Chong et al., 2005 - Google Patents
Low-power field-programmable VLSI using multiple supply voltagesChong et al., 2005
View PDF- Document ID
- 1017149144393286872
- Author
- Chong W
- Hariyama M
- Kameyama M
- Publication year
- Publication venue
- IEICE transactions on fundamentals of electronics, communications and computer sciences
External Links
Snippet
A low-power field-programmable VLSI (FPVLSI) is presented to overcome the problem of large power consumption in field-programmable gate arrays (FPGAs). To reduce power consumption in routing networks, the FPVLSI consists of cells that are based on a bit-serial …
- 230000003068 static 0 description 14
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/177—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
- H03K19/1778—Structural details for adapting physical parameters
- H03K19/17784—Structural details for adapting physical parameters for supply voltage
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/177—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
- H03K19/17724—Structural details of logic blocks
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/1733—Controllable logic circuits
- H03K19/1735—Controllable logic circuits by wiring, e.g. uncommitted logic arrays
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/08—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
- H03K19/094—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
- H03K19/096—Synchronous circuits, i.e. using clock signals
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0008—Arrangements for reducing power consumption
- H03K19/0016—Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/003—Modifications for increasing the reliability for protection
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/01—Modifications for accelerating switching
- H03K19/017—Modifications for accelerating switching in field-effect transistor circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/01—Details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/78—Architectures of general purpose stored programme computers comprising a single central processing unit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating pulses not covered by one of the other main groups in this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8941409B2 (en) | Configurable storage elements | |
Levi et al. | Dual mode logic—Design for energy efficiency and high performance | |
US9048826B2 (en) | Multiple-voltage programmable logic fabric | |
Damle et al. | Comparative analysis of different types of full adder circuits | |
US10833664B2 (en) | Supply tracking delay element in multiple power domain designs | |
Sajid et al. | Design and implementation of low power 8-bit carry-look ahead adder using static cmos logic and adiabatic logic | |
Hariyama et al. | Evaluation of a field-programmable VLSI based on an asynchronous bit-serial architecture | |
Chong et al. | Low-power field-programmable VLSI using multiple supply voltages | |
Khanna et al. | Clock gated 16-bits alu design & implementation on fpga | |
KR20110066691A (en) | Flip-flop circuit | |
Rengarajan et al. | Challenges to adopting adiabatic circuits for systems‐on‐a‐chip | |
CN116346124A (en) | Systems and methods for low power modes of programmable logic devices | |
Vardhan et al. | Design and Implementation of Low Power NAND Gate Based Combinational Circuits Using FinFET Technique | |
Di et al. | Ultra-low power multi-threshold asynchronous circuit design | |
Athas et al. | Energy-recovery CMOS for highly pipelined DSP designs | |
Gupta et al. | Comparative analysis and optimization of active power and delay of 1-bit full adder at 45 nm technology | |
Thuraka | High Performance Arithmetic and Logic Unit with Enhanced MTCMOS and Transistor Stacking Techniques | |
Bai et al. | A multiple-valued reconfigurable VLSI architecture using binary-controlled differential-pair circuits | |
Núñez et al. | Experimental validation of a two-phase clock scheme for fine-grained pipelined circuits based on monostable to bistable logic elements | |
Nadella et al. | A dual threshold voltage modified dynamic power cutoff technique to consolidate leakage and speed in a VLSI subsystem | |
Haque et al. | Architecture of a fine-grain field-programmable VLSI based on multiple-valued source-coupled logic | |
Ishihara et al. | Evaluation of a self-adaptive voltage control scheme for low-power FPGAs | |
Jyotsna et al. | Design of 8 Bit Microprocessor Using Different Sub Threshold Current Mode Logic Techniques | |
Okada et al. | Low-power multiple-valued reconfigurable VLSI using series-gating differential-pair circuits | |
Mann et al. | Power Gated ECRL Adiabatic Logic Based Optimized Two-Input Multiplexer |