Pérez-Flores et al., 2012 - Google Patents
Structural and electrochemical characterization of La2− xSrxNiTiO6− δPérez-Flores et al., 2012
View PDF- Document ID
- 11254551793000323500
- Author
- Pérez-Flores J
- Ritter C
- Pérez-Coll D
- Mather G
- Canales-Vázquez J
- Gálvez-Sánchez M
- García-Alvarado F
- Amador U
- Publication year
- Publication venue
- International Journal of Hydrogen Energy
External Links
Snippet
Materials of the series La2− xSrxNiTiO6− δ (0≤ x≤ 0.5) have been characterized by both structural and electrochemical methods in order to assess their possible use as electrodes for SOFCs. Neutron and X-ray powder diffraction experiments have shown that they are …
- 238000002848 electrochemical method 0 title abstract description 5
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells | |
Sun et al. | Cathode materials for solid oxide fuel cells: a review | |
Aguadero et al. | Materials development for intermediate-temperature solid oxide electrochemical devices | |
Wei et al. | Characterization and optimization of highly active and Ba-deficient BaCo0. 4Fe0. 4Zr0. 1Y0. 1O3-δ-based cathode materials for protonic ceramics fuel cells | |
Dong et al. | A comparative study of Sm0. 5Sr0. 5MO3− δ (M= Co and Mn) as oxygen reduction electrodes for solid oxide fuel cells | |
Tao et al. | Synthesis and characterization of (La0. 75Sr0. 25) Cr0. 5Mn0. 5 O 3− δ, a Redox-Stable, efficient perovskite anode for SOFCs | |
Zhou et al. | Progress in understanding and development of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review | |
Meng et al. | Novel high ionic conductivity electrolyte membrane based on semiconductor La0. 65Sr0. 3Ce0. 05Cr0. 5Fe0. 5O3-δ for low-temperature solid oxide fuel cells | |
Peña-Martínez et al. | Performance of XSCoF (X= Ba, La and Sm) and LSCrX′(X′= Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC | |
Huang et al. | Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+ δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs | |
Yoo et al. | Investigation of layered perovskite type NdBa1− xSrxCo2O5+ δ (x= 0, 0.25, 0.5, 0.75, and 1.0) cathodes for intermediate-temperature solid oxide fuel cells | |
Lin et al. | Characterization and evaluation of BaCo0. 7Fe0. 2Nb0. 1O3− δ as a cathode for proton-conducting solid oxide fuel cells | |
Wan et al. | Nd2− xLaxNiO4+ δ, a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material | |
Liu et al. | Ta-doped PrBaFe2O5+ δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells | |
Shimada et al. | Highly dispersed anodes for solid oxide fuel cells using NiO/YSZ/BZY triple-phase composite powders prepared by spray pyrolysis | |
Pérez-Flores et al. | Structural and electrochemical characterization of La2− xSrxNiTiO6− δ | |
Zhang et al. | Electrochemical performance and structural durability of Mg-doped SmBaMn2O5+ δ layered perovskite electrode for symmetrical solid oxide fuel cell | |
Abubaker et al. | Investigating the effect of Cu-doping on the electrochemical properties of perovskite-type Ba0. 5Sr0. 5Fe1-xCuxO3-δ (0≤ x≤ 0.20) cathodes | |
Zhang et al. | High performance solid oxide fuel cells with Co1. 5Mn1. 5O4 infiltrated (La, Sr) MnO3-yittria stabilized zirconia cathodes | |
Yu et al. | Performance optimization of SrFe0. 95Ti0. 05O3− δ cathode for intermediate temperature SOFC | |
Guo et al. | Electrochemical evaluation of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ–La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ composite cathodes for La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte SOFCs | |
Jo et al. | Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs | |
Li et al. | A-site Ba-deficiency layered perovskite EuBa1− xCo2O6− δ cathodes for intermediate-temperature solid oxide fuel cells: Electrochemical properties and oxygen reduction reaction kinetics | |
Li et al. | Electrochemical performance of Ba2Co9O14+ SDC composite cathode for intermediate-temperature solid oxide fuel cells | |
Gao et al. | Enhancing chemical stability and performance in proton-conducting solid oxide fuel cells through novel composite cathode design |