Lyu et al., 2015 - Google Patents
Mandarin–English code-switching speech corpus in South-East Asia: SEAMELyu et al., 2015
- Document ID
- 10484503668299719140
- Author
- Lyu D
- Tan T
- Chng E
- Li H
- Publication year
- Publication venue
- Language resources and evaluation
External Links
Snippet
This paper introduces the South East Asia Mandarin–English corpus, a 63-h spontaneous Mandarin–English code-switching transcribed speech corpus suitable for LVCSR and language change detection/identification research. The corpus is recorded under unscripted …
- 241001672694 Citrus reticulata 0 abstract description 53
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
- G10L15/183—Speech classification or search using natural language modelling using context dependencies, e.g. language models
- G10L15/187—Phonemic context, e.g. pronunciation rules, phonotactical constraints or phoneme n-grams
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
- G10L15/183—Speech classification or search using natural language modelling using context dependencies, e.g. language models
- G10L15/19—Grammatical context, e.g. disambiguation of the recognition hypotheses based on word sequence rules
- G10L15/197—Probabilistic grammars, e.g. word n-grams
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
- G10L15/1822—Parsing for meaning understanding
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L2015/088—Word spotting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/06—Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
- G10L15/065—Adaptation
- G10L15/07—Adaptation to the speaker
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/289—Use of machine translation, e.g. multi-lingual retrieval, server side translation for client devices, real-time translation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2872—Rule based translation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2705—Parsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/28—Processing or translating of natural language
- G06F17/2809—Data driven translation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
- G10L2015/226—Taking into account non-speech caracteristics
- G10L2015/228—Taking into account non-speech caracteristics of application context
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/005—Language recognition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/26—Speech to text systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/28—Constructional details of speech recognition systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/003—Changing voice quality, e.g. pitch or formants
- G10L21/007—Changing voice quality, e.g. pitch or formants characterised by the process used
- G10L21/013—Adapting to target pitch
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lyu et al. | Mandarin–English code-switching speech corpus in South-East Asia: SEAME | |
Lyu et al. | SEAME: a Mandarin-English code-switching speech corpus in south-east asia. | |
Ngueajio et al. | Hey ASR system! Why aren’t you more inclusive? Automatic speech recognition systems’ bias and proposed bias mitigation techniques. A literature review | |
Besacier et al. | Automatic speech recognition for under-resourced languages: A survey | |
Koh et al. | Building the singapore english national speech corpus | |
Schultz et al. | Multilingual speech processing | |
Masmoudi et al. | Automatic speech recognition system for Tunisian dialect | |
Clavel et al. | Spontaneous speech and opinion detection: mining call-centre transcripts | |
Kürschner et al. | Linguistic determinants of the intelligibility of Swedish words among Danes | |
Cho et al. | A real-world system for simultaneous translation of German lectures. | |
Abushariah et al. | Phonetically rich and balanced text and speech corpora for Arabic language | |
Ganji et al. | IITG-HingCoS corpus: A Hinglish code-switching database for automatic speech recognition | |
Rusko et al. | Slovak automatic dictation system for judicial domain | |
Yun et al. | Multilingual speech-to-speech translation system for mobile consumer devices | |
Candido Junior et al. | CORAA ASR: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese | |
Dinkar et al. | Fillers in spoken language understanding: Computational and psycholinguistic perspectives | |
Jokinen et al. | DigiSami and digital natives: Interaction technology for the North Sami language | |
Modipa et al. | Two sepedi-english code-switched speech corpora | |
Abushariah | TAMEEM V1. 0: speakers and text independent Arabic automatic continuous speech recognizer | |
Gale et al. | Mixed orthographic/phonemic language modeling: Beyond orthographically restricted transformers (BORT) | |
Geneva et al. | Building an ASR corpus based on Bulgarian Parliament speeches | |
Prasad et al. | BBN TransTalk: Robust multilingual two-way speech-to-speech translation for mobile platforms | |
Pakoci et al. | Language model optimization for a deep neural network based speech recognition system for Serbian | |
Vijayalakshmi et al. | A multilingual to polyglot speech synthesizer for indian languages using a voice-converted polyglot speech corpus | |
Qorib et al. | Building medisco: Indonesian speech corpus for medical domain |