[go: up one dir, main page]

García et al., 2005 - Google Patents

Nonlinear distortion cancellation using LINC transmitters in OFDM systems

García et al., 2005

View PDF
Document ID
1018999508698199575
Author
García P
Ortega A
de Mingo J
Valdovinos A
Publication year
Publication venue
IEEE Transactions on Broadcasting

External Links

Snippet

The LInear amplification using Nonlinear Components (LINC) technique is a well-known power amplifier linearization method to reduce out-of-band interferences in a nonconstant envelope modulation system, such as Digital Video Broadcasting (DVB) system, which is …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3282Acting on the phase and the amplitude of the input signal
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3258Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3252Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using multiple parallel paths between input and output
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit

Similar Documents

Publication Publication Date Title
US11418155B2 (en) Digital hybrid mode power amplifier system
García et al. An adaptive digital method of imbalances cancellation in LINC transmitters
US10728066B2 (en) Modulation agnostic digital hybrid mode power amplifier system and method
Katz et al. The evolution of PA linearization: From classic feedforward and feedback through analog and digital predistortion
Liu et al. Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters
US8467747B2 (en) Multi-band wide band power amplifier digital predistortion system
Rawat et al. A mutual distortion and impairment compensator for wideband direct-conversion transmitters using neural networks
US7403573B2 (en) Uncorrelated adaptive predistorter
García et al. Nonlinear distortion cancellation using LINC transmitters in OFDM systems
TWI389500B (en) Data processing method, pre-distortion arrangement, transmitter, network element and base station
KR20070116205A (en) Linear Envelope Removal and Restoration Transmitter System, Method and Apparatus
JP6827613B2 (en) Pre-distortion in satellite signal transmission systems
Abi Hussein et al. Digital predistortion for RF power amplifiers: State of the art and advanced approaches
US7796959B2 (en) Data processing method, transmitter, device, network element and base station
WO2004001958A1 (en) Efficient generation of radio frequency currents
Zozaya et al. Passivity theory applied to the design of power-amplifier linearizers
Singh et al. A Method to Enhance Power Amplifier Linearity Using Time Delay Estimation & Correction Technique
Huang et al. Efficient transmitter self-calibration and amplifier linearization techniques
Garcia et al. Nonlinear distortion cancellation in OFDM systems using an adaptive LINC structure
Zhu et al. An iterative calibration technique for LINC transmitter
Garcia et al. Adaptive digital correction of gain and phase imbalances in LINC transmitters
Wang et al. Compensation of nonlinear distortions with memory effects in digital transmitters
Garcia-Ducar et al. Design and experimental evaluation of a LINC transmitter for OFDM systems
Woo et al. Wideband predistortion linearization system for RF power amplifiers using an envelope modulation technique
Ibrahim Feedforward Linearization of a Power Amplifier for Wireless Communication Systems