[go: up one dir, main page]

Hwang et al., 1998 - Google Patents

A comparative study on the electrical conduction mechanisms of (Ba 0.5 Sr 0.5) TiO 3 thin films on Pt and IrO 2 electrodes

Hwang et al., 1998

Document ID
10374291158396944656
Author
Hwang C
Lee B
Kang C
Kim J
Lee K
Cho H
Horii H
Kim W
Lee S
Roh Y
Lee M
Publication year
Publication venue
Journal of applied physics

External Links

Snippet

Electrical conduction mechanisms for Pt/(Ba 0.5 Sr 0.5) TiO 3 (BST)/Pt, IrO 2/BST/IrO 2, and Pt/BST/IrO 2 capacitors were studied. The Pt/BST/Pt capacitor shows a Schottky emission behavior with interface potential barrier heights of about 1.5–1.6 eV. The barrier height is …
Continue reading at pubs.aip.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes; Multistep manufacturing processes therefor
    • H01L29/43Electrodes; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L49/00Solid state devices not provided for in groups H01L27/00 - H01L47/00 and H01L51/00 and not provided for in any other subclass; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture

Similar Documents

Publication Publication Date Title
Hwang et al. A comparative study on the electrical conduction mechanisms of (Ba 0.5 Sr 0.5) TiO 3 thin films on Pt and IrO 2 electrodes
Shin et al. Dielectric and electrical properties of sputter grown (Ba, Sr) TiO 3 thin films
Hwang Thickness-dependent dielectric constants of (Ba, Sr) TiO 3 thin films with Pt or conducting oxide electrodes
Hwang et al. Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr) TiO 3 thin films
Joshi et al. Structural and electrical characteristics of SrTiO3 thin films for dynamic random access memory applications
Lee et al. Influences of interfacial intrinsic low-dielectric layers on the dielectric properties of sputtered (Ba, Sr) TiO 3 thin films
Qi et al. Electrical and reliability characteristics of ZrO 2 deposited directly on Si for gate dielectric application
Lee et al. Electrical and dielectric behavior of MgO doped Ba 0.7 Sr 0.3 TiO 3 thin films on Al 2 O 3 substrate
Peng et al. Structures and electrical properties of barium strontium titanate thin films grown by multi-ion-beam reactive sputtering technique
Tsai et al. Effect of bottom electrode materials on the electrical and reliability characteristics of (Ba, Sr) TiO/sub 3/capacitors
Kim et al. Memory window of Pt/SrBi 2 Ta 2 O 9/CeO 2/SiO 2/Si structure for metal ferroelectric insulator semiconductor field effect transistor
Bharadwaja et al. Growth and study of antiferroelectric lead zirconate thin films by pulsed laser ablation
Shin et al. Leakage current of sol-gel derived Pb (Zr, Ti) O 3 thin films having Pt electrodes
WO2002019389A2 (en) Epitaxial template and barrier for the integration of functional thin film heterostructures on silicon
Park et al. Imprint failures and asymmetric electrical properties induced by thermal processes in epitaxial Bi 4 Ti 3 O 12 thin films
Wang et al. Influence of Ce doping on leakage current in Ba0. 5Sr0. 5TiO3 films
Yoon et al. Effect of acceptors on the segregation of donors in niobium‐doped barium titanate positive temperature coefficient resistors
Hwang et al. A positive temperature coefficient of resistivity effect from a paraelectric Pt/(Ba 0.5, Sr 0.5) TiO 3/IrO 2 thin-film capacitor
Cha et al. Effects of Ir electrodes on the dielectric constants of Ba0. 5Sr0. 5TiO3 films
JPH098246A (en) Semiconductor device and manufacturing method thereof
Oh et al. Comprehensive study of high pressure annealing on the ferroelectric properties of Hf0. 5Zr0. 5O2 thin films
Hayashi et al. Grain boundary electrical barriers in positive temperature coefficient thermistors
Lou et al. Effect of manganese doping on the size effect of lead zirconate titanate thin films and theextrinsic nature of ‘dead layers’
Shin et al. Electrical conduction properties of sputter-grown (Ba, Sr) TiO 3 thin films having IrO 2 electrodes
Ma et al. Effect of thickness and crystalline morphology on electrical properties of rf-magnetron sputtering deposited Bi4Ti3O12 thin films