type of service [ToS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5693—Queue scheduling in packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2458—Modification of priorities while in transit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5695—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/26—Explicit feedback to the source, e.g. choke packet
- H04L47/263—Source rate modification after feedback
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/14—Flow control or congestion control in wireless networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/30—Flow control or congestion control using information about buffer occupancy at either end or transit nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/20—Policing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
- H04W72/1221—Schedule definition, set-up or creation based on age of data to be sent
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/50—Queue scheduling
- H04L47/62—General aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/50—Queue scheduling
- H04L47/52—Bandwidth attribution to queues
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fragouli et al. | Controlled multimedia wireless link sharing via enhanced class-based queuing with channel-state-dependent packet scheduling | |
EP2109265B1 (en) | Scheduling and admission control of packet data traffic | |
Liu et al. | Cross-layer scheduling with prescribed QoS guarantees in adaptive wireless networks | |
EP1985092B1 (en) | Method and apparatus for solving data packet traffic congestion. | |
Feng et al. | Understanding and improving TCP performance over networks with minimum rate guarantees | |
EP1597876A2 (en) | Method for allocating resources of a wireless communications network to traffic to be transmitted to user equipment over a channel of the network | |
US20120188957A1 (en) | Flow control in umts using information in ubs field | |
US20040081095A1 (en) | Policing mechanism for resource limited wireless MAC processors | |
Hossain et al. | Link-level traffic scheduling for providing predictive QoS in wireless multimedia networks | |
Siu et al. | Virtual queueing techniques for UBR+ service in ATM with fair access and minimum bandwidth guarantee | |
Kaur et al. | Core-stateless guaranteed throughput networks | |
Moorman et al. | Multiclass priority fair queuing for hybrid wired/wireless quality of service support | |
Ji et al. | A novel scheduling algorithm for IP traffic in adaptive modulation system | |
Tsou et al. | WDFQ: An efficient traffic scheduler with fair bandwidth-sharing for wireless multimedia services | |
Yang et al. | Dynamic scheduling framework on an RLC/MAC layer for general packet radio service | |
Mansouri et al. | New scheduling algorithm for wireless mesh networks | |
Taghipoor et al. | Scheduling Algorithm and Bandwidth Allocation in WiMAX | |
Gao et al. | On improving the performance of utility‐based wireless fair scheduling through a combination of adaptive FEC and ARQ | |
Wijting et al. | Mapping of quality of service parameters between IP network layer and radio channel | |
Wang et al. | A Markovian Analytical Model for a Hybrid Traffic Scheduling Scheme | |
Stojanović et al. | A novel approach for providing quality of service in multi service IP networks | |
Yae et al. | A scheduling scheme for the heterogeneous multimedia services in mobile broadband systems | |
Yerima et al. | End-to-end QoS improvement of HSDPA end-user multi-flow traffic using RAN buffer management | |
Niyato | Call admission control, bandwidth adaptation, and scheduling in cellular wireless Internet: analytical models and performance evaluation | |
Tsou et al. | The design of an efficient traffic scheduler with fair bandwidth-sharing for wireless multimedia services |