[go: up one dir, main page]

Yang et al., 2009 - Google Patents

Improving Musical Concept Detection by Ordinal Regression and Context Fusion.

Yang et al., 2009

View PDF
Document ID
10338298448976957084
Author
Yang Y
Lin Y
Lee A
Chen H
Publication year
Publication venue
ISMIR

External Links

Snippet

To facilitate information retrieval of large-scale music databases, the detection of musical concepts, or auto-tagging, has been an active research topic. This paper concerns the use of concept correlations to improve musical concept detection. We propose to formulate concept …
Continue reading at citeseerx.ist.psu.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3074Audio data retrieval
    • G06F17/30749Audio data retrieval using information manually generated or using information not derived from the audio data, e.g. title and artist information, time and location information, usage information, user ratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3074Audio data retrieval
    • G06F17/30755Query formulation specially adapted for audio data retrieval
    • G06F17/30758Query by example, e.g. query by humming
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3074Audio data retrieval
    • G06F17/30743Audio data retrieval using features automatically derived from the audio content, e.g. descriptors, fingerprints, signatures, MEP-cepstral coefficients, musical score, tempo
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3074Audio data retrieval
    • G06F17/30769Presentation of query results
    • G06F17/30772Presentation of query results making use of playlists
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30017Multimedia data retrieval; Retrieval of more than one type of audiovisual media
    • G06F17/30023Querying
    • G06F17/30029Querying by filtering; by personalisation, e.g. querying making use of user profiles
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • G10H2240/121Musical libraries, i.e. musical databases indexed by musical parameters, wavetables, indexing schemes using musical parameters, musical rule bases or knowledge bases, e.g. for automatic composing methods
    • G10H2240/131Library retrieval, i.e. searching a database or selecting a specific musical piece, segment, pattern, rule or parameter set
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0008Associated control or indicating means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • G10H2240/075Musical metadata derived from musical analysis or for use in electrophonic musical instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Similar Documents

Publication Publication Date Title
US8438168B2 (en) Scalable music recommendation by search
Cheng et al. On effective location-aware music recommendation
Turnbull et al. Towards musical query-by-semantic-description using the cal500 data set
Levy et al. Music information retrieval using social tags and audio
Celma Music recommendation
Tingle et al. Exploring automatic music annotation with" acoustically-objective" tags
Li et al. Toward intelligent music information retrieval
Kaminskas et al. Location-aware music recommendation using auto-tagging and hybrid matching
JP2009508156A (en) Music analysis
Sordo et al. Annotating Music Collections: How Content-Based Similarity Helps to Propagate Labels.
Wang et al. Towards time-varying music auto-tagging based on cal500 expansion
McFee et al. Learning Similarity from Collaborative Filters.
Prockup et al. Modeling Genre with the Music Genome Project: Comparing Human-Labeled Attributes and Audio Features.
CN113813609A (en) Game music style classification method and device, readable medium and electronic equipment
Turnbull et al. Modelling music and words using a multi-class naıve bayes approach
Kim et al. Using Artist Similarity to Propagate Semantic Information.
Yang et al. Music retagging using label propagation and robust principal component analysis
Panagakis et al. Music classification by low-rank semantic mappings
Yang et al. Improving Musical Concept Detection by Ordinal Regression and Context Fusion.
Yeh et al. Popular music representation: chorus detection & emotion recognition
Chordia et al. Extending Content-Based Recommendation: The Case of Indian Classical Music.
Ahsan et al. Multi-label annotation of music
West Novel techniques for audio music classification and search
Yeh et al. Improving music auto-tagging by intra-song instance bagging
Pao et al. Comparison between weighted d-knn and other classifiers for music emotion recognition