[go: up one dir, main page]

WO2025057883A1 - Method for producing fine particles, and fine particles - Google Patents

Method for producing fine particles, and fine particles Download PDF

Info

Publication number
WO2025057883A1
WO2025057883A1 PCT/JP2024/032079 JP2024032079W WO2025057883A1 WO 2025057883 A1 WO2025057883 A1 WO 2025057883A1 JP 2024032079 W JP2024032079 W JP 2024032079W WO 2025057883 A1 WO2025057883 A1 WO 2025057883A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
acid
active substance
polyion complex
plga
Prior art date
Application number
PCT/JP2024/032079
Other languages
French (fr)
Japanese (ja)
Inventor
隆夫 青柳
徹 星
康一朗 鈴木
正和 槻田
Original Assignee
学校法人日本大学
株式会社武蔵野化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人日本大学, 株式会社武蔵野化学研究所 filed Critical 学校法人日本大学
Publication of WO2025057883A1 publication Critical patent/WO2025057883A1/en

Links

Images

Definitions

  • the present invention relates to a method for producing fine particles, and to fine particles.
  • PLA polylactic acid
  • PLGA polylactic acid-glycolic acid
  • Patent Document 1 discloses a method for encapsulating water-soluble (ionic) proteins or peptides (active substances) in microparticles made of polymers such as PLGA.
  • Patent Document 1 In the method described in Patent Document 1, first, an aqueous solution containing an ionic active substance is mixed with an organic solvent containing PLGA to form a w/o (water-in-oil) emulsion. The w/o emulsion is then mixed with water to which a dispersant has been added to form a w/o/w (water-in-oil-in-water) emulsion (w/o/w double emulsion method).
  • the organic solvent is evaporated to obtain microparticles with a polymer such as PLGA on the outside and containing the active substance inside.
  • Patent Document 1 uses the w/o/w double emulsion method, which includes a step of forming a w/o emulsion and a step of forming a w/o/w emulsion, and therefore has the problem that it is time-consuming to encapsulate the active substance in PLGA.
  • the present invention has been made in consideration of these circumstances, and aims to provide a method for producing microparticles that can easily encapsulate ionic active substances in particles containing PLA and/or PLGA, and microparticles that can be produced by the method.
  • a method for producing microparticles comprising the steps of forming a polyion complex by ionically bonding an ionic active substance with an ionic polymer, and forming microparticles containing the polyion complex and at least one polymer (P) selected from polylactic acid and lactic acid-glycolic acid copolymer, the step of forming the microparticles comprising the steps of mixing the polyion complex and the polymer (P) in an organic solvent, adding the organic solvent containing the mixed polyion complex and the polymer (P) to an aqueous solution in which a dispersant that prevents emulsions from bonding together is dissolved to form an o/w emulsion, and removing the organic solvent from the aqueous solution containing the o/w emulsion.
  • the anionic polymer includes at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, polyvinyl phosphonic acid, and copolymers containing at least one of these, as well as polyglutamic acid, polyaspartic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and dextran sulfate.
  • the anionic polymer includes at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, polyvinyl phosphonic acid, and copolymers containing at least one of these, as well as polyglutamic acid, polyaspartic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and dextran s
  • the cationic polymer includes at least one selected from the group consisting of polyvinylamine, polyallylamine, polyvinylpyridine, and a copolymer containing at least one of these, as well as polylysine, polyarginine, polyhistidine, polytryptophan, polyethyleneimine, and chitosan.
  • Microparticles comprising at least one polymer (P) selected from polylactic acid and lactic acid-glycolic acid copolymers, and a polyion complex, the polyion complex comprising an ionic active substance and an ionic polymer ionically bonded to the active substance.
  • P polymer selected from polylactic acid and lactic acid-glycolic acid copolymers
  • the present invention provides a method for producing microparticles that can easily encapsulate an ionic active substance in particles containing PLA and/or PLGA, and microparticles that can be produced by the method.
  • 1 shows bright field and fluorescent images of microparticles produced under the conditions of System 13 (no polyethyleneimine) shown in Table 2.
  • 1 shows bright field and fluorescent images of microparticles produced under the conditions of System 15 shown in Table 2 (polyethyleneimine was used as the cationic polymer).
  • 1 is a graph showing the loading rate of an active substance when microparticles are produced under the conditions of System 13 or System 15.
  • 1 is a fluorescent image showing microparticles comprising PLA and an active agent.
  • the method for producing microparticles includes a step of forming a polyion complex by ionically bonding an ionic active substance with an ionic polymer (polyion complex formation step), and a step of forming microparticles containing the formed polyion complex and at least one polymer (P) selected from PLA (polylactic acid) and PLGA (lactic acid-glycolic acid copolymer).
  • the process of forming microparticles containing a polyion complex and the polymer (P) includes a step of mixing the polyion complex formed in the polyion complex formation step with the polymer (P) in an organic solvent (mixing step), a step of adding the organic solvent containing the mixed polyion complex and the polymer (P) to an aqueous solution in which a dispersant that prevents the emulsions from bonding is dissolved to form an o/w emulsion (o/w emulsion formation step), and a step of removing the organic solvent from the aqueous solution containing the o/w emulsion (organic solvent removal step).
  • polyion Complex Formation Step In the polyion complex formation step, an ionic active substance and an ionic polymer are ionically bonded to form a polyion complex, which offsets the charge of the active substance having a charge and makes it closer to hydrophobicity.
  • active substance includes chemical substances that induce physiological effects in living organisms, and substances that produce chemical effects or catalyze chemical reactions in non-living organisms.
  • the type of active substance is not particularly limited, but examples include substances introduced into the body, plant protection agents, cosmetic active agents, aroma chemicals, chemicals in the construction industry, etc.
  • substances to be introduced into the body include, but are not limited to, medicinal ingredients such as anticancer drugs and anti-inflammatory drugs, antigens used in vaccines, cosmetic ingredients, etc.
  • the active substance may be cationic as a whole or anionic as a whole.
  • Chemicals in the construction sector include, for example, catalysts used in polymerization or crosslinking.
  • the active substance is a polymer, and may be, for example, a protein, a nucleic acid, or other substance having an electric charge.
  • the molecular weight of the active substance may be 1,000 or more, 5,000 or more, or 10,000 or more.
  • the upper limit of the molecular weight of the active substance is not particularly limited, but may be, for example, 100,000.
  • the decomposition of an active substance by decomposition enzymes such as nucleases and proteases can be suppressed compared to the case where an ion pair is formed using an ionic low molecular weight compound, and in addition to the sustained release property of PLA and/or PLGA, the polyion complex can suppress the initial burst and exhibit long-term sustained release property.
  • decomposition enzymes such as nucleases and proteases
  • the polyion complex can suppress the initial burst and exhibit long-term sustained release property.
  • the use of an ionic polymer can improve safety.
  • the active substance is a polymer with a large molecular weight, it can be easily encapsulated in PLA and/or PLGA by forming a polyion complex.
  • an anionic polymer is used as the ionic polymer. If the active substance is anionic, a cationic polymer is used as the ionic polymer.
  • both an anionic polymer and a cationic polymer may be used as the ionic polymer.
  • the anionic polymer and the cationic polymer can be ionically bonded to the active substance, respectively, to prevent the anionic polymer and the cationic polymer from bonding to each other.
  • the anionic polymer may be a substance that is less toxic to the living organism.
  • anionic polymers that are relatively less toxic to the living organism include, but are not limited to, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, polyvinyl phosphonic acid, and copolymers containing at least one of these, as well as at least one selected from the group consisting of polyglutamic acid, polyaspartic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and dextran sulfate.
  • the copolymer may contain one or more blocks of polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, or polyvinyl phosphonic acid (e.g., a block of polyacrylic acid and a block of polymethacrylic acid), and may also contain one or more blocks of other anionic homopolymers.
  • the anionic polymer may have both cationic and anionic groups, but must be anionic overall.
  • the cationic polymer may be a substance that is less toxic to the living organism.
  • cationic polymers that are relatively less toxic to the living organism include, but are not limited to, polyvinylamine, polyallylamine, polyvinylpyridine, and copolymers containing at least one of these, as well as at least one selected from the group consisting of polylysine, polyarginine, polyhistidine, polytryptophan, polyethyleneimine, and chitosan.
  • the copolymer may contain one or more blocks of polyvinylamine, polyallylamine, or polyvinylpyridine (e.g., a block of polyvinylamine and a block of polyallylamine), and may also contain one or more blocks of other cationic homopolymers.
  • Polycaprolactone having a cationic group bonded thereto can also be used as the cationic polymer.
  • An example of polycaprolactone having a cationic group bonded thereto is polycaprolactone having a structure represented by the following formula (3).
  • the compound having the structure represented by the above formula (3) can be obtained by reacting a copolymer of caprolactone and halogenated caprolactone with N,N-dimethylethylamine, as shown in the following chemical reaction formula (4).
  • the cationic polymer may have both cationic and anionic groups, but must be cationic overall.
  • the molecular weight of the ionic polymer is not particularly limited, but may be, for example, 1,000 or more, 5,000 or more, or 10,000 or more.
  • the molecular weight of the ionic polymer may also be 100,000 or less.
  • the active substance and the ionic polymer are preferably mixed in an organic solvent to form a polyion complex.
  • the organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving the active substance and the ionic polymer.
  • the organic solvent is preferably one that can solubilize the polyion complex and has a low boiling point and other ease of removal. Examples of such organic solvents include hexafluoroisopropanol (hereinafter referred to as "HFIP”), N-methyl-2-pyrrolidone, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-dimethylacetamide, and HFIP can be particularly preferably used.
  • HFIP hexafluoroisopropanol
  • the polyion complex By subjecting the polyion complex to the mixing step in a state where it is dissolved in HFIP, the polyion complex can be made more soluble in the organic solvent.
  • the solvent for forming the polyion complex is not limited to HFIP.
  • the solvent for forming the polyion complex may be a mixture of an organic solvent and water. As will be described later in detail in the Examples, the inclusion of water in the solvent may improve the solubility of the active substance.
  • the amount of ionic polymer is set so that the total amount of active substance used is an amount that allows the formation of a polyion complex.
  • a polyion complex is formed from an active substance labeled with a labeling substance such as FITC (fluorescein isothiocyanate) and an ionic polymer, and the polyion complex is encapsulated in a particle containing PLA and/or PLGA and observed under a fluorescent microscope, the amount is set so that the microparticles emit fluorescence evenly overall and are close to perfect spheres.
  • FITC fluorescein isothiocyanate
  • the ionic polymer When applying the microparticles to a living body, the ionic polymer may be bound to a molecule (so-called pilot molecule) such as an antibody to guide the active substance to the desired location (target site).
  • a compound that increases hydrophobicity such as a fatty acid, may be bound to the ionic polymer. By binding a compound that increases hydrophobicity to the ionic polymer, the hydrophobicity of the polyion complex can be adjusted.
  • the polyion complex formed in the polyion complex forming step is mixed with PLA and/or PLGA in an organic solvent.
  • an organic solvent such as the above-mentioned HFIP containing a polyion complex is mixed with an organic solvent in which PLA and/or PLGA is dissolved.
  • PLA and/or PLGA in the form of powder or the like may also be mixed with an organic solvent containing a polyion complex.
  • the type of organic solvent that dissolves PLA and/or PLGA is not particularly limited, but an organic solvent that is easily volatile is preferred.
  • organic solvents that can be used include ethyl acetate, dichloromethane, and chloroform. Among these organic solvents, ethyl acetate is particularly suitable for use because of its low toxicity to living organisms.
  • PLA is a polymer of lactic acid as represented by the following formula (1), in which l is an integer of 10 or more and 10,000 or less, and an asterisk (*) represents an adjacent repeat unit or any other group.
  • PLGA is a copolymer of lactic acid and glycolic acid, and contains m units derived from lactic acid and n units derived from glycolic acid, as shown in the following formula (2).
  • an asterisk (*) represents an adjacent repeating unit or any other group.
  • m and n are integers between 1 and 10,000, and the number of lactic acid molecules polymerized is m, and the number of glycolic acid molecules polymerized is n.
  • the dispersant has surface activity, and examples of substances that have such properties include polyvinyl alcohol (PVA) and polyethylene glycol.
  • PVA polyvinyl alcohol
  • the concentration of the dispersant is not particularly limited, but if polyvinyl alcohol is used as the dispersant, it may be an aqueous polyvinyl alcohol solution with a concentration of 1 mg/mL or more and 50 mg/mL or less.
  • Organic solvent removal process In the organic solvent removing step, the organic solvent in the aqueous solution containing the o/w emulsion formed in the o/w emulsion forming step is removed, thereby making it possible to remove the organic solvent that may also be contained in the fine particles from the aqueous solution.
  • the aqueous solution containing the o/w emulsion is continuously stirred to prevent the emulsions in the aqueous solution from bonding together and becoming enlarged, while the organic solvent is removed.
  • the temperature during stirring is not particularly limited, but it is preferable to stir at room temperature (e.g., 10 to 30°C) or at a temperature slightly higher than room temperature (e.g., 30 to 50°C).
  • the stirring time is not particularly limited as long as it is long enough to remove the organic solvent, but it can be, for example, from 5 hours to 24 hours.
  • the above-mentioned HFIP is completely miscible with water, it is hardly contained in the particles containing PLA and/or PLGA, and even if it is contained, it is removed in the organic solvent removal step.
  • the o/w emulsion method is used to form particles containing PLA and/or PLGA with an active substance encapsulated therein, so the labor involved in the microparticle manufacturing process can be reduced compared to when the w/o/w double emulsion method is used to form particles containing PLA and/or PLGA. Therefore, the active substance can be easily encapsulated in PLA and/or PLGA.
  • the organic solvent removal step is performed to form PLA and/or PLGA particles encapsulating an active substance, but the method may further include a step of separating the PLA and/or PLGA particles (microparticles) in the resulting aqueous solution from the aqueous solution.
  • Methods for separating the PLA and/or PLGA particles include, but are not limited to, a method of separation by suction filtration, as shown in the examples detailed below.
  • Table 1 shows the amount of PLGA (Musashino Chemical Laboratory, weight average molecular weight: 11.2 x 10 4 , PDI: 4.00) added to ethyl acetate as an example of an organic solvent in each system, the amount of ethyl acetate, the amount of polyvinyl alcohol (Mitsubishi Chemical Corporation, saponification degree: 86.5-89.0 mol%, viscosity: 3.4 mm 2 /s) as an example of a dispersant, and the processing time when homogenizing using a homogenizer after the o/w emulsion formation process.
  • PLGA Malashino Chemical Laboratory, weight average molecular weight: 11.2 x 10 4 , PDI: 4.00
  • PLGA was dissolved in chloroform and added to hexane to precipitate and purify it, and the resulting PLGA was then dissolved in ethyl acetate, an example of an organic solvent.
  • polyvinyl alcohol was added to 100 mL of pure water and dissolved.
  • the polyvinyl alcohol aqueous solution thus obtained was stirred at a speed of 500 rpm using a stirrer, while the above ethyl acetate solution in which PLGA had been dissolved was added dropwise, and the mixture was emulsified (homogenized) using a homogenizer at 8100 rpm.
  • the aqueous polyvinyl alcohol solution containing PLGA was stirred overnight at 500 rpm using a stirrer, and the ethyl acetate was removed from the PLGA by submerged drying.
  • the PLGA particles were observed under a stereomicroscope. As a result, most of the observed PLGA aggregates were in a particulate form, and the conditions of system 7 shown in Table 1 were the most suitable conditions for controlling the particle shape of PLGA particles. It was also revealed that the particle size of PLGA particles can be controlled by changing the amount of PLGA added to ethyl acetate (changing the concentration).
  • PEI polyethyleneimine
  • FITC-BSA bovine serum albumin labeled with FITC
  • FITC-BSA bovine serum albumin labeled with FITC
  • HFIP polyion complex formation step
  • the precipitate was first dispersed in 100 mL of PBS (phosphate buffer solution), stirred for 1 hour, and the residue was collected by suction filtration. This procedure was repeated twice, after which the precipitate was dispersed in pure water, stirred for 10 minutes, and the residue was collected by suction filtration.
  • PBS phosphate buffer solution
  • the filter cake was then dried under reduced pressure, and the resulting powder was observed under a fluorescent microscope.
  • the loading rate of FITC-labeled albumin was calculated by measuring the absorbance of the supernatant from the centrifugation and the two washings.
  • Figure 1 shows bright-field and fluorescent images of microparticles produced under the conditions of System 13 (no polyethyleneimine used), and Figure 2 shows bright-field and fluorescent images of microparticles produced under the conditions of System 15 (polyethyleneimine used as a cationic polymer).
  • Figure 3 is a graph showing the loading rate of the active substance when the microparticles were produced under the conditions of System 13 or System 15.
  • PLA particles encapsulating an active substance were produced using the same procedure as in the above ⁇ Experiment for producing PLGA particles encapsulating an active substance'', using PLA instead of PLGA and polylysine instead of polyethyleneimine.
  • microparticles containing FITC-labeled bovine serum albumin were produced using 0.1 g of PLA, 1.0 mg of polyvinyl alcohol, 100 mL of water, 1 mg of polylysine, 5 mg of FITC-labeled bovine serum albumin, and 0.5 mL of HFIP.
  • PLA 0.1 g
  • polyvinyl alcohol 100 mL
  • polylysine 100 mg
  • polylysine 5 mg
  • FITC-labeled bovine serum albumin 0.5 mL of HFIP.
  • a system was also prepared in which no polylysine was added and the polyion complex formation process was not performed.
  • microparticles were produced, they were purified and the resulting powder was observed under a fluorescent microscope.
  • Figure 4 is a fluorescence image showing microparticles containing PLA and an active agent. In the image shown in Figure 4, areas that glow green due to the presence of FITC are shown in light color.

Landscapes

  • Medicinal Preparation (AREA)

Abstract

This method for producing fine particles includes: a step for forming a polyion complex by ion-bonding an ionic active material and an ionic polymer; and a step for forming fine particles which contain the polyion complex and at least one polymer (P) that is selected from among a polylactic acid and a lactic acid-glycolic acid copolymer. The step for forming fine particles includes: a step for mixing the polyion complex and the polymer (P) in an organic solvent; a step for forming an o/w emulsion by adding the organic solvent after mixing, the organic solvent containing the polyion complex and the polymer (P), to an aqueous solution in which a dispersant for preventing bonding between emulsions is dissolved; and a step for removing the organic solvent from the aqueous solution that contains the o/w emulsion.

Description

微粒子の製造方法、及び微粒子Method for producing microparticles, and microparticles

 本発明は、微粒子の製造方法、及び微粒子に関する。
 本願は、2023年9月11日に、日本に出願された特願2023-146876号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing fine particles, and to fine particles.
This application claims priority based on Japanese Patent Application No. 2023-146876, filed on September 11, 2023, the contents of which are incorporated herein by reference.

 従来、ワクチン用の抗原や医薬成分などの活性物質を、ポリ乳酸(以下、「PLA」という。)及び乳酸-グリコール酸共重合体(以下、「PLGA」という。)の少なくとも一方を含む微粒子に封入する技術が知られている。  Conventionally, a technique has been known in which active substances such as vaccine antigens and pharmaceutical ingredients are encapsulated in microparticles that contain at least one of polylactic acid (hereinafter referred to as "PLA") and polylactic acid-glycolic acid (hereinafter referred to as "PLGA").

 たとえば、特許文献1には、PLGA等のポリマーからなる微粒子に、水溶性(イオン性)のタンパク質又はペプチド(活性物質)を封入する方法が開示されている。 For example, Patent Document 1 discloses a method for encapsulating water-soluble (ionic) proteins or peptides (active substances) in microparticles made of polymers such as PLGA.

 特許文献1に記載の方法では、まず、イオン性の活性物質を含む水溶液を、PLGAを含む有機溶媒と混和し、w/o(water-in-oil)エマルションを形成する。その後、当該w/oエマルションを、分散剤を加えた水と混合することで、w/o/w(water-in-oil-in-water)エマルションを形成する(w/o/wダブルエマルション法)。 In the method described in Patent Document 1, first, an aqueous solution containing an ionic active substance is mixed with an organic solvent containing PLGA to form a w/o (water-in-oil) emulsion. The w/o emulsion is then mixed with water to which a dispersant has been added to form a w/o/w (water-in-oil-in-water) emulsion (w/o/w double emulsion method).

 最後に、有機溶媒を蒸発させることで、PLGA等のポリマーを外側に有し、活性物質を内包する微粒子を得ることができる。 Finally, the organic solvent is evaporated to obtain microparticles with a polymer such as PLGA on the outside and containing the active substance inside.

特表平10-511957号公報Special Publication No. 10-511957

 しかしながら、特許文献1に記載の方法では、w/oエマルションを形成する工程と、w/o/wエマルションを形成する工程を含むw/o/wダブルエマルション法が用いられているため、活性物質をPLGAに封入するのに手間がかかるという問題があった。 However, the method described in Patent Document 1 uses the w/o/w double emulsion method, which includes a step of forming a w/o emulsion and a step of forming a w/o/w emulsion, and therefore has the problem that it is time-consuming to encapsulate the active substance in PLGA.

 本発明は、このような事情に鑑みてなされたものであり、イオン性の活性物質を、PLA及び/又はPLGAを含む粒子に簡便に封入することができる微粒子の製造方法、及び前記製造方法により製造可能な微粒子を提供することを目的とする。 The present invention has been made in consideration of these circumstances, and aims to provide a method for producing microparticles that can easily encapsulate ionic active substances in particles containing PLA and/or PLGA, and microparticles that can be produced by the method.

 本発明の一態様は、以下の態様を包含する。 Aspects of the present invention include the following:

 [1] イオン性の活性物質と、イオン性ポリマーとをイオン結合させてポリイオンコンプレックスを形成する工程と、前記ポリイオンコンプレックスと、ポリ乳酸及び乳酸-グリコール酸共重合体から選択される少なくとも一種のポリマー(P)とを含む微粒子を形成する工程とを備え、前記微粒子を形成する前記工程は、前記ポリイオンコンプレックスと、前記ポリマー(P)とを有機溶媒中で混合する工程と、混合後の前記ポリイオンコンプレックスと前記ポリマー(P)とを含む有機溶媒を、エマルション同士の結合を防ぐ分散剤が溶解した水溶液に加えてo/wエマルションを形成する工程と、前記o/wエマルションを含む水溶液中の有機溶媒を除去する工程とを含む、微粒子の製造方法。 [1] A method for producing microparticles, comprising the steps of forming a polyion complex by ionically bonding an ionic active substance with an ionic polymer, and forming microparticles containing the polyion complex and at least one polymer (P) selected from polylactic acid and lactic acid-glycolic acid copolymer, the step of forming the microparticles comprising the steps of mixing the polyion complex and the polymer (P) in an organic solvent, adding the organic solvent containing the mixed polyion complex and the polymer (P) to an aqueous solution in which a dispersant that prevents emulsions from bonding together is dissolved to form an o/w emulsion, and removing the organic solvent from the aqueous solution containing the o/w emulsion.

 [2] 前記活性物質が、分子量1000以上のタンパク質である、[1]に記載の微粒子の製造方法。 [2] The method for producing microparticles described in [1], wherein the active substance is a protein having a molecular weight of 1,000 or more.

 [3] 前記活性物質が、分子量1000以上の核酸である、[1]に記載の微粒子の製造方法。 [3] The method for producing microparticles described in [1], wherein the active substance is a nucleic acid having a molecular weight of 1000 or more.

 [4] 前記活性物質がカチオン性であり、前記イオン性ポリマーがアニオン性ポリマーである、[1]又は[2]に記載の微粒子の製造方法。 [4] The method for producing microparticles according to [1] or [2], wherein the active substance is cationic and the ionic polymer is an anionic polymer.

 [5] 前記アニオン性ポリマーが、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリビニル硫酸、ポリビニルホスホン酸及びこれらの少なくとも一種を含む共重合体、並びに、ポリグルタミン酸、ポリアスパラギン酸、アルギン酸、ヒアルロン酸、ヘパリン、コンドロイチン硫酸、及びデキストラン硫酸からなる群より選択される少なくとも一種を含む、[4]に記載の微粒子の製造方法。 [5] The method for producing microparticles described in [4], wherein the anionic polymer includes at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, polyvinyl phosphonic acid, and copolymers containing at least one of these, as well as polyglutamic acid, polyaspartic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and dextran sulfate.

 [6] 前記活性物質がアニオン性であり、前記イオン性ポリマーがカチオン性ポリマーである、[1]~[3]のいずれか1つに記載の微粒子の製造方法。 [6] The method for producing microparticles according to any one of [1] to [3], wherein the active substance is anionic and the ionic polymer is a cationic polymer.

 [7] 前記カチオン性ポリマーが、ポリビニルアミン、ポリアリルアミン、ポリビニルピリジン及びこれらの少なくとも一種を含む共重合体、並びに、ポリリシン、ポリアルギニン、ポリヒスチジン、ポリトリプトファン、ポリエチレンイミン及びキトサンからなる群より選択される少なくとも一種を含む、[6]に記載の微粒子の製造方法。 [7] The method for producing microparticles described in [6], wherein the cationic polymer includes at least one selected from the group consisting of polyvinylamine, polyallylamine, polyvinylpyridine, and a copolymer containing at least one of these, as well as polylysine, polyarginine, polyhistidine, polytryptophan, polyethyleneimine, and chitosan.

 [8] ポリ乳酸及び乳酸-グリコール酸共重合体から選択される少なくとも一種のポリマー(P)と、ポリイオンコンプレックスとを含み、前記ポリイオンコンプレックスは、イオン性の活性物質と、前記活性物質にイオン結合したイオン性ポリマーとを含む、微粒子。 [8] Microparticles comprising at least one polymer (P) selected from polylactic acid and lactic acid-glycolic acid copolymers, and a polyion complex, the polyion complex comprising an ionic active substance and an ionic polymer ionically bonded to the active substance.

 本発明によれば、イオン性の活性物質を、PLA及び/又はPLGAを含む粒子に簡便に封入することができる微粒子の製造方法、及び前記製造方法により製造可能な微粒子を提供することができる。 The present invention provides a method for producing microparticles that can easily encapsulate an ionic active substance in particles containing PLA and/or PLGA, and microparticles that can be produced by the method.

表2に示す系13の条件(ポリエチレンイミン不使用)で製造された微粒子を示す明視野画像及び蛍光画像である。1 shows bright field and fluorescent images of microparticles produced under the conditions of System 13 (no polyethyleneimine) shown in Table 2. 表2に示す系15の条件(カチオン性ポリマーとしてポリエチレンイミン使用)で製造された微粒子を示す明視野画像及び蛍光画像である。1 shows bright field and fluorescent images of microparticles produced under the conditions of System 15 shown in Table 2 (polyethyleneimine was used as the cationic polymer). 系13又は系15の条件で微粒子を製造した活性物質のローディング率を示すグラフである。1 is a graph showing the loading rate of an active substance when microparticles are produced under the conditions of System 13 or System 15. PLA及び活性物質を含む微粒子を示す蛍光画像である。1 is a fluorescent image showing microparticles comprising PLA and an active agent.

 以下、本発明の好ましい実施形態について詳細に説明する。 The following describes in detail a preferred embodiment of the present invention.

<微粒子の製造方法>
 本実施形態にかかる微粒子の製造方法は、イオン性の活性物質とイオン性ポリマーとをイオン結合させてポリイオンコンプレックスを形成する工程(ポリイオンコンプレックス形成工程)と、形成されたポリイオンコンプレックスと、PLA(ポリ乳酸)及びPLGA(乳酸-グリコール酸共重合体)から選択される少なくとも一種のポリマー(P)とを含む微粒子を形成する工程とを含んでいる。
<Method of producing fine particles>
The method for producing microparticles according to this embodiment includes a step of forming a polyion complex by ionically bonding an ionic active substance with an ionic polymer (polyion complex formation step), and a step of forming microparticles containing the formed polyion complex and at least one polymer (P) selected from PLA (polylactic acid) and PLGA (lactic acid-glycolic acid copolymer).

 ポリイオンコンプレックスと、前記ポリマー(P)とを含む微粒子を形成する工程は、ポリイオンコンプレックス形成工程で形成されたポリイオンコンプレックスと、前記ポリマー(P)とを有機溶媒中で混合する工程(混合工程)と、混合後のポリイオンコンプレックスと前記ポリマー(P)とを含む有機溶媒を、エマルション同士の結合を防ぐ分散剤が溶解した水溶液に加えてo/wエマルションを形成する工程(o/wエマルション形成工程)と、o/wエマルションを含む水溶液中の有機溶媒を除去する工程(有機溶媒除去工程)を含んでいる。 The process of forming microparticles containing a polyion complex and the polymer (P) includes a step of mixing the polyion complex formed in the polyion complex formation step with the polymer (P) in an organic solvent (mixing step), a step of adding the organic solvent containing the mixed polyion complex and the polymer (P) to an aqueous solution in which a dispersant that prevents the emulsions from bonding is dissolved to form an o/w emulsion (o/w emulsion formation step), and a step of removing the organic solvent from the aqueous solution containing the o/w emulsion (organic solvent removal step).

(ポリイオンコンプレックス形成工程)
 ポリイオンコンプレックス形成工程においては、イオン性の活性物質とイオン性ポリマーとをイオン結合させてポリイオンコンプレックスを形成することにより、電荷を有する活性物質の電荷を相殺して疎水性に近付ける。
(Polyion Complex Formation Step)
In the polyion complex formation step, an ionic active substance and an ionic polymer are ionically bonded to form a polyion complex, which offsets the charge of the active substance having a charge and makes it closer to hydrophobicity.

 これにより、後の混合工程において活性物質を有機溶媒に溶解し易くし、PLA及び/又はPLGA(前記ポリマー(P))に容易に封入することができる。 This makes it easier for the active substance to dissolve in an organic solvent in the subsequent mixing step, and allows it to be easily encapsulated in PLA and/or PLGA (the polymer (P)).

 本明細書において、「活性物質」とは、生物において生理学的効果を誘発する化学物質、及び非生物界において化学的効果を生じる又は化学反応を触媒する物質を含む概念である。 In this specification, the term "active substance" includes chemical substances that induce physiological effects in living organisms, and substances that produce chemical effects or catalyze chemical reactions in non-living organisms.

 活性物質の種類はとくに限定されるものではないが、たとえば、生体内に導入される物質、植物保護剤、化粧用活性剤、アロマケミカル、建設分野における化学物質等が挙げられる。 The type of active substance is not particularly limited, but examples include substances introduced into the body, plant protection agents, cosmetic active agents, aroma chemicals, chemicals in the construction industry, etc.

 生体内に導入される物質としては、たとえば抗癌剤、抗炎症薬等の医薬成分や、ワクチンに用いる抗原、美容成分等が挙げられるが、これらに限定されるものではない。活性物質は全体としてカチオン性であってもよく、全体としてアニオン性であってもよい。
 建設分野における化学物質としては、たとえば重合又は架橋に用いられる触媒が挙げられる。
Examples of substances to be introduced into the body include, but are not limited to, medicinal ingredients such as anticancer drugs and anti-inflammatory drugs, antigens used in vaccines, cosmetic ingredients, etc. The active substance may be cationic as a whole or anionic as a whole.
Chemicals in the construction sector include, for example, catalysts used in polymerization or crosslinking.

 活性物質はポリマーであり、たとえばタンパク質であってもよく、核酸であってもよく、電荷を有する他の物質であってもよい。活性物質の分子量は1000以上であってもよく、5000以上であってもよく、10000以上であってもよい。また、活性物質の分子量の上限値はとくに限定されるものではないが、たとえば10万であってもよい。
 イオン性ポリマーを用いてポリイオンコンプレックスを形成させることにより、イオン性低分子化合物を用いてイオン対を形成させた場合と比較して、核酸分解酵素やタンパク質分解酵素などの分解酵素による活性物質の分解を抑制でき、PLA及び/又はPLGAによる徐放性に加えて、ポリイオンコンプレックスによる初期バーストの抑制、及び長期の徐放性を発揮することができる。加えて、低分子イオンは細胞毒性を引き起こしやすいが、イオン性ポリマーを用いることで、安全性を向上することができる。
The active substance is a polymer, and may be, for example, a protein, a nucleic acid, or other substance having an electric charge. The molecular weight of the active substance may be 1,000 or more, 5,000 or more, or 10,000 or more. The upper limit of the molecular weight of the active substance is not particularly limited, but may be, for example, 100,000.
By forming a polyion complex using an ionic polymer, the decomposition of an active substance by decomposition enzymes such as nucleases and proteases can be suppressed compared to the case where an ion pair is formed using an ionic low molecular weight compound, and in addition to the sustained release property of PLA and/or PLGA, the polyion complex can suppress the initial burst and exhibit long-term sustained release property. In addition, although low molecular weight ions are prone to cause cytotoxicity, the use of an ionic polymer can improve safety.

 このように分子量の大きい高分子の活性物質であっても、ポリイオンコンプレックスを形成することにより、PLA及び/又はPLGAに容易に封入することが可能になる。 Even if the active substance is a polymer with a large molecular weight, it can be easily encapsulated in PLA and/or PLGA by forming a polyion complex.

 また、活性物質としてタンパク質を用いた場合、ポリイオンコンプレックスを形成することにより、有機溶媒による変性を抑制する効果が期待できる。 In addition, when a protein is used as an active substance, the formation of a polyion complex is expected to have the effect of suppressing denaturation caused by organic solvents.

 活性物質がカチオン性である場合、イオン性ポリマーには、アニオン性ポリマーが用いられる。活性物質がアニオン性である場合、イオン性ポリマーには、カチオン性ポリマーが用いられる。 If the active substance is cationic, an anionic polymer is used as the ionic polymer. If the active substance is anionic, a cationic polymer is used as the ionic polymer.

 また、活性物質がタンパク質等の両性電解質である場合には、イオン性ポリマーとして、アニオン性ポリマーとカチオン性ポリマーの両方を用いてもよい。 In addition, when the active substance is an ampholyte such as a protein, both an anionic polymer and a cationic polymer may be used as the ionic polymer.

 アニオン性ポリマーとカチオン性ポリマーの両方を用いる場合には、活性物質に、アニオン性ポリマーとカチオン性ポリマーとを、一方ずつイオン結合させることで、アニオン性ポリマーとカチオン性ポリマーが互いに結合してしまう事態を抑制することができる。 When using both an anionic polymer and a cationic polymer, the anionic polymer and the cationic polymer can be ionically bonded to the active substance, respectively, to prevent the anionic polymer and the cationic polymer from bonding to each other.

 微粒子を生体に対して適用する場合、アニオン性ポリマーは、生体への毒性の低い物質であってもよい。生体への毒性が比較的低いアニオン性ポリマーとしては、たとえばポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリビニル硫酸、ポリビニルホスホン酸及びこれらの少なくとも一種を含む共重合体、並びに、ポリグルタミン酸、ポリアスパラギン酸、アルギン酸、ヒアルロン酸、ヘパリン、コンドロイチン硫酸、及びデキストラン硫酸からなる群より選択される少なくとも一種が挙げられるが、これらに限定されるものではない。 When the microparticles are applied to a living organism, the anionic polymer may be a substance that is less toxic to the living organism. Examples of anionic polymers that are relatively less toxic to the living organism include, but are not limited to, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, polyvinyl phosphonic acid, and copolymers containing at least one of these, as well as at least one selected from the group consisting of polyglutamic acid, polyaspartic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and dextran sulfate.

 前記共重合体は、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリビニル硫酸、又はポリビニルホスホン酸からなるブロックを一種以上含む(たとえばポリアクリル酸からなるブロックと、ポリメタクリル酸からなるブロックとを含む)他、他のアニオン性のホモポリマーからなるブロックを一種以上含んでいてもよい。 The copolymer may contain one or more blocks of polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, or polyvinyl phosphonic acid (e.g., a block of polyacrylic acid and a block of polymethacrylic acid), and may also contain one or more blocks of other anionic homopolymers.

 なお、アニオン性ポリマーは、カチオン性基とアニオン性基の両方を有していてもよいが、全体としてアニオン性である必要がある。 The anionic polymer may have both cationic and anionic groups, but must be anionic overall.

 微粒子を生体に対して適用する場合、カチオン性ポリマーは、生体への毒性の低い物質であってもよい。生体への毒性が比較的低いカチオン性ポリマーとしては、たとえばポリビニルアミン、ポリアリルアミン、ポリビニルピリジン及びこれらの少なくとも一種を含む共重合体、並びに、ポリリシン(Polylysine)、ポリアルギニン、ポリヒスチジン、ポリトリプトファン、ポリエチレンイミン及びキトサンからなる群より選択される少なくとも一種が挙げられるが、これらに限定されるものではない。 When the microparticles are applied to a living organism, the cationic polymer may be a substance that is less toxic to the living organism. Examples of cationic polymers that are relatively less toxic to the living organism include, but are not limited to, polyvinylamine, polyallylamine, polyvinylpyridine, and copolymers containing at least one of these, as well as at least one selected from the group consisting of polylysine, polyarginine, polyhistidine, polytryptophan, polyethyleneimine, and chitosan.

 前記共重合体はポリビニルアミン、ポリアリルアミン、又はポリビニルピリジンからなるブロックを一種以上含む(たとえばポリビニルアミンからなるブロックと、ポリアリルアミンからなるブロックとを含む)他、他のカチオン性のホモポリマーからなるブロックを一種以上含んでいてもよい。 The copolymer may contain one or more blocks of polyvinylamine, polyallylamine, or polyvinylpyridine (e.g., a block of polyvinylamine and a block of polyallylamine), and may also contain one or more blocks of other cationic homopolymers.

 また、カチオン性基を結合させたポリカプロラクトンも、カチオン性ポリマーとして用いることができる。カチオン性基を結合させたポリカプロラクトンとしては、たとえば以下の式(3)で表される構造を有するポリカプロラクトンを挙げることができる。 Polycaprolactone having a cationic group bonded thereto can also be used as the cationic polymer. An example of polycaprolactone having a cationic group bonded thereto is polycaprolactone having a structure represented by the following formula (3).

Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001

 上記の式(3)で表される構造を有する化合物は、下記の化学反応式(4)で示すように、カプロラクトンとハロゲン化カプロラクトンとの共重合体に、N,N-ジメチルエチルアミンを反応させて得ることができる。 The compound having the structure represented by the above formula (3) can be obtained by reacting a copolymer of caprolactone and halogenated caprolactone with N,N-dimethylethylamine, as shown in the following chemical reaction formula (4).

Figure JPOXMLDOC01-appb-C000002

(化学反応式(4)中、Xはハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000002

(In chemical reaction formula (4), X represents a halogen atom.)

 なお、カチオン性ポリマーは、カチオン性基とアニオン性基の両方を有していてもよいが、全体としてカチオン性である必要がある。 The cationic polymer may have both cationic and anionic groups, but must be cationic overall.

 イオン性ポリマーの分子量はとくに限定されるものではないが、たとえば1000以上であってもよく、5000以上であってもよく、10000以上であってもよい。また、イオン性ポリマーの分子量は10万以下であってもよい。 The molecular weight of the ionic polymer is not particularly limited, but may be, for example, 1,000 or more, 5,000 or more, or 10,000 or more. The molecular weight of the ionic polymer may also be 100,000 or less.

 活性物質とイオン性ポリマーは、有機溶媒中で混合し、ポリイオンコンプレックスを形成することが好ましい。前記有機溶媒は、活性物質とイオン性ポリマーを溶解可能な有機溶媒であれば、特に限定されない。有機溶媒としては、ポリイオンコンプレックスを可溶化でき、且つ沸点が低い等の除去容易性を有するものが好ましい。このような有機溶媒としては、たとえばヘキサフルオロイソプロパノール(Hexafluoroisopropanol、以下、「HFIP」という。)、N-メチル-2-ピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられ、HFIPをとくに好適に用いることができる。ポリイオンコンプレックスをHFIPに溶解した状態で混合工程に供することで、ポリイオンコンプレックスを有機溶媒に溶けやすくすることができる。なお、ポリイオンコンプレックスを形成するための溶媒はHFIPに限定されるものではない。
 また、ポリイオンコンプレックスを形成するための溶媒は、有機溶媒と水の混合液であってもよい。後に詳述する実施例のように、溶媒に水を含ませることで、活性物質の溶解性を向上できる場合がある。
The active substance and the ionic polymer are preferably mixed in an organic solvent to form a polyion complex. The organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving the active substance and the ionic polymer. The organic solvent is preferably one that can solubilize the polyion complex and has a low boiling point and other ease of removal. Examples of such organic solvents include hexafluoroisopropanol (hereinafter referred to as "HFIP"), N-methyl-2-pyrrolidone, dimethyl sulfoxide, N,N-dimethylformamide, and N,N-dimethylacetamide, and HFIP can be particularly preferably used. By subjecting the polyion complex to the mixing step in a state where it is dissolved in HFIP, the polyion complex can be made more soluble in the organic solvent. The solvent for forming the polyion complex is not limited to HFIP.
The solvent for forming the polyion complex may be a mixture of an organic solvent and water. As will be described later in detail in the Examples, the inclusion of water in the solvent may improve the solubility of the active substance.

 イオン性ポリマーの量は、使用する活性物質の全量がポリイオンコンプレックスを形成可能な量とすることが好ましい。例えば、後に実施例で詳述するように、FITC(Fluorescein isothiocyanate)等の標識物質により標識した活性物質とイオン性ポリマーとからポリイオンコンプレックスを形成し、PLA及び/又はPLGAを含む粒子に封入した状態で蛍光顕微鏡で観察したときに、微粒子が、全体的に偏りなく蛍光を発し、且つ完全な球体に近い状態となる量に設定されることが好ましい。 It is preferable that the amount of ionic polymer is set so that the total amount of active substance used is an amount that allows the formation of a polyion complex. For example, as described in detail later in the Examples, when a polyion complex is formed from an active substance labeled with a labeling substance such as FITC (fluorescein isothiocyanate) and an ionic polymer, and the polyion complex is encapsulated in a particle containing PLA and/or PLGA and observed under a fluorescent microscope, the amount is set so that the microparticles emit fluorescence evenly overall and are close to perfect spheres.

 微粒子を生体に適用する場合、イオン性ポリマーには、活性物質を目的の場所(標的部位)へ誘導するための抗体などの分子(いわゆるパイロット分子)が結合していてもよい。また、イオン性ポリマーには脂肪酸等の疎水性を高める化合物が結合していてもよい。イオン性ポリマーに疎水性を高める化合物を結合させることで、ポリイオンコンプレックスの疎水度を調節することができる。 When applying the microparticles to a living body, the ionic polymer may be bound to a molecule (so-called pilot molecule) such as an antibody to guide the active substance to the desired location (target site). In addition, a compound that increases hydrophobicity, such as a fatty acid, may be bound to the ionic polymer. By binding a compound that increases hydrophobicity to the ionic polymer, the hydrophobicity of the polyion complex can be adjusted.

(混合工程)
 混合工程においては、ポリイオンコンプレックス形成工程で形成されたポリイオンコンプレックスと、PLA及び/又はPLGAとを、有機溶媒中で混合する。
(Mixing process)
In the mixing step, the polyion complex formed in the polyion complex forming step is mixed with PLA and/or PLGA in an organic solvent.

 本実施形態の混合工程では、ポリイオンコンプレックスを含む上記HFIP等の有機溶媒を、PLA及び/又はPLGAを溶解した有機溶媒と混合する。しかしながら、ポリイオンコンプレックスを含む有機溶媒に、粉末等の形態のPLA及び/又はPLGAを混合してもよい。 In the mixing step of this embodiment, an organic solvent such as the above-mentioned HFIP containing a polyion complex is mixed with an organic solvent in which PLA and/or PLGA is dissolved. However, PLA and/or PLGA in the form of powder or the like may also be mixed with an organic solvent containing a polyion complex.

 PLA及び/又はPLGAを溶解する有機溶媒の種類はとくに限定されるものではないが、揮発し易い性質を有する有機溶媒が好ましい。このような有機溶媒としては、たとえば酢酸エチル、ジクロロメタン、クロロホルム等を用いることができる。これらの有機溶媒の中でも、生体に対する毒性が低い観点から、とくに酢酸エチルを好適に用いることができる。 The type of organic solvent that dissolves PLA and/or PLGA is not particularly limited, but an organic solvent that is easily volatile is preferred. Examples of such organic solvents that can be used include ethyl acetate, dichloromethane, and chloroform. Among these organic solvents, ethyl acetate is particularly suitable for use because of its low toxicity to living organisms.

 PLAは、以下の式(1)に表されるように乳酸の重合体であり、式(1)において、lは10以上10000以下の整数であり、アスタリスク(*)は、隣り合う繰り返し単位、又は任意の他の基を表わす。

Figure JPOXMLDOC01-appb-C000003
PLA is a polymer of lactic acid as represented by the following formula (1), in which l is an integer of 10 or more and 10,000 or less, and an asterisk (*) represents an adjacent repeat unit or any other group.
Figure JPOXMLDOC01-appb-C000003

 PLGAは、乳酸とグリコール酸を重合した共重合体であり、以下の式(2)に表されるように、乳酸から誘導される単位をm個、グリコール酸から誘導される単位をn個含む。式(2)において、アスタリスク(*)は、隣り合う繰り返し単位、又は任意の他の基を表わす。 PLGA is a copolymer of lactic acid and glycolic acid, and contains m units derived from lactic acid and n units derived from glycolic acid, as shown in the following formula (2). In formula (2), an asterisk (*) represents an adjacent repeating unit or any other group.

Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004

 式(2)の中のmとnはそれぞれ、1以上10000以下の整数であり、乳酸分子がmの数だけ重合し、グリコール酸分子がnの数だけ重合している。 In formula (2), m and n are integers between 1 and 10,000, and the number of lactic acid molecules polymerized is m, and the number of glycolic acid molecules polymerized is n.

 PLGAにおける乳酸から誘導される構成単位と、グリコール酸から誘導される構成単位とのモル比(m:n)は、1:10~10:1であってもよく、1:8~8:1であってもよく、1:5~5:1であってもよく、1:4~4:1であってもよく、1:2~2:1であってもよく、1.5:1~1:1.5であってもよく、1.2:1~1:1.2であってもよく、1.1:1~1:1.1であってもよく、1:1であってもよい。
 PLGAはランダムコポリマーでもよく、ブロックコポリマーでもよい。
The molar ratio (m:n) of the constituent units derived from lactic acid to the constituent units derived from glycolic acid in PLGA may be 1:10 to 10:1, 1:8 to 8:1, 1:5 to 5:1, 1:4 to 4:1, 1:2 to 2:1, 1.5:1 to 1:1.5, 1.2:1 to 1:1.2, 1.1:1 to 1:1.1, or 1:1.
PLGA may be a random or block copolymer.

 PLAとPLGAはそれぞれ単独で用いられてもよく、任意の割合で混合して用いられてもよい。
 有機溶媒中のPLA及び/又はPLGAの濃度はとくに限定されるものではないが、たとえば1mLの有機溶媒に対し、0.01g以上0.5g以下の量のPLA及び/又はPLGAを用いてもよい。なお、当該濃度は、PLA及びPLGAの両方を用いる場合には、PLAの濃度とPLGAの濃度を合わせた濃度である。
 PLA及び/又はPLGAの濃度が高いほど、微粒子の粒径が大きくなる。
 PLAの重量平均分子量と、PLGAの重量平均分子量はそれぞれ、1000以上20万以下であってもよい。なお、本明細書において、重量平均分子量は、特に断りがない限り、ゲル濾過クロマトグラフィー(Gel permeation chromatography, GPC)の測定から求められた標準ポリスチレン換算の重量平均分子量である。
PLA and PLGA may be used alone or in any combination in any proportion.
The concentration of PLA and/or PLGA in the organic solvent is not particularly limited, but for example, 0.01 g to 0.5 g of PLA and/or PLGA may be used per 1 mL of organic solvent. Note that when both PLA and PLGA are used, the concentration is the combined concentration of PLA and PLGA.
The higher the concentration of PLA and/or PLGA, the larger the particle size of the microparticles.
The weight average molecular weight of PLA and the weight average molecular weight of PLGA may each be 1000 or more and 200,000 or less. In this specification, unless otherwise specified, the weight average molecular weight is a weight average molecular weight calculated in terms of standard polystyrene obtained by measurement using gel permeation chromatography (GPC).

(o/wエマルション形成工程)
 o/wエマルション形成工程においては、上記混合工程で有機溶媒に混合されたポリイオンコンプレックスを含む有機溶媒を、エマルション同士の結合を防ぐ分散剤が溶解した水溶液に加えてo/wエマルションを形成する。
(O/W emulsion formation step)
In the o/w emulsion formation step, the organic solvent containing the polyion complex mixed in the organic solvent in the mixing step is added to an aqueous solution in which a dispersant that prevents the emulsions from bonding together is dissolved, to form an o/w emulsion.

 エマルション同士の結合を防ぐため、分散剤は界面活性能を有することが重要であり、このような性質を有する物質として、たとえばポリビニルアルコール(PVA)や、ポリエチレングリコールを好適に用いることができる。分散剤の濃度は特に限定されるものではないが、たとえば分散剤としてポリビニルアルコールを用いる場合、1mg/mL以上50mg/mL以下の濃度のポリビニルアルコール水溶液としてもよい。 In order to prevent emulsions from bonding together, it is important that the dispersant has surface activity, and examples of substances that have such properties include polyvinyl alcohol (PVA) and polyethylene glycol. The concentration of the dispersant is not particularly limited, but if polyvinyl alcohol is used as the dispersant, it may be an aqueous polyvinyl alcohol solution with a concentration of 1 mg/mL or more and 50 mg/mL or less.

 ポリイオンコンプレックスがPLA及び/又はPLGAに封入されるタイミングとしては、特定の理論に束縛されるものではないが、ポリイオンコンプレックスと、PLA及び/又はPLGAとを含む有機溶媒を水溶液に加えたときに、ポリイオンコンプレックスが、PLA及び/又はPLGAとともに凝集して、PLA及び/又はPLGAに封入されるものと考えられる。 The timing at which the polyion complex is encapsulated in PLA and/or PLGA is not limited to a particular theory, but it is believed that when an organic solvent containing the polyion complex and PLA and/or PLGA is added to an aqueous solution, the polyion complex aggregates with the PLA and/or PLGA and is encapsulated in the PLA and/or PLGA.

 なお、ポリイオンコンプレックスを含む有機溶媒を加える水溶液中には、分散剤以外の成分が含まれていてもよい。 The aqueous solution to which the organic solvent containing the polyion complex is added may contain components other than the dispersant.

(有機溶媒除去工程)
 有機溶媒除去工程においては、o/wエマルション形成工程で形成されたo/wエマルションを含む水溶液中の有機溶媒を除去する。これにより、微粒子にも含まれ得る有機溶媒を水溶液中から除去することができる。
(Organic solvent removal process)
In the organic solvent removing step, the organic solvent in the aqueous solution containing the o/w emulsion formed in the o/w emulsion forming step is removed, thereby making it possible to remove the organic solvent that may also be contained in the fine particles from the aqueous solution.

 水溶液中の有機溶媒を除去する方法としては、たとえば液中乾燥法が挙げられるが、これに限定されるものではない。 Methods for removing the organic solvent from the aqueous solution include, but are not limited to, the submerged drying method.

 液中乾燥法においては、o/wエマルションを含む水溶液を撹拌し続けることで、水溶液中のエマルション同士が結合して肥大化してしまうのを抑制しつつ、有機溶媒を除去する。 In the submerged drying method, the aqueous solution containing the o/w emulsion is continuously stirred to prevent the emulsions in the aqueous solution from bonding together and becoming enlarged, while the organic solvent is removed.

 撹拌時の温度はとくに限定されるものではないが、室温(例えば、10~30℃)又は室温よりもやや高い温度(例えば、30~50℃)で撹拌することが好ましい。 The temperature during stirring is not particularly limited, but it is preferable to stir at room temperature (e.g., 10 to 30°C) or at a temperature slightly higher than room temperature (e.g., 30 to 50°C).

 撹拌速度はとくに限定されるものではないが、たとえば10rpm以上1000rpm以下の速度が挙げられる。 The stirring speed is not particularly limited, but may be, for example, 10 rpm or more and 1000 rpm or less.

 撹拌時間は、有機溶媒が除去されるのに十分な時間であればよく、とくに限定されるものではないが、たとえば5時間以上24時間以下とすることができる。
 なお、上述のHFIPは、水に完全に混和するため、PLA及び/又はPLGAを含む粒子にはほとんど含まれず、仮に含まれていた場合でも有機溶媒除去工程にて除去される。
The stirring time is not particularly limited as long as it is long enough to remove the organic solvent, but it can be, for example, from 5 hours to 24 hours.
In addition, since the above-mentioned HFIP is completely miscible with water, it is hardly contained in the particles containing PLA and/or PLGA, and even if it is contained, it is removed in the organic solvent removal step.

 以上のように、本実施形態では、o/wエマルション法を用いて、内部に活性物質を封入したPLA及び/又はPLGAを含む粒子を形成するから、w/o/wダブルエマルション法を用いてPLA及び/又はPLGAを含む粒子を形成する場合に比して、微粒子の製造工程における手間を低減できる。したがって、活性物質をPLA及び/又はPLGAに簡便に封入することができる。 As described above, in this embodiment, the o/w emulsion method is used to form particles containing PLA and/or PLGA with an active substance encapsulated therein, so the labor involved in the microparticle manufacturing process can be reduced compared to when the w/o/w double emulsion method is used to form particles containing PLA and/or PLGA. Therefore, the active substance can be easily encapsulated in PLA and/or PLGA.

<微粒子>
 本実施形態の微粒子は、上述の製造方法により製造される微粒子である。
<Microparticles>
The microparticles of this embodiment are produced by the above-mentioned production method.

 すなわち、微粒子は、PLA及びPLGAから選択される少なくとも一種のポリマー(P)と、ポリイオンコンプレックスとを含み、ポリイオンコンプレックスは、イオン性の活性物質と、活性物質にイオン結合したイオン性ポリマーとを含んでいる。
 上記微粒子には、PLAとPLGAの一方のみが含まれていてもよく、PLAとPLGAとが互いに任意の割合で含まれていてもよい。また、ポリイオンコンプレックスは、微粒子の内部に位置していてもよく、一部が微粒子の表面に露出していてもよい。
That is, the microparticles contain at least one polymer (P) selected from PLA and PLGA, and a polyion complex, and the polyion complex contains an ionic active substance and an ionic polymer ionically bonded to the active substance.
The microparticles may contain only one of PLA and PLGA, or may contain PLA and PLGA in any ratio. The polyion complex may be located inside the microparticles, or may be partially exposed on the surface of the microparticles.

 本実施形態の微粒子は、たとえば、ワクチン用の抗原や、抗癌剤等の種々の医薬成分、美容成分等の活性物質を生体内に誘導するのに用いることができる。 The microparticles of this embodiment can be used to introduce active substances, such as antigens for vaccines, various medicinal ingredients such as anticancer drugs, and cosmetic ingredients, into the body.

 本実施形態の微粒子における活性物質、イオン性ポリマー、PLA及びPLGAはそれぞれ、製造方法にかかる前記実施形態で詳述したイオン性ポリマー、PLA及びPLGAと同様である。 The active substance, ionic polymer, PLA, and PLGA in the microparticles of this embodiment are the same as the ionic polymer, PLA, and PLGA described in detail in the above embodiment relating to the manufacturing method.

 微粒子の粒径はとくに限定されるものではなく、1μm以上100μm以下であってもよく、50nm以上1000nm以下でもよく、50nm以上100μm以下であってもよい。 The particle size of the microparticles is not particularly limited, and may be 1 μm or more and 100 μm or less, 50 nm or more and 1000 nm or less, or 50 nm or more and 100 μm or less.

 PLGAを含む粒子(PLGA粒子)については、乳酸から誘導される構成単位と、グリコール酸から誘導される構成単位との比率(式(2)のmとnの比率)が相互に異なる複数種類のPLGAの微粒子を用いてもよい。
 たとえば、m:n=2:3の比率で構成された第1の種類のPLGA粒子の他に、m:n=4:1の比率で構成された第2の種類のPLGA粒子を用いる場合が挙げられる。
For particles containing PLGA (PLGA particles), multiple types of PLGA microparticles having different ratios of constituent units derived from lactic acid to constituent units derived from glycolic acid (the ratio of m and n in formula (2)) may be used.
For example, in addition to a first type of PLGA particles having a ratio of m:n=2:3, a second type of PLGA particles having a ratio of m:n=4:1 may be used.

 この場合、分子量がより大きい第2の種類の微粒子の方が、生体内での分解に時間を要するため、第1の種類の微粒子のPLGAが分解されて内部の活性物質が放出された後に、第2の種類の微粒子のPLGAが分解されて内部の活性物質が放出される。 In this case, the second type of microparticles, which have a larger molecular weight, take longer to decompose in the body, so after the PLGA in the first type of microparticles is decomposed and the active substance inside is released, the PLGA in the second type of microparticles is decomposed and the active substance inside is released.

 このように、活性物質を覆うPLGAにおける乳酸から誘導される構成単位と、グリコール酸から誘導される構成単位との比率が異なる複数種類の微粒子を用いることで、微粒子の種類ごとに、時間間隔を開けて活性物質が生体内で長期間にわたり機能する。したがって、生体への活性物質の投与回数を抑えることができる。 In this way, by using multiple types of microparticles with different ratios of lactic acid-derived structural units and glycolic acid-derived structural units in the PLGA that covers the active substance, the active substance functions in the body for a long period of time with time intervals between each type of microparticle. This makes it possible to reduce the number of times the active substance needs to be administered to the body.

 以上、本発明の好ましい実施形態について詳述したが、本発明は以上の実施形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能である。 The above describes in detail preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and various modifications are possible within the scope of the invention described in the claims.

 たとえば、上記微粒子の製造方法にかかる実施形態においては、有機溶媒除去工程を行うことで活性物質を内包するPLA及び/又はPLGAの粒子を形成していたが、得られた水溶液中のPLA及び/又はPLGAの粒子(微粒子)を、水溶液から分離する工程をさらに含んでいてもよい。PLA及び/又はPLGAの粒子を分離する方法としては、以下に詳述する実施例に示すように、吸引ろ過により分離する方法が挙げられるがこれに限定されるものではない。 For example, in the embodiment of the method for producing the microparticles, the organic solvent removal step is performed to form PLA and/or PLGA particles encapsulating an active substance, but the method may further include a step of separating the PLA and/or PLGA particles (microparticles) in the resulting aqueous solution from the aqueous solution. Methods for separating the PLA and/or PLGA particles include, but are not limited to, a method of separation by suction filtration, as shown in the examples detailed below.

 以下、PLGA粒子又はPLA粒子に係る実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained below using examples relating to PLGA particles or PLA particles, but the present invention is not limited to the following examples.

<PLGA粒子の製造条件の検討>
 各系の製造条件を、以下の表1に示す。
<Study of manufacturing conditions for PLGA particles>
The preparation conditions for each system are shown in Table 1 below.

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 表1には、各系における有機溶媒の一例としての酢酸エチルに加えたPLGA(武蔵野化学研究所製、重量平均分子量:11.2×10、PDI:4.00)の量と、酢酸エチルの量と、分散剤の一例としてのポリビニルアルコール(三菱ケミカル社製、けん化度:86.5-89.0mol%、粘度:3.4mm/s)の量と、o/wエマルション形成工程の後にホモジナイザーを用いてホモジナイズ処理した際の処理時間が示されている。 Table 1 shows the amount of PLGA (Musashino Chemical Laboratory, weight average molecular weight: 11.2 x 10 4 , PDI: 4.00) added to ethyl acetate as an example of an organic solvent in each system, the amount of ethyl acetate, the amount of polyvinyl alcohol (Mitsubishi Chemical Corporation, saponification degree: 86.5-89.0 mol%, viscosity: 3.4 mm 2 /s) as an example of a dispersant, and the processing time when homogenizing using a homogenizer after the o/w emulsion formation process.

 まず、クロロホルムに溶解したPLGAをヘキサンに加えることで沈殿精製して得られたPLGAを、有機溶媒の一例である酢酸エチルに溶解させた。 First, PLGA was dissolved in chloroform and added to hexane to precipitate and purify it, and the resulting PLGA was then dissolved in ethyl acetate, an example of an organic solvent.

 次いで、100mLの純水にポリビニルアルコールを加えて溶解させた。 Then, polyvinyl alcohol was added to 100 mL of pure water and dissolved.

 こうして得られたポリビニルアルコール水溶液を、撹拌子を用いて500rpmの速度で撹拌させつつ、PLGAを溶解させた上記の酢酸エチル溶液を滴下し、ホモジナイザーで8100rpmの条件で乳化(ホモジナイズ処理)した。 The polyvinyl alcohol aqueous solution thus obtained was stirred at a speed of 500 rpm using a stirrer, while the above ethyl acetate solution in which PLGA had been dissolved was added dropwise, and the mixture was emulsified (homogenized) using a homogenizer at 8100 rpm.

 その後、PLGAを含むポリビニルアルコール水溶液を、撹拌子を用いて500rpmの速度で終夜攪拌し、液中乾燥により酢酸エチルをPLGAから除去した。 Then, the aqueous polyvinyl alcohol solution containing PLGA was stirred overnight at 500 rpm using a stirrer, and the ethyl acetate was removed from the PLGA by submerged drying.

 酢酸エチルを除去した後、吸引ろ過を行い、得られた白色粉末(PLGA粒子)をポリビニルアルコール水溶液と同量の純水で洗浄し、減圧乾燥した。 After removing the ethyl acetate, suction filtration was performed, and the resulting white powder (PLGA particles) was washed with the same amount of pure water as the polyvinyl alcohol aqueous solution and dried under reduced pressure.

 乾燥後、PLGA粒子を実体顕微鏡で観察した。その結果、観察されたPLGA凝集体のほとんどが粒子状の形態をなしていることから、表1に示される系7の条件が最もPLGA粒子の粒形制御に適した条件であった。また、酢酸エチルに加えるPLGAの量を変更する(濃度を変更する)ことで、PLGA粒子の粒径を制御できることが明らかになった。 After drying, the PLGA particles were observed under a stereomicroscope. As a result, most of the observed PLGA aggregates were in a particulate form, and the conditions of system 7 shown in Table 1 were the most suitable conditions for controlling the particle shape of PLGA particles. It was also revealed that the particle size of PLGA particles can be controlled by changing the amount of PLGA added to ethyl acetate (changing the concentration).

<活性物質を内包するPLGA粒子の製造実験>
 各系の製造条件(試薬量)を、以下の表2に示す。系12及び14は、活性物質を加えていない比較例である。系13は、イオン性ポリマーを加えず、ポリイオンコンプレックス形成工程を行わなかった比較例である。系15は、ポリイオンコンプレックス形成工程を含む各工程を行った実施例である。
<Production experiment of PLGA particles containing active substances>
The manufacturing conditions (amounts of reagents) for each system are shown in Table 2 below. Systems 12 and 14 are comparative examples where no active substance was added. System 13 is a comparative example where no ionic polymer was added and the polyion complex formation step was not performed. System 15 is an example where each step including the polyion complex formation step was performed.

Figure JPOXMLDOC01-appb-T000006

 まず、カチオン性ポリマーの一例としてのポリエチレンイミン(PEI、重量平均分子量:1800)と、アニオン性の活性物質の一例としての、FITCで標識した牛血清アルブミン(FITC-BSA、アルブミン-フルオレセインイソチオシアン酸コンジュゲート)とをHFIPに溶解させた(ポリイオンコンプレックス形成工程)。こうして得られた液をA液という。
Figure JPOXMLDOC01-appb-T000006

First, polyethyleneimine (PEI, weight average molecular weight: 1800) as an example of a cationic polymer and bovine serum albumin labeled with FITC (FITC-BSA, albumin-fluorescein isothiocyanate conjugate) as an example of an anionic active substance were dissolved in HFIP (polyion complex formation step). The liquid thus obtained is called Liquid A.

 次いで、クロロホルムに溶解したPLGAをヘキサンに加えることで沈殿精製して得られたPLGA(武蔵野化学研究所製、重量平均分子量:11.2×10、PDI:4.00)0.1gを、有機溶媒の一例としての酢酸エチル5mLに溶解させ、A液と混合することでB液を調製した(混合工程)。 Next, 0.1 g of PLGA (Musashino Chemical Laboratory, weight average molecular weight: 11.2 × 10 4 , PDI: 4.00) obtained by precipitation purification by adding PLGA dissolved in chloroform to hexane was dissolved in 5 mL of ethyl acetate as an example of an organic solvent, and mixed with liquid A to prepare liquid B (mixing process).

 その後、撹拌させた100mLのポリビニルアルコール(三菱ケミカル社製、けん化度:86.5-89.0mol%、粘度:3.4mm/s)水溶液(10mg/mL)に、上記B液を滴下した(o/wエマルション形成工程)。 Thereafter, the above liquid B was added dropwise to 100 mL of a stirred aqueous solution (10 mg/mL) of polyvinyl alcohol (manufactured by Mitsubishi Chemical Corporation, degree of saponification: 86.5-89.0 mol %, viscosity: 3.4 mm 2 /s) (o/w emulsion formation step).

 次いで、B液を滴下した上記のポリビニルアルコール水溶液を終夜スターラーで撹拌し、酢酸エチルを除去した(有機溶媒除去工程)。 Then, the polyvinyl alcohol aqueous solution to which liquid B had been added was stirred overnight with a stirrer to remove the ethyl acetate (organic solvent removal process).

 その後、2000rpmで10分間にわたり遠心分離を行い、得られた沈殿物を洗浄した。 Then, the mixture was centrifuged at 2000 rpm for 10 minutes and the resulting precipitate was washed.

 詳細には、まず、沈殿物を100mLのPBS(リン酸緩衝液)に分散させ、1時間撹拌した後、吸引ろ過によりろ物を回収した。この操作を計2回行った後に、純水に分散させ、10分間撹拌した後、吸引ろ過によりろ物を回収した。 In detail, the precipitate was first dispersed in 100 mL of PBS (phosphate buffer solution), stirred for 1 hour, and the residue was collected by suction filtration. This procedure was repeated twice, after which the precipitate was dispersed in pure water, stirred for 10 minutes, and the residue was collected by suction filtration.

 その後、ろ物を減圧乾燥させ、得られた粉末を蛍光顕微鏡で観察した。また、遠心分離の上澄み液と、2回分の洗浄液の吸光度を測定することで、FITCで標識したアルブミンのローディング率を算出した。 The filter cake was then dried under reduced pressure, and the resulting powder was observed under a fluorescent microscope. The loading rate of FITC-labeled albumin was calculated by measuring the absorbance of the supernatant from the centrifugation and the two washings.

 実施例である系15では以上のようにして、ポリイオンコンプレックスを内包するPLGA粒子(微粒子)を製造したが、系12~14の比較例では、HFIPに、ポリエチレンイミン及び/又は、FITC標識した牛血清アルブミンを加えなかった。このため、系13では、活性物質の一例であるFITC標識アルブミンについて、ポリイオンコンプレックスを形成していない状態でのPLGAへの封入を試みた。 In the example, System 15, PLGA particles (microparticles) encapsulating a polyion complex were produced as described above, but in the comparative examples, Systems 12 to 14, polyethyleneimine and/or FITC-labeled bovine serum albumin was not added to HFIP. For this reason, in System 13, an attempt was made to encapsulate FITC-labeled albumin, an example of an active substance, in PLGA without forming a polyion complex.

 図1は、系13の条件(ポリエチレンイミン不使用)で製造された微粒子を示す明視野画像及び蛍光画像であり、図2は、系15(カチオン性ポリマーとしてポリエチレンイミン使用)の条件で製造された微粒子を示す明視野画像及び蛍光画像である。 Figure 1 shows bright-field and fluorescent images of microparticles produced under the conditions of System 13 (no polyethyleneimine used), and Figure 2 shows bright-field and fluorescent images of microparticles produced under the conditions of System 15 (polyethyleneimine used as a cationic polymer).

 さらに、図3は、系13又は系15の条件で微粒子を製造した活性物質のローディング率を示すグラフである。 Furthermore, Figure 3 is a graph showing the loading rate of the active substance when the microparticles were produced under the conditions of System 13 or System 15.

 図1及び図2の蛍光画像においては、FITCの存在により緑色に光る部分が明色により示されている。
 図1に示すように、ポリイオンコンプレックスを形成せずに活性物質をPLGAに封入した場合には、微粒子が不均一に(部分的に)蛍光を発していることが確認された。
In the fluorescent images of Figs. 1 and 2, areas that glow green due to the presence of FITC are indicated by bright colors.
As shown in FIG. 1, when an active substance was encapsulated in PLGA without forming a polyion complex, it was confirmed that the microparticles emitted fluorescence non-uniformly (partially).

 これに対して、図2に示すように、ポリイオンコンプレックスを形成した状態で活性物質をPLGAに封入した場合には、微粒子全体が均一に蛍光を発することが確認できた。 In contrast, as shown in Figure 2, when an active substance was encapsulated in PLGA after forming a polyion complex, it was confirmed that the entire microparticle emitted fluorescence uniformly.

 以上の結果から、ポリイオンコンプレックスを形成した状態で活性物質をPLGAに封入することで、活性物質を微粒子内部に均一に封入できることが明らかになった。なお、FITC標識した牛血清アルブミンを加えていない系12と系14の条件では、当然ながら蛍光は観察されなかった。 These results demonstrate that by encapsulating an active substance in PLGA while a polyion complex is formed, the active substance can be encapsulated uniformly inside the microparticles. Naturally, no fluorescence was observed under the conditions of systems 12 and 14, in which FITC-labeled bovine serum albumin was not added.

 また、ポリイオンコンプレックスを形成せずに活性物質をPLGAに封入した系13の場合のローディング率は43.5%であった。
 これに対し、ポリイオンコンプレックスを形成した状態で活性物質をPLGAに封入した系15の場合のローディング率は78.3%であった(図3参照)。
In addition, in the case of System 13 in which the active substance was encapsulated in PLGA without forming a polyion complex, the loading rate was 43.5%.
In contrast, in the case of System 15 in which the active substance was encapsulated in PLGA in a state in which a polyion complex was formed, the loading rate was 78.3% (see FIG. 3).

 以上の結果から、ポリイオンコンプレックスを形成した状態で活性物質をPLGAに封入することで、より多くの活性物質をPLGAに封入できることが明らかになった。 These results demonstrate that by encapsulating an active substance in PLGA after forming a polyion complex, a larger amount of active substance can be encapsulated in PLGA.

<活性物質を内包するPLA粒子の製造実験>
 本実験では、PLGAに代えてPLAを用い、ポリエチレンイミンに代えてポリリシンを用いて、上記「活性物質を内包するPLGA粒子の製造実験」と同様の手順で、活性物質を内包するPLA粒子を製造した。
<Production experiment of PLA particles containing active substances>
In this experiment, PLA particles encapsulating an active substance were produced using the same procedure as in the above ``Experiment for producing PLGA particles encapsulating an active substance'', using PLA instead of PLGA and polylysine instead of polyethyleneimine.

 また、本実験では、上記系7及び系15の条件を参考に、PLAを0.1g、ポリビニルアルコールを1.0mg、水を100mL、ポリリシンを1mg、FITCで標識した牛血清アルブミンを5mg、HFIPを0.5mL用いて、FITCで標識した牛血清アルブミンが封入された微粒子を製造した。また、比較例として、ポリリシンを加えず、ポリイオンコンプレックス形成工程を行わなかった系も用意した。 In addition, in this experiment, referring to the conditions of the above systems 7 and 15, microparticles containing FITC-labeled bovine serum albumin were produced using 0.1 g of PLA, 1.0 mg of polyvinyl alcohol, 100 mL of water, 1 mg of polylysine, 5 mg of FITC-labeled bovine serum albumin, and 0.5 mL of HFIP. As a comparative example, a system was also prepared in which no polylysine was added and the polyion complex formation process was not performed.

 前記微粒子の製造後、前記微粒子を精製し、得られた粉末を蛍光顕微鏡で観察した。 After the microparticles were produced, they were purified and the resulting powder was observed under a fluorescent microscope.

 図4は、PLA及び活性物質を含む微粒子を示す蛍光画像である。図4に示す画像においては、FITCの存在により緑色に光る部分が明色により示されている。 Figure 4 is a fluorescence image showing microparticles containing PLA and an active agent. In the image shown in Figure 4, areas that glow green due to the presence of FITC are shown in light color.

 図4に示すように、ポリリシンを用いた系の粉末(微粒子)では、ポリリシンを用いていない系の粉末に比して、FITCの存在による、より明度の高い緑色に光る部分が観察された。 As shown in Figure 4, in the powder (microparticles) using polylysine, areas that glowed a brighter green due to the presence of FITC were observed compared to the powder not using polylysine.

 以上の結果から、PLGAに代えてPLAを用いた場合でも、ポリイオンコンプレックスの形成により、より多くの活性物質をPLAに封入できることが明らかになった。 These results demonstrate that even when PLA is used instead of PLGA, the formation of a polyion complex allows more active substances to be encapsulated in PLA.

<PEI以外のカチオン性ポリマーを用いたPLGA粒子の製造実験>
 本実験では、以下に述べる点を除き、上述の「活性物質を内包するPLGA粒子の製造実験」と同様にしてPLGA粒子を製造した。
<Experiment for manufacturing PLGA particles using cationic polymers other than PEI>
In this experiment, PLGA particles were produced in the same manner as in the above-mentioned "Experiment for producing PLGA particles encapsulating an active substance", except for the points described below.

 カチオン性ポリマーとして、ポリリシン(PLL、重量平均分子量:1800)、又はカチオン性基を結合させたポリカプロラクトン(式(3)で表される構造の化合物、cPCL、重量平均分子量:3000)を用いた。カチオン性ポリマーと、アニオン性の活性物質としてのFITC-BSAとを混合してポリイオンコンプレックスを形成させ、PLGA粒子を製造した。以下の表3に、本実験の各系の実験条件を示す。 As the cationic polymer, polylysine (PLL, weight average molecular weight: 1800) or polycaprolactone bound to a cationic group (a compound having a structure represented by formula (3), cPCL, weight average molecular weight: 3000) was used. The cationic polymer was mixed with FITC-BSA as an anionic active substance to form a polyion complex, and PLGA particles were produced. The experimental conditions for each system in this experiment are shown in Table 3 below.

Figure JPOXMLDOC01-appb-T000007

※表3において「PLGA Mw」はPLGA粒子の重量平均分子量である。
Figure JPOXMLDOC01-appb-T000007

*In Table 3, "PLGA Mw" is the weight average molecular weight of the PLGA particles.

 粒子の製造には、PLGAを0.1g、ポリイオンコンプレックスの形成用の溶媒として0.5mLのHFIPと0.1mLの純水との混合液 計0.6mL、PLGAの溶解用の溶媒として酢酸エチルを5.0mL、分散剤としてポリビニルアルコールを1重量%含む水溶液を100mL、それぞれ用いた。 To manufacture the particles, 0.1 g of PLGA, a total of 0.6 mL of a mixture of 0.5 mL of HFIP and 0.1 mL of pure water as a solvent for forming a polyion complex, 5.0 mL of ethyl acetate as a solvent for dissolving PLGA, and 100 mL of an aqueous solution containing 1 wt% polyvinyl alcohol as a dispersant were used.

 粒子の製造後、遠心分離と洗浄を2回行った。その際、遠心分離の上澄み液と2回分の洗浄液を回収し、吸光度測定を行った。これによって、粒子に内包されなかったFITC-BSAを定量し、以下の式(i)に示すように、当初加えたFITC-BSAの重量5mgから差し引くことで、PLGA粒子のFITC-BSA含有量を算出した。
 含有量=当初加えたBSA量-(上澄み液のBSA量+1回目の洗浄液のBSA量+2回目の洗浄液のBSA量)…(i)
After the production of the particles, centrifugation and washing were performed twice. The supernatant from the centrifugation and the two washing solutions were collected and subjected to absorbance measurement. The amount of FITC-BSA not encapsulated in the particles was quantified, and the FITC-BSA content of the PLGA particles was calculated by subtracting this amount from the weight of 5 mg of FITC-BSA initially added, as shown in the following formula (i).
Content = Amount of BSA initially added - (Amount of BSA in the supernatant + Amount of BSA in the first washing + Amount of BSA in the second washing) ... (i)

 さらに、以下の式(ii)に示すように、当初加えたFITC-BSAの量に対する、式(i)により算出されたFITC-BSA含有量の割合を、ローディング率として算出した。
 ローディング率[%]=含有量/当初加えたFITC-BSAの量×100…(ii)
Furthermore, as shown in the following formula (ii), the ratio of the FITC-BSA content calculated by formula (i) to the amount of FITC-BSA initially added was calculated as the loading rate.
Loading rate [%] = content / amount of FITC-BSA added initially × 100 (ii)

 上記の表1に示すように、カチオン性ポリマー(PLL又はcPCL)を用いて活性物質とポリイオンコンプレックスを形成した場合(系17~19及び21~23)には、カチオン性ポリマーを加えずポリイオンコンプレックスを形成しなかった場合に比して、ローディング率が格段に向上した。この結果から、カチオン性ポリマーの種類に拘わらず、ポリイオンコンプレックスを形成することで、より多くの活性物質をPLGAに封入できることが示唆された。 As shown in Table 1 above, when a polyion complex was formed with an active substance using a cationic polymer (PLL or cPCL) (Systems 17-19 and 21-23), the loading rate was significantly improved compared to when no cationic polymer was added and no polyion complex was formed. This result suggests that, regardless of the type of cationic polymer, by forming a polyion complex, more active substance can be encapsulated in PLGA.

 本発明によれば、イオン性の活性物質を、PLA及び/又はPLGAに簡便に封入することができる微粒子の製造方法、及び前記製造方法により製造可能な微粒子を提供することができる。 The present invention provides a method for producing microparticles that can easily encapsulate ionic active substances in PLA and/or PLGA, and microparticles that can be produced by the method.

Claims (8)

 イオン性の活性物質と、イオン性ポリマーとをイオン結合させてポリイオンコンプレックスを形成する工程と、
 前記ポリイオンコンプレックスと、ポリ乳酸及び乳酸-グリコール酸共重合体から選択される少なくとも一種のポリマー(P)とを含む微粒子を形成する工程とを備え、
 前記微粒子を形成する前記工程は、前記ポリイオンコンプレックスと、前記ポリマー(P)とを有機溶媒中で混合する工程と、
 混合後の前記ポリイオンコンプレックスと前記ポリマー(P)とを含む有機溶媒を、エマルション同士の結合を防ぐ分散剤が溶解した水溶液に加えてo/wエマルションを形成する工程と、
 前記o/wエマルションを含む水溶液中の有機溶媒を除去する工程とを含む、微粒子の製造方法。
A step of forming a polyion complex by ionically bonding an ionic active substance with an ionic polymer;
forming microparticles containing the polyion complex and at least one polymer (P) selected from polylactic acid and lactic acid-glycolic acid copolymer;
The step of forming the fine particles includes a step of mixing the polyion complex and the polymer (P) in an organic solvent;
a step of adding the organic solvent containing the mixed polyion complex and the polymer (P) to an aqueous solution in which a dispersant for preventing the emulsions from bonding is dissolved to form an oil-in-water emulsion;
and removing the organic solvent in the aqueous solution containing the o/w emulsion.
 前記活性物質が、分子量1000以上のタンパク質である、請求項1に記載の微粒子の製造方法。 The method for producing microparticles according to claim 1, wherein the active substance is a protein having a molecular weight of 1000 or more.  前記活性物質が、分子量1000以上の核酸である、請求項1に記載の微粒子の製造方法。 The method for producing microparticles according to claim 1, wherein the active substance is a nucleic acid having a molecular weight of 1000 or more.  前記活性物質がカチオン性であり、前記イオン性ポリマーがアニオン性ポリマーである、請求項1に記載の微粒子の製造方法。 The method for producing microparticles according to claim 1, wherein the active substance is cationic and the ionic polymer is an anionic polymer.  前記アニオン性ポリマーが、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリビニル硫酸、ポリビニルホスホン酸及びこれらの少なくとも一種を含む共重合体、並びに、ポリグルタミン酸、ポリアスパラギン酸、アルギン酸、ヒアルロン酸、ヘパリン、コンドロイチン硫酸、及びデキストラン硫酸からなる群より選択される少なくとも一種を含む、請求項4に記載の微粒子の製造方法。 The method for producing microparticles according to claim 4, wherein the anionic polymer comprises at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfate, polyvinyl phosphonic acid, and copolymers containing at least one of these, as well as polyglutamic acid, polyaspartic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and dextran sulfate.  前記活性物質がアニオン性であり、前記イオン性ポリマーがカチオン性ポリマーである、請求項1に記載の微粒子の製造方法。 The method for producing microparticles according to claim 1, wherein the active substance is anionic and the ionic polymer is a cationic polymer.  前記カチオン性ポリマーが、ポリビニルアミン、ポリアリルアミン、ポリビニルピリジン及びこれらの少なくとも一種を含む共重合体、並びに、ポリリシン、ポリアルギニン、ポリヒスチジン、ポリトリプトファン、ポリエチレンイミン及びキトサンからなる群より選択される少なくとも一種を含む、請求項6に記載の微粒子の製造方法。 The method for producing microparticles according to claim 6, wherein the cationic polymer comprises at least one selected from the group consisting of polyvinylamine, polyallylamine, polyvinylpyridine, and a copolymer containing at least one of these, as well as polylysine, polyarginine, polyhistidine, polytryptophan, polyethyleneimine, and chitosan.  ポリ乳酸及び乳酸-グリコール酸共重合体から選択される少なくとも一種のポリマー(P)と、ポリイオンコンプレックスとを含み、
 前記ポリイオンコンプレックスは、イオン性の活性物質と、前記活性物質にイオン結合したイオン性ポリマーとを含む、微粒子。
The composition comprises at least one polymer (P) selected from polylactic acid and a lactic acid-glycolic acid copolymer, and a polyion complex;
The polyion complex is a microparticle comprising an ionic active substance and an ionic polymer ionically bonded to the active substance.
PCT/JP2024/032079 2023-09-11 2024-09-06 Method for producing fine particles, and fine particles WO2025057883A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023146876 2023-09-11
JP2023-146876 2023-09-11

Publications (1)

Publication Number Publication Date
WO2025057883A1 true WO2025057883A1 (en) 2025-03-20

Family

ID=95021319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/032079 WO2025057883A1 (en) 2023-09-11 2024-09-06 Method for producing fine particles, and fine particles

Country Status (1)

Country Link
WO (1) WO2025057883A1 (en)

Similar Documents

Publication Publication Date Title
EP0752245B1 (en) Biocompatible and biodegradable nanoparticles designed for proteinaceous drugs absorption and delivery
US11554101B2 (en) Process for encapsulating soluble biologics, therapeutics, and imaging agents
JP6408469B2 (en) Hyaluronic acid based drug delivery system
US11103461B2 (en) Process for encapsulating soluble biologics, therapeutics, and imaging agents
US20130302429A1 (en) Method for encapsulating particles
WO2009020334A2 (en) Porous polymer particles immobilized with charged molecules and method for preparing the same
US20180250231A1 (en) Polymeric microspheres with spontaneous pore-closing functionality and methods for preparign the same
Demina et al. Chitosan‐g‐Polyester Microspheres: Effect of Length and Composition of Grafted Chains
CN107412193A (en) Nano hybridization pharmaceutical carrier and its preparation method prepared by the Pickering emulsion template methods using magadiite as emulsifying agent
WO2025057883A1 (en) Method for producing fine particles, and fine particles
CN1203119C (en) A kind of preparation method of ion-crosslinked chitosan microspheres
Chatterjee et al. Synthesis and characterization of chitosan droplet particles by ionic gelation and phase coacervation
Neves et al. Controlling the diffusion of small molecules from matrices processed by all-aqueous methodologies: towards the development of green pharmaceutical products
JP2008137975A (en) Sustained-release preparation of hardly water-soluble substance
Rios et al. Prolonged release of bioactive model proteins from anionic microgels fabricated with a new microemulsion approach
US20060188573A1 (en) Composite materials and particles
JP5217070B2 (en) Encapsulation of active substances by coacervation of polymers in non-chlorinated organic solvents
JP5375324B2 (en) Method for producing polymer fine particles
JP2002506901A (en) Production of fine particles
JP2010065067A (en) Particle, method for manufacturing the same and gel
JP2003504171A (en) Preparation of multi-wall polymer microcapsules from hydrophilic polymers
Sun et al. Application of the biodegradable diblock copolymer poly (L‐lactide)‐block‐poly (L‐cysteine): Drug delivery and protein conjugation
JPH05294839A (en) Microscopic sphere of polymer containing cisplatin and decomposable and absorbable in vivo and its production
AU2005267536A1 (en) Injectable microspheres from unsaturated functionalized polyhydric alcohol esters
KR20230113280A (en) Sustained release formulation using non-aqueous membrane emulsification method