Kedarisetti et al., 2014 - Google Patents
Prediction and characterization of cyclic proteins from sequences in three domains of lifeKedarisetti et al., 2014
View PDF- Document ID
- 1019155703075955740
- Author
- Kedarisetti P
- Mizianty M
- Kaas Q
- Craik D
- Kurgan L
- Publication year
- Publication venue
- Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics
External Links
Snippet
Cyclic proteins (CPs) have circular chains with a continuous cycle of peptide bonds. Their unique structural traits result in greater stability and resistance to degradation when compared to their acyclic counterparts. They are also promising targets for pharmaceutical …
- 125000004122 cyclic group 0 title abstract description 140
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/16—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/22—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/12—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for modelling or simulation in systems biology, e.g. probabilistic or dynamic models, gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/706—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for drug design with the emphasis on a therapeutic agent, e.g. ligand-biological target interactions, pharmacophore generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kedarisetti et al. | Prediction and characterization of cyclic proteins from sequences in three domains of life | |
Gainza et al. | De novo design of protein interactions with learned surface fingerprints | |
Ibarra et al. | Predicting and experimentally validating hot-spot residues at protein–protein interfaces | |
Kim et al. | OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes | |
Piotto et al. | YADAMP: yet another database of antimicrobial peptides | |
Reker et al. | Multi-objective active machine learning rapidly improves structure–activity models and reveals new protein–protein interaction inhibitors | |
Sunagar et al. | Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins | |
Mooney et al. | Prediction of short linear protein binding regions | |
Joseph et al. | Improvement of protein structure comparison using a structural alphabet | |
Friedrich et al. | Modelling interaction sites in protein domains with interaction profile hidden Markov models | |
Yan et al. | Structural and functional analysis of “non-smelly” proteins | |
Milighetti et al. | Predicting T cell receptor antigen specificity from structural features derived from homology models of receptor-peptide-major histocompatibility complexes | |
Chen et al. | Structural characterization and function prediction of immunoglobulin-like fold in cell adhesion and cell signaling | |
Postic et al. | An empirical energy function for structural assessment of protein transmembrane domains | |
Karlin et al. | Genome comparisons and analysis | |
Zielezinski et al. | Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs | |
Dosztányi et al. | Bioinformatics approaches to the structure and function of intrinsically disordered proteins | |
Rathore et al. | NTxPred2: A large language model for predicting neurotoxic peptides and neurotoxins | |
Wang et al. | Identification of WD40 repeats by secondary structure-aided profile–profile alignment | |
Akbal-Delibas et al. | AccuRMSD: A machine learning approach to predicting structure similarity of docked protein complexes | |
Taylor | Decoy models for protein structure comparison score normalisation | |
Yadahalli et al. | Predicting cell-penetrating peptides: building and interpreting random forest based prediction models | |
Ruff et al. | Molecular grammars of intrinsically disordered regions that span the human proteome | |
Osiro et al. | Paving the way for new antimicrobial peptides through molecular de-extinction | |
Pandey et al. | High Throughput Meta-analysis of Antimicrobial Peptides for Characterizing Class Specific Therapeutic Candidates: An In Silico Approach |