WO2025063259A1 - Template substrate, method for producing same, semiconductor substrate, method for producing same, apparatus for producing template substrate, and method for producing semiconductor device - Google Patents
Template substrate, method for producing same, semiconductor substrate, method for producing same, apparatus for producing template substrate, and method for producing semiconductor device Download PDFInfo
- Publication number
- WO2025063259A1 WO2025063259A1 PCT/JP2024/033575 JP2024033575W WO2025063259A1 WO 2025063259 A1 WO2025063259 A1 WO 2025063259A1 JP 2024033575 W JP2024033575 W JP 2024033575W WO 2025063259 A1 WO2025063259 A1 WO 2025063259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mask
- semiconductor
- substrate
- layer
- silicon
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 521
- 239000000758 substrate Substances 0.000 title claims abstract description 338
- 238000004519 manufacturing process Methods 0.000 title claims description 41
- 150000004767 nitrides Chemical class 0.000 claims abstract description 148
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 115
- 239000010703 silicon Substances 0.000 claims abstract description 115
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 115
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000010410 layer Substances 0.000 claims description 244
- 229910002601 GaN Inorganic materials 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 37
- 230000009036 growth inhibition Effects 0.000 claims description 27
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 25
- 230000003746 surface roughness Effects 0.000 claims description 21
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 19
- 239000002346 layers by function Substances 0.000 claims description 19
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 18
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 18
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 17
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 13
- 239000011247 coating layer Substances 0.000 claims description 12
- 229910052594 sapphire Inorganic materials 0.000 claims description 7
- 239000010980 sapphire Substances 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 239000010408 film Substances 0.000 description 85
- 239000000463 material Substances 0.000 description 26
- 238000004544 sputter deposition Methods 0.000 description 15
- 239000013078 crystal Substances 0.000 description 14
- 229910002704 AlGaN Inorganic materials 0.000 description 12
- 206010053759 Growth retardation Diseases 0.000 description 12
- 230000007547 defect Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 8
- 239000000470 constituent Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000000313 electron-beam-induced deposition Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- -1 AlScN Chemical compound 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/04—Pattern deposit, e.g. by using masks
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
- H01L21/2003—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
- H01L21/2015—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
Definitions
- This disclosure relates to template substrates, etc.
- Patent Document 1 discloses a method (ELO method) in which a mask pattern including a mask portion and an opening is formed on a base substrate including a seed layer, and a nitride semiconductor layer is grown laterally on the mask portion, using the seed layer exposed in the opening as the growth starting point.
- ELO method a method in which a mask pattern including a mask portion and an opening is formed on a base substrate including a seed layer, and a nitride semiconductor layer is grown laterally on the mask portion, using the seed layer exposed in the opening as the growth starting point.
- the template substrate comprises a base substrate, a mask pattern located on the base substrate and including a first mask containing silicon and a first opening, a second mask located on the first mask and including aluminum and a semiconductor, and a seed portion having a semiconductor layer that contains the main component of the second mask and overlaps the first opening.
- FIG. 1 is a cross-sectional view illustrating a configuration of a template substrate according to an embodiment of the present disclosure.
- FIG. 2 is a plan view illustrating a configuration of a template substrate according to an embodiment of the present disclosure.
- 1 is a flowchart illustrating an example of a method for manufacturing a template substrate according to an embodiment of the present disclosure.
- 1A to 1C are cross-sectional views illustrating an example of a method for manufacturing a template substrate according to an embodiment of the present disclosure.
- FIG. 1 is a block diagram showing a template substrate manufacturing apparatus according to an embodiment of the present disclosure.
- 1 is a cross-sectional view illustrating a configuration of a semiconductor substrate according to an embodiment of the present disclosure.
- 1 is a plan view illustrating a configuration of a semiconductor substrate according to an embodiment of the present disclosure.
- 1 is a flowchart illustrating an example of a method for manufacturing a semiconductor substrate according to an embodiment of the present disclosure.
- 1 is a flowchart illustrating an example of a method for manufacturing a semiconductor device according to an embodiment of the present disclosure.
- 1A to 1C are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device according to an embodiment of the present disclosure.
- 1 is a cross-sectional view illustrating a schematic configuration of a template substrate in Example 1.
- FIG. 2 is a cross-sectional view showing an example of the configuration of a base substrate.
- 1 is a cross-sectional view showing an example of the configuration of a template substrate.
- FIG. 11 is a cross-sectional view illustrating a schematic configuration of a template substrate in Example 2.
- FIG. 11 is a cross-sectional view illustrating a schematic configuration of a template substrate in Example 3.
- FIG. 11 is a cross-sectional view illustrating a schematic configuration of a semiconductor substrate according to a fourth embodiment.
- FIG. 13 is a plan view illustrating a schematic configuration of a semiconductor substrate according to a fourth embodiment.
- 11A to 11C are cross-sectional views showing an example of a method for manufacturing a semiconductor substrate in Example 4.
- FIG. 13 is a cross-sectional view showing another configuration of a semiconductor substrate in the fourth embodiment.
- FIG. 11 is a cross-sectional view illustrating a schematic configuration of a template substrate in Example 2.
- FIG. 13 is a cross-sectional view showing another configuration of a semiconductor substrate in the fifth embodiment.
- FIG. 13 is a cross-sectional view showing another configuration of a semiconductor substrate in the fifth embodiment.
- FIG. 13 is a cross-sectional view showing another configuration of a semiconductor substrate in the fifth embodiment.
- 13A to 13C are plan views showing an example of a method for manufacturing a semiconductor substrate and a semiconductor device according to a sixth embodiment.
- 13A to 13C are cross-sectional views showing an example of a method for manufacturing a semiconductor substrate and a semiconductor device according to a sixth embodiment.
- FIG. 1 is a schematic diagram illustrating a configuration example of an electronic device.
- FIG. 13 is a schematic diagram showing another configuration example of the electronic device.
- FIG. 1 is a cross-sectional view showing the configuration of a template substrate in an embodiment of the present disclosure.
- FIG. 2 is a plan view showing the configuration of a template substrate in an embodiment of the present disclosure.
- the template substrate TS includes a base substrate BS, a mask pattern 6 including a silicon-based mask 5 (sometimes referred to as a first mask) and a first opening K1, a semiconductor mask SM (sometimes referred to as a second mask) including aluminum and a semiconductor, and a seed portion S including a semiconductor layer AS including a main component of the semiconductor mask SM and overlapping with the first opening K1.
- the semiconductor layer AS in this case will be referred to as an aluminum-based semiconductor layer AS (hereinafter, abbreviated as an Al-based semiconductor layer AS).
- the main component refers to the component (molecule, single atom) of a member that has the maximum content (molar number) (when the member has only one component, that component).
- the semiconductor mask SM may be mainly composed of a nitride semiconductor, and the semiconductor mask SM and the Al-based semiconductor layer AS may contain aluminum gallium nitride (regardless of the composition ratio of gallium and aluminum) or may contain aluminum nitride as the main component.
- the seed portion S may include a covering layer C that includes a nitride semiconductor and covers the upper surface AST of the Al-based semiconductor layer AS.
- the template substrate TS can be used to grow a GaN-based semiconductor by, for example, an ELO (Epitaxial Lateral Overgrowth) method to form a semiconductor portion (nitride semiconductor portion) that includes a nitride semiconductor.
- the template substrate TS can also be referred to as a growth substrate.
- GaN-based semiconductors are semiconductors that contain gallium atoms (Ga) and nitrogen atoms (N), and typical examples include GaN, AlGaN, AlGaInN, and InGaN.
- the mask pattern 6 may include a first opening K1 and a second opening K2 adjacent to each other in the first direction (X direction), and a silicon-based mask 5 located between the first opening K1 and the second opening K2.
- the template substrate TS may have a first seed portion S1 overlapping the first opening K1 and a second seed portion S2 overlapping the second opening K2 located on a base substrate BS.
- the first seed portion S1 may include a first covering layer C1 covering the upper surface AST of the first Al-based semiconductor layer AS1
- the second seed portion S2 may include a second covering layer C2 covering the upper surface AST of the second Al-based semiconductor layer AS2.
- first opening K1 and the second opening K2 may be collectively referred to as opening K, the first Al-based semiconductor layer AS1 and the second Al-based semiconductor layer AS2 as Al-based semiconductor layer AS, the first seed portion S1 and the second seed portion S2 as seed portion S, and the first covering layer C1 and the second covering layer C2 as covering layer C.
- the stacking direction can be considered to be the "upward direction” (Z direction).
- the direction from the base substrate BS to the semiconductor mask SM is considered to be “upward.”
- viewing a substrate-shaped object such as the template substrate TS with a line of sight parallel to the substrate normal can be referred to as a "planar view.”
- the mask pattern 6 has a first opening K1 and a second opening K2 whose longitudinal direction is a second direction (Y direction) perpendicular to the first direction (X direction).
- the number and shape of the openings K in the mask pattern 6 are not particularly limited.
- the mask pattern 6 may have a plurality of openings K periodically arranged in the ⁇ 11-20> direction (a-axis direction) of the nitride semiconductor.
- the base substrate BS may include a main substrate 1 and an underlayer 4 located on the main substrate 1.
- the template substrate TS may include an Al-based semiconductor layer AS located on the underlayer 4.
- the base substrate BS is a substrate that serves as a support base (base) for various upper layers.
- the main substrate 1 may be, for example, a heterogeneous substrate having a lattice constant different from that of a nitride semiconductor.
- the heterogeneous substrate include a silicon substrate, a silicon carbide substrate, a sapphire substrate, an aluminum nitride substrate, and a ScAlMgO4 substrate.
- nitride is used for the underlayer 4
- an inorganic compound film containing silicon is used for the silicon-based mask 5
- the underlayer 4 is exposed in the opening K
- a seed portion S is provided at a position overlapping the opening K in a planar view.
- a nitride semiconductor can be grown laterally (X direction) above the semiconductor mask SM located on the silicon-based mask 5, with the seed portion S as the growth starting point.
- the surface of the seed portion S may be the seed region J (growth starting point of the semiconductor layer), and the surface (upper surface SMT) of the semiconductor mask SM may be the growth inhibition region DA.
- the growth inhibition region DA and the seed portion S may be aligned in the a-axis direction of the nitride semiconductor.
- the width (length in the a-axis direction) of the growth inhibition region DA may be five times or more the width (length in the a-axis direction) of the upper surface of the seed portion S.
- the underlayer 4 has a function of, for example, reducing the melting of the main substrate 1 and the seed portion S when they come into contact with each other.
- a silicon substrate is used for the main substrate 1 and a GaN-based semiconductor is located on the surface of the seed portion S facing the main substrate 1, the silicon substrate and the GaN-based semiconductor melt when they come into contact with each other, so by providing the underlayer 4 between them, melting is reduced.
- the underlayer 4 may have at least one of the effects of increasing the crystallinity of the seed portion S and the effect of alleviating the internal stress of the seed portion S.
- the underlayer 4 may have a single layer structure, a multilayer structure, or a multilayer structure including a periodic structure.
- a GaN-based semiconductor containing Al, aluminum nitride (AlN), and silicon carbide (SiC) may be used for the underlayer 4.
- the template substrate TS may have a main substrate 1 that is a silicon wafer, a silicon carbide wafer, or a sapphire wafer, and an underlayer 4 that includes aluminum nitride.
- the template substrate TS may have a mask pattern 6 that includes a second opening K2, and a silicon-based mask 5 and a semiconductor mask SM that are located between the first opening K1 and the second opening K2 in a plan view.
- the silicon-based mask 5 may be, for example, a silicon oxide film or a silicon nitride film. Silicon nitride (SiN), silicon carbide (SiC), silicon carbonitride (SiCN), silicon oxide (SiO 2 ), silicon oxynitride (SiON), etc. may be used as the material of the silicon-based mask 5.
- the silicon-based mask 5 may be a single layer film of these materials, or may be a multilayer film (laminate film) that combines these materials.
- the Al-based semiconductor layer AS and the semiconductor mask SM may be formed, for example, after forming a mask pattern 6 on the base substrate BS, as follows. That is, a film formation process is performed using a raw material gas of a material (a material containing aluminum) that is relatively easy to grow crystals on the surface of the base substrate BS exposed at the opening K, but is relatively difficult to grow crystals on the silicon-based mask 5.
- the Al-based semiconductor layer AS may be formed with high crystallinity by the crystal growth of the material on the surface of the base substrate BS exposed at the opening K, while the semiconductor mask SM may be formed with low crystallinity by the deposition of the material on the silicon-based mask 5.
- the Al-based semiconductor layer AS and the semiconductor mask SM may be formed by a sputtering method or the like.
- the Al-based semiconductor layer AS and the semiconductor mask SM have the same main component, their properties differ due to the different conditions during growth as described above. Therefore, the Al-based semiconductor layer AS may be thicker than the semiconductor mask SM.
- the Al-based semiconductor layer AS may have a thickness of, for example, 10 nm or more, or may have a thickness of 50 nm or more, and the upper limit of the thickness may be, for example, 1000 nm.
- the semiconductor mask SM may have a thickness of, for example, about 10 nm, or may have a thickness of 1 nm or more, and the upper limit of the thickness may be, for example, 100 nm.
- the ratio of the thickness of the Al-based semiconductor layer AS to the thickness of the semiconductor mask SM may be 5 or more, or may be 10 to 200.
- the semiconductor mask SM is formed on the silicon-based mask 5 on which crystal growth is difficult, and thus has a rougher surface than the Al-based semiconductor layer AS and the silicon-based mask 5. Therefore, the surface roughness of the semiconductor mask SM may be greater than that of the Al-based semiconductor layer AS. The surface roughness of the semiconductor mask SM may be greater than that of the silicon-based mask 5.
- the semiconductor mask SM may have a lower crystallinity than the Al-based semiconductor layer AS.
- the semiconductor mask SM may include an amorphous structure.
- the Al-based semiconductor layer AS may be shaped to fill the first opening K1. Since the Al-based semiconductor layer AS is shaped to fill the opening K, the upper surface AST of the Al-based semiconductor layer AS may be higher than the upper surface 5T of the silicon-based mask 5. In the template substrate TS, the semiconductor mask SM and the Al-based semiconductor layer AS may be connected to each other. The relative positional relationship between the upper surface AST of the Al-based semiconductor layer AS and the upper surface 5T of the silicon-based mask 5 may change depending on the thickness of the silicon-based mask 5. In the example shown in FIG.
- the upper surface AST of the Al-based semiconductor layer AS is higher than the upper surface 5T of the silicon-based mask 5, but this is not limited thereto, and the upper surface AST of the Al-based semiconductor layer AS may be lower than the upper surface 5T of the silicon-based mask 5.
- the semiconductor mask SM and the Al-based semiconductor layer AS may be connected to each other by forming the semiconductor mask SM on the sidewall of the silicon-based mask 5 that forms the opening K.
- the upper surface of the seed portion S may be the upper surface CT of the covering layer C.
- the template substrate TS may not have a covering layer C, in which case the upper surface of the seed portion S may be the upper surface AST of the Al-based semiconductor layer AS.
- the template substrate TS may have a covering layer C that connects to the surface of the base substrate BS exposed at the opening K, and the Al-based semiconductor layer AS may be located on the covering layer C.
- the top surface (top surface CT or top surface AST) of the seed portion S may be located higher than the top surface SMT of the semiconductor mask SM.
- the relative positional relationship between the top surface AST of the Al-based semiconductor layer AS and the top surface SMT of the semiconductor mask SM may vary depending on the thickness of the silicon-based mask 5.
- the coating layer C may not contain aluminum, or may have a lower aluminum content than the Al-based semiconductor layer AS.
- the coating layer C may be made of a material that grows on the Al-based semiconductor layer AS and that serves as the growth starting point for the semiconductor layer.
- a GaN-based semiconductor such as GaN, AlGaN, AlInN, or AlGaInN may be used.
- the method for forming the coating layer C is not particularly limited, and for example, the coating layer C may be formed using the MOCVD method, the sputtering method, the PSD (Pulse Sputter Deposition) method, or the laser ablation method.
- the covering layer C may be thicker than the Al-based semiconductor layer AS. Since the semiconductor mask SM is formed with the formation of the Al-based semiconductor layer AS, when the thickness of the Al-based semiconductor layer AS is increased, the thickness of the semiconductor mask SM also increases. If the thick semiconductor mask SM interferes with the lateral growth of the semiconductor layer starting from the seed portion S, the quality of the semiconductor layer may be reduced. By adjusting the height of the upper surface of the seed portion S with the covering layer C, the thickness of the Al-based semiconductor layer AS can be made relatively thin, and as a result, the thickness of the semiconductor mask SM can be made relatively thin.
- the covering layer C may have a thickness of, for example, 10 nm or more, or may have a thickness of 100 nm or more, and the upper limit of the thickness may be, for example, 3 ⁇ m.
- the ratio of the thickness of the covering layer C to the thickness of the Al-based semiconductor layer AS may be greater than 1, and may be 1.5 to 100.
- the semiconductor mask SM is positioned on the silicon-based mask 5, so that the amount of silicon incidentally incorporated (autodoped) into the semiconductor layer from the silicon-based mask 5 can be effectively reduced.
- the constituent materials of the Al-based semiconductor layer AS and the semiconductor mask SM may not contain silicon or may be substantially free of silicon. With respect to a certain material, “substantially free of silicon” means that a small amount of silicon may be unavoidably mixed into the material due to inevitable impurities in the source gas and contamination in the film forming apparatus. Furthermore, the constituent materials of the Al-based semiconductor layer AS and the semiconductor mask SM may contain silicon within an acceptable concentration range as long as they have the function of reducing the amount of silicon taken into the semiconductor layer from the silicon-based mask 5 by the semiconductor mask SM being positioned on the silicon-based mask 5. For example, the constituent materials of the Al-based semiconductor layer AS and the semiconductor mask SM may contain 1% or less silicon in molar ratio in the composition.
- the silicon-based mask 5 may include at least one of silicon nitride and silicon oxide, and the semiconductor mask SM and the Al-based semiconductor layer AS may include aluminum gallium nitride.
- the composition ratio of Al to Ga and Al may be 0.01 or more.
- the composition ratio of Al to Ga and Al may be 0.01 or more and 1.0 or less, or 0.05 or more and 0.5 or less.
- the aluminum gallium nitride may have a graded structure in which the Al composition changes stepwise in the thickness direction.
- the semiconductor mask SM and the Al-based semiconductor layer AS may be mainly composed of aluminum gallium nitride.
- the semiconductor mask SM and the Al-based semiconductor layer AS may be made of the same material (for example, aluminum-based nitride semiconductor such as AlGaN).
- the materials constituting the semiconductor mask SM and the Al-based semiconductor layer AS are not particularly limited as long as they have a seed region J in the seed portion S as described above and the surface of the semiconductor mask SM functions as a growth inhibition region DA, but examples include AlGaN, AlInN, AlGaInN, and AlN.
- FIG. 3 is a flowchart showing an example of a method for manufacturing a template substrate in an embodiment of the present disclosure.
- FIG. 4 is a cross-sectional view showing an example of a method for manufacturing a template substrate in an embodiment of the present disclosure. In the method for manufacturing a template substrate in the example shown in FIG. 3 and FIG.
- a step S10 of preparing a base substrate BS, a step S20 of forming a mask pattern 6 including a silicon-based mask 5 containing silicon and a first opening K1 located on the base substrate BS, and a step S30 of forming a semiconductor mask SM containing aluminum located on the silicon-based mask 5 and a seed portion S having an Al-based semiconductor layer AS containing a main component of the semiconductor mask SM and overlapping with the first opening K1 are performed.
- a step S10 of preparing a base substrate BS a step S20 of forming a mask pattern 6 including a silicon-based mask 5 containing silicon and a first opening K1 located on the base substrate BS
- a step S30 of forming a semiconductor mask SM containing aluminum located on the silicon-based mask 5 and a seed portion S having an Al-based semiconductor layer AS containing a main component of the semiconductor mask SM and overlapping with the first opening K1 are performed.
- the above step S30 may include a step S31 of forming a semiconductor mask SM and an Al-based semiconductor layer AS, and a step S32 of forming a covering layer C containing a nitride semiconductor and covering an upper surface AST of the Al-based semiconductor layer AS.
- FIG. 5 is a block diagram showing a template substrate manufacturing apparatus in one embodiment of the present disclosure.
- the template substrate manufacturing apparatus 30 includes an apparatus M10 that performs step S10 in FIG. 3, an apparatus M20 that performs step S20 in FIG. 3, an apparatus M30 that performs step S30 in FIG. 3, and a control device MC that controls the apparatus M10, the apparatus M20, and the apparatus M30.
- the apparatus M10 and the apparatus M20 may each include a sputtering apparatus.
- the apparatus M30 may include a MOCVD (Metal-Organic Chemical Vapor Deposition) apparatus.
- the apparatus M30 may perform the above steps S31 and S32.
- Fig. 6 is a cross-sectional view showing a configuration of a semiconductor substrate according to an embodiment of the present disclosure.
- Fig. 7 is a plan view showing a configuration of a semiconductor substrate according to an embodiment of the present disclosure.
- the semiconductor substrate 10 includes a template substrate TS, and a first nitride semiconductor portion 8A located above a first opening K1 and a semiconductor mask SM.
- the first nitride semiconductor portion 8A contains a nitride semiconductor as a main component.
- the first nitride semiconductor portion 8A may be doped (e.g., n-type containing a donor) or non-doped.
- the semiconductor substrate means a substrate containing a nitride semiconductor, and the base substrate BS of the template substrate TS may contain a semiconductor other than a nitride semiconductor (e.g., silicon, silicon carbide), or may not contain a semiconductor.
- An example of a main substrate 1 that does not contain a semiconductor is a sapphire substrate.
- the surface (upper surface SMT) of the semiconductor mask SM has a relatively low crystallinity and therefore functions as a growth inhibition region DA.
- the surface of the seed portion S is composed of an Al-based semiconductor layer AS containing the main component of the semiconductor mask SM or a covering layer C containing a nitride semiconductor, and has a relatively high crystallinity and therefore functions as a seed region J.
- the template substrate TS may have a shape in which the growth inhibition region DA and the seed region J (the surface of the seed portion S) aligned in the first direction (X direction) each have a longitudinal direction in the second direction (Y direction).
- the first nitride semiconductor portion 8A has a first base portion B1 located above the first seed portion S1, and a first wing portion F1 connected to the first base portion B1 and located above the semiconductor mask SM.
- the first base portion B1 located above the first seed portion S1 (in other words, above the first opening K1) is a dislocation inheritance portion having many threading dislocations
- the first wing portion F1 located above the semiconductor mask SM is a low defect portion having a threading dislocation density lower than that of the dislocation inheritance portion.
- the threading dislocation density of the first wing portion F1 may be, for example, 1/10 or less than that of the first base portion B1 which is the dislocation inheritance portion.
- the threading dislocation density of the first wing portion F1 which is the low defect portion may be, for example, 5 ⁇ 10 6 [pieces/cm 2 ] or less.
- Threading dislocations are dislocations (defects) that extend in the c-axis direction ( ⁇ 0001> direction) in the first nitride semiconductor portion 8A (nitride semiconductor portion 8 described below).
- the threading dislocation density can be determined, for example, by subjecting the surface of the first nitride semiconductor portion 8A to CL (Cathode Luminescence) measurement and counting the number of black dots in the CL measurement image.
- CL Cathode Luminescence
- the mask pattern 6 includes the second opening K2, and in a plan view, the silicon-based mask 5 and the semiconductor mask SM are located between the first and second openings K1 and K2, and a second nitride semiconductor portion 8C is provided located above the second opening K2 and the semiconductor mask SM, and a gap GP may be located between the first and second nitride semiconductor portions 8A and 8C.
- the second nitride semiconductor portion 8C has a second base portion B2 located above the second seed portion S2 and a second wing portion F2 connected to the second base portion B2 and located above the semiconductor mask SM.
- the first wing portion F1 and the second wing portion F2 may be aligned in the first direction (X direction) via the gap GP.
- first nitride semiconductor portion 8A and the second nitride semiconductor portion 8C may be collectively referred to as the nitride semiconductor portion 8
- first base portion B1 and the second base portion B2 may be collectively referred to as the base portion B
- first wing portion F1 and the second wing portion F2 may be collectively referred to as the wing portion F.
- the first direction (X direction) may be the a-axis direction ( ⁇ 11-20> direction) of the nitride semiconductor portion 8 (nitride semiconductor crystal such as GaN).
- the second direction (Y direction) perpendicular to the first direction may be the m-axis direction ( ⁇ 1-100> direction) of the nitride semiconductor portion 8.
- the thickness direction (Z direction) of the semiconductor substrate 10 may be the c-axis direction ( ⁇ 0001> direction) of the nitride semiconductor portion 8.
- the nitride semiconductor portion 8 (first nitride semiconductor portion 8A) may have a silicon concentration of 5 ⁇ 10 18 /cm 3 or less in the back surface portion BP facing the semiconductor mask SM.
- the nitride semiconductor portion 8 is formed by lateral growth with the seed portion S as the growth starting point, in a state in which the semiconductor mask SM is located on the silicon-based mask 5. This makes it possible to suppress the phenomenon in which impurities liberated from the silicon-based mask 5 are taken into the growing nitride semiconductor portion 8. Therefore, the amount of silicon liberated from the silicon-based mask 5 and taken into the nitride semiconductor portion 8 is effectively reduced.
- the semiconductor substrate 10 in this embodiment has a semiconductor mask SM located on the silicon-based mask 5, which effectively reduces the possibility that impurities liberated from the silicon-based mask 5 will segregate on the surface of the nitride semiconductor portion 8.
- the aspect ratio of the nitride semiconductor portion 8 can be, for example, 5.0 or more, 10.0 or more, or 20.0 or more.
- the light emitting section can be disposed above the wing section F, which is a low defect section (so as to overlap with the wing section F in a plan view).
- FIG. 8 is a flowchart showing an example of a method for manufacturing a semiconductor substrate according to an embodiment of the present disclosure.
- the method for manufacturing a semiconductor substrate 10 includes a step S110 of preparing a template substrate TS and a step S120 of forming a first opening K1 and a first nitride semiconductor portion 8A located above a semiconductor mask SM.
- FIG. 9 is a flowchart showing an example of a method for manufacturing a semiconductor device 25 according to an embodiment of the present disclosure.
- FIG. 10 is a cross-sectional view showing an example of a method for manufacturing a semiconductor device 25 according to an embodiment of the present disclosure.
- the semiconductor substrate 10 may be located on the first nitride semiconductor portion 8A and may include a functional layer (device layer) 9 including an active layer.
- the method for manufacturing the semiconductor device 25 includes a step S210 of preparing the semiconductor substrate 10 and a step S220 of forming the functional layer 9 including the active layer on the first nitride semiconductor portion 8A.
- the functional layer 9 may include an active layer, a p-type layer, and electrodes (e.g., an anode and a cathode).
- the active layer may have a quantum well structure.
- the nitride semiconductor portion 8 and the active layer and the p-type layer may be GaN-based semiconductors, and may be formed continuously in an MOCVD apparatus.
- the width of the gap GP between the first nitride semiconductor portion 8A and the second nitride semiconductor portion 8C of the semiconductor substrate 10 may be 10 ⁇ m or less, 4 ⁇ m or less, or 3 ⁇ m or less.
- the semiconductor substrate 10 can reduce the internal stress of the nitride semiconductor portion 8. This can reduce cracks and defects (dislocations) that occur in the nitride semiconductor portion 8. This effect is particularly effective when the main substrate 1 is a heterogeneous substrate.
- the semiconductor device 25 include a light emitter (such as an LED chip or semiconductor laser chip), a light emitting element in which a light emitter is submounted, and a light emitting module in which a light emitting element is packaged.
- the semiconductor device is not limited to light emitting semiconductor devices, and may be, for example, a light receiving element (photodiode) or a transistor (including a power transistor or a high electron mobility transistor).
- Example 1 Fig. 11 is a cross-sectional view showing a schematic configuration of a template substrate in Example 1.
- the template substrate TS in Example 1 includes a base substrate BS, a mask pattern 6 located on the base substrate BS, a semiconductor mask SM located on a silicon-based mask 5, and a seed portion S overlapping with an opening K.
- FIG. 12 is a cross-sectional view showing an example of the configuration of a base substrate.
- the base substrate BS may include a main substrate 1 and an underlayer 4 on the main substrate 1.
- the base substrate BS may also have a metal layer (Al layer) between the main substrate 1 and the underlayer 4.
- the Al layer and an AlN layer as the underlayer 4 may be formed continuously by a sputtering method.
- the base substrate BS may be composed of a free-standing single crystal substrate (e.g., a wafer cut from a bulk crystal) such as GaN or SiC, in which case a mask pattern 6 may be arranged on the single crystal substrate.
- the main substrate 1 may be a silicon substrate, a silicon carbide substrate (4H-SiC, 6H-SiC substrate), a sapphire substrate, a nitride substrate (GaN, AlN substrate, etc.), a ScMgAlO substrate, etc.
- the surface orientation of the main substrate 1 may be, for example, the (111) surface of a silicon substrate, or the 6H-SiC (0001) or 4H-SiC (0001) surface of a SiC substrate.
- the main substrate 1 may be 3C-SiC. These are merely examples, and the main substrate 1 may have a material and surface orientation that satisfy the following two conditions, and the specific material and surface orientation of the main substrate 1 are not necessarily limited.
- the main substrate 1 may be, first, capable of manufacturing a template substrate TS by forming a seed portion S including a mask pattern 6, a semiconductor mask SM, and an Al-based semiconductor layer AS above a base substrate BS including the main substrate 1.
- the main substrate 1 may be, second, capable of growing a nitride semiconductor portion 8 using the template substrate TS.
- the underlayer 4 may be a GaN-based semiconductor containing aluminum, aluminum nitride (AlN), silicon carbide (SiC), AlScN, graphene, or the like.
- An AlN layer which is an example of the underlayer 4 can be formed to a thickness of about 10 nm to 5 ⁇ m using, for example, an MOCVD apparatus.
- the underlayer 4 may be a GaN layer, an AlN layer, an AlGaN layer, an AlInN layer, AlGaInN, Al, or the like formed at a low temperature (500° C. or less).
- a silicon substrate is used for the main substrate 1, it is desirable that the underlayer 4 in contact with the silicon substrate does not contain gallium in order to suppress meltback.
- the underlayer 4 may be formed by a sputtering method. The production process can be made more efficient by forming the film using a sputtering apparatus (PSD: pulse sputter deposition, PLD: pulse laser deposition, etc.).
- the mask pattern 6 in the template substrate TS is formed on the base substrate BS using a material that suppresses the vertical growth (growth in the c-axis direction) of the nitride semiconductor. Then, a low-crystalline semiconductor mask SM is formed on the silicon-based mask 5, and the seed portion S is positioned so as to fill the opening K. This realizes lateral growth (for example, growth in the a-axis direction) of the nitride semiconductor from the seed portion S over the semiconductor mask SM.
- the silicon-based mask 5 for example, a single layer film including any one of a silicon oxide film (SiOx), a silicon nitride film (SiNx), and a silicon oxynitride film (SiON), or a laminated film including at least two of these can be used.
- the thickness of the silicon-based mask 5 may be, for example, 0.1 nm or more and 5 ⁇ m or less, and may be, for example, 10 nm or more and 1 ⁇ m or less.
- the width Wm (size in the X direction) of the silicon-based mask 5 may be, for example, 10 ⁇ m or more and may be 20 ⁇ m or more and 500 ⁇ m or less.
- the opening K of the mask pattern 6 may have a longitudinal shape with the first direction (X direction) as the width direction and the second direction (Y direction) as the length direction.
- the mask pattern 6 may have a plurality of openings K arranged in the first direction.
- the opening K may have a tapered shape (a shape in which the width narrows downward).
- the width Wk of the opening K may be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
- the width Wk of the opening K may be smaller than the width Wm of the silicon-based mask 5.
- the ratio of the thickness of the silicon-based mask 5 to the width Wk of the opening K (size in the X direction) may be 3.0 or less.
- the smaller the width Wk of the opening K the fewer the number of threading dislocations propagating from the opening K to the nitride semiconductor portion 8.
- the wing portion F low defect portion
- the seed portion S is positioned so as to fill the opening K of the mask pattern 6.
- the seed portion S is formed above the main substrate 1, and serves as the starting point for the growth of the nitride semiconductor portion 8.
- the seed portion S includes at least an Al-based semiconductor layer AS, and may also have a covering layer C (see FIG. 1).
- the top surface ST of the seed portion S is higher than the top surface SMT of the semiconductor mask SM, and has a relatively high degree of flatness. This makes it easier to improve the quality of the nitride semiconductor portion 8 grown from the seed portion S.
- the seed portion S may be contained within the opening K in a plan view, or may protrude slightly laterally from the opening K.
- the Al-based semiconductor layer AS and the semiconductor mask SM included in the seed portion S are made of the same material, and in the first embodiment, Al x Ga 1-x N (x: 0.05 or more) can be used as the material containing aluminum.
- the thickness of the semiconductor mask SM can be about 10 nm
- the thickness of the Al-based semiconductor layer AS can be about 300 nm.
- the template substrate TS may be configured such that a base layer 4 (e.g., AlN) and a mask pattern 6 are formed in this order on a main substrate 1 (e.g., a silicon substrate).
- the template substrate TS may also be configured such that a multi-layer base layer 4 (including a lower layer portion 2 and an upper layer portion 3) and a mask pattern 6 are formed in this order on a main substrate 1.
- the base layer 4 may be formed locally (e.g., in a stripe shape) so as to overlap an opening K of the mask pattern 6 in a plan view.
- the template substrate TS may be configured such that a mask pattern 6 is formed on a main substrate 1 (e.g., a SiC bulk crystal substrate, a GaN bulk crystal substrate).
- the template substrate TS has a seed portion S at a position overlapping the opening K, and a semiconductor mask SM is positioned on a silicon-based mask 5.
- a lower layer 2 including at least one of an AlN layer and a SiC (silicon carbide) layer may be provided to reduce the possibility of the two (main substrate and seed portion) melting together.
- the lower layer 2 improves the crystallinity and flatness of the upper layer 3.
- the lower layer 2 may be planar as shown in FIG. 13, or may be patterned.
- the thickness of the lower layer 2 may be, for example, about 10 nm to 500 nm.
- the silicon carbide used for the lower layer 2 may be hexagonal (6H-SiC, 4H-SiC) or cubic (4C-SiC).
- the upper layer 3 may be made of a GaN-based semiconductor, AlN, SiC, or the like. By having the upper layer 3, the crystallinity and flatness of the seed portion S can be improved.
- the upper layer 3 may be made of a GaN layer, an AlN layer, an AlGaN layer, an AlInN layer, an AlGaInN layer, or the like formed at a low temperature (500°C or less).
- the thickness of the upper layer 3 may be about 10 nm to 500 nm.
- At least one of the lower layer 2 (e.g., aluminum nitride) and the upper layer 3 (e.g., GaN-based semiconductor) may be formed using a sputtering device.
- the underlayer 4 may include a strain relaxation layer.
- the strain relaxation layer include an AlGaN superlattice structure and a graded structure in which the Al composition of AlGaN is changed in stages.
- the strain relaxation layer can relieve stress in the longitudinal direction of the nitride semiconductor portion 8.
- At least one of the lower layer portion 2 and the upper layer portion 3 may include a strain relaxation layer.
- a main substrate 1 that does not melt with the upper layer 3 it is possible to configure the structure without providing the lower layer 2. Also, if an upper layer 3 that is less reactive with the main substrate 1 is used, it is possible to configure the structure without providing the lower layer 2. Similarly, if the seed portion S and the main substrate 1 are made of materials that do not melt with each other, it is also possible to configure the structure without providing the base layer 4.
- Materials for forming the seed region J (see FIG. 2) in the seed portion S include, for example, GaN-based semiconductors, aluminum nitride (AlN), silicon carbide (SiC), graphene, etc. Silicon carbide is preferably hexagonal 6H-SiC or 4H-SiC.
- the seed portion S may contain a nitride semiconductor formed at a low temperature of 600° or less. This can reduce warping of the semiconductor substrate 10 caused by the stress of the seed portion S.
- the seed portion S can also be formed using a sputtering device. Using a sputtering device has the advantages of low-temperature film formation, large-area film formation, and reduced costs.
- a silicon substrate can be used for the main substrate 1
- an AlN layer (about 30 nm to 300 nm, for example 150 nm) can be used for the lower layer 2 of the underlayer 4
- a GaN-based graded layer can be used for the underlayer 4
- a silicon oxide film (SiO 2 ) can be used for the silicon-based mask 5.
- the GaN-based graded layer can include, for example, a first layer of an Al 0.6 Ga 0.4 N layer (for example, 300 nm) and a second layer of a GaN layer (for example, 1 to 2 ⁇ m).
- a silicon oxide film with a thickness of about 100 nm to 4 ⁇ m (preferably about 150 nm to 2 ⁇ m) is formed over the entire surface of the underlayer 4 using a sputtering method, and a resist is applied over the entire surface of the silicon oxide film.
- the resist is then patterned using a photolithography method to form a resist with multiple stripe-shaped openings.
- Parts of the silicon oxide film are then removed using a wet etchant such as hydrofluoric acid (HF) or buffered hydrofluoric acid (BHF) to form multiple openings K, and the resist is then removed by organic cleaning to form the mask pattern 6.
- HF hydrofluoric acid
- BHF buffered hydrofluoric acid
- the silicon-based mask 5 can also be formed using a sputtering device or an EBD (Electron Beam Deposition) device.
- the template substrate TS has a semiconductor mask SM (e.g., a low-crystalline AlGaN layer) on the silicon-based mask 5, which effectively reduces the amount of silicon that is incorporated into the nitride semiconductor portion 8.
- SM semiconductor mask
- the silicon-based mask 5 may be a single layer film of silicon nitride film or silicon oxynitride film, or may be a laminate film in which a silicon oxide film and a silicon nitride film are formed in that order on the base substrate BS.
- the oxygen and nitrogen composition of SiON may be controlled to form the desired oxynitride film.
- the silicon-based mask 5 may be a laminated mask in which a silicon oxide film (SiO 2 ) and a silicon nitride film (SiN) are formed in this order.
- the silicon oxide film and the silicon nitride film are each formed by CVD (plasma enhanced chemical vapor deposition), and the thickness of the silicon oxide film may be, for example, 0.3 ⁇ m, and the thickness of the silicon nitride film may be, for example, 70 nm.
- the silicon nitride film may be formed by using a sputtering device or a PECVD device. The thickness of the silicon nitride film may be about 5 nm to 4 ⁇ m.
- the main substrate 1 can be used as the base substrate BS without providing the underlayer 4.
- a mask pattern 6 can be formed on the main substrate 1, and a seed portion S can be formed so as to connect to the upper surface of the main substrate 1 exposed at the opening K.
- FIG. 14 is a cross-sectional view showing an example of lateral growth of a nitride semiconductor portion.
- FIG. 14 shows an example in which a mask pattern 6 has a tapered opening K.
- the semiconductor substrate 10 in Example 1 has a first nitride semiconductor portion 8A and a second nitride semiconductor portion 8C formed by the ELO method above a template substrate TS.
- the nitride semiconductor portion 8 can be grown laterally as follows.
- An initial growth portion SL may be formed on the seed portion S located overlapping the opening K, and then the nitride semiconductor portion 8 may be grown laterally from the initial growth portion SL.
- the initial growth portion SL serves as the starting point for the lateral growth of the nitride semiconductor portion 8.
- the initial growth portion SL may have a thickness of, for example, 0.5 ⁇ m or more and 4.0 ⁇ m or less.
- the back surface portion BP of the nitride semiconductor portion 8 is in contact with the semiconductor mask SM, but this is not limited thereto, and the semiconductor substrate 10 may have a gap between the back surface portion BP and the semiconductor mask SM.
- the first nitride semiconductor portion 8A may have a first base portion B1 located above the opening K, and a first wing portion F1 connected to the first base portion B1, separated from the growth inhibition region DA, and located above the gap.
- the initial growth portion SL may not be in contact with the semiconductor mask SM on the side surface of the seed portion S, and the nitride semiconductor portion 8 may grow laterally from the initial growth portion SL.
- the covering layer C (see FIG. 6) on the seed portion S may function as the initial growth portion SL.
- the nitride semiconductor covering layer C may be formed, for example, so that the seed portion S protrudes from the silicon-based mask 5, and the nitride semiconductor portion 8 may grow laterally from the covering layer C.
- the nitride semiconductor portion 8 can be grown laterally at high speed and with high crystallinity while suppressing growth in the c-axis direction (thickness direction). This allows the nitride semiconductor portion 8 (crystal of a nitride semiconductor such as GaN) with low defects to be formed thinly and widely at low cost, and the consumption of raw materials can also be reduced.
- the ratio (WF/d1) of the width WF (size in the X direction) to the thickness d1 can be, for example, 2.0 or more.
- WF/d1 can be 2.0 or more, 4.0 or more, 5.0 or more, 7.0 or more, or 10.0 or more.
- the width WF of the wing portion F can be, for example, 7.0 ⁇ m or more, 10.0 ⁇ m or more, 20.0 ⁇ m or more, or 40.0 ⁇ m or more.
- the thickness d1 can be 10.0 ⁇ m or less, 5.0 ⁇ m or less, or 2.0 ⁇ m or less.
- Example 1 the width Wm of the silicon-based mask 5 was 50 ⁇ m, the width Wk of the opening K was 5 ⁇ m, the horizontal width of the nitride semiconductor portion 8 was 53 ⁇ m, the width (size in the X direction) of the wing portion F was 24 ⁇ m, and the layer thickness of the nitride semiconductor portion 8 was 5 ⁇ m.
- Example 2 15 is a cross-sectional view showing a schematic configuration of a template substrate in Example 2.
- the template substrate TS in Example 2 may not have a covering layer C on the seed portion S.
- the template substrate TS may have an exposed Al-based semiconductor layer AS.
- the Al-based semiconductor layer AS can be an AlGaN layer having a relatively high crystallinity.
- the nitride semiconductor portion 8 can be grown using this Al-based semiconductor layer AS as a growth starting point.
- the top surface AST of the Al-based semiconductor layer AS is higher than the top surface SMT of the semiconductor mask SM, but this is not limited thereto, and the top surface AST may be lower than the top surface SMT.
- the top surface AST may be lower than the top surface 5T of the silicon-based mask 5.
- the top surface AST of the Al-based semiconductor layer AS can be used as a seed region J to grow the nitride semiconductor portion 8 by the ELO method.
- Example 3 Fig. 16 is a cross-sectional view that illustrates a schematic configuration of a template substrate in Example 3.
- the seed portion S may include a covering layer C located on a base substrate BS and an Al-based semiconductor layer AS that covers an upper surface CT of the covering layer C.
- the upper surface CT of the covering layer C may be located lower or higher than an upper surface SMT of the semiconductor mask SM.
- the template substrate TS in Example 3 may be manufactured, for example, by forming a mask pattern 6 on a base substrate BS, growing a coating layer C on the surface of the base substrate BS exposed at an opening K, and then forming an Al-based semiconductor layer AS and a semiconductor mask SM.
- the nitride semiconductor portion 8 can be grown using the Al-based semiconductor layer AS as the growth starting point.
- Fig. 17 is a cross-sectional view that shows a schematic configuration of a semiconductor substrate in Example 4.
- Fig. 18 is a cross-sectional view that shows a schematic configuration of a semiconductor substrate in Example 4.
- a black dot shown at a position indicated by a lead line of the symbol JD indicates a space (gap JD) between the wing portion F and the template substrate TS.
- a gap JD may exist between the semiconductor mask SM and the first nitride semiconductor portion 8A.
- the gap JD can also be said to be a space sandwiched between the growth inhibition region DA and the first wing portion F1.
- the first wing portion F1 is spaced apart from the semiconductor mask SM that functions as the growth inhibition region DA.
- the seed region J (upper surface ST of the seed portion S) is located above the growth inhibition region DA, and the first nitride semiconductor portion 8A has a first base portion B1 located on the seed portion S and a first wing portion F1 connected to the first base portion B1 and facing the growth inhibition region DA via the gap JD.
- the first wing portion F1 may have an edge E1 located above the semiconductor mask SM.
- the semiconductor substrate 10 may include a growth inhibition film 7 in contact with the seed portion S at a position above the semiconductor mask SM.
- the growth inhibition film 7 may be in contact with the upper surface SMT (growth inhibition area DA) of the semiconductor mask SM.
- the growth inhibition film 7 may also be in contact with the side surface SS of the seed portion S. This inhibits the growth of the nitride semiconductor portion 8 from the side surface SS, making it easier for a void JD to form.
- the growth suppression film 7 may include a first film portion 71 in contact with the side surface SS of the seed portion S and a second film portion 72 in contact with the upper surface ST of the seed portion S.
- the seed portion S includes an Al-based semiconductor layer AS (see FIG. 1, etc.).
- the semiconductor substrate 10 may include at least one of a growth suppression film (second film portion 72) located above the Al-based semiconductor layer AS and a growth suppression film (first film portion 71) located on the side surface of the Al-based semiconductor layer AS.
- the growth suppression film 7 does not need to be a complete film, and may be a film including one or more minute openings (a film with an incomplete shape).
- the growth suppression film 7 may have a uniform shape within the surface, or may have a shape with partial defects (holes or a shape that is significantly thinner than the surroundings).
- the second film portion 72 suppresses threading dislocations passing through the seed portion S, and the surface flatness and crystallinity of the upper surface ST of the seed portion S are improved.
- the top surface ST of the seed portion S has a growth origin PG of the nitride semiconductor portion 8, and the growth origin PG may not be in contact with the growth inhibition film 7 or may be in contact with a portion where the growth inhibition film 7 is locally thin.
- the growth origin PG may include a corner SC where the top surface ST and side surface SS of the seed portion S intersect.
- the corner SC may be located above the semiconductor mask SM. That is, the seed portion S may protrude laterally from the opening K in a planar view, and the corner SC and the semiconductor mask SM may overlap in a planar view.
- the thickness of the growth inhibition film 7 may be thinner than the silicon-based mask 5 and thinner than the semiconductor mask SM. This makes it easier for the wing portion F to grow from the seed portion S while suppressing growth on the semiconductor mask SM.
- the thickness of the growth inhibition film 7 may be 1/3 or less of the thickness of the silicon-based mask 5.
- the thickness of the growth inhibition film 7 may be 1/3 or less of the thickness of the semiconductor mask SM.
- the growth inhibition film 7 may be about 1 nm thick, and can be formed as a very thin film.
- Growth-inhibiting film 7 may be made of, for example, SiN, and depending on the deposition conditions, SiON, SiGaO, or SiGaON may also be used.
- growth-inhibiting film 7 may contain silicon, and in this case, it was found that the evaporation of silicon from growth-inhibiting film 7 during deposition of nitride semiconductor portion 8 is limited. This is believed to be because, as described above, the thickness of growth-inhibiting film 7 is thin, and the constituent material of semiconductor mask SM and the constituent material of growth-inhibiting film 7 can form a mixed crystal on semiconductor mask SM.
- the ratio of the width WJ of the gap JD in the X-direction to the thickness TJ may be 5.0 or more, in which case the first wing portion F1 having high crystallinity (low defect density) and a wide width can be formed quickly.
- the flatness of the first wing portion F1 is also improved.
- the silicon concentration of the back surface portion BP of the first wing portion F1 can be set to 5 ⁇ 10 18 /cm 3 or less.
- the thickness (height) TJ of the gap JD is the distance from the top surface of the growth suppression film 7 on the semiconductor mask SM (equivalent to the top surface SMT of the semiconductor mask SM) to the bottom surface (back surface) of the nitride semiconductor portion 8.
- the width WJ of the gap JD is the distance in the X direction from the side surface of the seed portion S to the edge E1 of the nitride semiconductor portion 8.
- the thickness TJ of the gap JD may be 5 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 0.6 ⁇ m or less, or 0.3 ⁇ m or less.
- the thickness TJ of the gap JD is preferably 0.05 ⁇ m (50 nm) or more.
- the aspect ratio of the gap JD can be 5.0 or more, 10 or more, 20 or more, 30 or more, 50 or more, or 100 or more. In this way, the functional layer 9 (see FIG. 10) can be formed on the wide wing portion F while suppressing the back-rolling phenomenon, and a high-quality (e.g., high light extraction efficiency) semiconductor device can be formed.
- the aspect ratio of the gap J may be, for example, 100 to 1000.
- the width of the gap GP may be greater than the thickness of the gap JD.
- the back-rolling phenomenon can be more effectively suppressed by setting the width of the gap GP to 30 ⁇ m or less, or 10 ⁇ m or less.
- FIG. 19 is a cross-sectional view showing an example of a method for manufacturing a semiconductor substrate in Example 4.
- a template substrate TS is prepared.
- a MOCVD apparatus is used to deposit a thin SiN film (for example, about 1 nm) at a deposition temperature of about 1000° C. or less and to supply SiH 4 (silane) and NH 3 (ammonia).
- a growth suppression film 7 is formed on the upper surface ST and side surface SS of the seed portion S.
- the deposition temperature is raised to 250°C and TMG (trimethylgallium) and ammonia are supplied to deposit the nitride semiconductor portion 8.
- TMG trimethylgallium
- the deposition of the nitride semiconductor portion 8 is significantly affected by the growth suppression film 7, and the wing portion F is formed in a state where it is floating above the semiconductor mask SM. In other words, the back surface of the wing portion F of the nitride semiconductor portion 8 is completely separated from the semiconductor mask SM.
- both corners (two corners SC aligned in the X direction) of the seed portion S become growth starting points PG, and lateral film growth occurs from both sides.
- a void can be formed in the first base portion B1 (particularly the central portion).
- the first base portion B1 may include a void, which relieves stress from the template substrate TS.
- the void may be located above the second film portion 72 of the growth suppression film 7.
- the growth suppression film 7 may be subsequently formed.
- FIG. 20 is a cross-sectional view showing another configuration of the semiconductor substrate in Example 4.
- the height of the back surface BP of the nitride semiconductor portion 8 is formed at approximately the same height as the top surface ST of the seed portion S, but in the example shown in FIG. 20, the height of the back surface BP of the nitride semiconductor portion 8 is at a position (lower position) below the top surface ST of the seed portion S.
- the film formation conditions of the nitride semiconductor portion 8 film formation temperature, film formation time, gas flow rate, etc.
- the effects of Example 4 can be obtained in both the examples shown in FIG. 17 and FIG. 20.
- Example 5 21 to 23 are cross-sectional views showing another configuration of the semiconductor substrate in the fifth embodiment.
- the semiconductor substrate 10 may include a template substrate TS and a nitride semiconductor portion 8.
- the template substrate TS includes a base substrate BS, a mask pattern 6 including a silicon-based mask 5 and a first opening K1, which is located on the base substrate BS, a semiconductor mask SM including aluminum, which is located on the silicon-based mask 5, and a seed portion S having an Al-based semiconductor layer AS including a main component of the semiconductor mask SM and overlapping the first opening K1.
- a semiconductor mask SM low crystallinity on the silicon-based mask 5 and an Al-based semiconductor layer AS (high crystallinity) that overlaps the first opening K1 and is thicker than the semiconductor mask SM may be formed.
- a covering portion C may be provided to cover the upper surface of the Al-based semiconductor layer AS.
- An edge 8E of the nitride semiconductor portion 8 may be located above the semiconductor mask SM.
- a raised portion 8R rising from a seed portion S is provided in the nitride semiconductor portion 8, and a growth suppression film 7 is provided in contact with the side and top surface of the raised portion 8R, so that the wing F of the nitride semiconductor portion 8 is raised above the semiconductor mask SM (a gap JD may be provided between the wing F and the semiconductor mask SM). This reduces warping of the semiconductor substrate 10.
- a raised portion 4T is formed on the surface of the underlayer 4, and the side surface of the raised portion 8R is covered with a mask portion 5.
- the wing F of the nitride semiconductor portion 8 is raised above the semiconductor mask SM by using a template substrate TS on which a continuous layer SF of an Al-based nitride semiconductor (semiconductor mask SM and Al-based semiconductor layer AS) is formed.
- FIG. 24 is a plan view showing an example of a method for manufacturing a semiconductor substrate and a semiconductor device in Example 6.
- FIG. 25 is a cross-sectional view showing an example of a method for manufacturing a semiconductor substrate and a semiconductor device in Example 6.
- Example 6 an example of manufacturing a semiconductor device 25 using the semiconductor substrate 10 in Example 4 will be described.
- a known method can be used, and this can be easily understood by referring to the following description.
- the base portion B and the functional layer 9 on the seed portion S are removed, and the growth suppression film 7, the semiconductor mask SM, and the silicon-based mask 5 are removed to separate the semiconductor device 25 from the template substrate TS.
- a functional layer (device layer) 9 may be formed on the first nitride semiconductor portion 8A.
- the functional layer 9 such as an LED, Laser, PD (light receiving element), or Power device, may be formed using MOCVD, MBE, sputtering, or the like.
- the active region (e.g., light emitting region ES) of the functional layer 9 may be formed above (so as to overlap with) the first wing portion F1 (device region), which is a low defect portion (low dislocation portion) in a plan view.
- electrodes EA and EC are formed on the functional layer 9, and predetermined portions of the first nitride semiconductor portion 8A and the functional layer 9 are removed to separate the elements.
- a separation groove BM parallel to the X direction is formed in the first nitride semiconductor portion 8A and the functional layer 9, and the first nitride semiconductor portion 8A and the functional layer 9 located on the seed portion S are removed leaving behind two paired tether portions TZ to form the element region PA.
- the two tether portions TZ are the portions of the element region PA that are connected to the seed portion S at both ends facing each other in the Y direction.
- the element region PA (including the wing portion F, the functional layer 9, and the electrodes EA and EC) is separated from the template substrate TS to form the semiconductor device 25. Because there is a gap JD below the wing portion F, by applying downward pressure to the element region PA with a pressure member YS (adhesive plate, adhesive sheet, adhesive substrate, etc.) having adhesive properties, the two tether portions TZ easily break, and the semiconductor device 25 is separated from the template substrate TS.
- a pressure member YS adheresive plate, adhesive sheet, adhesive substrate, etc.
- the semiconductor device 25 is peeled off from the template substrate TS while being held by the pressing body YS.
- the gap JD also functions effectively in element isolation, allowing the semiconductor device 25 to be peeled off from the template substrate TS without being damaged.
- FIG. 26 is a schematic diagram showing one example of the configuration of an electronic device.
- the electronic device 55 in FIG. 26 includes a semiconductor device 25 including a nitride semiconductor portion 8, a drive substrate 23 on which the semiconductor device 25 is mounted, and a control circuit 27 that controls the drive substrate 23.
- FIG. 27 is a schematic diagram showing another example of the configuration of an electronic device.
- the element region (element portion) PA does not need to be peeled off from the template substrate TS.
- the electronic device 55 in FIG. 27 includes a semiconductor substrate 10 including the template substrate TS and the element region PA, a drive substrate 23 on which the semiconductor substrate 10 is mounted, and a control circuit 27 that controls the drive substrate 23.
- the main substrate 1 included in the template substrate TS may be a light-transmitting substrate (e.g., a sapphire substrate).
- the electronic device 55 include a light-emitting device, a display device, a laser emission device (including a Fabry-Perot type and a surface emission type), a measuring device, a lighting device, a communication device, an information processing device, and a power control device.
- the template substrate in aspect 1 of the present disclosure comprises a base substrate, a mask pattern located on the base substrate and including a silicon-based mask containing silicon and a first opening, a semiconductor mask located on the silicon-based mask containing aluminum, and a seed portion having an Al-based semiconductor layer that contains a main component of the semiconductor mask and overlaps the first opening.
- the template substrate in aspect 2 of the present disclosure is the same as in aspect 1, except that the Al-based semiconductor layer is thicker than the semiconductor mask.
- the template substrate in aspect 3 of the present disclosure is the same as in aspect 1 or 2, in which the seed portion includes a covering layer that includes a nitride semiconductor and covers the upper surface of the Al-based semiconductor layer.
- the template substrate in aspect 4 of the present disclosure is any one of aspects 1 to 3, in which the Al-based semiconductor layer is shaped to fill the first opening.
- the template substrate in aspect 5 of the present disclosure is any one of aspects 1 to 4, in which the base substrate comprises a main substrate and an underlayer located on the main substrate, and the Al-based semiconductor layer is located on the underlayer.
- the template substrate in aspect 6 of the present disclosure is any one of aspects 1 to 5, in which the surface roughness of the semiconductor mask is greater than the surface roughness of the Al-based semiconductor layer.
- the template substrate in aspect 7 of the present disclosure is any one of aspects 1 to 6, in which the surface roughness of the semiconductor mask is greater than the surface roughness of the silicon-based mask.
- the template substrate in aspect 8 of the present disclosure is any one of aspects 1 to 7, in which the upper surface of the seed portion is located at a higher position than the upper surface of the semiconductor mask.
- the template substrate in aspect 9 of the present disclosure is any one of aspects 1 to 8, in which the seed portion includes a covering layer that includes a nitride semiconductor and covers the upper surface of the Al-based semiconductor layer, and the surface roughness of the covering layer is smaller than the surface roughness of the Al-based semiconductor layer.
- the template substrate in aspect 10 of the present disclosure is any one of aspects 1 to 9, in which the semiconductor mask has lower crystallinity than the Al-based semiconductor layer.
- the template substrate in aspect 11 of the present disclosure is any one of aspects 1 to 10, in which the semiconductor mask includes an amorphous structure.
- the template substrate in aspect 12 of the present disclosure is any one of aspects 1 to 11, in which the seed portion includes a covering layer that includes a nitride semiconductor and covers the upper surface of the Al-based semiconductor layer, and the covering layer does not include aluminum or has a lower aluminum content than the Al-based semiconductor layer.
- the template substrate in aspect 13 of the present disclosure is any one of aspects 1 to 12, in which the seed portion includes a covering layer that includes a nitride semiconductor and covers the upper surface of the Al-based semiconductor layer, and the covering layer is thicker than the Al-based semiconductor layer.
- the template substrate in aspect 14 of the present disclosure is any one of aspects 1 to 13, in which the semiconductor mask and the Al-based semiconductor layer are connected.
- the template substrate in aspect 15 of the present disclosure is any one of aspects 1 to 14, in which the Al-based semiconductor layer is exposed.
- the template substrate in aspect 16 of the present disclosure is any one of aspects 1 to 15, in which the silicon-based mask includes at least one of silicon nitride and silicon oxide, and the semiconductor mask and the Al-based semiconductor layer include aluminum gallium nitride.
- the template substrate in aspect 17 of the present disclosure is any one of aspects 1 to 16, in which the base substrate comprises a main substrate and an underlayer located on the main substrate, the main substrate being any one of a silicon wafer, a silicon carbide wafer, and a sapphire wafer, and the underlayer includes aluminum nitride.
- the template substrate in aspect 18 of the present disclosure is any one of aspects 1 to 17, in which the mask pattern includes a second opening, and the silicon-based mask and the semiconductor mask are positioned between the first and second openings in a plan view.
- the template substrate in aspect 19 of the present disclosure is any one of aspects 1 to 18, in which the semiconductor mask and the Al-based semiconductor layer contain aluminum gallium nitride, and the aluminum gallium nitride has a composition ratio of Al to Ga and Al of 0.05 or more.
- the semiconductor substrate in aspect 20 of the present disclosure comprises a template substrate in any one of aspects 1 to 19, and a first nitride semiconductor portion located above the first opening and the semiconductor mask.
- the semiconductor substrate in aspect 21 of the present disclosure is the same as aspect 20, except that the mask pattern includes a second opening, the silicon-based mask and the semiconductor mask are located between the first and second openings in a plan view, a second nitride semiconductor portion is located above the second opening and the semiconductor mask, and a gap is located between the first and second nitride semiconductor portions.
- the semiconductor substrate in aspect 22 of the present disclosure is the same as in aspect 20 or 21, except that a gap exists between the semiconductor mask and the first nitride semiconductor portion.
- the semiconductor substrate in aspect 23 of the present disclosure is any one of aspects 20 to 22, and includes at least one of a growth inhibition film located above the Al-based semiconductor layer and a growth inhibition film located on a side of the Al-based semiconductor layer.
- a semiconductor substrate according to Aspect 24 of the present disclosure is any one of Aspects 20 to 23, wherein in the first nitride semiconductor portion, a back surface portion facing the semiconductor mask has a silicon concentration of 5 ⁇ 10 18 /cm 3 or less.
- the semiconductor substrate in aspect 25 of the present disclosure is any one of aspects 20 to 24, and is located on the first nitride semiconductor portion and has a functional layer including an active layer.
- the method for manufacturing a template substrate in aspect 26 of the present disclosure includes the steps of preparing a base substrate, forming a mask pattern located on the base substrate and including a silicon-based mask containing silicon and a first opening, and forming a semiconductor mask located on the silicon-based mask, including aluminum, and a seed portion having an Al-based semiconductor layer that contains the main component of the semiconductor mask and overlaps with the first opening.
- the method for manufacturing a template substrate in aspect 27 of the present disclosure includes forming a covering layer that contains a nitride semiconductor and covers the upper surface of the Al-based semiconductor layer in the above-mentioned aspect 26.
- the template substrate manufacturing apparatus in aspect 28 of the present disclosure performs each of the steps in aspect 26 or 27.
- the method for manufacturing a semiconductor substrate in aspect 29 of the present disclosure includes a step of preparing a template substrate in any one of aspects 1 to 19, and a step of forming a first nitride semiconductor portion located above the first opening and the semiconductor mask.
- the method for manufacturing a semiconductor substrate in aspect 30 of the present disclosure includes a step of preparing a semiconductor substrate in any one of aspects 20 to 25, and a step of forming a functional layer located on the first nitride semiconductor portion and including an active layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本開示は、テンプレート基板等に関する。 This disclosure relates to template substrates, etc.
特許文献1には、シード層を含むベース基板に、マスク部および開口部を含むマスクパターンを形成し、開口部に露出するシード層を成長起点としてマスク部上に窒化物半導体層を横方向成長させる手法(ELO法)が開示されている。
本開示の一態様におけるテンプレート基板は、ベース基板と、ベース基板上に位置し、シリコンを含む第1マスクおよび第1開口を含むマスクパターンと、前記第1マスク上に位置し、アルミニウムおよび半導体を含む第2マスクと、前記第2マスクの主成分を含むとともに前記第1開口と重なる半導体層を有するシード部とを備える。 In one embodiment of the present disclosure, the template substrate comprises a base substrate, a mask pattern located on the base substrate and including a first mask containing silicon and a first opening, a second mask located on the first mask and including aluminum and a semiconductor, and a seed portion having a semiconductor layer that contains the main component of the second mask and overlaps the first opening.
〔テンプレート基板〕
図1は、本開示の一実施形態におけるテンプレート基板の構成を示す断面図である。図2は、本開示の一実施形態におけるテンプレート基板の構成を示す平面図である。図1および図2に示すように、テンプレート基板TSは、ベース基板BSと、ベース基板BS上に位置し、シリコンを含むシリコン系マスク5(第1マスクと称することがある)および第1開口K1を含むマスクパターン6と、シリコン系マスク5上に位置し、アルミニウムおよび半導体を含む半導体マスクSM(第2マスクと称することがある)と、半導体マスクSMの主成分を含むとともに第1開口K1と重なる半導体層ASを有するシード部Sとを備える。以下では、半導体マスクSMの主成分がアルミニウムを含む半導体である場合について説明する。この場合の半導体層ASを、アルミニウム系半導体層AS(以下、Al系半導体層ASと略記)と称する。主成分とは、部材の成分(分子、単体原子)のうち、含有量(モル数)が最大である成分(部材の成分が1つだけの場合は、その成分)をいう。半導体マスクSMの主成分は窒化物半導体であってよく、半導体マスクSMおよびAl系半導体層ASが主成分として窒化アルミニウムガリウム(ガリウムとアルミニウムの組成比は問わない)を含んでいてもよいし、窒化アルミニウムを含んでいてもよい。テンプレート基板TSを用いることでシリコン濃度の低い窒化物半導体部を得ることができる。
[Template substrate]
FIG. 1 is a cross-sectional view showing the configuration of a template substrate in an embodiment of the present disclosure. FIG. 2 is a plan view showing the configuration of a template substrate in an embodiment of the present disclosure. As shown in FIG. 1 and FIG. 2, the template substrate TS includes a base substrate BS, a
本実施形態におけるテンプレート基板TSでは、シード部Sは、窒化物半導体を含んでAl系半導体層ASの上面ASTを覆う被覆層Cを備えていてよい。テンプレート基板TSは、窒化物半導体を含む半導体部(窒化物半導体部)の形成のため、例えば、ELO(Epitaxial Lateral Overgrowth)法によりGaN系半導体を成長させるために用いることができる。テンプレート基板TSは、成長用基板と称することもできる。 In the template substrate TS of this embodiment, the seed portion S may include a covering layer C that includes a nitride semiconductor and covers the upper surface AST of the Al-based semiconductor layer AS. The template substrate TS can be used to grow a GaN-based semiconductor by, for example, an ELO (Epitaxial Lateral Overgrowth) method to form a semiconductor portion (nitride semiconductor portion) that includes a nitride semiconductor. The template substrate TS can also be referred to as a growth substrate.
窒化物半導体は、例えば、AlxGayInzN(0≦x≦1;0≦y≦1;0≦z≦1;x+y+z=1)と表すことができ、具体例として、GaN系半導体、AlN(窒化アルミニウム)、InAlN(窒化インジウムアルミニウム)、InN(窒化インジウム)を挙げることができる。GaN系半導体とは、ガリウム原子(Ga)および窒素原子(N)を含む半導体であり、典型的な例として、GaN、AlGaN、AlGaInN、InGaNを挙げることができる。 Nitride semiconductors can be expressed as AlxGayInzN (0≦x≦1; 0≦y≦1; 0≦z≦1; x+y+z=1), and specific examples include GaN-based semiconductors, AlN (aluminum nitride), InAlN (indium aluminum nitride), and InN (indium nitride). GaN-based semiconductors are semiconductors that contain gallium atoms (Ga) and nitrogen atoms (N), and typical examples include GaN, AlGaN, AlGaInN, and InGaN.
マスクパターン6は、第1方向(X方向)に隣り合う第1開口K1および第2開口K2と、第1開口K1および第2開口K2の間に位置するシリコン系マスク5と、を含む構成とすることができる。テンプレート基板TSは、ベース基板BS上に、第1開口K1と重なる第1シード部S1と、第2開口K2と重なる第2シード部S2とが位置していてよい。本実施形態におけるテンプレート基板TSでは、第1シード部S1は、第1Al系半導体層AS1の上面ASTを覆う第1被覆層C1を備えていてよく、第2シード部S2は、第2Al系半導体層AS2の上面ASTを覆う第2被覆層C2を備えていてよい。
The
以下では、第1開口K1および第2開口K2の総称を開口K、第1Al系半導体層AS1および第2Al系半導体層AS2の総称をAl系半導体層AS、第1シード部S1および第2シード部S2の総称をシード部S、第1被覆層C1および第2被覆層C2の総称を被覆層Cと表現することがある。 In the following, the first opening K1 and the second opening K2 may be collectively referred to as opening K, the first Al-based semiconductor layer AS1 and the second Al-based semiconductor layer AS2 as Al-based semiconductor layer AS, the first seed portion S1 and the second seed portion S2 as seed portion S, and the first covering layer C1 and the second covering layer C2 as covering layer C.
図1に示すテンプレート基板TSでは、主基板1上に複数の層が積層されているが、この積層方向(厚さ方向)を「上方向」(Z方向)とすることができる。つまり、ベース基板BSから半導体マスクSMへの向きを「上向き」とする。また、テンプレート基板TS等の基板状の対象物を基板法線と平行な視線で視る(透視的な場合を含む)ことを「平面視」と称することができる。
In the template substrate TS shown in FIG. 1, multiple layers are stacked on the
図1ではマスクパターン6に、第1方向(X方向)に直交する第2方向(Y方向)を長手方向とする第1開口K1および第2開口K2を設けている。マスクパターン6における開口Kの数および形状は特に限定されない。マスクパターン6は、複数の開口Kが窒化物半導体の<11-20>方向(a軸方向)に周期的に配列されてもよい。
In FIG. 1, the
図1に示す例では、ベース基板BSは、主基板1および主基板1上に位置する下地層4を備えていてよい。テンプレート基板TSは、下地層4上にAl系半導体層ASが位置していてよい。
In the example shown in FIG. 1, the base substrate BS may include a
ベース基板BSは、各種の上層の支持基体(ベース)となる基板である。主基板1は、例えば、窒化物半導体と格子定数が異なる異種基板であってよい。上記異種基板としては、シリコン基板、炭化シリコン基板、サファイア基板、窒化アルミニウム基板、ScAlMgO4基板等を挙げることができる。
The base substrate BS is a substrate that serves as a support base (base) for various upper layers. The
図1のテンプレート基板TSでは、例えば、下地層4にアルミニウム窒化物を用い、シリコン系マスク5にシリコンを含む無機化合物膜を用い、開口Kに下地層4を露出させ、平面視において開口Kに重なる位置にシード部Sを設ける。ELO法を用いて、シード部Sを成長起点として、シリコン系マスク5上に位置する半導体マスクSMの上方に、窒化物半導体を横方向(X方向)に成長させることができる。シード部Sの表面がシード領域J(半導体層の成長起点)となり、半導体マスクSMの表面(上面SMT)が成長抑制領域DAとなっていてよい。成長抑制領域DAおよびシード部Sが、窒化物半導体のa軸方向に並んでいてよい。成長抑制領域DAの幅(a軸方向の長さ)は、シード部Sの上面の幅(a軸方向の長さ)の5倍以上であってよい。
1, for example, aluminum nitride is used for the
下地層4は、例えば、主基板1とシード部Sとが接触して互いに溶融することを低減する機能を有する。例えば主基板1にシリコン基板を用い、シード部Sにおける主基板1側の表面にGaN系半導体が位置する場合、シリコン基板とGaN系半導体とが接触すると溶融し合うため、両者の間に下地層4を設けることで、溶融が低減される。下地層4が、シード部Sの結晶性を高める効果、およびシード部Sの内部応力を緩和する効果の少なくとも一方を有していてもよい。下地層4は、単層構造でもよいし、多層構造でもよく、周期構造を含む多層構造であってもよい。下地層4には、例えば、Alを含むGaN系半導体、窒化アルミニウム(AlN)、および炭化シリコン(SiC)を用いることができる。
The
一実施形態におけるテンプレート基板TSは、主基板1が、シリコンウェハ、炭化シリコンウェハ、サファイアウェハのいずれかであり、下地層4が、窒化アルミニウムを含んでいてよい。テンプレート基板TSは、マスクパターン6が第2開口K2を含み、平面視において、第1開口K1および第2開口K2の間にシリコン系マスク5および半導体マスクSMが位置していてよい。
In one embodiment, the template substrate TS may have a
シリコン系マスク5は、例えば、シリコン酸化膜またはシリコン窒化膜であってよい。シリコン系マスク5の材料として、シリコンの窒化物(SiN)、シリコンの炭化物(SiC)、シリコンの炭窒化物(SiCN)、シリコンの酸化物(SiO2)、シリコンの酸窒化物(SiON)などを用いることができる。シリコン系マスク5は、これらの材料の単層膜であってよく、これらの材料を組み合わせた多層膜(積層膜)であってもよい。
The silicon-based
Al系半導体層ASおよび半導体マスクSMは、例えば、ベース基板BS上にマスクパターン6を形成した後、以下のように形成されてよい。すなわち、開口Kにて露出するベース基板BSの表面上において比較的結晶成長し易いとともに、シリコン系マスク5上において比較的結晶成長し難い材料(アルミニウムを含む材料)の原料ガスを用いて成膜プロセスを行う。開口Kにて露出するベース基板BSの表面上で上記材料が結晶成長することにより結晶性の高いAl系半導体層ASが形成され、一方で、シリコン系マスク5上で上記材料が堆積することにより結晶性の低い半導体マスクSMが形成されてよい。スパッタリング法等によりAl系半導体層ASおよび半導体マスクSMを形成してもよい。
The Al-based semiconductor layer AS and the semiconductor mask SM may be formed, for example, after forming a
Al系半導体層ASおよび半導体マスクSMは、主成分が同じである一方で、上記のように成長時の状況が違うことによって互いに性状が異なる。そのため、Al系半導体層ASは、半導体マスクSMよりも厚くてよい。Al系半導体層ASは、例えば10nm以上の厚さを有していてよく、50nm以上の厚さを有していてよく、厚さの上限は例えば1000nmであってよい。半導体マスクSMは例えば10nm程度の厚さを有していてよく、1nm以上の厚さを有していてよく、厚さの上限は例えば100nmであってよい。半導体マスクSMの厚さに対するAl系半導体層ASの厚さの比が5以上であってよく、10以上200以下であってよい。 While the Al-based semiconductor layer AS and the semiconductor mask SM have the same main component, their properties differ due to the different conditions during growth as described above. Therefore, the Al-based semiconductor layer AS may be thicker than the semiconductor mask SM. The Al-based semiconductor layer AS may have a thickness of, for example, 10 nm or more, or may have a thickness of 50 nm or more, and the upper limit of the thickness may be, for example, 1000 nm. The semiconductor mask SM may have a thickness of, for example, about 10 nm, or may have a thickness of 1 nm or more, and the upper limit of the thickness may be, for example, 100 nm. The ratio of the thickness of the Al-based semiconductor layer AS to the thickness of the semiconductor mask SM may be 5 or more, or may be 10 to 200.
また、半導体マスクSMは、結晶成長し難いシリコン系マスク5上で形成されることにより、Al系半導体層ASおよびシリコン系マスク5よりも粗い表面を有する。よって、半導体マスクSMの表面粗さは、Al系半導体層ASの表面粗さよりも大きくてよい。半導体マスクSMの表面粗さは、シリコン系マスク5の表面粗さよりも大きくてよい。半導体マスクSMは、Al系半導体層ASよりも結晶性が低くてよい。半導体マスクSMは、アモルファス構造を含んでいてよい。半導体マスクSMおよびAl系半導体層ASの表面粗さは、例えば、テンプレート基板TSのX方向またはY方向に直交する断面について電子顕微鏡(TEM等)画像を撮像し、当該画像に基づいて評価することができる。例えば、画像解析により、テンプレート基板TSにおける半導体マスクSMの表面粗さが、Al系半導体層ASの表面粗さよりも大きいことを確認できる。また、テンプレート基板TSにおける半導体マスクSMの表面粗さが、シリコン系マスク5の表面粗さよりも大きいことを確認できる。
The semiconductor mask SM is formed on the silicon-based
Al系半導体層ASは、第1開口K1を埋める形状であってよい。Al系半導体層ASが開口Kを埋める形状であることにより、Al系半導体層ASの上面ASTは、シリコン系マスク5の上面5Tよりも高位置であってよい。テンプレート基板TSでは、半導体マスクSMおよびAl系半導体層ASが互いに繋がっていてよい。Al系半導体層ASの上面ASTとシリコン系マスク5の上面5Tとの相対的な位置関係は、シリコン系マスク5の厚さに応じて変化し得る。図1等に示す例ではAl系半導体層ASの上面ASTがシリコン系マスク5の上面5Tよりも高位置であるが、これに限定されず、Al系半導体層ASの上面ASTがシリコン系マスク5の上面5Tよりも低位置であってもよい。開口Kを形成するシリコン系マスク5の側壁上に半導体マスクSMが形成されることにより、半導体マスクSMおよびAl系半導体層ASが互いに繋がり得る。
The Al-based semiconductor layer AS may be shaped to fill the first opening K1. Since the Al-based semiconductor layer AS is shaped to fill the opening K, the upper surface AST of the Al-based semiconductor layer AS may be higher than the
図1のテンプレート基板TSでは、シード部Sの上面は、被覆層Cの上面CTであってよい。図1に示す例に限定されず、テンプレート基板TSは、被覆層Cを備えていなくてもよく、この場合、シード部Sの上面は、Al系半導体層ASの上面ASTであってよい。また、テンプレート基板TSは、開口Kにて露出するベース基板BSの表面に接続する被覆層Cを有し、被覆層C上にAl系半導体層ASが位置していてもよい。 In the template substrate TS of FIG. 1, the upper surface of the seed portion S may be the upper surface CT of the covering layer C. Not limited to the example shown in FIG. 1, the template substrate TS may not have a covering layer C, in which case the upper surface of the seed portion S may be the upper surface AST of the Al-based semiconductor layer AS. In addition, the template substrate TS may have a covering layer C that connects to the surface of the base substrate BS exposed at the opening K, and the Al-based semiconductor layer AS may be located on the covering layer C.
テンプレート基板TSでは、シード部Sの上面(上面CTまたは上面AST)は、半導体マスクSMの上面SMTよりも高位置にあってよい。Al系半導体層ASの上面ASTと半導体マスクSMの上面SMTとの相対的な位置関係は、シリコン系マスク5の厚さに応じて変化し得る。シード部Sが被覆層Cを備えることによって、シード部Sの上面(上面CTまたは上面AST)を半導体マスクSMの上面SMTよりも高位置とし易くできる。
In the template substrate TS, the top surface (top surface CT or top surface AST) of the seed portion S may be located higher than the top surface SMT of the semiconductor mask SM. The relative positional relationship between the top surface AST of the Al-based semiconductor layer AS and the top surface SMT of the semiconductor mask SM may vary depending on the thickness of the silicon-based
被覆層Cの表面粗さは、Al系半導体層ASの表面粗さよりも小さくてよい。被覆層Cの表面粗さが小さいことにより、シード部Sを成長起点として成長する半導体層の品質を効果的に高め易くできる。被覆層Cは、平面視において、開口K内に収まっていてもよいし、開口Kから少し横方向にはみ出していてもよい。被覆層CおよびAl系半導体層ASの表面粗さについても、前述したように、例えば、テンプレート基板TSのX方向またはY方向に直交する断面について電子顕微鏡(TEM等)画像を撮像し、当該画像に基づいて評価することができる。 The surface roughness of the coating layer C may be smaller than the surface roughness of the Al-based semiconductor layer AS. The smaller surface roughness of the coating layer C makes it easier to effectively improve the quality of the semiconductor layer that grows from the seed portion S as a growth starting point. In a plan view, the coating layer C may be contained within the opening K, or may protrude slightly laterally from the opening K. As described above, the surface roughness of the coating layer C and the Al-based semiconductor layer AS can also be evaluated based on an electron microscope (TEM, etc.) image taken of a cross section perpendicular to the X-direction or Y-direction of the template substrate TS, for example.
被覆層Cは、アルミニウムを含まなくてもよく、或いは、アルミニウム含有率がAl系半導体層ASよりも低くてもよい。被覆層Cは、Al系半導体層AS上に成長する材料であって、半導体層の成長起点となる材料により構成されていればよい。被覆層Cには、例えば、GaN、AlGaN、AlInN、AlGaInN等のGaN系半導体を用いることができる。被覆層Cを形成する方法は特に限定されず、例えば、MOCVD法、スパッタリング法、PSD(Pulse Sputter Deposition)法、またはレーザアブレーション法を用いて被覆層Cを形成することができる。 The coating layer C may not contain aluminum, or may have a lower aluminum content than the Al-based semiconductor layer AS. The coating layer C may be made of a material that grows on the Al-based semiconductor layer AS and that serves as the growth starting point for the semiconductor layer. For the coating layer C, for example, a GaN-based semiconductor such as GaN, AlGaN, AlInN, or AlGaInN may be used. The method for forming the coating layer C is not particularly limited, and for example, the coating layer C may be formed using the MOCVD method, the sputtering method, the PSD (Pulse Sputter Deposition) method, or the laser ablation method.
また、被覆層Cは、Al系半導体層ASよりも厚くてよい。Al系半導体層ASの形成に伴って半導体マスクSMも形成されることから、Al系半導体層ASの厚さを大きくする場合、半導体マスクSMの厚さも大きくなる。シード部Sを成長起点とする半導体層の横方向成長に対して厚い半導体マスクSMが干渉する場合、半導体層の品質を低下させ得る。シード部Sの上面の高さを被覆層Cによって調節することによれば、Al系半導体層ASの厚さを比較的薄くすることができ、その結果、半導体マスクSMの厚さを比較的薄くすることができる。被覆層Cは、例えば10nm以上の厚さを有していてよく、100nm以上の厚さを有していてよく、厚さの上限は例えば3μmであってよい。Al系半導体層ASの厚さに対する被覆層Cの厚さの比が1よりも大きくてよく、1.5以上100以下であってよい。 The covering layer C may be thicker than the Al-based semiconductor layer AS. Since the semiconductor mask SM is formed with the formation of the Al-based semiconductor layer AS, when the thickness of the Al-based semiconductor layer AS is increased, the thickness of the semiconductor mask SM also increases. If the thick semiconductor mask SM interferes with the lateral growth of the semiconductor layer starting from the seed portion S, the quality of the semiconductor layer may be reduced. By adjusting the height of the upper surface of the seed portion S with the covering layer C, the thickness of the Al-based semiconductor layer AS can be made relatively thin, and as a result, the thickness of the semiconductor mask SM can be made relatively thin. The covering layer C may have a thickness of, for example, 10 nm or more, or may have a thickness of 100 nm or more, and the upper limit of the thickness may be, for example, 3 μm. The ratio of the thickness of the covering layer C to the thickness of the Al-based semiconductor layer AS may be greater than 1, and may be 1.5 to 100.
本実施形態におけるテンプレート基板TSを用いて、シード部Sを成長起点として半導体層を横方向成長させる場合、シリコン系マスク5上に半導体マスクSMが位置していることから、シリコン系マスク5から半導体層に付随的に取り込まれる(オートドーピングされる)シリコンの量を効果的に低減することができる。
When the template substrate TS in this embodiment is used to grow a semiconductor layer laterally using the seed portion S as the growth starting point, the semiconductor mask SM is positioned on the silicon-based
Al系半導体層ASおよび半導体マスクSMの構成材料は、シリコンを含んでいなくてよく、または、シリコンを実質的に含んでいなくてよい。或る材料について「シリコンを実質的に含まない」とは、原料ガス中の不可避的不純物および成膜装置内でのコンタミネーション等によって、材料中に微量なシリコンが不可避に混入していてもよいことを意味する。また、Al系半導体層ASおよび半導体マスクSMの構成材料は、半導体マスクSMがシリコン系マスク5上に位置することによってシリコン系マスク5から半導体層へ取り込まれるシリコンの量を低減する機能を有していればよく、許容可能な濃度範囲でシリコンを含んでいてもよい。例えば、Al系半導体層ASおよび半導体マスクSMの構成材料は、成分組成においてシリコンをモル比で1%以下含んでいてもよい。
The constituent materials of the Al-based semiconductor layer AS and the semiconductor mask SM may not contain silicon or may be substantially free of silicon. With respect to a certain material, "substantially free of silicon" means that a small amount of silicon may be unavoidably mixed into the material due to inevitable impurities in the source gas and contamination in the film forming apparatus. Furthermore, the constituent materials of the Al-based semiconductor layer AS and the semiconductor mask SM may contain silicon within an acceptable concentration range as long as they have the function of reducing the amount of silicon taken into the semiconductor layer from the silicon-based
シリコン系マスク5は、窒化シリコンおよび酸化シリコンの少なくとも一方を含み、半導体マスクSMおよびAl系半導体層ASは、窒化アルミウムガリウムを含んでいてよい。窒化アルミウムガリウムにおいては、GaおよびAlに対するAlの組成比が0.01以上であってよい。また、窒化アルミウムガリウムにおいては、GaおよびAlに対するAlの組成比が0.01以上1.0以下であってよく、0.05以上0.5以下であってよい。窒化アルミウムガリウムにおけるAlの組成比を大きくすることにより、シリコン系マスク5上に形成される半導体マスクSMの厚さが比較的大きくなる。その結果、シリコン系マスク5から半導体層に付随的に取り込まれるシリコン量の低減という効果を大きくすることができる。窒化アルミウムガリウムとしては、厚さ方向においてAl組成を段階的に変化させるグレーテッド構造であってもよい。半導体マスクSMおよびAl系半導体層ASは、窒化アルミウムガリウムを主成分としてよい。半導体マスクSMおよびAl系半導体層ASが同材料(例えば、AlGaN等のアルミニウム系窒化物半導体)で構成されていてもよい。
The silicon-based
半導体マスクSMおよびAl系半導体層ASの構成材料は、上述のようにシード部Sにシード領域Jを有し、半導体マスクSMの表面が成長抑制領域DAとして機能する材料であれば特に限定されないが、例えば、AlGaN、AlInN、AlGaInN、AlN等を挙げることができる。 The materials constituting the semiconductor mask SM and the Al-based semiconductor layer AS are not particularly limited as long as they have a seed region J in the seed portion S as described above and the surface of the semiconductor mask SM functions as a growth inhibition region DA, but examples include AlGaN, AlInN, AlGaInN, and AlN.
〔テンプレート基板の製造〕
図3は、本開示の一実施形態におけるテンプレート基板の製造方法の一例を示すフローチャートである。図4は、本開示の一実施形態におけるテンプレート基板の製造方法の一例を示す断面図である。図3および図4に示す例のテンプレート基板の製造方法では、ベース基板BSを準備する工程S10と、ベース基板BS上に位置し、シリコンを含むシリコン系マスク5および第1開口K1を含むマスクパターン6を形成する工程S20と、シリコン系マスク5上に位置し、アルミニウムを含む半導体マスクSMと、半導体マスクSMの主成分を含むとともに第1開口K1と重なるAl系半導体層ASを有するシード部Sと、を形成する工程S30とを行う。図3の符号3002で示す図のように、テンプレート基板の製造方法では、上記工程S30において、半導体マスクSMおよびAl系半導体層ASを形成する工程S31と、窒化物半導体を含んでAl系半導体層ASの上面ASTを覆う被覆層Cを形成する工程S32とを含んでいてよい。
[Manufacturing of template substrate]
3 is a flowchart showing an example of a method for manufacturing a template substrate in an embodiment of the present disclosure. FIG. 4 is a cross-sectional view showing an example of a method for manufacturing a template substrate in an embodiment of the present disclosure. In the method for manufacturing a template substrate in the example shown in FIG. 3 and FIG. 4, a step S10 of preparing a base substrate BS, a step S20 of forming a
図5は、本開示の一実施形態におけるテンプレート基板の製造装置を示すブロック図である。テンプレート基板の製造装置30は、図3の工程S10を行う装置M10と、図3の工程S20を行う装置M20と、図3の工程S30を行う装置M30と、装置M10、装置M20および装置M30を制御する制御装置MCとを備える。装置M10および装置M20は、それぞれスパッタリング装置を含んでいてよい。装置M30がMOCVD(Metal-Organic Chemical Vapor Deposition)装置を含んでいてよい。装置M30が上記工程S31および工程S32を行ってよい。
FIG. 5 is a block diagram showing a template substrate manufacturing apparatus in one embodiment of the present disclosure. The template
〔半導体基板〕
図6は、本開示の一実施形態における半導体基板の構成を示す断面図である。図7は、本開示の一実施形態における半導体基板の構成を示す平面図である。図6および図7に示すように、半導体基板10は、テンプレート基板TSと、第1開口K1および半導体マスクSMの上方に位置する第1窒化物半導体部8Aとを備える。
[Semiconductor Substrate]
Fig. 6 is a cross-sectional view showing a configuration of a semiconductor substrate according to an embodiment of the present disclosure. Fig. 7 is a plan view showing a configuration of a semiconductor substrate according to an embodiment of the present disclosure. As shown in Figs. 6 and 7, the
第1窒化物半導体部8Aは主成分として窒化物半導体を含む。第1窒化物半導体部8Aは、ドープ型(例えば、ドナーを含むn型)でもノンドープ型でもよい。半導体基板とは、窒化物半導体を含む基板という意味であり、テンプレート基板TSのベース基板BSが窒化物半導体以外の半導体(例えば、シリコン、炭化シリコン)を含んでもよいし、半導体を含まなくてもよい。半導体を含まない主基板1として、例えばサファイア基板が挙げられる。
The first
テンプレート基板TSにおいて、前述のように、半導体マスクSMの表面(上面SMT)は比較的結晶性が低く、したがって成長抑制領域DAとして機能する。一方で、シード部Sの表面は、半導体マスクSMの主成分を含むAl系半導体層ASまたは窒化物半導体を含む被覆層Cによって構成されており、比較的高い結晶性を有していることから、シード領域Jとして機能する。テンプレート基板TSは、第1方向(X方向)に並ぶ成長抑制領域DAおよびシード領域J(シード部Sの表面)それぞれが、第2方向(Y方向)を長手方向とする形状であってよい。 As described above, in the template substrate TS, the surface (upper surface SMT) of the semiconductor mask SM has a relatively low crystallinity and therefore functions as a growth inhibition region DA. On the other hand, the surface of the seed portion S is composed of an Al-based semiconductor layer AS containing the main component of the semiconductor mask SM or a covering layer C containing a nitride semiconductor, and has a relatively high crystallinity and therefore functions as a seed region J. The template substrate TS may have a shape in which the growth inhibition region DA and the seed region J (the surface of the seed portion S) aligned in the first direction (X direction) each have a longitudinal direction in the second direction (Y direction).
半導体基板10において、第1窒化物半導体部8Aは、第1シード部S1の上方に位置する第1基部B1と、第1基部B1に繋がるとともに半導体マスクSMの上方に位置する第1ウイング部F1とを有する。第1窒化物半導体部8Aのうち、第1シード部S1の上方(換言すれば第1開口K1の上方)に位置する第1基部B1は、貫通転位が多い転位継承部となり、半導体マスクSMの上方に位置する第1ウイング部F1は、転位継承部と比較して貫通転位密度が小さい低欠陥部となる。第1ウイング部F1は、例えば、転位継承部である第1基部B1と比較して、貫通転位密度が1/10以下であってよい。低欠陥部である第1ウイング部F1の貫通転位密度は、例えば、5×106〔個/cm2〕以下とすることができる。
In the
貫通転位とは、第1窒化物半導体部8A(後述の窒化物半導体部8)中を、そのc軸方向(<0001>方向)に延びる転位(欠陥)である。貫通転位密度は、例えば、第1窒化物半導体部8Aの表面をCL(Cathode Luminescence)測定し、CL測定画像における黒点の数をカウントすることにより求めることができる。
Threading dislocations are dislocations (defects) that extend in the c-axis direction (<0001> direction) in the first
本実施形態における半導体基板10では、マスクパターン6が第2開口K2を含み、平面視において、第1および第2開口K1・K2の間にシリコン系マスク5および半導体マスクSMが位置し、第2開口K2および半導体マスクSMの上方に位置する第2窒化物半導体部8Cを備え、第1および第2窒化物半導体部8A・8Cの間にギャップGPが位置していてよい。第2窒化物半導体部8Cは、第2シード部S2の上方に位置する第2基部B2と、第2基部B2に繋がるとともに半導体マスクSMの上方に位置する第2ウイング部F2とを有する。第1ウイング部F1および第2ウイング部F2がギャップGPを介して第1方向(X方向)に並んでいてよい。
In the
以下では、第1窒化物半導体部8Aおよび第2窒化物半導体部8Cの総称を窒化物半導体部8、第1基部B1および第2基部B2の総称を基部B、第1ウイング部F1および第2ウイング部F2の総称をウイング部Fと表現することがある。
In the following, the first
第1方向(X方向)は、窒化物半導体部8(GaN等の窒化物半導体結晶)のa軸方向(<11-20>方向)であってよい。第1方向と直交する第2方向(Y方向)は、窒化物半導体部8のm軸方向(<1-100>方向)であってよい。半導体基板10の厚さ方向(Z方向)が窒化物半導体部8のc軸方向(<0001>方向)であってよい。
The first direction (X direction) may be the a-axis direction (<11-20> direction) of the nitride semiconductor portion 8 (nitride semiconductor crystal such as GaN). The second direction (Y direction) perpendicular to the first direction may be the m-axis direction (<1-100> direction) of the
本実施形態における半導体基板10では、窒化物半導体部8(第1窒化物半導体部8A)は、半導体マスクSMと向かい合う裏面部BPのシリコン濃度が5×1018/cm3以下であってよい。窒化物半導体部8は、シリコン系マスク5上に半導体マスクSMが位置している状態で、シード部Sを成長起点として横方向成長することにより形成される。これにより、成長中の窒化物半導体部8にシリコン系マスク5から遊離した不純物が取り込まれる現象を抑制することができる。そのため、シリコン系マスク5から遊離して窒化物半導体部8に取り込まれるシリコン量が効果的に低減される。
In the
また、例えば、窒化物半導体部8の表面に不純物が偏析すると、窒化物半導体部8上に上層膜を形成しづらくなる、上層膜との界面から欠陥が発生する、といった課題が生じ得る。これら課題の回避のために横方向成長の成膜条件が制限されると、アスペクト比(膜厚に対する横幅の比)の大きな半導体部の成膜が難しくなることがあり、デバイス設計のための半導体部形状の自由度が損なわれる。これに対し、本実施形態における半導体基板10では、シリコン系マスク5上に位置する半導体マスクSMを有することにより、シリコン系マスク5から遊離した不純物が窒化物半導体部8の表面に偏析する可能性を効果的に低減することができる。窒化物半導体部8のアスペクト比は、例えば、5.0以上、10.0以上、または20.0以上とすることができる。
Furthermore, for example, if impurities segregate on the surface of the
後述のように、窒化物半導体部8の上方に例えば発光部を含む活性部(活性層)を形成する場合は、低欠陥部であるウイング部Fの上方に(平面視でウイング部Fと重なるように)発光部を配することができる。
As described below, when an active section (active layer) including, for example, a light emitting section is formed above the
〔半導体基板・半導体デバイスの製造〕
図8は、本開示の一実施形態における半導体基板の製造方法の一例を示すフローチャートである。図8に示すように、半導体基板10の製造方法では、テンプレート基板TSを準備する工程S110と、第1開口K1および半導体マスクSMの上方に位置する第1窒化物半導体部8Aを形成する工程S120とを行う。
[Manufacturing of semiconductor substrates and semiconductor devices]
8 is a flowchart showing an example of a method for manufacturing a semiconductor substrate according to an embodiment of the present disclosure. As shown in FIG. 8, the method for manufacturing a
図9は、本開示の一実施形態における半導体デバイス25の製造方法の一例を示すフローチャートである。図10は、本開示の一実施形態における半導体デバイス25の製造方法の一例を示す断面図である。図9および図10に示すように、半導体基板10は、第1窒化物半導体部8A上に位置し、活性層を含む機能層(デバイス層)9を備えていてよい。半導体デバイス25の製造方法では、半導体基板10を準備する工程S210と、第1窒化物半導体部8A上に位置し、活性層を含む機能層9を形成する工程S220と、を行う。機能層9は、活性層およびp型層並びに電極(例えばアノードおよびカソード)を含んでよい。活性層が量子井戸構造であってもよい。窒化物半導体部8並びに活性層およびp型層をGaN系半導体とし、これらをMOCVD装置で連続形成してもよい。
9 is a flowchart showing an example of a method for manufacturing a
半導体基板10は、第1窒化物半導体部8Aと第2窒化物半導体部8Cとの間のギャップGPの幅が10μm以下であってよく、4μm以下であってよく、3μm以下であってよい。半導体基板10は、ギャップGPを有することにより、窒化物半導体部8の内部応力を低減することができる。これにより、窒化物半導体部8に生じるクラック、欠陥(転位)を低減することができる。この効果は、主基板1が異種基板である場合に特に効果的となる。
The width of the gap GP between the first
半導体デバイス25の具体例として、発光体(LEDチップ、半導体レーザチップ等)、発光体がサブマウントされた発光素子、発光素子がパッケージングされた発光モジュール等を挙げることができる。半導体デバイスとしては、発光系の半導体デバイスに限定されず、例えば受光素子(Photo diode)、トランジスタ(パワートランジスタ、高電子移動度トランジスタを含む)であってもよい。
Specific examples of the
〔実施例1〕
図11は、実施例1におけるテンプレート基板の構成を概略的に示す断面図である。図11に示すように、実施例1におけるテンプレート基板TSは、ベース基板BSと、ベース基板BS上に位置するマスクパターン6と、シリコン系マスク5上に位置する半導体マスクSMと、開口Kと重なるシード部Sとを備える。
Example 1
Fig. 11 is a cross-sectional view showing a schematic configuration of a template substrate in Example 1. As shown in Fig. 11, the template substrate TS in Example 1 includes a base substrate BS, a
図12は、ベース基板の構成例を示す断面図である。ベース基板BSが、主基板1と主基板1上の下地層4とを含んでいてよい。また、ベース基板BSは、主基板1と下地層4との間に金属層(Al層)を有していてもよい。Al層および下地層4としてのAlN層をスパッタリング法により連続的に形成してもよい。ベース基板BSが、GaN、SiC等の自立型単結晶基板(例えば、バルク結晶から切り出されたウェハ)で構成されていてよく、この場合、単結晶基板上にマスクパターン6が配されていてもよい。
FIG. 12 is a cross-sectional view showing an example of the configuration of a base substrate. The base substrate BS may include a
主基板1として、シリコン基板、シリコンカーバイド基板(4H-SiC、6H-SiC基板)、サファイア基板、窒化物基板(GaN、AlN基板など)、ScMgAlO基板などを用いることができる。主基板1の面方位は、例えば、シリコン基板の(111)面であってよく、SiC基板の6H-SiC(0001)または4H-SiC(0001)面であってよい。主基板1は、3C-SiCであってもよい。これらは例示であって、主基板1は、下記2点の条件を満たす材質および面方位を有していればよく、主基板1の具体的な材質および面方位は必ずしも限定されない。すなわち、主基板1は、第1に、主基板1を含むベース基板BSの上方にマスクパターン6並びに半導体マスクSMおよびAl系半導体層ASを含むシード部Sを形成してテンプレート基板TSを製造可能であればよい。そして、主基板1は、第2に、テンプレート基板TSを用いて窒化物半導体部8を成長可能であればよい。主基板1として安価な基板を用いることにより、テンプレート基板TSおよび半導体基板10の製造コストを効果的に低減できる。
The
下地層4は、アルミニウムを含むGaN系半導体、窒化アルミニウム(AlN)、炭化シリコン(SiC)、AlScN、グラフェン等であってよい。下地層4の一例であるAlN層は、例えばMOCVD装置を用いて、厚さ10nm~5μm程度に形成することができる。下地層4として、低温(500℃以下)形成されたGaN層、AlN層、AlGaN層、AlInN層、AlGaInN、Al等を用いてもよい。主基板1にシリコン基板を用いる場合は、メルトバック抑制のため、シリコン基板に接する下地層4がガリウムを含んでいないことが望ましい。下地層4をスパッタリング法で形成してもよい。スパッタ装置(PSD:pulse sputter deposition,PLD: pulse laser depositionなど)を用いて成膜することで、製造工程を効率化することができる。
The
テンプレート基板TSにおけるマスクパターン6は、ベース基板BS上に、窒化物半導体の縦成長(c軸方向の成長)を抑制する材料を用いて形成される。そして、シリコン系マスク5上に低結晶性の半導体マスクSMが形成され、開口Kを埋めるようにシード部Sが位置する。これにより、シード部Sから半導体マスクSM上にわたって、窒化物半導体の横方向成長(例えば、a軸方向の成長)を実現する。マスクパターン6では、シリコン系マスク5として、例えば、シリコン酸化膜(SiOx)、シリコン窒化膜(SiNx)、およびシリコン酸窒化膜(SiON)のいずれか1つを含む単層膜、またはこれらの少なくとも2つを含む積層膜を用いることができる。シリコン系マスク5の厚さは、例えば、0.1[nm]以上5[μm]以下であってよく、例えば10[nm]以上1[μm]以下であってよい。シリコン系マスク5の幅Wm(X方向のサイズ)は、例えば、10[μm]以上であってよく、20[μm]以上500[μm]以下であってよい。
The
マスクパターン6の開口Kは、第1方向(X方向)を幅方向、第2方向(Y方向)を長手方向とする長手形状であってよい。マスクパターン6は、複数の開口Kが、第1方向に並んでいてもよい。開口Kはテーパ形状(下方に向けて幅が狭くなる形状)でもよい。開口Kの幅Wkは、例えば、0.1[μm]以上20[μm]以下とすることができる。開口Kの幅Wkは、シリコン系マスク5の幅Wmよりも小さくてよい。開口Kの幅Wk(X方向のサイズ)に対するシリコン系マスク5の厚さの比が3.0以下であってよい。開口Kの幅Wkが小さいほど、開口Kから窒化物半導体部8に伝搬する貫通転位の数が減少し得る。また、ウイング部F(低欠陥部)を大きくすることができる。
The opening K of the
テンプレート基板TSでは、マスクパターン6の開口Kを埋めるようにシード部Sが位置する。シード部Sは、主基板1の上方に形成され、窒化物半導体部8が成長する起点となる。シード部Sは、少なくともAl系半導体層ASを含み、また、被覆層Cを有していてよい(図1を参照)。シード部Sの上面STは、半導体マスクSMの上面SMTよりも高位置であり、比較的高い平坦性を有する。これにより、シード部Sから成長する窒化物半導体部8の品質を高め易くできる。シード部Sは、平面視において、開口K内に収まっていてもよいし、開口Kから少し横方向にはみ出していてもよい。
In the template substrate TS, the seed portion S is positioned so as to fill the opening K of the
シード部Sに含まれるAl系半導体層ASと、半導体マスクSMとは、互いに同一材料で構成されており、実施例1では、アルミニウムを含む材料として、AlXGa1-XN(X:0.05以上)を用いることができる。例えば、半導体マスクSMの厚さを10nm程度、Al系半導体層ASの厚さを300nm程度とすることができる。 The Al-based semiconductor layer AS and the semiconductor mask SM included in the seed portion S are made of the same material, and in the first embodiment, Al x Ga 1-x N (x: 0.05 or more) can be used as the material containing aluminum. For example, the thickness of the semiconductor mask SM can be about 10 nm, and the thickness of the Al-based semiconductor layer AS can be about 300 nm.
図13は、テンプレート基板の構成例を示す断面図である。図13に示すように、テンプレート基板TSは、主基板1(例えば、シリコン基板)上に、下地層4(例えば、AlN)およびマスクパターン6がこの順に形成された構成であってよい。また、テンプレート基板TSは、主基板1上に、複層の下地層4(下層部2および上層部3を含む)およびマスクパターン6がこの順に形成された構成でもよい。下地層4が、平面視でマスクパターン6の開口Kと重なるように局所的に(例えば、ストライプ状に)形成されていてもよい。テンプレート基板TSは、主基板1(例えば、SiCバルク結晶基板、GaNバルク結晶基板)上にマスクパターン6が形成された構成でもよい。テンプレート基板TSは、開口Kと重なる位置にシード部Sを有し、シリコン系マスク5上に半導体マスクSMが位置している。
13 is a cross-sectional view showing an example of the configuration of a template substrate. As shown in FIG. 13, the template substrate TS may be configured such that a base layer 4 (e.g., AlN) and a
例えば、主基板1にシリコン基板を用い、上層部3にGaN系半導体を用いた場合、両者(主基板とシード部)が溶融し合う可能性を低減するため、AlN層およびSiC(炭化シリコン)層の少なくとも一方を含む下層部2が設けられていてよい。下層部2は、上層部3の結晶性、平坦性を向上させる。下層部2は、図13のような面状であってもよいし、パターン状であってもよい。下層部2の厚さは、例えば、10nm~500nm程度であってよい。下層部2に用いる炭化シリコンは、六方晶系(6H-SiC、4H-SiC)でも立方晶系(4C-SiC)でもよい。
For example, when a silicon substrate is used for the
上層部3としては、GaN系半導体、AlN、SiC等を用いることができる。上層部3を有することにより、シード部Sの結晶性および平坦性を向上させることができる。上層部3として、低温(500℃以下)で形成されたGaN層、AlN層、AlGaN層、AlInN層、AlGaInN層等を用いてもよい。上層部3の厚さは、10nm~500nm程度であってよい。スパッタ装置を用いて、下層部2(例えば、窒化アルミニウム)および上層部3(例えば、GaN系半導体)の少なくとも一方を形成することもできる。
The
下地層4が歪緩和層を含んでいてもよい。歪緩和層としては、例えば、AlGaNの超格子構造、AlGaNのAl組成を段階的に変化させるグレーテッド構造が挙げられる。歪緩和層によって窒化物半導体部8の長手方向の応力が緩和され得る。下層部2および上層部3の少なくとも一方が歪緩和層を含んでいてもよい。
The
上層部3と溶融し合わない主基板1を用いた場合には、下層部2を設けない構成とすることも可能である。また、主基板1との反応性の小さい上層部3を用いる場合に、下層部2を設けない構成とすることも可能である。同様に、シード部Sと主基板1とが溶融し合わない材料である場合、下地層4を設けない構成とすることもできる。
If a
シード部Sにおけるシード領域J(図2参照)を形成する材料としては、例えば、GaN系半導体、窒化アルミニウム(AlN)、炭化シリコン(SiC)、グラフェン等が挙げられる。炭化シリコンは、六方晶系の6H-SiC、4H-SiCが望ましい。シード部Sが600°以下の低温で形成された窒化物半導体を含んでいてもよい。こうすれば、シード部Sの応力に起因する半導体基板10の反りを低減することができる。シード部Sは、スパッタ装置を用いて成膜することもできる。スパッタ装置を用いると、低温成膜および大面積成膜が可能、コストダウン等のメリットがある。
Materials for forming the seed region J (see FIG. 2) in the seed portion S include, for example, GaN-based semiconductors, aluminum nitride (AlN), silicon carbide (SiC), graphene, etc. Silicon carbide is preferably hexagonal 6H-SiC or 4H-SiC. The seed portion S may contain a nitride semiconductor formed at a low temperature of 600° or less. This can reduce warping of the
テンプレート基板TSの一例として、主基板1にシリコン基板を用い、下地層4の下層部2に、AlN層(30nm~300nm程度、例えば150nm)を用い、下地層4の下地層4に、GaN系グレーデット層を用い、シリコン系マスク5には、酸化シリコン膜(SiO2)を用いることができる。GaN系グレーデット層は、例えば、第1層であるAl0.6Ga0.4N層(例えば、300nm)と、第2層であるGaN層(例えば、1~2μm)とを含んでいてもよい。
As an example of the template substrate TS, a silicon substrate can be used for the
例えば、下地層4上に、スパッタ法を用いて厚さ100nm~4μm程度(好ましくは150nm~2μm程度)のシリコン酸化膜を全面形成し、シリコン酸化膜の全面にレジストを塗布する。その後、フォトリソグラフィー法を用いてレジストをパターニングし、ストライプ状の複数の開口を持ったレジストを形成する。その後、フッ酸(HF)、バッファードフッ酸(BHF)等のウェットエッチャントによってシリコン酸化膜の一部を除去して複数の開口Kとし、レジストを有機洗浄で除去することでマスクパターン6が形成される。スパッタ装置またはEBD(Electron Beam Deposition)装置を用いてシリコン系マスク5を形成することもできる。
For example, a silicon oxide film with a thickness of about 100 nm to 4 μm (preferably about 150 nm to 2 μm) is formed over the entire surface of the
ここで、シリコン酸化膜は、窒化物半導体部8の成膜中に微量ながら分解、蒸発し、窒化物半導体部8に取り込まれてしまうことがあるが、テンプレート基板TSでは、シリコン系マスク5上に半導体マスクSM(例えば低結晶性のAlGaN層)を有することにより、窒化物半導体部8に取り込まれるシリコンの量を効果的に低減することができる。
Here, a small amount of silicon oxide film may decompose and evaporate during the formation of the
シリコン窒化膜、シリコン酸窒化膜は、高温条件下で、シリコン酸化膜よりも分解、蒸発し難いことから、シリコン系マスク5を、シリコン窒化膜あるいはシリコン酸窒化膜の単層膜としてもよいし、ベース基板BS上に、シリコン酸化膜およびシリコン窒化膜をこの順に形成した積層膜としてもよい。また、SiONの酸素および窒素の組成を制御し、所望の酸窒化膜を形成してもよい。
Since silicon nitride film and silicon oxynitride film are less likely to decompose or evaporate under high temperature conditions than silicon oxide film, the silicon-based
例えば、シリコン系マスク5には、酸化シリコン膜(SiO2)と窒化シリコン膜(SiN)とをこの順に形成した積層マスクを用いることができる。酸化シリコン膜および窒化シリコン膜それぞれの成膜にCVD法(プラズマ化学気相成長法)を用い、酸化シリコン膜の厚さを例えば0.3μm、窒化シリコン膜の厚さを例えば70nmとすることができる。別例として、シリコン窒化膜をスパッタ装置、もしくはPECVD装置を用いて成膜してもよい。シリコン窒化膜の膜厚は、5nm~4μm程度とすることができる。
For example, the silicon-based
例えば、主基板1としてGaN基板(GaNのバルク結晶)あるいは6H-SiC基板を用いることで、下地層4を設けることなく、主基板1をベース基板BSとして用いることもできる。この場合、主基板1上にマスクパターン6を形成し、開口Kにて露出する主基板1の上面に接続するようにシード部Sを形成することもできる。
For example, by using a GaN substrate (bulk crystal of GaN) or a 6H-SiC substrate as the
図14は、窒化物半導体部の横方向成長の一例を示す断面図である。図14では、マスクパターン6がテーパ形状の開口Kを有する例を示している。実施例1における半導体基板10は、テンプレート基板TSの上方に、ELO法により形成された第1窒化物半導体部8Aおよび第2窒化物半導体部8Cを有している。
FIG. 14 is a cross-sectional view showing an example of lateral growth of a nitride semiconductor portion. FIG. 14 shows an example in which a
窒化物半導体部8は、以下のように横方向成長させることができる。開口Kに重なって位置するシード部S上に、イニシャル成長部SLを形成し、その後、イニシャル成長部SLから窒化物半導体部8を横方向成長させてよい。イニシャル成長部SLは、窒化物半導体部8の横方向成長の起点となる。ELO成膜条件を適宜制御することによって、窒化物半導体部8をZ方向(c軸方向)に成長させたり、X方向(a軸方向)に成長させたりする制御が可能である。イニシャル成長部SLは、例えば0.5μm以上4.0μm以下の厚さとすることができる。
The
図14に示す例では、窒化物半導体部8の裏面部BPが半導体マスクSMに接触しているが、これに限定されず、半導体基板10は、裏面部BPと半導体マスクSMとの間に空隙を有していてもよい。第1窒化物半導体部8Aは、開口Kの上方に位置する第1基部B1と、第1基部B1に繋がり、成長抑制領域DAから分離されて空隙上に位置する第1ウイング部F1とを有していてよい。シード部Sの上面STが半導体マスクSMの上面SMTよりも高位置である場合、上面STの位置によっては、シード部Sの側面において、イニシャル成長部SLが半導体マスクSMと接触せず、当該イニシャル成長部SLから窒化物半導体部8を横方向成長させることができる。
14, the back surface portion BP of the
シード部Sにおける被覆層C(図6参照)がイニシャル成長部SLとして機能してもよい。被覆層Cとしての窒化物半導体を、例えばシード部Sがシリコン系マスク5から突出する状態になるように形成し、被覆層Cから窒化物半導体部8を横方向成長させることができる。
The covering layer C (see FIG. 6) on the seed portion S may function as the initial growth portion SL. The nitride semiconductor covering layer C may be formed, for example, so that the seed portion S protrudes from the silicon-based
半導体基板10では、成長条件を調整することで、窒化物半導体部8を、c軸方向(厚さ方向)への成長を抑え、高速にかつ高結晶性をもって横方向成長させることができる。これにより、低欠陥な窒化物半導体部8(GaN等の窒化物半導体の結晶体)を薄くかつ広く、低コストで形成することができ、消費原料も低減することができる。
In the
ウイング部Fについては、厚さd1に対する幅WF(X方向のサイズ)の比(WF/d1)を、例えば2.0以上とすることができる。WF/d1は、2.0以上、4.0以上、5.0以上、7.0以上、または10.0以上とすることができる。WF/d1を2.0以上とすることにより、窒化物半導体部8の内部応力を低減し易い。その結果、ウエハの反りを低減できる。ウイング部Fの幅WFは,例えば、7.0μm以上であってよく、10.0μm以上、20.0μm以上、または40.0μm以上であってよい。厚さd1は、10.0μm以下、5.0μm以下、または2.0μm以下であってよい。
For the wing portion F, the ratio (WF/d1) of the width WF (size in the X direction) to the thickness d1 can be, for example, 2.0 or more. WF/d1 can be 2.0 or more, 4.0 or more, 5.0 or more, 7.0 or more, or 10.0 or more. By making WF/d1 2.0 or more, it is easy to reduce the internal stress of the
実施例1では、シリコン系マスク5の幅Wmは50μm、開口Kの幅Wkは5μm、窒化物半導体部8の横幅は53μm、ウイング部Fの幅(X方向のサイズ)は24μm、窒化物半導体部8の層厚は5μmであった。窒化物半導体部8のアスペクト比は、53μm/5μm=10.6となり、非常に高いアスペクト比が実現された。
In Example 1, the width Wm of the silicon-based
〔実施例2〕
図15は、実施例2におけるテンプレート基板の構成を概略的に示す断面図である。図15に示すように、実施例2におけるテンプレート基板TSは、シード部Sに被覆層Cを有していなくてよい。テンプレート基板TSは、Al系半導体層ASが露出していてよい。例えば、半導体マスクSMおよびAl系半導体層ASの構成材料をAlGaNとすることにより、Al系半導体層ASを比較的結晶性の高いAlGaN層とすることができる。このAl系半導体層ASを成長起点として、窒化物半導体部8を成長させることができる。
Example 2
15 is a cross-sectional view showing a schematic configuration of a template substrate in Example 2. As shown in FIG. 15, the template substrate TS in Example 2 may not have a covering layer C on the seed portion S. The template substrate TS may have an exposed Al-based semiconductor layer AS. For example, by using AlGaN as the constituent material of the semiconductor mask SM and the Al-based semiconductor layer AS, the Al-based semiconductor layer AS can be an AlGaN layer having a relatively high crystallinity. The
図15に示す例では、Al系半導体層ASの上面ASTは、半導体マスクSMの上面SMTよりも高位置となっているが、これに限定されず、上面ASTが上面SMTよりも低位置であってもよい。上面ASTがシリコン系マスク5の上面5Tよりも低位置であってもよい。Al系半導体層ASの上面ASTをシード領域Jとして、ELO法により窒化物半導体部8を成長させることができる。
In the example shown in FIG. 15, the top surface AST of the Al-based semiconductor layer AS is higher than the top surface SMT of the semiconductor mask SM, but this is not limited thereto, and the top surface AST may be lower than the top surface SMT. The top surface AST may be lower than the
〔実施例3〕
図16は、実施例3におけるテンプレート基板の構成を概略的に示す断面図である。図16に示すように、実施例3では、シード部Sが、ベース基板BS上に位置する被覆層Cと、被覆層Cの上面CTを覆うAl系半導体層ASとを含んでいてよい。被覆層Cの上面CTは、半導体マスクSMの上面SMTよりも低位置であってよく、高位置であってもよい。
Example 3
Fig. 16 is a cross-sectional view that illustrates a schematic configuration of a template substrate in Example 3. As illustrated in Fig. 16, in Example 3, the seed portion S may include a covering layer C located on a base substrate BS and an Al-based semiconductor layer AS that covers an upper surface CT of the covering layer C. The upper surface CT of the covering layer C may be located lower or higher than an upper surface SMT of the semiconductor mask SM.
実施例3におけるテンプレート基板TSは、例えば、ベース基板BS上にマスクパターン6を形成した後、例えば開口Kにて露出するベース基板BSの表面に被覆層Cを成長させ、その後、Al系半導体層ASおよび半導体マスクSMを形成することにより製造されてよい。
The template substrate TS in Example 3 may be manufactured, for example, by forming a
実施例2と同じく、例えば、半導体マスクSMおよびAl系半導体層ASの構成材料をAlGaNとすることにより、Al系半導体層ASを成長起点として、窒化物半導体部8を成長させることができる。
As in the second embodiment, for example, by using AlGaN as the constituent material of the semiconductor mask SM and the Al-based semiconductor layer AS, the
〔実施例4〕
図17は、実施例4における半導体基板の構成を概略的に示す断面図である。図18は、実施例4における半導体基板の構成を概略的に示す断面図である。図17中、符号JDの引き出し線が指し示す位置に図示している中黒点は、ウイング部Fとテンプレート基板TSとの間の空間(空隙JD)を意味している。
Example 4
Fig. 17 is a cross-sectional view that shows a schematic configuration of a semiconductor substrate in Example 4. Fig. 18 is a cross-sectional view that shows a schematic configuration of a semiconductor substrate in Example 4. In Fig. 17, a black dot shown at a position indicated by a lead line of the symbol JD indicates a space (gap JD) between the wing portion F and the template substrate TS.
図17および図18に示すように、実施例4における半導体基板10では、半導体マスクSMと第1窒化物半導体部8Aとの間に空隙JDが存在していてよい。空隙JDは、成長抑制領域DAと第1ウイング部F1とで挟まれた空間であるとも言える。第1ウイング部F1は、成長抑制領域DAとして機能する半導体マスクSMから離間している。シード領域J(シード部Sの上面ST)は、成長抑制領域DAよりも上側に位置し、第1窒化物半導体部8Aは、シード部S上に位置する第1基部B1と、第1基部B1に繋がり、空隙JDを介して成長抑制領域DAと向かい合う第1ウイング部F1とを有する。第1ウイング部F1は、半導体マスクSMの上方に位置するエッジE1を有していてよい。
17 and 18, in the
半導体基板10は、半導体マスクSMよりも上側となる位置に、シード部Sと接する成長抑制膜7を備えてよい。成長抑制膜7は、半導体マスクSMの上面SMT(成長抑制領域DA)に接してよい。また、成長抑制膜7は、シード部Sの側面SSに接してよい。これにより、側面SSからの窒化物半導体部8の成長が抑制されるため、空隙JDが形成され易くなる。
The
成長抑制膜7は、シード部Sの側面SSに接する第1膜部71と、シード部Sの上面STに接する第2膜部72とを含んでよい。シード部SはAl系半導体層ASを含む(図1等参照)。このように、半導体基板10は、Al系半導体層ASの上方に位置する成長抑制膜(第2膜部72)、およびAl系半導体層ASの側面に位置する成長抑制膜(第1膜部71)の少なくとも一方を備えていてよい。成長抑制膜7は、完全な膜である必要はなく、微小な開口を1個以上含む膜(不完全な形状の膜)であってもよい。成長抑制膜7は、面内で均一な形状であってよいし、部分的に欠損のある(穴が開いている、もしくは著しく周囲から薄い)形状であってもよい。第2膜部72を形成することで、シード部S内を通る貫通転位等を第2膜部72で抑制し、シード部Sの上面STの表面平坦性や結晶性を改善するという効果も得られる。
The
シード部Sの上面STは窒化物半導体部8の成長起点PGを有し、成長起点PGは、成長抑制膜7と接しないか、あるいは成長抑制膜7が局所的に薄くなっている部分と接してよい。シード部Sの上面STおよび側面SSが交わる角部SCが、成長起点PGに含まれてよい。角部SCが半導体マスクSMの上方に位置してよい。すなわち、平面視でシード部Sが開口Kから横方向にはみ出していてよく、角部SCおよび半導体マスクSMが平面視で重なってもよい。
The top surface ST of the seed portion S has a growth origin PG of the
成長抑制膜7の厚さは、シリコン系マスク5より薄くてよく、半導体マスクSMよりも薄くてよい。これにより、半導体マスクSM上での成長を抑制しつつ、シード部Sからウイング部Fが成長し易くなる。成長抑制膜7の厚さは、シリコン系マスク5の厚さの1/3以下であってよい。成長抑制膜7の厚さは、半導体マスクSMの厚さの1/3以下であってよい。成長抑制膜7は、厚さが1nm程度であってよく、非常に薄い膜として形成することができる。
The thickness of the
成長抑制膜7として、例えばSiNを用いることができ、成膜条件によっては、SiON、SiGaO、あるいはSiGaONを用いてもよい。実施例4では、成長抑制膜7は、シリコンを含んでいてよく、この場合において、窒化物半導体部8の成膜中に、成長抑制膜7からのシリコンの蒸発は限定的であることがわかった。これは、上記のように成長抑制膜7の厚さが薄いとともに、半導体マスクSM上では半導体マスクSMの構成材料と成長抑制膜7の構成材料とが混晶を形成し得るためであると考えられる。
Growth-inhibiting
空隙JDは、X方向の幅WJの厚さTJに対する比(空隙のアスペクト比)が5.0以上であってよく、この場合、結晶性が高く(欠陥密度が低く)、幅広の第1ウイング部F1を速やかに形成することができる。また、第1ウイング部F1の平坦性が高められる。そして、第1ウイング部F1は、裏面部BPのシリコン濃度を5×1018/cm3以下とすることができる。 The ratio of the width WJ of the gap JD in the X-direction to the thickness TJ (aspect ratio of the gap) may be 5.0 or more, in which case the first wing portion F1 having high crystallinity (low defect density) and a wide width can be formed quickly. The flatness of the first wing portion F1 is also improved. The silicon concentration of the back surface portion BP of the first wing portion F1 can be set to 5×10 18 /cm 3 or less.
空隙JDの厚さ(高さ)TJは、半導体マスクSM上の成長抑制膜7の上面(半導体マスクSMの上面SMTと同等)から、窒化物半導体部8の下面(裏面)までの距離である。空隙JDの幅WJは、シード部Sの側面から窒化物半導体部8のエッジE1までのX方向の距離である。
The thickness (height) TJ of the gap JD is the distance from the top surface of the
空隙JDの厚さTJは、5μm以下、2μm以下、1μm以下、0.6μm以下、または0.3μm以下であってよい。空隙JDの厚さTJは、0.05μm(50nm)以上であるとよい。空隙JDのアスペクト比は5.0以上、10以上、20以上、30以上、50以上、100以上とすることができる。こうすれば、裏廻り現象を抑えながら幅広のウイング部F上に機能層9(図10参照)を形成することができ、高品質な(例えば、光取り出し効率の高い)半導体デバイスを形成することができる。空隙Jのアスペクト比は、例えば100~1000であってもよい。これにより、重力により窒化物半導体部8が上方向に反ってしまうおそれを低減できる。ギャップGPの幅が空隙JDの厚さよりも大きくてもよい。また、ギャップGPの幅を30μm以下、または10μm以下にすることで、裏廻り現象をより効果的に抑制することができる。
The thickness TJ of the gap JD may be 5 μm or less, 2 μm or less, 1 μm or less, 0.6 μm or less, or 0.3 μm or less. The thickness TJ of the gap JD is preferably 0.05 μm (50 nm) or more. The aspect ratio of the gap JD can be 5.0 or more, 10 or more, 20 or more, 30 or more, 50 or more, or 100 or more. In this way, the functional layer 9 (see FIG. 10) can be formed on the wide wing portion F while suppressing the back-rolling phenomenon, and a high-quality (e.g., high light extraction efficiency) semiconductor device can be formed. The aspect ratio of the gap J may be, for example, 100 to 1000. This can reduce the risk of the
第1ウイング部F1は、前述の実施例1と同じ形状を有していてよい。また、第1ウイング部F1の幅は、80.0〔μm〕以下であるとよい。これにより、重力により窒化物半導体部8が上方向に反ってしまうおそれが低減する。
The first wing portion F1 may have the same shape as in the first embodiment described above. The width of the first wing portion F1 may be 80.0 μm or less. This reduces the risk of the
図19は、実施例4における半導体基板の製造方法の一例を示す断面図である。図19に示すように、先ず、テンプレート基板TSを準備する。次いで、例えばMOCVD装置を用いて、成膜温度を1000℃以下程度とし、SiH4(シラン)およびNH3(アンモニア)を供給して、薄いSiN膜(例えば1nm程度)を成膜する。これにより、シード部Sの上面STおよび側面SSに成長抑制膜7が形成される。
19 is a cross-sectional view showing an example of a method for manufacturing a semiconductor substrate in Example 4. As shown in FIG. 19, first, a template substrate TS is prepared. Next, for example, a MOCVD apparatus is used to deposit a thin SiN film (for example, about 1 nm) at a deposition temperature of about 1000° C. or less and to supply SiH 4 (silane) and NH 3 (ammonia). As a result, a
次いで、成膜温度を250℃上昇させ、TMG(トリメチルガリウム)とアンモニアを供給することで、窒化物半導体部8を成膜する。このとき、成長抑制膜7によって窒化物半導体部8の成膜が大きく影響を受け、半導体マスクSMから浮いた状態でウイング部Fが形成される。すなわち、窒化物半導体部8のウイング部Fの裏面は、半導体マスクSMから完全に分離される。
Then, the deposition temperature is raised to 250°C and TMG (trimethylgallium) and ammonia are supplied to deposit the
また、例えば、シード部Sの両角部(X方向に並ぶ2つの角部SC)が成長起点PGとなることで、両側からの横方向成膜が起こり、この場合、第1基部B1(特に中央部)に、ボイドを形成することができる。このように、第1基部B1はボイドを含んでよく、こうすれば、テンプレート基板TSからの応力が緩和される。ボイドは、成長抑制膜7の第2膜部72の上方にあってもよい。
Also, for example, both corners (two corners SC aligned in the X direction) of the seed portion S become growth starting points PG, and lateral film growth occurs from both sides. In this case, a void can be formed in the first base portion B1 (particularly the central portion). In this way, the first base portion B1 may include a void, which relieves stress from the template substrate TS. The void may be located above the
MOCVD装置を用いて、テンプレート基板TSにおけるシード部Sを形成した後、引き続いて、成長抑制膜7を形成してもよい。
After forming the seed portion S on the template substrate TS using an MOCVD apparatus, the
図20は、実施例4における半導体基板の別構成を示す断面図である。図17に示す例では、窒化物半導体部8の裏面部BPの高さが、シード部Sの上面STとほぼ同じ高さに形成されるが、図20に示す例では、窒化物半導体部8の裏面部BPの高さが、シード部Sの上面STよりも下の位置(低位置)となっている。窒化物半導体部8の成膜条件(成膜温度、成膜時間、ガス流量等)を制御することにより、形成される窒化物半導体部8の形状を変化させることができる。図17および図20に示す例のいずれにおいても、実施例4の効果が得られる。
FIG. 20 is a cross-sectional view showing another configuration of the semiconductor substrate in Example 4. In the example shown in FIG. 17, the height of the back surface BP of the
〔実施例5〕
図21~図23は、実施例5における半導体基板の別構成を示す断面図である。図21~図23に示すように、半導体基板10は、テンプレート基板TSおよび窒化物半導体部8を備えてよい。テンプレート基板TSは、ベース基板BSと、ベース基板BS上に位置し、シリコンを含むシリコン系マスク5および第1開口K1を含むマスクパターン6と、シリコン系マスク5上に位置し、アルミニウムを含む半導体マスクSMと、半導体マスクSMの主成分を含むとともに第1開口K1と重なるAl系半導体層ASを有するシード部Sとを備える。Al系窒化物半導体(例えば、窒化アルミニウムガリウム)を含んでマスクパターン6を覆う連続層SFを形成することで、シリコン系マスク5上の半導体マスクSM(低結晶性)と、第1開口K1と重なり、半導体マスクSMよりも厚いAl系半導体層AS(高結晶性)とを形成してもよい。Al系半導体層ASの上面を覆う被覆部Cを設けてもよい。窒化物半導体部8のエッジ8Eが半導体マスクSMの上方に位置してもよい。
Example 5
21 to 23 are cross-sectional views showing another configuration of the semiconductor substrate in the fifth embodiment. As shown in FIG. 21 to FIG. 23, the
図22のように、窒化物半導体部8にシード部Sから隆起する隆起部8Rを設けるとともに、隆起部8Rの側面および上面に接する成長抑制膜7を設けることで、窒化物半導体部8のウイングFを半導体マスクSMから浮かしても(ウイングFおよび半導体マスクSM間に空隙JDを設けても)よい。こうすれば、半導体基板10の反りが低減する。図23のように、下地層4の表面に凸部4Tを形成するとともにその側面をマスク部5で覆った状態でAl系窒化物半導体の連続層SF(半導体マスクSMおよびAl系半導体層AS)を形成したテンプレート基板TSを用いることで、窒化物半導体部8のウイングFを半導体マスクSMから浮かしてもよい。
22, a raised
〔実施例6〕
図24は、実施例6における半導体基板および半導体デバイスの製造方法の一例を示す平面図である。図25は、実施例6における半導体基板および半導体デバイスの製造方法の一例を示す断面図である。実施例6では、実施例4の半導体基板10を用いて半導体デバイス25を製造する例について説明する。実施例1~3におけるテンプレート基板TSを用いて半導体基板10および半導体デバイス25を製造する場合については、公知の手法を用いることができ、このことは、以下の説明も参照して容易に理解できる。例えばシード部S上の基部Bおよび機能層9を除去するとともに、成長抑制膜7、半導体マスクSMおよびシリコン系マスク5を除去して、半導体デバイス25をテンプレート基板TSから分離することができる。
Example 6
FIG. 24 is a plan view showing an example of a method for manufacturing a semiconductor substrate and a semiconductor device in Example 6. FIG. 25 is a cross-sectional view showing an example of a method for manufacturing a semiconductor substrate and a semiconductor device in Example 6. In Example 6, an example of manufacturing a
図24および図25に示すように、第1窒化物半導体部8A上に機能層(デバイス層)9を形成してもよい。例えば、LED、Laser、PD(受光素子)、Power device等の機能層9を、MOCVD、MBE、スパッタリング法等を用いて形成することができる。機能層9のアクティブ領域(例えば、発光領域ES)は、低欠陥部(低転位部)である第1ウイング部F1(デバイス領域)の上方に(平面視で第1ウイング部F1に重なるように)形成するとよい。
As shown in Figures 24 and 25, a functional layer (device layer) 9 may be formed on the first
次いで、機能層9上に電極EA・EC(例えば、アノード・カソード)を形成し、第1窒化物半導体部8Aおよび機能層9の所定部分を除去することで、素子分割を行う。具体的には、第1窒化物半導体部8Aおよび機能層9に、X方向に平行な分離溝BMを形成するとともに、シード部S上に位置する第1窒化物半導体部8Aおよび機能層9を、対となる2つのテザー部TZを残して除去し、素子領域PAを形成する。2つのテザー部TZは、素子領域PAのY方向に向かい合う両端部のうち、シード部Sに繋がる部分である。
Next, electrodes EA and EC (e.g., anode and cathode) are formed on the
次いで、素子領域PA(ウイング部F、機能層9、電極EA・ECを含む)を、テンプレート基板TSから分離し、半導体デバイス25とする。ウイング部F下には空隙JDがあるため、粘着性あるいは接着性を有する押圧体YS(粘着プレート、粘着シート、接着性基板等)で素子領域PAに下方圧力をかけることで、2つのテザー部TZが容易に割れ、半導体デバイス25がテンプレート基板TSから分離される。
Then, the element region PA (including the wing portion F, the
具体的には、半導体デバイス25が押圧体YSに保持された状態でテンプレート基板TSから剥離される。このように、空隙JDは、素子分離においても有効に機能し、半導体デバイス25にダメージを与えることなくテンプレート基板TSから剥離することができる。
Specifically, the
〔その他の構成例〕
上記実施例1~6では、第1窒化物半導体部8Aおよび第2窒化物半導体部8Cの間にギャップGPを有する例について説明したが、これに限定されず、隣接するシード部Sから成長した窒化物半導体部8同士(第1ウイング部F1および第2ウイング部F2)が、半導体マスクSM上で接触(会合)していてもよい。半導体基板10は、ギャップGPを有していなくてもよい。会合部の半導体結晶を除去することで複数の窒化物半導体部8が形成されてよい。
[Other configuration examples]
In the above-mentioned Examples 1 to 6, an example was described in which there is a gap GP between the first
図26は、電子機器の一構成例を示す模式図である。図26の電子機器55は、窒化物半導体部8を含む半導体デバイス25と、半導体デバイス25が実装される駆動基板23と、駆動基板23を制御する制御回路27とを含む。図27は、電子機器の別構成例を示す模式図である。素子領域(素子部)PAは、テンプレート基板TSから剥離しなくてもよい。図27の電子機器55は、テンプレート基板TSおよび素子領域PAを含む半導体基板10と、半導体基板10が実装される駆動基板23と、駆動基板23を制御する制御回路27とを含む。この場合、テンプレート基板TSに含まれる主基板1が光透過性基板(例えば、サファイア基板)であってもよい。電子機器55としては、発光装置、表示装置、レーザ出射装置(ファブリペロータイプ、面発光タイプを含む)、測定装置、照明装置、通信装置、情報処理装置、電力制御装置を挙げることができる。
26 is a schematic diagram showing one example of the configuration of an electronic device. The
〔附記事項〕
以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態および実施例に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態および実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
[Additional Notes]
The invention according to the present disclosure has been described above based on the drawings and examples. However, the invention according to the present disclosure is not limited to the above-mentioned embodiments and examples. That is, the invention according to the present disclosure can be modified in various ways within the scope of the present disclosure, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments and examples are also included in the technical scope of the invention according to the present disclosure. In other words, it should be noted that a person skilled in the art can easily make various modifications or corrections based on the present disclosure. It should also be noted that these modifications or corrections are included in the scope of the present disclosure.
〔まとめ〕
本開示の態様1におけるテンプレート基板は、ベース基板と、ベース基板上に位置し、シリコンを含むシリコン系マスクおよび第1開口を含むマスクパターンと、前記シリコン系マスク上に位置し、アルミニウムを含む半導体マスクと、前記半導体マスクの主成分を含むとともに前記第1開口と重なるAl系半導体層を有するシード部とを備える。
〔summary〕
The template substrate in
本開示の態様2におけるテンプレート基板は、前記態様1において、前記Al系半導体層は、前記半導体マスクよりも厚い。
The template substrate in
本開示の態様3におけるテンプレート基板は、前記態様1または2において、前記シード部は、窒化物半導体を含んで前記Al系半導体層の上面を覆う被覆層を備える。
The template substrate in
本開示の態様4におけるテンプレート基板は、前記態様1から3の何れか一態様において、前記Al系半導体層は、前記第1開口を埋める形状である。
The template substrate in
本開示の態様5におけるテンプレート基板は、前記態様1から4の何れか一態様において、前記ベース基板は、主基板と、前記主基板上に位置する下地層とを備え、前記下地層上に前記Al系半導体層が位置する。
The template substrate in
本開示の態様6におけるテンプレート基板は、前記態様1から5の何れか一態様において、前記半導体マスクの表面粗さは、前記Al系半導体層の表面粗さよりも大きい。
The template substrate in
本開示の態様7におけるテンプレート基板は、前記態様1から6の何れか一態様において、前記半導体マスクの表面粗さは、前記シリコン系マスクの表面粗さよりも大きい。
The template substrate in
本開示の態様8におけるテンプレート基板は、前記態様1から7の何れか一態様において、前記シード部の上面は、前記半導体マスクの上面よりも高位置にある。
The template substrate in
本開示の態様9におけるテンプレート基板は、前記態様1から8の何れか一態様において、前記シード部は、窒化物半導体を含んで前記Al系半導体層の上面を覆う被覆層を備え、前記被覆層の表面粗さは、前記Al系半導体層の表面粗さよりも小さい。
The template substrate in
本開示の態様10におけるテンプレート基板は、前記態様1から9の何れか一態様において、前記半導体マスクは、前記Al系半導体層よりも結晶性が低い。
The template substrate in
本開示の態様11におけるテンプレート基板は、前記態様1から10の何れか一態様において、前記半導体マスクは、アモルファス構造を含む。
The template substrate in aspect 11 of the present disclosure is any one of
本開示の態様12におけるテンプレート基板は、前記態様1から11の何れか一態様において、前記シード部は、窒化物半導体を含んで前記Al系半導体層の上面を覆う被覆層を備え、前記被覆層は、アルミニウムを含まないか、あるいはアルミニウム含有率が前記Al系半導体層よりも低い。
The template substrate in aspect 12 of the present disclosure is any one of
本開示の態様13におけるテンプレート基板は、前記態様1から12の何れか一態様において、前記シード部は、窒化物半導体を含んで前記Al系半導体層の上面を覆う被覆層を備え、前記被覆層は、前記Al系半導体層よりも厚い。
The template substrate in aspect 13 of the present disclosure is any one of
本開示の態様14におけるテンプレート基板は、前記態様1から13の何れか一態様において、前記半導体マスクおよび前記Al系半導体層が繋がっている。
The template substrate in aspect 14 of the present disclosure is any one of
本開示の態様15におけるテンプレート基板は、前記態様1から14の何れか一態様において、前記Al系半導体層が露出している。
The template substrate in aspect 15 of the present disclosure is any one of
本開示の態様16におけるテンプレート基板は、前記態様1から15の何れか一態様において、前記シリコン系マスクは、窒化シリコンおよび酸化シリコンの少なくとも一方を含み、前記半導体マスクおよび前記Al系半導体層は、窒化アルミウムガリウムを含む。
The template substrate in aspect 16 of the present disclosure is any one of
本開示の態様17におけるテンプレート基板は、前記態様1から16の何れか一態様において、前記ベース基板は、主基板と、前記主基板上に位置する下地層とを備え、前記主基板は、シリコンウェハ、炭化シリコンウェハ、サファイアウェハのいずれかであり、前記下地層は、窒化アルミニウムを含む。
The template substrate in aspect 17 of the present disclosure is any one of
本開示の態様18におけるテンプレート基板は、前記態様1から17の何れか一態様において、前記マスクパターンは、第2開口を含み、平面視において、前記第1および第2開口の間に前記シリコン系マスクおよび前記半導体マスクが位置する。
The template substrate in aspect 18 of the present disclosure is any one of
本開示の態様19におけるテンプレート基板は、前記態様1から18の何れか一態様において、前記半導体マスクおよび前記Al系半導体層は、窒化アルミウムガリウムを含み、前記窒化アルミウムガリウムにおいては、GaおよびAlに対するAlの組成比が0.05以上である。
The template substrate in aspect 19 of the present disclosure is any one of
本開示の態様20における半導体基板は、前記態様1から19の何れか一態様におけるテンプレート基板と、前記第1開口および前記半導体マスクの上方に位置する第1窒化物半導体部とを備える。
The semiconductor substrate in aspect 20 of the present disclosure comprises a template substrate in any one of
本開示の態様21における半導体基板は、前記態様20において、前記マスクパターンは、第2開口を含み、平面視において、前記第1および第2開口の間に前記シリコン系マスクおよび前記半導体マスクが位置し、前記第2開口および前記半導体マスクの上方に位置する第2窒化物半導体部を備え、前記第1および第2窒化物半導体部の間にギャップが位置する。 The semiconductor substrate in aspect 21 of the present disclosure is the same as aspect 20, except that the mask pattern includes a second opening, the silicon-based mask and the semiconductor mask are located between the first and second openings in a plan view, a second nitride semiconductor portion is located above the second opening and the semiconductor mask, and a gap is located between the first and second nitride semiconductor portions.
本開示の態様22における半導体基板は、前記態様20または21において、前記半導体マスクおよび前記第1窒化物半導体部の間に空隙が存在する。 The semiconductor substrate in aspect 22 of the present disclosure is the same as in aspect 20 or 21, except that a gap exists between the semiconductor mask and the first nitride semiconductor portion.
本開示の態様23における半導体基板は、前記態様20から22の何れか一態様において、前記Al系半導体層の上方に位置する成長抑制膜、および前記Al系半導体層の側面に位置する成長抑制膜の少なくとも一方を備える。
The semiconductor substrate in
本開示の態様24における半導体基板は、前記態様20から23の何れか一態様において、前記第1窒化物半導体部では、前記半導体マスクと向かい合う裏面部のシリコン濃度が5×1018/cm3以下である。 A semiconductor substrate according to Aspect 24 of the present disclosure is any one of Aspects 20 to 23, wherein in the first nitride semiconductor portion, a back surface portion facing the semiconductor mask has a silicon concentration of 5×10 18 /cm 3 or less.
本開示の態様25における半導体基板は、前記態様20から24の何れか一態様において、前記第1窒化物半導体部上に位置し、活性層を含む機能層を備える。
The semiconductor substrate in
本開示の態様26におけるテンプレート基板の製造方法は、ベース基板を準備する工程と、ベース基板上に位置し、シリコンを含むシリコン系マスクおよび第1開口を含むマスクパターンを形成する工程と、前記シリコン系マスク上に位置し、アルミニウムを含む半導体マスクと、前記半導体マスクの主成分を含むとともに前記第1開口と重なるAl系半導体層を有するシード部と、を形成する工程とを含む。 The method for manufacturing a template substrate in aspect 26 of the present disclosure includes the steps of preparing a base substrate, forming a mask pattern located on the base substrate and including a silicon-based mask containing silicon and a first opening, and forming a semiconductor mask located on the silicon-based mask, including aluminum, and a seed portion having an Al-based semiconductor layer that contains the main component of the semiconductor mask and overlaps with the first opening.
本開示の態様27におけるテンプレート基板の製造方法は、前記態様26において、窒化物半導体を含んで前記Al系半導体層の上面を覆う被覆層を形成する工程を含む。
The method for manufacturing a template substrate in
本開示の態様28におけるテンプレート基板の製造装置は、前記態様26または27における各工程を行う。
The template substrate manufacturing apparatus in aspect 28 of the present disclosure performs each of the steps in
本開示の態様29における半導体基板の製造方法は、前記態様1から19の何れか一態様におけるテンプレート基板を準備する工程と、前記第1開口および前記半導体マスクの上方に位置する第1窒化物半導体部を形成する工程とを含む。
The method for manufacturing a semiconductor substrate in aspect 29 of the present disclosure includes a step of preparing a template substrate in any one of
本開示の態様30における半導体基板の製造方法は、前記態様20から25の何れか一態様における半導体基板を準備する工程と、前記第1窒化物半導体部上に位置し、活性層を含む機能層を形成する工程とを含む。
The method for manufacturing a semiconductor substrate in
1 主基板
4 下地層
5 シリコン系マスク
6 マスクパターン
7 成長抑制膜
8 窒化物半導体部
8A 第1窒化物半導体部
8C 第2窒化物半導体部
9 機能層
10 半導体基板
25 半導体デバイス
30 テンプレート基板の製造装置
AS Al系半導体層
BS ベース基板
B1 第1基部
B2 第2基部
C1 第1被覆層
C2 第2被覆層
DA 成長抑制領域
F1 第1ウイング部
F2 第2ウイング部
J シード領域
JD 空隙
K1 第1開口
K2 第2開口
SM 半導体マスク
S1 第1シード部
S2 第2シード部
TS テンプレート基板
REFERENCE SIGNS
Claims (30)
ベース基板上に位置し、シリコンを含む第1マスクおよび第1開口を含むマスクパターンと、
前記第1マスク上に位置し、アルミニウムおよび半導体を含む第2マスクと、
前記第2マスクの主成分を含むとともに前記第1開口と重なる半導体層を有するシード部とを備える、テンプレート基板。 A base substrate;
a first mask overlying a base substrate, the first mask including silicon and a mask pattern including a first opening;
a second mask overlying the first mask, the second mask comprising aluminum and a semiconductor;
a seed portion having a semiconductor layer including a main component of the second mask and overlapping the first opening.
前記下地層上に前記半導体層が位置する、請求項1から4の何れか一項に記載のテンプレート基板。 The base substrate includes a main substrate and a foundation layer located on the main substrate,
The template substrate according to claim 1 , wherein the semiconductor layer is located on the underlayer.
前記第2マスクおよび前記半導体層は、窒化アルミウムガリウムを含む、請求項1から15の何れか一項に記載のテンプレート基板。 the first mask includes at least one of silicon nitride and silicon oxide;
The template substrate of claim 1 , wherein the second mask and the semiconductor layer comprise aluminum gallium nitride.
前記下地層は、窒化アルミニウムを含む、請求項5に記載のテンプレート基板。 The main substrate is any one of a silicon wafer, a silicon carbide wafer, and a sapphire wafer;
The template substrate of claim 5 , wherein the underlayer comprises aluminum nitride.
平面視において、前記第1および第2開口の間に前記第1マスクおよび前記第2マスクが位置する、請求項1から17の何れか一項に記載のテンプレート基板。 the mask pattern includes a second opening;
The template substrate according to claim 1 , wherein the first mask and the second mask are located between the first and second openings in a plan view.
前記第1開口および前記第2マスクの上方に位置する第1窒化物半導体部とを備える、半導体基板。 A template substrate according to any one of claims 1 to 19;
a first nitride semiconductor portion located above the first opening and the second mask.
平面視において、前記第1および第2開口の間に前記第1マスクおよび前記第2マスクが位置し、
前記第2開口および前記第2マスクの上方に位置する第2窒化物半導体部を備え、
前記第1および第2窒化物半導体部の間にギャップが位置する、請求項20に記載の半導体基板。 the mask pattern includes a second opening;
the first mask and the second mask are located between the first and second openings in a plan view;
a second nitride semiconductor portion located above the second opening and the second mask;
The semiconductor substrate of claim 20 , wherein a gap is located between the first and second nitride semiconductor portions.
ベース基板上に位置し、シリコンを含む第1マスクおよび第1開口を含むマスクパターンを形成する工程と、
前記第1マスク上に位置し、アルミニウムおよび半導体を含む第2マスクと、前記第2マスクの主成分を含むとともに前記第1開口と重なる半導体層を有するシード部と、を形成する工程とを含む、テンプレート基板の製造方法。 providing a base substrate;
forming a mask pattern including a first mask and a first opening over a base substrate, the first mask including silicon;
and forming a second mask located on the first mask and including aluminum and a semiconductor, and a seed portion having a semiconductor layer including a main component of the second mask and overlapping the first opening.
前記第1開口および前記第2マスクの上方に位置する第1窒化物半導体部を形成する工程とを含む、半導体基板の製造方法。 Providing a template substrate according to any one of claims 1 to 19;
forming a first nitride semiconductor portion located above the first opening and the second mask.
前記第1窒化物半導体部上に位置し、活性層を含む機能層を形成する工程とを含む、半導体デバイスの製造方法。 Providing a semiconductor substrate according to any one of claims 20 to 25;
and forming a functional layer including an active layer, the functional layer being located on the first nitride semiconductor portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-159049 | 2023-09-22 | ||
JP2023159049 | 2023-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025063259A1 true WO2025063259A1 (en) | 2025-03-27 |
Family
ID=95071482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/033575 WO2025063259A1 (en) | 2023-09-22 | 2024-09-20 | Template substrate, method for producing same, semiconductor substrate, method for producing same, apparatus for producing template substrate, and method for producing semiconductor device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025063259A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002184707A (en) * | 2000-10-04 | 2002-06-28 | Sanyo Electric Co Ltd | Nitride-based semiconductor device and method of forming nitride-based semiconductor |
JP2002289539A (en) * | 2001-03-27 | 2002-10-04 | Sony Corp | Nitride semiconductor device and method of manufacturing the same |
JP2006315895A (en) * | 2005-05-11 | 2006-11-24 | Furukawa Co Ltd | Method for forming group iii nitride semiconductor layer, method for manufacturing group iii nitride semiconductor substrate, and group iii nitride semiconductor substrate |
JP2007189134A (en) * | 2006-01-16 | 2007-07-26 | Sony Corp | Method for forming underlayer made of GaN-based compound semiconductor, GaN-based semiconductor light emitting device, and method for manufacturing the same |
JP2009239270A (en) * | 2008-03-01 | 2009-10-15 | Sumitomo Chemical Co Ltd | Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device |
WO2022181686A1 (en) * | 2021-02-26 | 2022-09-01 | 京セラ株式会社 | Semiconductor substrate, method for producing same, apparatus for producing same, and template substrate |
JP2023531177A (en) * | 2020-06-19 | 2023-07-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Transfer process for realization of semiconductor devices |
WO2023189872A1 (en) * | 2022-03-28 | 2023-10-05 | 京セラ株式会社 | Semiconductor substrate, template substrate, and method and device for producing semiconductor substrate |
-
2024
- 2024-09-20 WO PCT/JP2024/033575 patent/WO2025063259A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002184707A (en) * | 2000-10-04 | 2002-06-28 | Sanyo Electric Co Ltd | Nitride-based semiconductor device and method of forming nitride-based semiconductor |
JP2002289539A (en) * | 2001-03-27 | 2002-10-04 | Sony Corp | Nitride semiconductor device and method of manufacturing the same |
JP2006315895A (en) * | 2005-05-11 | 2006-11-24 | Furukawa Co Ltd | Method for forming group iii nitride semiconductor layer, method for manufacturing group iii nitride semiconductor substrate, and group iii nitride semiconductor substrate |
JP2007189134A (en) * | 2006-01-16 | 2007-07-26 | Sony Corp | Method for forming underlayer made of GaN-based compound semiconductor, GaN-based semiconductor light emitting device, and method for manufacturing the same |
JP2009239270A (en) * | 2008-03-01 | 2009-10-15 | Sumitomo Chemical Co Ltd | Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device |
JP2023531177A (en) * | 2020-06-19 | 2023-07-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Transfer process for realization of semiconductor devices |
WO2022181686A1 (en) * | 2021-02-26 | 2022-09-01 | 京セラ株式会社 | Semiconductor substrate, method for producing same, apparatus for producing same, and template substrate |
WO2023189872A1 (en) * | 2022-03-28 | 2023-10-05 | 京セラ株式会社 | Semiconductor substrate, template substrate, and method and device for producing semiconductor substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240072198A1 (en) | Semiconductor substrate, semiconductor device, and electronic device | |
JP7646806B2 (en) | Semiconductor substrate, and manufacturing method and manufacturing apparatus for semiconductor substrate | |
JP4055304B2 (en) | Method for producing gallium nitride compound semiconductor | |
JP4529846B2 (en) | III-V nitride semiconductor substrate and method for manufacturing the same | |
JP5060055B2 (en) | Nitride compound semiconductor substrate and semiconductor device | |
KR20140107797A (en) | Method of fabricating nitride substrate | |
KR20140065330A (en) | Nitride semiconductor device, nitride semiconductor wafer, and method for forming nitride semiconductor layer | |
JP7293520B1 (en) | semiconductor substrate | |
TWI841952B (en) | Semiconductor substrate and manufacturing method thereof, and manufacturing device thereof, GaN-based crystal, semiconductor device, and electronic device | |
JP7679511B2 (en) | Method for manufacturing semiconductor device, semiconductor substrate | |
WO2023189872A1 (en) | Semiconductor substrate, template substrate, and method and device for producing semiconductor substrate | |
WO2025063259A1 (en) | Template substrate, method for producing same, semiconductor substrate, method for producing same, apparatus for producing template substrate, and method for producing semiconductor device | |
JP7634076B2 (en) | Template substrate, its manufacturing method and manufacturing apparatus, semiconductor substrate, its manufacturing method and manufacturing apparatus | |
JP7637237B2 (en) | Semiconductor device manufacturing method and manufacturing apparatus | |
KR102062381B1 (en) | Method of growing nitride semiconductor layer and fabrication nitride semiconductor device | |
JP2005020026A (en) | Gallium nitride based compound semiconductor and semiconductor substrate | |
WO2024162377A1 (en) | Semiconductor substrate, and method and apparatus for producing semiconductor substrate | |
JP4897285B2 (en) | Substrate for semiconductor device and method for manufacturing the same | |
KR20250065373A (en) | Semiconductor substrate, manufacturing method and manufacturing apparatus for semiconductor substrate, manufacturing method for semiconductor device | |
WO2024204391A1 (en) | Semiconductor substrate and method for manufacturing semiconductor substrate | |
WO2024085243A1 (en) | Semiconductor substrate, template substrate, and method and device for producing template substrate | |
WO2025115999A1 (en) | Semiconductor substrate, method for manufacturing same, apparatus for manufacturing semiconductor substrate, and semiconductor device | |
CN117769613A (en) | Template substrate and manufacturing method and manufacturing device thereof, semiconductor device, and electronic apparatus | |
KR20090074358A (en) | Nitride light emitting device and method of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24868336 Country of ref document: EP Kind code of ref document: A1 |