Mittal et al., 2013 - Google Patents
Master: A multicore cache energy-saving technique using dynamic cache reconfigurationMittal et al., 2013
View PDF- Document ID
- 10034275153451506440
- Author
- Mittal S
- Cao Y
- Zhang Z
- Publication year
- Publication venue
- IEEE Transactions on very large scale integration (VLSI) systems
External Links
Snippet
With increasing number of on-chip cores and CMOS scaling, the size of last-level caches (LLCs) is on the rise and hence, managing their leakage energy consumption has become vital for continuing to scale performance. In multicore systems, the locality of memory access …
- 238000000034 method 0 title abstract description 52
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
- G06F1/3287—Power saving by switching off individual functional units in a computer system, i.e. selective power distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
- G06F1/3237—Power saving by disabling clock generation or distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
- G06F1/324—Power saving by lowering clock frequency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3206—Monitoring a parameter, a device or an event triggering a change in power modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0893—Caches characterised by their organisation or structure
- G06F12/0895—Caches characterised by their organisation or structure of parts of caches, e.g. directory or tag array
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5094—Allocation of resources, e.g. of the central processing unit [CPU] where the allocation takes into account power or heat criteria
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/12—Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
- Y02B60/1207—Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply acting upon the main processing unit
- Y02B60/1217—Frequency modification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/12—Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
- Y02B60/1225—Access, addressing or allocation within memory systems or architectures, e.g. to reduce power consumption or heat production, or to increase battery life
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1028—Power efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/12—Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
- Y02B60/1278—Power management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/885—Monitoring specific for caches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/16—Reducing energy-consumption in distributed systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mittal et al. | Master: A multicore cache energy-saving technique using dynamic cache reconfiguration | |
Sundararajan et al. | Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs | |
Kayiran et al. | μC-States: Fine-grained GPU datapath power management | |
Mittal et al. | FlexiWay: A cache energy saving technique using fine-grained cache reconfiguration | |
Mittal et al. | EnCache: Improving cache energy efficiency using a software-controlled profiling cache | |
Petit et al. | Exploiting temporal locality in drowsy cache policies | |
Tripathy et al. | Slumber: static-power management for gpgpu register files | |
Liu et al. | Hardware support for accurate per-task energy metering in multicore systems | |
Mandke et al. | Adaptive power optimization of on-chip SNUCA cache on tiled chip multicore architecture using remap policy | |
Kotera et al. | Power-aware dynamic cache partitioning for CMPs | |
Mittal et al. | Palette: A cache leakage energy saving technique for green computing | |
Mittal et al. | Improving energy efficiency of embedded DRAM caches for high-end computing systems | |
Cheng et al. | EECache: A comprehensive study on the architectural design for energy-efficient last-level caches in chip multiprocessors | |
Holey et al. | Performance-energy considerations for shared cache management in a heterogeneous multicore processor | |
Huang et al. | Increasing cache capacity via critical-words-only cache | |
Kędzierski et al. | Power and performance aware reconfigurable cache for CMPs | |
Gupta et al. | DR-SNUCA: An energy-scalable dynamically partitioned cache | |
Vougioukas et al. | Nucleus: Finding the sharing limit of heterogeneous cores | |
Mittal | Dynamic cache reconfiguration based techniques for improving cache energy efficiency | |
Dani et al. | Toward a scalable working set size estimation method and its application for chip multiprocessors | |
Al-Obaidy et al. | Power-Management based on Reconfigurable Last-Cache level on Non-volatile Memories in Chip-Multi processors | |
Mittal et al. | MANAGER: a multicore shared cache energy saving technique for QoS systems | |
Zahran et al. | Global management of cache hierarchies | |
Boettcher et al. | MALEC: A multiple access low energy cache | |
Khaitan et al. | Optimizing cache energy efficiency in multicore power system simulations |