ZA200409697B - Method and casting roller plant for the semi-endless or endless rolling by casting of a metal in particular a steel strip which may be transversely separated as required after solidification - Google Patents
Method and casting roller plant for the semi-endless or endless rolling by casting of a metal in particular a steel strip which may be transversely separated as required after solidification Download PDFInfo
- Publication number
- ZA200409697B ZA200409697B ZA200409697A ZA200409697A ZA200409697B ZA 200409697 B ZA200409697 B ZA 200409697B ZA 200409697 A ZA200409697 A ZA 200409697A ZA 200409697 A ZA200409697 A ZA 200409697A ZA 200409697 B ZA200409697 B ZA 200409697B
- Authority
- ZA
- South Africa
- Prior art keywords
- rolling
- casting
- length
- fact
- rolling mill
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B13/00—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
- B21B13/22—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories for rolling metal immediately subsequent to continuous casting, i.e. in-line rolling of steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1206—Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
- B21B1/466—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B31/00—Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
- B21B31/08—Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
- B21B31/10—Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts by horizontally displacing, i.e. horizontal roll changing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/005—Control of time interval or spacing between workpieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/004—Heating the product
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Description
TRANSLATION (HM-611PCT-original) :
PCT/EP2003/004,599 - METHOD AND CONTINUOUS CASTING AND ROLLING PLANT FOR SEMI-
ENDLESS OR ENDLESS ROLLING BY CASTING A METAL STRAND,
R ’ ESPECIALLY A STEEL STRAND, WHICH IS CUT TO LENGTH
AS REQUIRED AFTER SOLIDIFICATION
The invention concerns a method and a continuous casting and rolling plant for semi-endless or endless rolling by casting a metal strand, especially a steel strand, which is cut to length as required after solidification, wherein the cut lengths of cast strand are fed into a roller hearth furnace for heating and homogenizing at rolling temperature and are then fed at rolling temperature into a rolling mill to be rolled out, and wherein the continuous casting is continued without interruption during the rolling operation.
A process of this type is described in EP 0 264 459 Bl. In this method, the cut lengths of cast strand are stored in the roller hearth furnace with cross transport. The cut lengths of cast strand are stored for a period of time that is several times, e.g., four times, their casting time. Furthermore, the process is practiced in such a way that the rolling of each individual cut length of cast strand is carried out in a period of time that is only a fraction, e.g., one fifth, of its casting time and in such a way that the rolling is carried out : discontinuously and the rolling operation is conducted with an
J interruption for a period of time that corresponds to the difference between a casting time and a rolling operation. This process operates strictly according to the continuous casting and is not coordinated with the rolling process.
The objective of the invention is to adjust the semi- endless rolling and endless rolling more closely to the conditions during rolling in a to match the rolling operation to the continuous casting operation with respect to time. .
In accordance with the invention, this objective is achieved by reducing the casting rate for a roll change in such a way that a sufficient buffer time for a roll change is maintained between the end of the rolling of the preceding multiple length and the insertion of a new cut length or multiple length in the rolling mill. In this way, the semi- endless rolling and the endless rolling are adapted to the conditions of the rolling, and a buffer time is created for the inevitable roll change.
In this connection, the greater lengths of rolling stock that result from semi-endless or endless rolling are taken into - consideration by producing several coils from a multiple length. : The buffer time for the roll change can also be influenced by reducing the casting rate as a function of the feed rate of the rolling mill and/or the roll-changing time, including the roll pass designing, and/or the buffer length of the roller hearth furnace and/or the final rolled thickness after the strand has been cut to length.
In accordance with another feature of the invention, it is proposed that the buffer length of the roller hearth furnace be adjusted at least to one roller plane. :
Furthermore, to achieve the desired buffer time, it is advantageous for the casting rate V_,, which corresponds to the feed rate V, of the rolling mill, to be reduced by an amount greater than or equal to the amount given by the following formula:
AV =V, 1 m/min)
At/L+1/V,
where
AV = the reduction of the casting rate
Vv, = the feed rate of the rolling mill
At = the roll-changing time and
L = the length of the roller hearth furnace.
A further gain of time can be achieved by increasing the final rolled thickness and/or the feed rate of the rolling mill between rolling campaigns within a casting sequence after the strand has been cut to length.
Another embodiment of the invention consists in optimizing the production capacity by using a combination of adjustment of the casting rate and adjustment of the final rolled thickness.
In this connection, it is also advantageous if the final rolled thickness is increased by a maximum factor of 2.5.
A different buffer time can be achieved by increasing the final rolled thickness by a maximum factor of 2 and reducing the casting rate to a minimum of 30%.
In accordance with a practical example, the method can be used in such a way that, after the strand has been cut to length, the casting rate is reduced and/or the feed rate of the rolling mill and/or the final rolled thickness is increased, the worn rolls of the rolling mill are changed after completion of the rolling, and the casting rate is raised to the feed rate of the rolling mill after the roll change has been completed. - The continuous casting and rolling plant necessary for
N carrying out the method of the invention for semi-endless rolling or endless rolling of a cast metal or steel strand, which is cut to length as required in the solidified state, wherein the cut lengths of cast strand can be held at a high temperature and heated to rolling temperature and homogenized in a roller hearth furnace and can then be fed into a rolling mill, requires the successive arrangement of the continuous casting machine, a shearing station, a roller hearth furnace, other auxiliary pieces of equipment, a rolling mill, and a coiling installation at the end.
The continuous casting and rolling plant can then be operated by the method described above by providing a roller hearth furnace between the continuous casting machine and the rolling mill, which roller hearth furnace has at least one roller plane and a shearing station at its inlet or outlet, followed by a descaling system, which is followed by the rolling mill, which in turn is followed by a cutting station, a cooling station, and a coiling installation.
In one embodiment, in which there are at least two roller planes, swiveling roller conveyors, each of which has a bending : and/or straightening unit, are installed at the inlet and outlet
J " of the roller hearth furnace. The continuously cast strand can thus be precisely guided into the given roller plane.
The strand guide can be designed in such a way that multiple lengths can be fed at a single height level from the outlet of the continuous casting machine by the roller conveyor of the roller hearth furnace into the rolling mill.
The method and equipment of the invention are explained in greater detail below with reference to the specific embodiments * illustrated in the drawings. -- Figure 1 shows the casting and rolling plant with a roller hearth furnace and a roller plane in a side view. -- Figure 2A shows a partial side view with a cast strand, with the casting rate less than or equal to the rolling rate. -- Figure 2B shows the same view with the conveyance rate of a cut length of cast strand raised to the rolling rate. -- Figure 3A shows endless casting and rolling at equal casting and rolling rates and with two coiling installations. -~- Figure 3B shows endless casting and rolling with the two coiling installations. -- Figure 4A shows the situation during a roll change and : at reduced casting rate. z -- Figure 4B shows the situation after the roll change has been completed and the casting rate has been raised. -- Figure 5 shows the casting and rolling plant in the same side view as Figure 1 for an alternative embodiment.
Figure 1 shows a side view of a casting and rolling plant, which comprises a continuous casting machine 1 in which a cast strand la is produced, a roller hearth furnace 2, and a rolling mill 3 with its associated auxiliary equipment.
In the continuous casting machine 1, a tundish 4 is fed from a casting ladle (not shown). The tundish is followed by a continuous casting mold 5, a containment roll stand 6 with a bending unit 7, and a straightening machine 8. A shearing station 10 is installed at the outlet 9 of the continuous casting machine 1. The shearing station 10 is followed (as an alternative in Figure 5) by a swiveling roller conveyor 11 for the inlet 12a of the roller hearth furnace 2. A swiveling roller conveyor 13 and a shearing station 14 are installed at the outlet 12b of the roller hearth furnace 2. The basic embodiment shown in Figure 1 works without the swiveling roller conveyors 11, 13. : The shearing station 14 is followed by a descaling system : 15, which is following by the rolling mill 3 with about five to seven rolling stands. The rolling stands are followed by a cutting station 16, a cooling station 17, and two coilers 18.
The method is used for semi-endless rolling or endless rolling by casting molten metal, especially molten steel, into a cast strand la, which, after it has solidified, is cut to length in the shearing station 10, and then conveying the cut lengths of cast strand into the roller hearth furnace 2. Each cut length 20 of cast strand is heated in the roller hearth furnace 2, homogenized in temperature, and brought to rolling temperature, so that it can be rolled out in the rolling mill 3.
During this period of time, the continuous casting continues without interruption.
When it becomes necessary to carry out a roll change due to wear of the rolls 3a, the casting rate V, is reduced to allow sufficient buffer time for the roll change between the end of the rolling of the preceding multiple length 21 and the insertion of a new cut length 20 or multiple length 21 in the rolling mill 3. Several coils 22 can be wound from the multiple length 21. ; The casting rate V_, is reduced, for example, as a function : of the féed rate V, of the rolling mill 3 and/or of the given roll-changing time, including the roll pass designing, and/or the buffer length 23 of the roller hearth furnace 2 and/or the final rolled thickness after shearing. The buffer length 23 of the roller hearth furnace 2 can be adjusted at least to one roller plane 24.
In Figure 2A, the casting rate V, is set less than or equal to the feed rate V, into the rolling mill 3. As soon as the roller hearth furnace 2 has been charged, the casting rate V_ can be raised back to the feed rate V,, as shown in Figure 2B.
Endless rolling is shown in Figure 3A. The cast strand la is conveyed at the casting rate V_, which is equal to the feed rate V, into the first rolling stand, and then rolled, cooled, coiled, and cut in the cutting station 16. As is shown in
Figure 3B, after the cast strand la has been cut to length in the shearing station 10, it can be cast at a reduced casting rate V_, and the cut length of cast strand 20 is rolled and coiled at the feed rate V,.
The casting rate V_, is reduced by an amount greater than or equal to the amount given by the following formula:
AV =V, ———L (m/min) i YON L+1Y where
AV = the reduction in the casting rate (m/min) v, = the feed rate of the rolling mill (m/min)
At = the roll-changing time (min)
L = the length of the roller hearth furnace (m).
At a feed rate V, = 10 m/min, a roll-changing time At = 10 min, and a roller hearth furnace length L = 200 m, the casting rate V_, must be reduced by at least 3.33 m/min.
Reduction of the Casting Rate:
AV =10-—— joo —L 10m —6.667m = 3.33m/min 10/200+1/10 3/20
The roll change is shown in Figure 4A. According to the above calculation, the casting rate V_ is 6.67 m/min and is thus lower than the feed rate V,. After the roll change (Figure 4B),
the casting rate V, is raised to the feed rate V, again.
Between the rolling campaigns within a casting sequence, the final rolled thickness and/or the feed rate V, can be increased after the strand has been cut to length. : However, it is also possible to use a combination of . adjustment of the casting rate V, and adjustment of the final rolled thickness to optimize the production capacity. In this connection, the final rolled thickness can be increased by a maximum factor of 2.5. Another option is to increase the final rolled thickness by a maximum factor of 2 and to reduce the casting rate to a minimum of 30%.
In another embodiment, after the strand has been cut to length, the casting rate V, is reduced, and/or the feed rate V, of the rolling mill 3 and/or the final rolled thickness is . increased; upon completion of rolling, the worn rolls 3a of the rolling mill 3 are changed; and after the roll change has been completed, the casting rate V, is increased to the feed rate V, of the rolling mill 3.
The continuous casting and rolling plant for semi-endless rolling or endless rolling of a cast metal or steel strand, which is cut to length as required in the solidified state to produce cut lengths 20 of the cast strand la, wherein the cut lengths 20 of cast strand la are held at a high temperature and heated to rolling temperature and homogenized in a roller hearth furnace 2 and are then fed into a rolling mill 3, requires that : the continuous casting machine 1 cast the strand continuously. - To this end, the roller hearth furnace 2 with at least one roller plane 24 is installed between the continuous casting machine 1 and the rolling mill 3 and at its inlet 12a and/or outlet 12b has a shearing station 14, followed by a descaling system 15, which is followed by the first rolling stand, and the rolling mill 3 is following by the cutting station 16, cooling station 17, and coilers 18.
The roller conveyors 11, 13 on the run-in side and the runout side have bending and/or straightening units 7, 8, which can be set or adjusted to the given roller plane 24. The swiveling roller conveyors 11, 13 at the inlet 12a and at the outlet 12b of the roller hearth furnace 2 with at least two roller planes 24 are thus each provided with a bending and/or straightening unit 7, 8 (cf. Figure 5).
In accordance with the alternative design in Figure 5, multiple lengths 21 on several roller planes 24 can be passed by the swiveling roller conveyor 11 of the roller hearth furnace 2 and the swiveling roller conveyor 13 from the outlet 9 of the continuous casting machine 1 to the rolling mill 3.
List of Reference Numbers 1 continuous casting machine . la cast strand 2 roller hearth furnace : ] 3 rolling mill 3a roll 4 tundish continuous casting mold 6 containment roll stand 7 bending unit 8 straightening machine 9 outlet [of the continuous casting machine 1] shearing station 11 roller conveyor 12a inlet [of the roller hearth furnace 2] 12b outlet [of the roller hearth furnace 2] 13 roller conveyor 14 shearing station descaling system
16 cutting station 17 cooling station 18 coiler 19 : 20 cut length of cast strand - 21 multiple length : 22 coil 23 buffer length 24 roller plane
Claims (13)
1. Method for semi-endless or endless rolling by casting a : metal strand, especially a steel strand (la), which is cut to : length as required after solidification, wherein the cut lengths (20) of cast strand are fed into a roller hearth furnace (2) for heating and homogenizing at rolling temperature and are then fed at rolling temperature into a rolling mill (3) to be rolled out, and wherein the continuous casting is continued without interruption during the rolling operation, characterized by the fact that the casting rate (V.,) is reduced for a roll change in such a way that a sufficient buffer time for a roll change is maintained between the end of the rolling of the preceding - multiple length (21) and the insertion of a new cut length (20) or multiple length (21) in the rolling mill.
2. Method in accordance with Claim 1, characterized by the fact that several coils (22) are produced from a multiple length (21).
3. Method in accordance with Claim 1 or Claim 2, characterized by the fact that the casting rate (V.) is reduced as a function of the feed rate (V,) of the rolling mill (3) and/or the roll-changing time, including the roll pass : designing, and/or the buffer length of the roller hearth furnace N (2) and/or the final rolled thickness after the strand has been cut to length.
4. Method in accordance with Claim 1, characterized by the fact that the buffer length (23) of the roller hearth furnace (2) is adjusted at least to one roller plane (24).
5. Method in accordance with any of Claims 1 to 4, characterized by the fact that the casting rate (V.) is reduced by an amount greater than or equal to the amount given by the following formula: AV =V, SN SE (m/min) At/L+VV, where Av = the reduction of the casting rate Vv, = the feed rate of the rolling mill At = the roll-changing time L = the length of the roller hearth furnace.
6. Method in accordance with any of Claims 1 to 5, characterized by the fact that the final rolled thickness and/or the feed rate (V,) of the rolling mill is increased between : rolling campaigns within a casting sequence after the strand has N been cut to length. :
7. Method in accordance with Claim 6, characterized by the fact that a combination of adjustment of the casting rate (V.) and adjustment of the final rolled thickness is used to optimize the production capacity.
8. Method in accordance with Claim 6 or Claim 7, characterized by the fact that the final rolled thickness is increased by a maximum factor of 2.5.
9. Method in accordance with Claim 6 or Claim 7, characterized by the fact that the final rolled thickness is increased by a maximum factor of 2, and the casting rate (V,) is reduced to a minimum of 30%.
10. Method in accordance with any of Claims 1 to 9, characterized by the fact that after the strand has been cut to length, the casting rate (V.) is reduced, and/or the feed rate (V,) of the rolling mill (3) and/or the final rolled thickness is increased; upon completion of rolling, the worn rolls (3a) of the rolling mill (3) are changed; and after the roll change has been completed, the casting rate (V_,) is increased to the feed rate (V,) of the rolling mill (3). :
11. Casting and rolling plant for semi-endless rolling or N endless rolling of a cast metal or steel strand (la), which can be cut to length as required in the solidified state, wherein the cut lengths (20) of cast strand can be held at a high temperature and heated to rolling temperature and homogenized in a roller hearth furnace (2) and can then be fed into a rolling mill (3), and wherein the continuous casting machine (1) casts continuously, characterized by the fact that a roller hearth furnace (2) with at least one roller plane (24) is installed . between the continuous casting machine (1) and the rolling mill : (3) and at its inlet (12a) and/or outlet (12b) has a shearing station (14), which is followed by a descaling system (15), which is followed by the rolling will (3), which is followed by a cutting station (16), a cooling station (17), and coilers (18) .
12. Casting and rolling plant in accordance with Claim 11, characterized by the fact that when there are at least two roller planes (24), swiveling roller conveyors (11, 13), each of : which has a bending and/or straightening unit, are installed at N the inlet (12a) and outlet (12b) of the roller hearth furnace
(2).
13. Casting and rolling plant in accordance with Claim 11 or Claim 12, characterized by the fact that multiple lengths (21) can be fed at a single height level from the outlet (9) of the continuous casting machine (1) by the roller conveyor (11) of the roller hearth furnace (2) into the rolling mill (3).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10230512 | 2002-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
ZA200409697B true ZA200409697B (en) | 2006-04-26 |
Family
ID=29723766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200409697A ZA200409697B (en) | 2002-07-06 | 2004-11-30 | Method and casting roller plant for the semi-endless or endless rolling by casting of a metal in particular a steel strip which may be transversely separated as required after solidification |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR100990867B1 (en) |
CA (1) | CA2691737A1 (en) |
DE (1) | DE10249704A1 (en) |
UA (1) | UA79621C2 (en) |
ZA (1) | ZA200409697B (en) |
-
2002
- 2002-10-25 DE DE10249704A patent/DE10249704A1/en not_active Withdrawn
-
2003
- 2003-02-05 UA UAA200501033A patent/UA79621C2/en unknown
- 2003-05-02 CA CA002691737A patent/CA2691737A1/en not_active Abandoned
- 2003-05-02 KR KR1020047020330A patent/KR100990867B1/en not_active Expired - Fee Related
-
2004
- 2004-11-30 ZA ZA200409697A patent/ZA200409697B/en unknown
Also Published As
Publication number | Publication date |
---|---|
KR100990867B1 (en) | 2010-10-29 |
DE10249704A1 (en) | 2004-01-15 |
KR20050013576A (en) | 2005-02-04 |
CA2691737A1 (en) | 2004-01-15 |
UA79621C2 (en) | 2007-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7478664B2 (en) | Method and continuous casting and rolling plant for semi-endless or endless rolling by casting a metal strand, especially a steel strand, which is cut to length as required after solidification | |
CA2073683C (en) | System and process for forming thin flat hot rolled steel strip | |
EP0594828B1 (en) | Method and apparatus for intermediate thickness slab caster and inline hot strip and plate line | |
US5307864A (en) | Method and system for continuously producing flat steel product by the continuous casting method | |
KR100807310B1 (en) | Method and equipment for manufacturing steel strip and steel sheet | |
RU2166387C2 (en) | Line for making hot rolled steel band | |
CZ299298B6 (en) | Process for the manufacture of steel strip | |
US5630467A (en) | Thin slab continuous casting machine and method | |
WO1993023182A9 (en) | Method and apparatus for intermediate thickness slab caster and inline hot strip and plate line | |
CA2199658A1 (en) | Method for the continuous rolling of plate and/or strip and the relative continuous rolling line | |
KR20150119437A (en) | Method for producing a metal strip by casting and rolling | |
CA2515097C (en) | Method for milling thin and/or thick slabs made of steel materials into hot-rolled strip | |
US5689991A (en) | Process and device for producing hot-rolled steel strip | |
RU2368438C2 (en) | Package unit for receiving of hot-rolled steel strip | |
US20070180882A1 (en) | Apparatus for manufacturing metal material by rolling | |
US20240100590A1 (en) | Casting-rolling integrated plant and method for producing a hot strip with a final thickness < 1.2 mm on the casting-rolling integrated plant | |
ZA200409697B (en) | Method and casting roller plant for the semi-endless or endless rolling by casting of a metal in particular a steel strip which may be transversely separated as required after solidification | |
WO1995013149A1 (en) | Slab caster and inline strip and plate apparatus | |
WO1999004915A1 (en) | Continuous metal manufacturing method and apparatus therefor | |
US20240009724A1 (en) | Process and apparatus for producing metallurgical products, in particular of the merchant type, in particular in an endless mode | |
CN115943001A (en) | Combined casting and rolling installation for producing hot-rolled finished strip from molten steel | |
CN113272084A (en) | Method for producing a metal strip and production plant for implementing said method |