[go: up one dir, main page]

WO2025057415A1 - Electronic apparatus and inverter device - Google Patents

Electronic apparatus and inverter device Download PDF

Info

Publication number
WO2025057415A1
WO2025057415A1 PCT/JP2023/033755 JP2023033755W WO2025057415A1 WO 2025057415 A1 WO2025057415 A1 WO 2025057415A1 JP 2023033755 W JP2023033755 W JP 2023033755W WO 2025057415 A1 WO2025057415 A1 WO 2025057415A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
electrode bus
power
input
electrode
Prior art date
Application number
PCT/JP2023/033755
Other languages
French (fr)
Japanese (ja)
Inventor
全寿 中村
圭太 矢代
Original Assignee
株式会社デンソーテン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソーテン filed Critical 株式会社デンソーテン
Priority to PCT/JP2023/033755 priority Critical patent/WO2025057415A1/en
Publication of WO2025057415A1 publication Critical patent/WO2025057415A1/en

Links

Images

Definitions

  • the present invention relates to electronic devices and inverter devices.
  • An inverter device has been proposed in which multiple capacitors are mounted in a row on the upper board of two vertically arranged boards, and multiple power elements are mounted in a row on the lower board (see Patent Document 1).
  • a bus bar arranged near the center of the lower board is electrically connected to the copper foil pattern on the upper board.
  • power is supplied from the edge of the lower board to the power element mounted in the center of the lower board, power is supplied to the power element arranged in the center of the lower board via the copper foil pattern.
  • the upper board When power is supplied to the power elements via the copper foil pattern on the upper board, the upper board can be heated by the current flowing through the copper foil pattern, which can adversely affect heat-sensitive electronic components such as capacitors placed on the upper board.
  • One aspect of the disclosed technology aims to provide electronic devices and inverter devices that can form complex conductive paths on a substrate using bus bars.
  • This electronic device has a substrate on which a number of electronic components are mounted in a row, and a first electrode bus bar and a second electrode bus bar arranged in sequence and spaced apart on the substrate, and each of the first electrode bus bar and the second electrode bus bar has two conductor plates parallel to each other, a connection conductor plate electrically connecting the two conductor plates, and an input electrode supplying power to the two conductor plates.
  • Each of the conductor plates is disposed adjacent to the electronic components and electrically connected to the electronic components, and the connection conductor plate of the first electrode bus bar is disposed so as to overlap the connection conductor plate of the second electrode bus bar.
  • the disclosed technology makes it possible to provide electronic devices that can form complex conductive paths on a substrate using bus bars.
  • FIG. 1 is a perspective view illustrating an example of the appearance of an inverter device according to an embodiment.
  • FIG. 2 is a diagram illustrating an inverter circuit of the inverter device according to the embodiment.
  • FIG. 3 is a top view illustrating a state in which a control board is removed in the inverter circuit.
  • FIG. 4 is a side view illustrating a state in which a control board is removed in the inverter circuit.
  • FIG. 5 is a top view illustrating a state in which a control board and a capacitor board are removed in the inverter circuit.
  • FIG. 6A is a first diagram illustrating an example of an input electrode bus bar.
  • FIG. 6B is a second diagram illustrating an example of an input electrode bus bar.
  • FIG. 7A is a third diagram illustrating an example of an input electrode bus bar.
  • FIG. 7B is a fourth diagram illustrating an example of an input electrode bus bar.
  • FIG. 8A is a first diagram illustrating an arrangement of input electrodes in an inverter circuit.
  • FIG. 8B is a second diagram illustrating the arrangement of input electrodes in the inverter circuit.
  • FIG. 9 is a diagram showing a schematic diagram of a flow of a current input from an input electrode.
  • FIG. 10 is a diagram illustrating an arrangement of the extension portion, the output electrode bus bar, and the power element in the embodiment.
  • FIG. 11A is a first diagram illustrating variations in the shape of the extension portion as viewed in the Z direction.
  • FIG. 11B is a second diagram illustrating variations in the shape of the extension portion as viewed in the Z direction.
  • FIG. 1 is a perspective view showing an example of the appearance of an inverter device 100 according to an embodiment.
  • the inverter device 100 includes a housing 11, a heat sink 12, and a lid 13.
  • the housing 11 is attached to the lid 13 by engaging claws 111, 112, and 113 formed on the housing 11 with claws 136, 137, and 138 formed on the lid 13.
  • the heat sink 12 is arranged so as to be in thermal contact with the board housed in the housing 11 in order to dissipate heat generated by the board and various electronic components housed in the housing 11.
  • a connection terminal 15 for connecting an external device such as a computer is provided on the outer surface of the housing 11.
  • FIG. 1 is a perspective view showing an example of the appearance of an inverter device 100 according to an embodiment.
  • the inverter device 100 includes a housing 11, a heat sink 12, and a lid 13.
  • the housing 11 is attached to the lid 13 by engaging claws 111, 112, and 113 formed on the housing 11 with claws 136,
  • the direction from the heat sink 12 toward the lid 13 is the +Y direction
  • the direction from the input electrode 421 toward the input electrode 411 is the +X direction
  • the direction perpendicular to the X direction and the Y direction and from the output electrode 521 toward the breathing valve 14 is the +Z direction.
  • the +Y direction is the upward direction
  • the opposite direction is the downward direction.
  • the lid 13 is formed with through holes 131, 132, 133, 134, and 135 that penetrate the lid 13 in the thickness direction.
  • An input electrode 411 is provided in the through hole 131 so as to protrude from the lid 13.
  • An input electrode 421 is provided in the through hole 132 so as to protrude from the lid 13.
  • An input terminal 412 is provided in the input electrode 411, and an input terminal 422 is provided in the input electrode 421.
  • the input terminals 412 and 422 are, for example, screw holes.
  • An output electrode 511 is provided in the through hole 133 so as to protrude from the lid 13.
  • An output electrode 521 is provided in the through hole 134 so as to protrude from the lid 13.
  • An output electrode 531 is provided in the through hole 135 so as to protrude from the lid 13.
  • the inverter device 100 converts the DC power input via the input electrodes 411 and 421 into three-phase AC power in an inverter circuit inside the inverter device 100, and outputs the converted three-phase AC power via output electrodes 511, 521, and 531.
  • positive DC power is input to the input electrode 411
  • negative DC power is input to the input electrode 421. That is, the positive terminal of the power supply is connected to the input terminal 412 of the input electrode 411, and the negative terminal of the power supply is connected to the input terminal 422 of the input electrode 421.
  • U-phase AC power is output from the output electrode 511
  • V-phase AC power is output from the output electrode 521
  • W-phase AC power is output from the output electrode 531.
  • the output electrode 511 is connected to the U-phase terminal of the motor
  • the output electrode 521 is connected to the V-phase terminal of the motor
  • the output electrode 531 is connected to the W-phase terminal.
  • the direction of the current flowing through the input electrodes 411, 421 and the output electrodes 511, 521, 531 changes depending on the switching state of the power element 40 (see FIG. 5).
  • the positive and negative terminals are examples of "power supply terminals.”
  • FIG. 2 is a diagram illustrating an inverter circuit 200 of an inverter device 100 according to an embodiment.
  • the inverter circuit 200 is housed in a main body formed by a housing 11, a heat sink 12, and a lid portion 13.
  • the inverter circuit 200 includes a control board 2, a capacitor board 3, and a power board 4.
  • the control board 2, the capacitor board 3, and the power board 4 are arranged in a row in the Y direction.
  • the control board 2 is a board on which a circuit is mounted that controls the conversion of DC power to AC power by the inverter device 100.
  • the control board 2 is mounted with a circuit that turns the power of the inverter device 100 on and off and a circuit that controls the start and end of the conversion of the DC power input from the input electrodes 411, 421 to AC power.
  • the capacitor board 3 is a board on which a plurality of capacitors 30 are arranged.
  • FIG. 3 is a top view illustrating the inverter circuit 200 with the control board 2 removed.
  • FIG. 4 is a side view illustrating the inverter circuit 200 with the control board 2 removed.
  • the capacitor board 3 is formed, for example, in a substantially rectangular plate shape when viewed in the Y direction. Recesses 31, 32, 33, 34, 35, and 36 are formed at positions corresponding to the input electrodes 411 and 421 and the output electrodes 511, 521, and 531 of the capacitor board 3, respectively.
  • the input electrodes 411 and 421 and the output electrodes 511, 521, and 531 protrude upward from the capacitor board 3 via the recesses 31, 32, 33, 34, 35, and 36.
  • the capacitor board 3 is fixed to the input electrode bus bars 41 and 42 by, for example, screws 91.
  • the capacitor board 3 is an example of an "upper board".
  • the power board 4 is a board on which multiple power elements 40 are arranged.
  • FIG. 5 is a top view illustrating the inverter circuit 200 with the control board 2 and capacitor board 3 removed.
  • the power board 4 is formed, for example, in the shape of a substantially rectangular plate when viewed in the Y direction.
  • the power board 4 is provided with input electrode bus bars 41, 42, output electrode bus bars 51, 52, 53, and multiple power elements 40.
  • the power elements 40 include, for example, switching elements with diodes connected in parallel.
  • the input electrode busbars 41, 42 are plate-shaped members that receive DC power input from the input electrodes 411, 421.
  • the input electrode busbars 41, 42 are formed of a conductor such as metal.
  • the input electrode busbars 41, 42 are fixed to the power board 4 by screws 92.
  • Figures 6A and 6B are diagrams showing an example of the input electrode busbar 41.
  • Figure 6A is a top view of the input electrode busbar 41
  • Figure 6B is a side view of the input electrode busbar 41.
  • the input electrode busbar 41 has extensions 413, 414 that are parallel to each other, and a connection portion 415 that connects the extensions 413 and 414.
  • the extensions 413, 414 are members that extend in the Z direction.
  • connection portion 415 is a member that extends in the X direction.
  • the connection portion 415 connects the end of the extension portion 413 in the +Z direction to the end of the extension portion 414 in the +Z direction, and the input electrode bus bar 41 is formed in a U-shape when viewed from above.
  • the extension portions 413 and 414 are formed with screw holes 418, for example, arranged in the Z direction, into which screws 92 for fixing the input electrode bus bar 41 to the power board 4 are inserted.
  • the extension portions 413 and 414 are formed with screw holes 419, for example, arranged in the Z direction, into which screws 91 for fixing the capacitor board 3 to the power board 4 are inserted.
  • the end of the input electrode 411 on the extension portion 413 side is formed with a reinforcing portion 417 for reinforcing the connection between the input electrode 411 and the extension portion 413. Since the input electrode bus bar 41 is formed of a conductor, the power input through the input electrode 411 is supplied to the extension portions 413 and 414 and the connection portion 415.
  • the input electrode 411 is erected so as to protrude upward from the end of the extension 413 in the +Z direction.
  • the connection portion 415 includes a thin portion 416A and a base portion 416B.
  • the base portion 416B is disposed on the extension 413 side of the connection portion 415.
  • the thin portion 416A is disposed on the extension 414 side of the connection portion 415.
  • the thin portion 416A is formed to be thinner in the Y direction than the base portion 416B.
  • the extensions 413 and 414 are formed in a trapezoidal shape when viewed in the Z direction, and the width W1 of the upper base is larger than the width W2 of the lower base.
  • the width W1 of the upper base is determined so that the distance between the screw hole 418 and the ends 413A and 414A of the extensions 413 and 414 is a predetermined distance that ensures the rigidity of the input electrode busbar 41. That is, the opening of the screw hole 418 on the surface (top surface) opposite to the surface (bottom surface) of the input electrode bus bar 41 facing the power board 4 is formed smaller than the width W1 of the upper bottom. Also, the opening of the screw hole 418 on the surface of the input electrode bus bar 41 facing the power board 4 is formed smaller than the width W2 of the lower bottom. As can be understood by referring to FIG.
  • connection portion 415 is disposed in an area of the power board 4 where the power element 40 is not disposed (an area different from the power element 40). In other words, the connection portion 415 is disposed in an area of the power board 4 that does not overlap with the power element 40 in the Y direction.
  • FIG. 7A and 7B are diagrams showing an example of the input electrode busbar 42.
  • FIG. 7A is a top view of the input electrode busbar 42
  • FIG. 7B is a side view of the input electrode busbar 42.
  • the input electrode busbar 42 has extensions 423 and 424 parallel to each other, and a connection portion 425 connecting the extensions 423 and 424.
  • the extensions 423 and 424 are members extending in the Z direction.
  • the connection portion 425 is a member extending in the X direction.
  • the connection portion 425 connects one end of the extension 423 to one end of the extension 424, and the input electrode busbar 42 is formed in a U-shape when viewed from above.
  • the extensions 423 and 424 have screw holes 428, for example, two each, arranged side by side in the Z direction, into which screws 92 are inserted to fix the input electrode busbar 42 to the power board 4. Further, the extensions 423 and 424 have screw holes 429, into which screws 91 for fixing the capacitor board 3 to the power board 4 are inserted, formed side by side in the Z direction, for example.
  • a reinforcing portion 427 for reinforcing the connection between the input electrode 421 and the extension 423 is formed at the end of the input electrode 421 on the extension 423 side. Since the input electrode bus bar 42 is formed of a conductor, the power input via the input electrode 421 is supplied to the extensions 423 and 424 and the connection portion 425.
  • the height H3 of the extensions 413, 414, 423 and 424 is higher than the height H2 of the output electrode bus bars 51, 52 and 53, and the capacitor board 3 is supported by the extensions 413, 414, 423 and 424, so that a gap C1 (see FIG. 4 ) that ensures an insulation distance is formed between the capacitor board 3 and the output electrode bus bars 51, 52 and 53.
  • the extensions 413, 414, 423, and 424, which are formed higher than the output electrode bus bars 51, 52, and 53, are an example of a "substrate support portion.”
  • the input electrode 421 is erected so as to protrude upward from the end of the extension 423 in the +Z direction.
  • the connection portion 425 includes a thin portion 426A and a base portion 426B.
  • the base portion 426B is disposed on the extension 423 side of the connection portion 425.
  • the thin portion 426A is disposed on the extension 424 side of the connection portion 425.
  • the thin portion 426A is formed to be thinner in the Y direction than the base portion 426B.
  • the extensions 423 and 424 are formed in a trapezoidal shape when viewed in the Z direction, and the width W1 of the upper base is larger than the width W2 of the lower base.
  • the width W1 of the upper base is determined so that the distance between the screw hole 428 and the ends 423A and 424A of the extensions 423 and 424 is a predetermined distance that ensures the rigidity of the input electrode busbar 42. That is, the opening of the screw hole 428 on the surface (top surface) opposite to the surface (bottom surface) of the input electrode bus bar 42 facing the power board 4 is formed smaller than the width W1 of the upper bottom. Also, the opening of the screw hole 428 on the surface of the input electrode bus bar 42 facing the power board 4 is formed smaller than the width W2 of the lower bottom. As can be understood by referring to FIG.
  • connection portion 425 is disposed in an area of the power board 4 where the power element 40 is not disposed (an area different from the power element 40). In other words, the connection portion 425 is disposed in an area of the power board 4 where the power element 40 does not overlap with the power element 40 in the Y direction.
  • the input electrode bus bars 41 and 42 are examples of "input electrode bus bars”.
  • the extension portions 413, 414, 423, and 424 are examples of "conductor plates”.
  • connection portions 415 and 425 are examples of "connection conductor plates”.
  • the thin-walled portions 416A and 426A are examples of "first portions”. Base portions 416B and 426B are examples of the "second portion.”
  • FIGS. 8A and 8B are diagrams illustrating the arrangement of input electrodes 411, 421 in inverter circuit 200.
  • Input electrodes 411, 421 are arranged so that extensions 413, 414, 423, 434 are parallel to each other.
  • input electrodes 411, 421 are arranged so that thin-walled portions 416A, 426A are stacked vertically. Between thin-walled portions 416A and 426A, a gap C2 is formed that ensures an insulating distance. Therefore, input electrodes 411, 421 are insulated from each other even when thin-walled portions 416A, 426A are stacked vertically.
  • extension 424 is arranged between extensions 413 and 414, and extension 414 is arranged between extensions 423 and 424. That is, the extensions 413, 414 of the input electrode bus bar 41 and the extensions 423, 424 of the input electrode bus bar 42 are arranged alternately.
  • the output electrode busbars 51, 52, and 53 are plate-shaped members extending in the Z direction parallel to the extension 413.
  • the output electrode busbars 51, 52, and 53 are formed of a conductor such as metal.
  • the output electrode busbar 51 is disposed between the extensions 413 and 424.
  • An output electrode 511 is erected at the end of the output electrode busbar 51 in the -Z direction so as to protrude upward.
  • the output electrode busbar 52 is disposed between the extensions 424 and 414.
  • An output electrode 521 is erected at the end of the output electrode busbar 52 in the -Z direction so as to protrude upward.
  • the output electrode busbar 53 is disposed between the extensions 414 and 423.
  • An output electrode 531 is erected at the end of the output electrode busbar 53 in the -Z direction so as to protrude upward.
  • the electrode groups D1, D2, D3, D4, D5, and D6, in which the power elements 40 are arranged in a row in the Z direction, are arranged so as to be parallel to each other.
  • the electrode groups D1, D2, D3, D4, D5, and D6 are used as switching elements for the upper and lower arms of each phase of the three-phase AC output by the inverter device 100.
  • the electrode group D1 is arranged between the extension 413 and the output electrode bus bar 51.
  • the power elements 40 belonging to the electrode group D1 are electrically connected to the extension 413 and the output electrode bus bar 51. It can be said that the extension 413 is arranged adjacent to the electrode group D1.
  • the electrode group D2 is arranged between the output electrode bus bar 51 and the extension 424.
  • the power elements 40 belonging to the electrode group D2 are electrically connected to the output electrode bus bar 51 and the extension 424. It can be said that the extension 424 is arranged adjacent to the electrode group D2.
  • the electrode group D3 is disposed between the extension 424 and the output electrode bus bar 52.
  • the power elements 40 belonging to the electrode group D3 are electrically connected to the extension 424 and the output electrode bus bar 52. It can be said that the extension 424 is disposed adjacent to the electrode group D3.
  • the electrode group D4 is disposed between the output electrode bus bar 52 and the extension 414.
  • the power elements 40 belonging to the electrode group D4 are electrically connected to the output electrode bus bar 52 and the extension 414. It can be said that the extension 414 is disposed adjacent to the electrode group D4.
  • the electrode group D5 is disposed between the extension 414 and the output electrode bus bar 53.
  • the power elements 40 belonging to the electrode group D5 are electrically connected to the extension 414 and the output electrode bus bar 53. It can be said that the extension 414 is disposed adjacent to the electrode group D5.
  • the electrode group D6 is disposed between the output electrode bus bar 53 and the extension 423.
  • the power elements 40 belonging to electrode group D6 are electrically connected to the output electrode bus bar 53 and the extension portion 423.
  • the extension portion 423 can be said to be disposed adjacent to electrode group D6.
  • output electrode busbar 51 including output electrode 531 that outputs the U phase is arranged sandwiched between electrode group D1 that forms the upper arm of the U phase and electrode group D2 that forms the lower arm of the U phase.
  • Output electrode busbar 52 including output electrode 521 that outputs the V phase is arranged sandwiched between electrode group D4 that forms the upper arm of the V phase and electrode group D3 that forms the lower arm of the V phase.
  • Output electrode busbar 53 including output electrode 531 that outputs the W layer is arranged sandwiched between electrode group D5 that forms the upper arm of the W layer and electrode group D6 that forms the lower arm of the W layer.
  • FIG. 9 is a diagram showing the flow of current input from the input electrode 411.
  • the flow of current input from the input electrode 411 to the output electrode 531 is shown by arrows A1, A2, and A3.
  • the current input from the input electrode 411 is input to each of the power elements 40, 40, and 40 via the connection portion 415 and the extension portion 414.
  • the current input to each of the power elements 40, 40, and 40 flows into the output electrode bus bar 51.
  • the current that flows into the output electrode bus bar 51 is output from the output electrode 531.
  • the input electrode 411 and the output electrode 531 are arranged opposite to each other on the power board 4, so that the distance of the current path between the input electrode 411 and the output electrode 531 passing through the power elements 40, 40, and 40 is averaged. Therefore, the current flowing through the power elements 40, 40, and 40 is also averaged, which in turn improves the reliability of the power elements 40, 40, and 40. Note that in FIG. 9, the current path that is input from the input electrode 411 and flows to the output electrode 531 is described, but the same applies to the current paths for other combinations of input electrodes and output electrodes.
  • FIG. 10 is a diagram showing a schematic arrangement of the extension 413, the output electrode busbar 51, and the power element 40 in the embodiment.
  • FIG. 10 illustrates the arrangement of the extension 413, the output electrode busbar 51, and the power element 40 as viewed from the side.
  • FIG. 10 also illustrates by dotted lines the screw hole 418 formed in the extension 413 of the input electrode busbar 41, the screw 92 inserted into the screw hole, and the insulating washer 93.
  • the screw hole 418 is formed with a wider diameter at the top, and receives the screw head of the screw 92.
  • the screw hole 418 is also formed with a narrower diameter at the bottom, and the threaded portion of the screw 92 is inserted into it.
  • the screw hole 418 is formed in a staircase shape when viewed in the Z direction.
  • the insulating washer 93 is a washer formed of an insulator.
  • the screw 92 is inserted into the screw hole 418 while being inserted into the insulating washer 93. That is, an insulating washer 93 is placed between the screw 92 and the screw hole 418, and the screw 92 and the screw hole 418 do not come into contact with each other. Therefore, the screw 92 and the screw hole 418 are insulated from each other.
  • the screw 92 penetrates the power board 4 in the thickness direction and reaches the heat sink 12, fixing the power board 4 and the heat sink 12 together.
  • the screw hole 418 is an example of a "step-shaped through hole.”
  • the output electrode busbar 51 is also formed in a trapezoidal shape when viewed in the Z direction, similar to the extension portion 413, and the width W3 of the upper base is larger than the width W4 of the lower base.
  • the height H2 of the output electrode busbar 51 is larger than the height H1 of the power element 40.
  • the power element 40 can be arranged so as to slip under the -X direction end 413A of the extension 413, and can also be arranged so as to slip under the +X direction end 51A of the output electrode busbar 51.
  • the power element 40 is arranged so that a partial area of the power element 40 overlaps with the extension 413 and the output electrode busbar 51 when viewed in the Y direction. As a result, the mounting density of the extension 413, power element 40, and output electrode busbar 51 can be increased.
  • the input electrode bus bars 41, 42 and the power board 4 are fixed together with the screws 92 inserted into the screw holes 418, 428, and then the positive terminal of the power supply is connected to the input terminal 412 and the negative terminal of the power supply is connected to the input terminal 422.
  • the input electrode bus bars 41, 42 arranged on the power board 4 have extensions 413, 414 and extensions 423, 424 that are parallel to each other.
  • the extension 424 is arranged between the extensions 413 and 414, and the extension 414 is arranged between the extensions 423 and 424.
  • the input electrode bus bars 41, 42 are arranged so that the thin portions 416A, 426A of the connection portions 415, 425 overlap each other.
  • the input electrode bus bars 41, 42 By arranging the input electrode bus bars 41, 42 in this manner, for example, even to the power element 40 arranged near the center of the power board 4, power can be supplied from the input electrodes 411, 421 via the connection portions 415, 425 and the extensions 414, 424 without the need to use copper foil to pass through another board such as the capacitor board 3.
  • the power supply path to the power element 40 can be formed by the power board 4, and power can be supplied through a conductive path with low electrical resistance. Therefore, the influence of heat on the capacitor board 3 and the capacitor 30 can be suppressed compared to the case where power is supplied to the power element 40 via the capacitor board 3 using copper foil.
  • the thin-walled portions 416A, 426A that are stacked in the Y direction are formed thinner than the base portions 416B, 426B. Therefore, according to this embodiment, the increase in the height direction (Y direction) of the inverter device 100 can be suppressed.
  • a gap C2 is formed between the thin-walled portions 416A, 426A, so that the input electrode bus bars 41, 42 can be insulated from each other without using an insulating spacer or the like.
  • a plurality of power elements 40 are arranged between the extensions 413, 423, 414, 424 in parallel with the extensions 413, 423, 414, 424, and the output electrode bus bars 51, 52, 53 are arranged in parallel with the extensions 413, 423, 414, 424.
  • the input electrodes 411, 421 and the output electrodes 511, 521, 531 are arranged to sandwich the power elements 40 in the direction in which the power elements 40 are arranged.
  • connection parts 415, 425 of the input electrode bus bars 41, 42 are arranged in an area of the power board 4 that is different from the area in which the power elements 40 are arranged.
  • the capacitor substrate 3 is supported by the extensions 413, 414, 423, and 424 of the input electrodes 411 and 421 so that a gap C1 is formed between the output electrode bus bars 51, 52, and 53 and the capacitor substrate 3.
  • the gap C1 By forming the gap C1, the capacitor substrate 3 and the output electrode bus bars 51, 52, and 53 can be insulated from each other without using an insulating spacer or the like.
  • the width W1 of the upper base of the input electrode busbars 41, 42 is made larger than the width W2 of the lower base.
  • the width W2 of the lower base of the input electrode busbars 41, 42 is made narrower than the width W1 of the upper base. Therefore, the area in which the power elements 40 are mounted between the extensions 413, 423, 414, 424 can be expanded as much as possible, and thus the mounting density of the power elements 40 can be increased as much as possible.
  • the power element 40 is arranged so that a portion of the power element 40 overlaps with the extension portion 413 when viewed in the Y direction. As a result, this embodiment makes it possible to increase the mounting density of the power element 40.
  • the width W1 of the upper base is determined so that the distance between the screw hole 418 and the ends 413A, 414A of the extensions 413, 414 is a predetermined distance that ensures the rigidity of the input electrode bus bar 41. Therefore, even if torque is generated by turning the screw 92 inserted into the screw hole 418, the rigidity against the torque can be ensured.
  • the screw 92 is inserted into the screw hole 418 while being inserted into the insulating washer 93.
  • the insulating washer 93 is disposed between the screw 92 and the screw hole 418, and the screw 92 and the screw hole 418 do not come into contact with each other. Therefore, according to this embodiment, the screw 92 and the screw hole 418 can be insulated from each other.
  • screw holes 419, 429 for fixing the capacitor board 3 to the input electrode bus bars 41, 42 are formed in the extensions 413, 423. Therefore, according to this embodiment, the capacitor board 3 can be easily fixed to the power board 4.
  • FIG. 11 is a diagram illustrating a variation in the shape of the extension 413 when viewed in the Z direction.
  • a step portion 4132 is provided above a base portion 4131 formed in a trapezoidal shape.
  • the step portion 4132 is formed so that the extension 413 gradually expands in diameter toward the +Y direction.
  • an inclined surface 4133 is formed on the surface of the extension 413 facing the power element 40.
  • the inclined surface 4133 is formed so that the extension 413 gradually expands in diameter toward the +Y direction.
  • the extension 413 illustrated in FIG. 11A and FIG. 11B can also increase the mounting density of the power element 40 while ensuring the strength around the screw hole 428. The same is true for extensions 414, 423, and 424.
  • the inverter device 100 is not limited to this configuration.
  • the inverter device 100 may consolidate the boards that the inverter device 100 has into a single board by mounting the electronic components mounted on the control board 2 and the capacitor board 3 on the power board 4.
  • the extensions 413, 414, 423, 424 are formed so that the width W1 of the upper base is larger than the width W2 of the lower base, but the entire input electrode busbars 41, 42 may be formed so that the width W1 of the upper base is larger than the width W2 of the lower base in a cross-sectional view.
  • (Appendix 1) A substrate on which a plurality of electronic components are mounted in a row; a first electrode bus bar and a second electrode bus bar provided in sequence and spaced apart on the substrate;
  • the first electrode bus bar and the second electrode bus bar each have Two conductor plates parallel to each other, and a connecting conductor plate electrically connecting the two conductor plates; an input electrode for supplying power to the two conductor plates; each of the conductor plates is disposed adjacent to the electronic component and electrically connected to the electronic component; the connection conductor plate of the first electrode bus bar is arranged to overlap with the connection conductor plate of the second electrode bus bar.
  • the first electrode bus bar and the second electrode bus bar are input electrode bus bars, an output electrode bus bar including an output electrode is disposed between the conductor plates in parallel with the conductor plates; a plurality of power elements are arranged between the conductor plate and the output electrode bus bar in parallel with the conductor plate; the input electrode and the output electrode are arranged to sandwich the power element in the direction in which the power elements are arranged.
  • the electronic device of claim 1. Appendix 5) the connection conductor plate is disposed in a region of the substrate different from a region in which the power element is disposed. 5.
  • the electronic device according to claim 4. (Appendix 6) The power element is disposed between adjacent ones of the input electrode bus bar and the output electrode bus bar; 5.
  • the first input electrode bus bar and the second input electrode bus bar each have Two conductor plates parallel to each other, and a connecting conductor plate electrically connecting the two conductor plates; an input electrode for supplying power to the two conductor plates; the conductor plates are disposed adjacent to the electronic components and electrically connected to the electronic components, the connection conductor plate of the first input electrode bus bar is arranged to overlap the connection conductor plate of the second input electrode bus bar, the two conductor plates of the first input electrode bus bar and the two conductor plates of the second input electrode bus bar are arranged alternately in parallel, an output electrode bus bar including an output electrode is disposed between each of the conductive plates arranged alternately in parallel with the conductive plates; a plurality of power elements are arranged parallel to the conductor plate between each of the conductor plates and the output electrode bus bars; the input electrode

Landscapes

  • Inverter Devices (AREA)

Abstract

Provided is an electronic apparatus capable of forming, with busbars, a complex electroconductive path on a substrate. This electronic apparatus has: a substrate on which a plurality of electronic components are mounted in rows; and a first electrode busbar and a second electrode busbar that are provided in said order and spaced apart on the substrate. The first electrode busbar and the second electrode busbar each have: two conductor plates that are parallel to each other; a connection conductor plate that electrically connects the two conductor plates; and an input electrode that supplies power to the two conductor plates. Each of the conductor plates is disposed adjacent to the electronic components and electrically connected to the electronic components. The connection conductor plate of the first electrode busbar is disposed so as to overlap with the connection conductor plate of the second electrode busbar.

Description

電子機器及びインバータ装置Electronic equipment and inverter device

 本発明は、電子機器及びインバータ装置に関する。 The present invention relates to electronic devices and inverter devices.

 上下に配置された基板の上側の基板に複数のコンデンサを並べて実装し、下側の基板に複数のパワー素子を並べて実装したインバータ装置が提案されている(特許文献1参照)。特許文献1に記載のインバータ装置では、下側の基板の中央付近に配置されたバスバーと上側の基板の銅箔パターンとが電気的に接続される。下側の基板の中央に実装されたパワー素子に対して下側の基板の端部から給電する際には、当該銅箔パターンを介して下側の基板の中央に配置されたパワー素子に給電される。 An inverter device has been proposed in which multiple capacitors are mounted in a row on the upper board of two vertically arranged boards, and multiple power elements are mounted in a row on the lower board (see Patent Document 1). In the inverter device described in Patent Document 1, a bus bar arranged near the center of the lower board is electrically connected to the copper foil pattern on the upper board. When power is supplied from the edge of the lower board to the power element mounted in the center of the lower board, power is supplied to the power element arranged in the center of the lower board via the copper foil pattern.

特開2014-023181号公報JP 2014-023181 A

 上側の基板の銅箔パターンを介してパワー素子に給電する場合、銅箔パターンを電流が流れることで上側の基板が加熱され、上側の基板に配置されたコンデンサ等の熱に弱い電子部品に悪影響を与える虞がある。 When power is supplied to the power elements via the copper foil pattern on the upper board, the upper board can be heated by the current flowing through the copper foil pattern, which can adversely affect heat-sensitive electronic components such as capacitors placed on the upper board.

 開示の技術の1つの側面は、基板上の複雑な導電経路をバスバーで形成できる電子機器及びインバータ装置を提供することを目的とする。 One aspect of the disclosed technology aims to provide electronic devices and inverter devices that can form complex conductive paths on a substrate using bus bars.

 開示の技術の1つの側面は、次のような電子機器によって例示される。本電子機器は、複数の電子部品が列状に実装される基板と、上記基板上に順に離間して設けた、第1電極バスバー及び第2電極バスバーを有し、上記第1電極バスバー及び上記第2電極バスバーは、それぞれ、互いに平行な2つの導体板と、上記2つの導体板間を電気的に接続する接続導体板と、上記2つの導体板に電力を供給する入力電極を有する。上記導体板はそれぞれ、上記電子部品に隣接配置されて上記電子部品と電気的に接続され、上記第1電極バスバーの接続導体板は、上記第2電極バスバーの接続導体板と重なるように配置されている。 One aspect of the disclosed technology is exemplified by the following electronic device. This electronic device has a substrate on which a number of electronic components are mounted in a row, and a first electrode bus bar and a second electrode bus bar arranged in sequence and spaced apart on the substrate, and each of the first electrode bus bar and the second electrode bus bar has two conductor plates parallel to each other, a connection conductor plate electrically connecting the two conductor plates, and an input electrode supplying power to the two conductor plates. Each of the conductor plates is disposed adjacent to the electronic components and electrically connected to the electronic components, and the connection conductor plate of the first electrode bus bar is disposed so as to overlap the connection conductor plate of the second electrode bus bar.

 開示の技術によれば、基板上の複雑な導電経路をバスバーで形成できる電子機器を提供できる。 The disclosed technology makes it possible to provide electronic devices that can form complex conductive paths on a substrate using bus bars.

図1は、実施形態に係るインバータ装置の外観の一例を示す斜視図である。FIG. 1 is a perspective view illustrating an example of the appearance of an inverter device according to an embodiment. 図2は、実施形態に係るインバータ装置のインバータ回路を例示する図である。FIG. 2 is a diagram illustrating an inverter circuit of the inverter device according to the embodiment. 図3は、インバータ回路において制御基板を外した状態を例示する上面図である。FIG. 3 is a top view illustrating a state in which a control board is removed in the inverter circuit. 図4は、インバータ回路において制御基板を外した状態を例示する側面図である。FIG. 4 is a side view illustrating a state in which a control board is removed in the inverter circuit. 図5は、インバータ回路において制御基板及びコンデンサ基板を外した状態を例示する上面図である。FIG. 5 is a top view illustrating a state in which a control board and a capacitor board are removed in the inverter circuit. 図6Aは、入力電極バスバーの一例を示す第1の図である。FIG. 6A is a first diagram illustrating an example of an input electrode bus bar. 図6Bは、入力電極バスバーの一例を示す第2の図である。FIG. 6B is a second diagram illustrating an example of an input electrode bus bar. 図7Aは、入力電極バスバーの一例を示す第3の図である。FIG. 7A is a third diagram illustrating an example of an input electrode bus bar. 図7Bは、入力電極バスバーの一例を示す第4の図である。FIG. 7B is a fourth diagram illustrating an example of an input electrode bus bar. 図8Aは、インバータ回路における入力電極の配置を例示する第1の図である。FIG. 8A is a first diagram illustrating an arrangement of input electrodes in an inverter circuit. 図8Bは、インバータ回路における入力電極の配置を例示する第2の図である。FIG. 8B is a second diagram illustrating the arrangement of input electrodes in the inverter circuit. 図9は、入力電極から入力された電流の流れを模式的に示す図である。FIG. 9 is a diagram showing a schematic diagram of a flow of a current input from an input electrode. 図10は、実施形態における延長部、出力電極バスバー及びパワー素子の配置を模式的に示す図である。FIG. 10 is a diagram illustrating an arrangement of the extension portion, the output electrode bus bar, and the power element in the embodiment. 図11Aは、Z方向視した延長部の形状のバリエーションを例示する第1の図である。FIG. 11A is a first diagram illustrating variations in the shape of the extension portion as viewed in the Z direction. 図11Bは、Z方向視した延長部の形状のバリエーションを例示する第2の図である。FIG. 11B is a second diagram illustrating variations in the shape of the extension portion as viewed in the Z direction.

 <実施形態>
 以下、図面を参照して実施形態について説明する。図1は、実施形態に係るインバータ装置100の外観の一例を示す斜視図である。インバータ装置100は、筐体11、ヒートシンク12及び蓋部13を備える。筐体11は、筐体11に形成された爪部111、112、113と蓋部13に形成された爪部136、137、138の係合によって蓋部13に取り付けられる。ヒートシンク12は、筐体11に収容された基板及び各種電子部品で生じた熱を放熱するため、筐体11内に収容された基板と熱的に接触するように配置される。筐体11の外面には、コンピュータ等の外部装置を接続する接続端子15が設けられる。なお、図1において、ヒートシンク12から蓋部13に向かう方向を+Y方向、入力電極421から入力電極411に向かう方向を+X方向、X方向とY方向とに直交するとともに出力電極521から呼吸弁14に向かう方向を+Z方向とする。また、+Y方向を上方向、その逆方向を下方向とする。
<Embodiment>
Hereinafter, an embodiment will be described with reference to the drawings. FIG. 1 is a perspective view showing an example of the appearance of an inverter device 100 according to an embodiment. The inverter device 100 includes a housing 11, a heat sink 12, and a lid 13. The housing 11 is attached to the lid 13 by engaging claws 111, 112, and 113 formed on the housing 11 with claws 136, 137, and 138 formed on the lid 13. The heat sink 12 is arranged so as to be in thermal contact with the board housed in the housing 11 in order to dissipate heat generated by the board and various electronic components housed in the housing 11. A connection terminal 15 for connecting an external device such as a computer is provided on the outer surface of the housing 11. In FIG. 1, the direction from the heat sink 12 toward the lid 13 is the +Y direction, the direction from the input electrode 421 toward the input electrode 411 is the +X direction, and the direction perpendicular to the X direction and the Y direction and from the output electrode 521 toward the breathing valve 14 is the +Z direction. Moreover, the +Y direction is the upward direction, and the opposite direction is the downward direction.

 蓋部13には、その厚さ方向に貫通する貫通孔131、132、133、134、135が形成される。貫通孔131には入力電極411が蓋部13から突出するように設けられる。貫通孔132には入力電極421が蓋部13から突出するように設けられる。入力電極411には入力端子412が設けられ、入力電極421には入力端子422が設けられる。入力端子412、422は、例えば、ネジ穴である。入力端子412、422には、例えば、電源のネジ状に形成された端子が固定される。貫通孔133には出力電極511が蓋部13から突出するように設けられる。貫通孔134には出力電極521が蓋部13から突出するように設けられる。貫通孔135には出力電極531が蓋部13から突出するように設けられる。 The lid 13 is formed with through holes 131, 132, 133, 134, and 135 that penetrate the lid 13 in the thickness direction. An input electrode 411 is provided in the through hole 131 so as to protrude from the lid 13. An input electrode 421 is provided in the through hole 132 so as to protrude from the lid 13. An input terminal 412 is provided in the input electrode 411, and an input terminal 422 is provided in the input electrode 421. The input terminals 412 and 422 are, for example, screw holes. For example, a screw-shaped terminal of a power supply is fixed to the input terminals 412 and 422. An output electrode 511 is provided in the through hole 133 so as to protrude from the lid 13. An output electrode 521 is provided in the through hole 134 so as to protrude from the lid 13. An output electrode 531 is provided in the through hole 135 so as to protrude from the lid 13.

 インバータ装置100は、入力電極411、421を介して入力された直流電力をインバータ装置100内部のインバータ回路で三相交流電力に変換し、変換した三相交流電力を、出力電極511、521、531を介して出力する。インバータ装置100では、例えば、入力電極411に正の直流電力が入力され、入力電極421に負の直流電力が入力される。すなわち、入力電極411の入力端子412には電源の正極端子が接続され、入力電極421の入力端子422には電源の負極端子が接続される。また、インバータ装置100では、例えば、U相の交流電力が出力電極511から出力され、V相の交流電力が出力電極521から出力され、W相の交流電力が出力電極531から出力される。例えば、インバータ装置100がモータに接続される場合には、出力電極511がモータのU相の端子に接続され、出力電極521がモータのV相の端子に接続され、出力電極531がW相の端子に接続される。なお、入力電極411、421、出力電極511、521、531に流れる電流の方向は、パワー素子40(図5参照)のスイッチング状態に応じて切り替わる。正極端子及び負極端子は、「電源端子」の一例である。 The inverter device 100 converts the DC power input via the input electrodes 411 and 421 into three-phase AC power in an inverter circuit inside the inverter device 100, and outputs the converted three-phase AC power via output electrodes 511, 521, and 531. In the inverter device 100, for example, positive DC power is input to the input electrode 411, and negative DC power is input to the input electrode 421. That is, the positive terminal of the power supply is connected to the input terminal 412 of the input electrode 411, and the negative terminal of the power supply is connected to the input terminal 422 of the input electrode 421. In addition, in the inverter device 100, for example, U-phase AC power is output from the output electrode 511, V-phase AC power is output from the output electrode 521, and W-phase AC power is output from the output electrode 531. For example, when the inverter device 100 is connected to a motor, the output electrode 511 is connected to the U-phase terminal of the motor, the output electrode 521 is connected to the V-phase terminal of the motor, and the output electrode 531 is connected to the W-phase terminal. The direction of the current flowing through the input electrodes 411, 421 and the output electrodes 511, 521, 531 changes depending on the switching state of the power element 40 (see FIG. 5). The positive and negative terminals are examples of "power supply terminals."

 図2は、実施形態に係るインバータ装置100のインバータ回路200例示する図である。インバータ装置100においてインバータ回路200は、筐体11、ヒートシンク12及び蓋部13によって形成される本体内に収容される。インバータ回路200は、制御基板2、コンデンサ基板3及びパワー基板4を含む。制御基板2、コンデンサ基板3及びパワー基板4は、Y方向に一列に並んで配置される。 FIG. 2 is a diagram illustrating an inverter circuit 200 of an inverter device 100 according to an embodiment. In the inverter device 100, the inverter circuit 200 is housed in a main body formed by a housing 11, a heat sink 12, and a lid portion 13. The inverter circuit 200 includes a control board 2, a capacitor board 3, and a power board 4. The control board 2, the capacitor board 3, and the power board 4 are arranged in a row in the Y direction.

 制御基板2は、インバータ装置100による直流電力から交流電力への変換を制御する回路が実装された基板である。制御基板2には、例えば、インバータ装置100の電源をオン/オフする回路や入力電極411、421から入力される直流電力の交流電力への変換の開始、終了を制御する回路が実装される。 The control board 2 is a board on which a circuit is mounted that controls the conversion of DC power to AC power by the inverter device 100. For example, the control board 2 is mounted with a circuit that turns the power of the inverter device 100 on and off and a circuit that controls the start and end of the conversion of the DC power input from the input electrodes 411, 421 to AC power.

 コンデンサ基板3は、複数のコンデンサ30が配置される基板である。図3は、インバータ回路200において制御基板2を外した状態を例示する上面図である。また、図4は、インバータ回路200において制御基板2を外した状態を例示する側面図である。コンデンサ基板3は、例えば、Y方向視において略長方形の板状に形成される。コンデンサ基板3の入力電極411、421、出力電極511、521、531に対応する位置には、夫々凹部31、32、33、34、35、36が形成される。入力電極411、421、出力電極511、521、531は、凹部31、32、33、34、35、36を介して、コンデンサ基板3よりも上方に突出する。コンデンサ基板3は、例えば、ネジ91によって入力電極バスバー41、42に固定される。コンデンサ基板3は、「上方基板」の一例である。 The capacitor board 3 is a board on which a plurality of capacitors 30 are arranged. FIG. 3 is a top view illustrating the inverter circuit 200 with the control board 2 removed. FIG. 4 is a side view illustrating the inverter circuit 200 with the control board 2 removed. The capacitor board 3 is formed, for example, in a substantially rectangular plate shape when viewed in the Y direction. Recesses 31, 32, 33, 34, 35, and 36 are formed at positions corresponding to the input electrodes 411 and 421 and the output electrodes 511, 521, and 531 of the capacitor board 3, respectively. The input electrodes 411 and 421 and the output electrodes 511, 521, and 531 protrude upward from the capacitor board 3 via the recesses 31, 32, 33, 34, 35, and 36. The capacitor board 3 is fixed to the input electrode bus bars 41 and 42 by, for example, screws 91. The capacitor board 3 is an example of an "upper board".

 パワー基板4は、複数のパワー素子40が配置される基板である。図5は、インバータ回路200において制御基板2及びコンデンサ基板3を外した状態を例示する上面図である。パワー基板4は、例えば、Y方向視において略長方形の板状に形成される。パワー基板4には、入力電極バスバー41、42、出力電極バスバー51、52、53及び複数のパワー素子40が設けられる。パワー素子40は、例えば、ダイオードが並列接続されたスイッチング素子を含む。 The power board 4 is a board on which multiple power elements 40 are arranged. FIG. 5 is a top view illustrating the inverter circuit 200 with the control board 2 and capacitor board 3 removed. The power board 4 is formed, for example, in the shape of a substantially rectangular plate when viewed in the Y direction. The power board 4 is provided with input electrode bus bars 41, 42, output electrode bus bars 51, 52, 53, and multiple power elements 40. The power elements 40 include, for example, switching elements with diodes connected in parallel.

 入力電極バスバー41、42は、入力電極411、421からの直流電力の入力を受ける板状の部材である。入力電極バスバー41、42は、例えば、金属等の導体で形成される。入力電極バスバー41、42は、ネジ92によってパワー基板4に固定される。図6A及び図6Bは、入力電極バスバー41の一例を示す図である。図6Aは入力電極バスバー41の上面図であり、図6Bは入力電極バスバー41の側面図である。入力電極バスバー41は、互いに平行な延長部413、414、及び、延長部413と延長部414とを接続する接続部415を有する。延長部413、414は、Z方向に延在する部材である。接続部415は、X方向に延在する部材である。接続部415は、延長部413の+Z方向の端部と延長部414の+Z方向の端部とを接続し、入力電極バスバー41は上面視においてコの字形状に形成される。延長部413、414には、入力電極バスバー41をパワー基板4に固定するネジ92が挿入されるネジ穴418が、例えばZ方向に並んで2つずつ形成される。また、延長部413、414には、コンデンサ基板3をパワー基板4に固定するネジ91が挿入されるネジ穴419が、例えばZ方向に並んで形成される。入力電極411の延長部413側の端部には、入力電極411と延長部413の接続を補強する補強部417が形成される。入力電極バスバー41は導体で形成されるため、入力電極411を介して入力された電力は、延長部413、414及び接続部415に供給される。 The input electrode busbars 41, 42 are plate-shaped members that receive DC power input from the input electrodes 411, 421. The input electrode busbars 41, 42 are formed of a conductor such as metal. The input electrode busbars 41, 42 are fixed to the power board 4 by screws 92. Figures 6A and 6B are diagrams showing an example of the input electrode busbar 41. Figure 6A is a top view of the input electrode busbar 41, and Figure 6B is a side view of the input electrode busbar 41. The input electrode busbar 41 has extensions 413, 414 that are parallel to each other, and a connection portion 415 that connects the extensions 413 and 414. The extensions 413, 414 are members that extend in the Z direction. The connection portion 415 is a member that extends in the X direction. The connection portion 415 connects the end of the extension portion 413 in the +Z direction to the end of the extension portion 414 in the +Z direction, and the input electrode bus bar 41 is formed in a U-shape when viewed from above. The extension portions 413 and 414 are formed with screw holes 418, for example, arranged in the Z direction, into which screws 92 for fixing the input electrode bus bar 41 to the power board 4 are inserted. The extension portions 413 and 414 are formed with screw holes 419, for example, arranged in the Z direction, into which screws 91 for fixing the capacitor board 3 to the power board 4 are inserted. The end of the input electrode 411 on the extension portion 413 side is formed with a reinforcing portion 417 for reinforcing the connection between the input electrode 411 and the extension portion 413. Since the input electrode bus bar 41 is formed of a conductor, the power input through the input electrode 411 is supplied to the extension portions 413 and 414 and the connection portion 415.

 延長部413の+Z方向の端部には、入力電極411が上方向に突出するように立設される。接続部415は、薄肉部416A及び基礎部416Bを含む。基礎部416Bは、接続部415のうち延長部413側に配置される。また、薄肉部416Aは、接続部415のうち延長部414側に配置される。薄肉部416Aは、基礎部416BよりもY方向の厚さが薄く形成される。また、図6Bを参照すると理解できるように、延長部413、414は、Z方向視において台形に形成されており、下底の幅W2よりも上底の幅W1の方が大きく形成される。上底の幅W1は、ネジ穴418と延長部413、414の端部413A、414Aまでの距離が、入力電極バスバー41の剛性を確保できる所定距離確保できるように決定される。すなわち、入力電極バスバー41のパワー基板4に向けられた面(底面)とは反対側の面(上面)におけるネジ穴418の開口部は、上底の幅W1よりも小さく形成される。また、入力電極バスバー41のパワー基板4に向けられた面におけるネジ穴418の開口部は、下底の幅W2よりも小さく形成される。図5を参照すると理解できるように、接続部415は、パワー基板4においてパワー素子40が配置されていない領域(パワー素子40とは異なる領域)に配置される。換言すれば、接続部415は、パワー基板4において、パワー素子40とY方向に重ならない領域に配置される。 The input electrode 411 is erected so as to protrude upward from the end of the extension 413 in the +Z direction. The connection portion 415 includes a thin portion 416A and a base portion 416B. The base portion 416B is disposed on the extension 413 side of the connection portion 415. The thin portion 416A is disposed on the extension 414 side of the connection portion 415. The thin portion 416A is formed to be thinner in the Y direction than the base portion 416B. As can be seen from FIG. 6B, the extensions 413 and 414 are formed in a trapezoidal shape when viewed in the Z direction, and the width W1 of the upper base is larger than the width W2 of the lower base. The width W1 of the upper base is determined so that the distance between the screw hole 418 and the ends 413A and 414A of the extensions 413 and 414 is a predetermined distance that ensures the rigidity of the input electrode busbar 41. That is, the opening of the screw hole 418 on the surface (top surface) opposite to the surface (bottom surface) of the input electrode bus bar 41 facing the power board 4 is formed smaller than the width W1 of the upper bottom. Also, the opening of the screw hole 418 on the surface of the input electrode bus bar 41 facing the power board 4 is formed smaller than the width W2 of the lower bottom. As can be understood by referring to FIG. 5, the connection portion 415 is disposed in an area of the power board 4 where the power element 40 is not disposed (an area different from the power element 40). In other words, the connection portion 415 is disposed in an area of the power board 4 that does not overlap with the power element 40 in the Y direction.

 図7A及び図7Bは、入力電極バスバー42の一例を示す図である。図7Aは入力電極バスバー42の上面図であり、図7Bは入力電極バスバー42の側面図である。入力電極バスバー42は、互いに平行な延長部423、424、及び、延長部423と延長部424とを接続する接続部425を有する。延長部423、424は、Z方向に延在する部材である。接続部425は、X方向に延在する部材である。接続部425は、延長部423の一方の端部と延長部424の一方の端部とを接続し、入力電極バスバー42は上面視においてコの字形状に形成される。延長部423、424には、入力電極バスバー42をパワー基板4に固定するネジ92が挿入されるネジ穴428が、例えばZ方向に並んで2つずつ形成される。また、延長部423、424には、コンデンサ基板3をパワー基板4に固定するネジ91が挿入されるネジ穴429が、例えばZ方向に並んで形成される。入力電極421の延長部423側の端部には、入力電極421と延長部423の接続を補強する補強部427が形成される。入力電極バスバー42は導体で形成されるため、入力電極421を介して入力された電力は、延長部423、424及び接続部425に供給される。延長部413、414、423、424の高さH3は、出力電極バスバー51、52、53の高さH2よりも高く、延長部413、414、423、424によってコンデンサ基板3が支持されることで、コンデンサ基板3と出力電極バスバー51、52、53との間に絶縁距離を確保した隙間C1(図4参照)が形成される。出力電極バスバー51、52、53よりも高く形成される延長部413、414、423、424は、「基板支持部」の一例である。 7A and 7B are diagrams showing an example of the input electrode busbar 42. FIG. 7A is a top view of the input electrode busbar 42, and FIG. 7B is a side view of the input electrode busbar 42. The input electrode busbar 42 has extensions 423 and 424 parallel to each other, and a connection portion 425 connecting the extensions 423 and 424. The extensions 423 and 424 are members extending in the Z direction. The connection portion 425 is a member extending in the X direction. The connection portion 425 connects one end of the extension 423 to one end of the extension 424, and the input electrode busbar 42 is formed in a U-shape when viewed from above. The extensions 423 and 424 have screw holes 428, for example, two each, arranged side by side in the Z direction, into which screws 92 are inserted to fix the input electrode busbar 42 to the power board 4. Further, the extensions 423 and 424 have screw holes 429, into which screws 91 for fixing the capacitor board 3 to the power board 4 are inserted, formed side by side in the Z direction, for example. A reinforcing portion 427 for reinforcing the connection between the input electrode 421 and the extension 423 is formed at the end of the input electrode 421 on the extension 423 side. Since the input electrode bus bar 42 is formed of a conductor, the power input via the input electrode 421 is supplied to the extensions 423 and 424 and the connection portion 425. The height H3 of the extensions 413, 414, 423 and 424 is higher than the height H2 of the output electrode bus bars 51, 52 and 53, and the capacitor board 3 is supported by the extensions 413, 414, 423 and 424, so that a gap C1 (see FIG. 4 ) that ensures an insulation distance is formed between the capacitor board 3 and the output electrode bus bars 51, 52 and 53. The extensions 413, 414, 423, and 424, which are formed higher than the output electrode bus bars 51, 52, and 53, are an example of a "substrate support portion."

 延長部423の+Z方向の端部には、入力電極421が上方向に突出するように立設される。接続部425は、薄肉部426A及び基礎部426Bを含む。基礎部426Bは、接続部425のうち延長部423側に配置される。また、薄肉部426Aは、接続部425のうち延長部424側に配置される。薄肉部426Aは、基礎部426BよりもY方向の厚さが薄く形成される。また、図7Bを参照すると理解できるように、延長部423、424は、Z方向視において台形に形成されており、下底の幅W2よりも上底の幅W1の方が大きく形成される。上底の幅W1は、ネジ穴428と延長部423、424の端部423A、424Aまでの距離が、入力電極バスバー42の剛性を確保できる所定距離確保できるように決定される。すなわち、入力電極バスバー42のパワー基板4に向けられた面(底面)とは反対側の面(上面)におけるネジ穴428の開口部は、上底の幅W1よりも小さく形成される。また、入力電極バスバー42のパワー基板4に向けられた面におけるネジ穴428の開口部は、下底の幅W2よりも小さく形成される。図5を参照すると理解できるように、接続部425は、パワー基板4においてパワー素子40が配置されていない領域(パワー素子40とは異なる領域)に配置される。換言すれば、接続部425は、パワー基板4において、パワー素子40とY方向に重ならない領域に配置される。入力電極バスバー41、42は、「入力電極バスバー」の一例である。延長部413、414、423、424は、「導体板」の一例である。接続部415、425は、「接続導体板」の一例である。薄肉部416A、426Aは、「第1の部分」の一例である。基礎部416B、426Bは、「第2の部分」の一例である。 The input electrode 421 is erected so as to protrude upward from the end of the extension 423 in the +Z direction. The connection portion 425 includes a thin portion 426A and a base portion 426B. The base portion 426B is disposed on the extension 423 side of the connection portion 425. The thin portion 426A is disposed on the extension 424 side of the connection portion 425. The thin portion 426A is formed to be thinner in the Y direction than the base portion 426B. As can be seen from FIG. 7B, the extensions 423 and 424 are formed in a trapezoidal shape when viewed in the Z direction, and the width W1 of the upper base is larger than the width W2 of the lower base. The width W1 of the upper base is determined so that the distance between the screw hole 428 and the ends 423A and 424A of the extensions 423 and 424 is a predetermined distance that ensures the rigidity of the input electrode busbar 42. That is, the opening of the screw hole 428 on the surface (top surface) opposite to the surface (bottom surface) of the input electrode bus bar 42 facing the power board 4 is formed smaller than the width W1 of the upper bottom. Also, the opening of the screw hole 428 on the surface of the input electrode bus bar 42 facing the power board 4 is formed smaller than the width W2 of the lower bottom. As can be understood by referring to FIG. 5, the connection portion 425 is disposed in an area of the power board 4 where the power element 40 is not disposed (an area different from the power element 40). In other words, the connection portion 425 is disposed in an area of the power board 4 where the power element 40 does not overlap with the power element 40 in the Y direction. The input electrode bus bars 41 and 42 are examples of "input electrode bus bars". The extension portions 413, 414, 423, and 424 are examples of "conductor plates". The connection portions 415 and 425 are examples of "connection conductor plates". The thin-walled portions 416A and 426A are examples of "first portions". Base portions 416B and 426B are examples of the "second portion."

 図8A及び図8Bは、インバータ回路200における入力電極411、421の配置を例示する図である。入力電極411、421は、延長部413、414、423、434が互いに平行になるように配置される。ここで、入力電極411、421は、薄肉部416A、426Aが上下に重なるように配置される。薄肉部416Aと薄肉部426Aとの間には、絶縁距離を確保した隙間C2が形成される。そのため、入力電極411、421は、薄肉部416A、426Aが上下に重なるように配置されても互いに絶縁される。このように配置された結果、延長部413と延長部414との間に延長部424が配置され、延長部423と延長部424との間に延長部414が配置される。すなわち、入力電極バスバー41の延長部413、414と入力電極バスバー42の延長部423、424とは、交互に配置される。 8A and 8B are diagrams illustrating the arrangement of input electrodes 411, 421 in inverter circuit 200. Input electrodes 411, 421 are arranged so that extensions 413, 414, 423, 434 are parallel to each other. Here, input electrodes 411, 421 are arranged so that thin-walled portions 416A, 426A are stacked vertically. Between thin-walled portions 416A and 426A, a gap C2 is formed that ensures an insulating distance. Therefore, input electrodes 411, 421 are insulated from each other even when thin-walled portions 416A, 426A are stacked vertically. As a result of this arrangement, extension 424 is arranged between extensions 413 and 414, and extension 414 is arranged between extensions 423 and 424. That is, the extensions 413, 414 of the input electrode bus bar 41 and the extensions 423, 424 of the input electrode bus bar 42 are arranged alternately.

 図5に戻り、出力電極バスバー51、52、53は、延長部413と平行にZ方向に延在する板状の部材である。出力電極バスバー51、52、53は、例えば、金属等の導体で形成される。出力電極バスバー51は、延長部413と延長部424との間に配置される。出力電極バスバー51の-Z方向の端部には、出力電極511が上方向に突出するように立設される。出力電極バスバー52は、延長部424と延長部414との間に配置される。出力電極バスバー52の-Z方向の端部には、出力電極521が上方向に突出するように立設される。出力電極バスバー53は、延長部414と延長部423との間に配置される。出力電極バスバー53の-Z方向の端部には、出力電極531が上方向に突出するように立設される。 Returning to FIG. 5, the output electrode busbars 51, 52, and 53 are plate-shaped members extending in the Z direction parallel to the extension 413. The output electrode busbars 51, 52, and 53 are formed of a conductor such as metal. The output electrode busbar 51 is disposed between the extensions 413 and 424. An output electrode 511 is erected at the end of the output electrode busbar 51 in the -Z direction so as to protrude upward. The output electrode busbar 52 is disposed between the extensions 424 and 414. An output electrode 521 is erected at the end of the output electrode busbar 52 in the -Z direction so as to protrude upward. The output electrode busbar 53 is disposed between the extensions 414 and 423. An output electrode 531 is erected at the end of the output electrode busbar 53 in the -Z direction so as to protrude upward.

 パワー基板4では、パワー素子40をZ方向に一列に並べた電極群D1、D2、D3、D4、D5、D6が互いに平行になるように配置される。電極群D1、D2、D3、D4、D5、D6は、インバータ装置100によって出力される三相交流の各相の上下のアーム用スイッチング素子として用いられる。電極群D1は、延長部413と出力電極バスバー51との間に配置される。電極群D1に属するパワー素子40は、延長部413と出力電極バスバー51とに電気的に接続される。延長部413は、電極群D1に隣接配置されるということができる。電極群D2は、出力電極バスバー51と延長部424との間に配置される。電極群D2に属するパワー素子40は、出力電極バスバー51と延長部424とに電気的に接続される。延長部424は、電極群D2に隣接配置されるということができる。電極群D3は、延長部424と出力電極バスバー52との間に配置される。電極群D3に属するパワー素子40は、延長部424と出力電極バスバー52とに電気的に接続される。延長部424は、電極群D3に隣接配置されるということができる。電極群D4は、出力電極バスバー52と延長部414との間に配置される。電極群D4に属するパワー素子40は、出力電極バスバー52と延長部414とに電気的に接続される。延長部414は、電極群D4に隣接配置されるということができる。電極群D5は、延長部414と出力電極バスバー53との間に配置される。電極群D5に属するパワー素子40は、延長部414と出力電極バスバー53とに電気的に接続される。延長部414は、電極群D5に隣接配置されるということができる。電極群D6は、出力電極バスバー53と延長部423との間に配置される。電極群D6に属するパワー素子40は、出力電極バスバー53と延長部423とに電気的に接続される。延長部423は、電極群D6に隣接配置されるということができる。 In the power board 4, the electrode groups D1, D2, D3, D4, D5, and D6, in which the power elements 40 are arranged in a row in the Z direction, are arranged so as to be parallel to each other. The electrode groups D1, D2, D3, D4, D5, and D6 are used as switching elements for the upper and lower arms of each phase of the three-phase AC output by the inverter device 100. The electrode group D1 is arranged between the extension 413 and the output electrode bus bar 51. The power elements 40 belonging to the electrode group D1 are electrically connected to the extension 413 and the output electrode bus bar 51. It can be said that the extension 413 is arranged adjacent to the electrode group D1. The electrode group D2 is arranged between the output electrode bus bar 51 and the extension 424. The power elements 40 belonging to the electrode group D2 are electrically connected to the output electrode bus bar 51 and the extension 424. It can be said that the extension 424 is arranged adjacent to the electrode group D2. The electrode group D3 is disposed between the extension 424 and the output electrode bus bar 52. The power elements 40 belonging to the electrode group D3 are electrically connected to the extension 424 and the output electrode bus bar 52. It can be said that the extension 424 is disposed adjacent to the electrode group D3. The electrode group D4 is disposed between the output electrode bus bar 52 and the extension 414. The power elements 40 belonging to the electrode group D4 are electrically connected to the output electrode bus bar 52 and the extension 414. It can be said that the extension 414 is disposed adjacent to the electrode group D4. The electrode group D5 is disposed between the extension 414 and the output electrode bus bar 53. The power elements 40 belonging to the electrode group D5 are electrically connected to the extension 414 and the output electrode bus bar 53. It can be said that the extension 414 is disposed adjacent to the electrode group D5. The electrode group D6 is disposed between the output electrode bus bar 53 and the extension 423. The power elements 40 belonging to electrode group D6 are electrically connected to the output electrode bus bar 53 and the extension portion 423. The extension portion 423 can be said to be disposed adjacent to electrode group D6.

 換言すると、U相を出力する出力電極531を含む出力電極バスバー51は、U相の上アームとなる電極群D1とU相の下アームとなる電極群D2とに挟まれて配置される。V相を出力する出力電極521を含む出力電極バスバー52は、V相の上アームとなる電極群D4とV相の下アームとなる電極群D3とに挟まれて配置される。W層を出力する出力電極531を含む出力電極バスバー53は、W層の上アームとなる電極群D5とW層の下アームとなる電極群D6とに挟まれて配置される。 In other words, output electrode busbar 51 including output electrode 531 that outputs the U phase is arranged sandwiched between electrode group D1 that forms the upper arm of the U phase and electrode group D2 that forms the lower arm of the U phase. Output electrode busbar 52 including output electrode 521 that outputs the V phase is arranged sandwiched between electrode group D4 that forms the upper arm of the V phase and electrode group D3 that forms the lower arm of the V phase. Output electrode busbar 53 including output electrode 531 that outputs the W layer is arranged sandwiched between electrode group D5 that forms the upper arm of the W layer and electrode group D6 that forms the lower arm of the W layer.

 図9は、入力電極411から入力された電流の流れを模式的に示す図である。図9では、入力電極411から入力されて出力電極531へと流れる電流の流れが矢印A1、A2、A3によって模式的に示される。入力電極411から入力された電流は、接続部415、延長部414を経由してパワー素子40、40、40の夫々に入力される。パワー素子40、40、40の夫々に入力された電流は出力電極バスバー51に流入する。出力電極バスバー51に流入した電流は、出力電極531から出力される。本実施形態では、入力電極411と出力電極531とをパワー基板4に対して対向に配置することでパワー素子40、40、40を経由する入力電極411と出力電極531間の電流経路の距離が平均化される。そのため、パワー素子40、40、40に流れる電流も平均化され、ひいては、パワー素子40、40、40の信頼性を向上させることができる。なお、図9では、入力電極411から入力されて出力電極531へと流れる電流経路について説明したが、他の入力電極及び出力電極の組み合わせの電流経路についても同様である。 9 is a diagram showing the flow of current input from the input electrode 411. In FIG. 9, the flow of current input from the input electrode 411 to the output electrode 531 is shown by arrows A1, A2, and A3. The current input from the input electrode 411 is input to each of the power elements 40, 40, and 40 via the connection portion 415 and the extension portion 414. The current input to each of the power elements 40, 40, and 40 flows into the output electrode bus bar 51. The current that flows into the output electrode bus bar 51 is output from the output electrode 531. In this embodiment, the input electrode 411 and the output electrode 531 are arranged opposite to each other on the power board 4, so that the distance of the current path between the input electrode 411 and the output electrode 531 passing through the power elements 40, 40, and 40 is averaged. Therefore, the current flowing through the power elements 40, 40, and 40 is also averaged, which in turn improves the reliability of the power elements 40, 40, and 40. Note that in FIG. 9, the current path that is input from the input electrode 411 and flows to the output electrode 531 is described, but the same applies to the current paths for other combinations of input electrodes and output electrodes.

 図10は、実施形態における延長部413、出力電極バスバー51及びパワー素子40の配置を模式的に示す図である。図10では延長部413、出力電極バスバー51及びパワー素子40の配置を側面から見た状態が例示される。また、図10では、入力電極バスバー41の延長部413に形成されるネジ穴418、ネジ穴に挿入されるネジ92及び絶縁ワッシャー93を点線で例示する。ネジ穴418は、上側の方が径が広く形成されており、ネジ92のネジ頭を受ける。またネジ穴418は、下側が狭く形成されており、ネジ92のネジ部が挿入される。すなわち、ネジ穴418は、Z方向視において階段形状に形成される。絶縁ワッシャー93は、絶縁体で形成されたワッシャーである。ネジ92は、絶縁ワッシャー93に挿入された状態でネジ穴418に挿入される。すなわち、ネジ92とネジ穴418との間には絶縁ワッシャー93が配置され、ネジ92とネジ穴418とは接触しない。そのため、ネジ92とネジ穴418とは絶縁される。ネジ92は、厚さ方向にパワー基板4を貫通するとともにヒートシンク12にまで達し、パワー基板4とヒートシンク12とを固定する。ネジ穴418は、「階段形状の貫通孔」の一例である。 10 is a diagram showing a schematic arrangement of the extension 413, the output electrode busbar 51, and the power element 40 in the embodiment. FIG. 10 illustrates the arrangement of the extension 413, the output electrode busbar 51, and the power element 40 as viewed from the side. FIG. 10 also illustrates by dotted lines the screw hole 418 formed in the extension 413 of the input electrode busbar 41, the screw 92 inserted into the screw hole, and the insulating washer 93. The screw hole 418 is formed with a wider diameter at the top, and receives the screw head of the screw 92. The screw hole 418 is also formed with a narrower diameter at the bottom, and the threaded portion of the screw 92 is inserted into it. That is, the screw hole 418 is formed in a staircase shape when viewed in the Z direction. The insulating washer 93 is a washer formed of an insulator. The screw 92 is inserted into the screw hole 418 while being inserted into the insulating washer 93. That is, an insulating washer 93 is placed between the screw 92 and the screw hole 418, and the screw 92 and the screw hole 418 do not come into contact with each other. Therefore, the screw 92 and the screw hole 418 are insulated from each other. The screw 92 penetrates the power board 4 in the thickness direction and reaches the heat sink 12, fixing the power board 4 and the heat sink 12 together. The screw hole 418 is an example of a "step-shaped through hole."

 図10の例では、出力電極バスバー51についても延長部413と同様にZ方向視において台形状に形成されており、上底の幅W3の方が下底の幅W4よりも大きくなっている。また、出力電極バスバー51の高さH2は、パワー素子40の高さH1よりも高くなっている。 In the example of FIG. 10, the output electrode busbar 51 is also formed in a trapezoidal shape when viewed in the Z direction, similar to the extension portion 413, and the width W3 of the upper base is larger than the width W4 of the lower base. In addition, the height H2 of the output electrode busbar 51 is larger than the height H1 of the power element 40.

 このように延長部413及び出力電極バスバー51が形成されることで、パワー素子40は、延長部413の-X方向の端部413Aの下に潜り込むように配置できるとともに、出力電極バスバー51の+X方向の端部51Aの下に潜り込むように配置できる。換言すれば、Y方向視において、パワー素子40の一部の領域が延長部413及び出力電極バスバー51と重なるようにパワー素子40が配置される。その結果、延長部413、パワー素子40及び出力電極バスバー51の実装密度を高めることができる。 By forming the extension 413 and the output electrode busbar 51 in this manner, the power element 40 can be arranged so as to slip under the -X direction end 413A of the extension 413, and can also be arranged so as to slip under the +X direction end 51A of the output electrode busbar 51. In other words, the power element 40 is arranged so that a partial area of the power element 40 overlaps with the extension 413 and the output electrode busbar 51 when viewed in the Y direction. As a result, the mounting density of the extension 413, power element 40, and output electrode busbar 51 can be increased.

 なお、本インバータ装置100を製造する際には、入力電極バスバー41、42とパワー基板4とをネジ穴418、428に挿入したネジ92によって固定した後に、電源の正極端子を入力端子412に接続するとともに、電源の負極端子を入力端子422に接続すればよい。 When manufacturing the inverter device 100, the input electrode bus bars 41, 42 and the power board 4 are fixed together with the screws 92 inserted into the screw holes 418, 428, and then the positive terminal of the power supply is connected to the input terminal 412 and the negative terminal of the power supply is connected to the input terminal 422.

 <実施形態の作用効果>
 本実施形態では、パワー基板4上に配置される入力電極バスバー41、42は、互いに平行な延長部413、414と延長部423、424を有する。延長部413と延長部414との間には延長部424が配置されるとともに、延長部423と延長部424との間には延長部414が配置される。そして、入力電極バスバー41、42は、接続部415、425のうちの薄肉部416A、426Aを重ねるように配置される。このように入力電極バスバー41、42が配置されることで、例えば、パワー基板4の中央付近に配置されるパワー素子40に対しても、銅箔を用いてコンデンサ基板3等の他の基板を経由させる必要なく、接続部415、425や延長部414、424を介して入力電極411、421からの電力を供給できる。本実施形態によれば、パワー素子40への給電経路を、パワー基板4で形成できることに加え、低い電気抵抗の導電経路により電力を供給できるため、パワー素子40への電力供給の際に銅箔を用いてコンデンサ基板3を経由させる場合と比較して、コンデンサ基板3及びコンデンサ30に対する熱の影響を抑制できる。
<Effects of the embodiment>
In this embodiment, the input electrode bus bars 41, 42 arranged on the power board 4 have extensions 413, 414 and extensions 423, 424 that are parallel to each other. The extension 424 is arranged between the extensions 413 and 414, and the extension 414 is arranged between the extensions 423 and 424. The input electrode bus bars 41, 42 are arranged so that the thin portions 416A, 426A of the connection portions 415, 425 overlap each other. By arranging the input electrode bus bars 41, 42 in this manner, for example, even to the power element 40 arranged near the center of the power board 4, power can be supplied from the input electrodes 411, 421 via the connection portions 415, 425 and the extensions 414, 424 without the need to use copper foil to pass through another board such as the capacitor board 3. According to the present embodiment, the power supply path to the power element 40 can be formed by the power board 4, and power can be supplied through a conductive path with low electrical resistance. Therefore, the influence of heat on the capacitor board 3 and the capacitor 30 can be suppressed compared to the case where power is supplied to the power element 40 via the capacitor board 3 using copper foil.

 本実施形態では、Y方向において重ねて配置される薄肉部416A、426Aは、基礎部416B、426Bよりも薄く形成される。そのため、本実施形態によれば、インバータ装置100の高さ方向(Y方向)の増加を抑制できる。また、本実施形態では、薄肉部416A、426Aの間には、隙間C2が形成されるため、絶縁スペーサー等を用いずに入力電極バスバー41、42とを絶縁できる。 In this embodiment, the thin-walled portions 416A, 426A that are stacked in the Y direction are formed thinner than the base portions 416B, 426B. Therefore, according to this embodiment, the increase in the height direction (Y direction) of the inverter device 100 can be suppressed. In addition, in this embodiment, a gap C2 is formed between the thin-walled portions 416A, 426A, so that the input electrode bus bars 41, 42 can be insulated from each other without using an insulating spacer or the like.

 本実施形態では、延長部413、423、414、424の間には、複数のパワー素子40が延長部413、423、414、424と平行に並んで配置されるとともに、出力電極バスバー51、52、53が延長部413、423、414、424と平行に配置される。そして、入力電極411、421と出力電極511、521、531とは、パワー素子40が並ぶ方向においてパワー素子40を挟むように配置される。このように入力電極411、421と出力電極511、521、531とが配置されることで、夫々のパワー素子40を経由する入力電極411、421と出力電極511、521、531間の電流経路の距離が平均化される。このことから、夫々のパワー素子40に流れる電流も平均化され、ひいては、パワー素子40の信頼性を向上させることができる。 In this embodiment, a plurality of power elements 40 are arranged between the extensions 413, 423, 414, 424 in parallel with the extensions 413, 423, 414, 424, and the output electrode bus bars 51, 52, 53 are arranged in parallel with the extensions 413, 423, 414, 424. The input electrodes 411, 421 and the output electrodes 511, 521, 531 are arranged to sandwich the power elements 40 in the direction in which the power elements 40 are arranged. By arranging the input electrodes 411, 421 and the output electrodes 511, 521, 531 in this manner, the distance of the current path between the input electrodes 411, 421 and the output electrodes 511, 521, 531 via each power element 40 is averaged. As a result, the current flowing through each power element 40 is also averaged, which in turn improves the reliability of the power elements 40.

 本実施形態では、入力電極バスバー41、42の接続部415、425は、パワー基板4のうちパワー素子40が配置された領域とは異なる領域に配置される。このように接続部415、425が配置されることで、インバータ装置100の高さ方向(Y方向)の増加を抑制できる。 In this embodiment, the connection parts 415, 425 of the input electrode bus bars 41, 42 are arranged in an area of the power board 4 that is different from the area in which the power elements 40 are arranged. By arranging the connection parts 415, 425 in this manner, it is possible to suppress an increase in the height direction (Y direction) of the inverter device 100.

 本実施形態では、出力電極バスバー51、52、53とコンデンサ基板3との間に隙間C1が形成されるように、入力電極411、421の延長部413、414、423、424によってコンデンサ基板3が支持される。隙間C1が形成されることで、絶縁スペーサー等を用いずにコンデンサ基板3と出力電極バスバー51、52、53とを絶縁できる。 In this embodiment, the capacitor substrate 3 is supported by the extensions 413, 414, 423, and 424 of the input electrodes 411 and 421 so that a gap C1 is formed between the output electrode bus bars 51, 52, and 53 and the capacitor substrate 3. By forming the gap C1, the capacitor substrate 3 and the output electrode bus bars 51, 52, and 53 can be insulated from each other without using an insulating spacer or the like.

 本実施形態では、入力電極バスバー41、42の下底の幅W2よりも上底の幅W1の方が大きく形成される。換言すれば、入力電極バスバー41、42の下底の幅W2は、上底の幅W1よりも狭く形成される。そのため、延長部413、423、414、424の間においてパワー素子40を実装する面積を可及的に拡大でき、ひいては、パワー素子40の実装密度を可及的に高めることができる。 In this embodiment, the width W1 of the upper base of the input electrode busbars 41, 42 is made larger than the width W2 of the lower base. In other words, the width W2 of the lower base of the input electrode busbars 41, 42 is made narrower than the width W1 of the upper base. Therefore, the area in which the power elements 40 are mounted between the extensions 413, 423, 414, 424 can be expanded as much as possible, and thus the mounting density of the power elements 40 can be increased as much as possible.

 本実施形態では、Y方向視において、パワー素子40の一部の領域が延長部413と重なるようにパワー素子40が配置される。その結果、本実施形態によれば、パワー素子40の実装密度を高めることができる。 In this embodiment, the power element 40 is arranged so that a portion of the power element 40 overlaps with the extension portion 413 when viewed in the Y direction. As a result, this embodiment makes it possible to increase the mounting density of the power element 40.

 本実施形態では、ネジ穴418と延長部413、414の端部413A、414Aまでの距離が、入力電極バスバー41の剛性を確保できる所定距離確保できるように上底の幅W1が決定される。そのため、ネジ穴418に挿入されたネジ92が回されることでトルクが生じても、当該トルクに対する剛性を確保できる。 In this embodiment, the width W1 of the upper base is determined so that the distance between the screw hole 418 and the ends 413A, 414A of the extensions 413, 414 is a predetermined distance that ensures the rigidity of the input electrode bus bar 41. Therefore, even if torque is generated by turning the screw 92 inserted into the screw hole 418, the rigidity against the torque can be ensured.

 本実施形態では、ネジ92は、絶縁ワッシャー93に挿入された状態でネジ穴418に挿入される。すなわち、ネジ92とネジ穴418との間には絶縁ワッシャー93が配置され、ネジ92とネジ穴418とは接触しない。そのため、本実施形態によれば、ネジ92とネジ穴418とを絶縁させることができる。 In this embodiment, the screw 92 is inserted into the screw hole 418 while being inserted into the insulating washer 93. In other words, the insulating washer 93 is disposed between the screw 92 and the screw hole 418, and the screw 92 and the screw hole 418 do not come into contact with each other. Therefore, according to this embodiment, the screw 92 and the screw hole 418 can be insulated from each other.

 本実施形態では、コンデンサ基板3を入力電極バスバー41、42に固定するネジ穴419、429が延長部413、423に形成される。そのため、本実施形態によれば、コンデンサ基板3をパワー基板4に容易に固定できる。 In this embodiment, screw holes 419, 429 for fixing the capacitor board 3 to the input electrode bus bars 41, 42 are formed in the extensions 413, 423. Therefore, according to this embodiment, the capacitor board 3 can be easily fixed to the power board 4.

 <変形例>
 実施形態において、入力電極バスバー41、42の延長部413、414、423、424は、Z方向視において台形に形成されたが、延長部413、414、423、424は台形以外の形状に形成されてもよい。図11は、Z方向視した延長部413の形状のバリエーションを例示する図である。図11Aでは、台形に形成された基部4131の上方に階段部4132が設けられる。階段部4132は、+Y方向に向けて段階的に延長部413が拡径するように形成される。また、図11Bでは、延長部413のうちパワー素子40に向けられた面に傾斜面4133が形成される。傾斜面4133は、+Y方向に向けて段階的に延長部413が拡径するように形成される。図11Aや図11Bに例示されるような延長部413によっても、パワー素子40の実装密度を高めつつ、ネジ穴428周囲の強度を確保できる。延長部414、423、424についても同様である。
<Modification>
In the embodiment, the extensions 413, 414, 423, and 424 of the input electrode bus bars 41 and 42 are formed in a trapezoidal shape when viewed in the Z direction, but the extensions 413, 414, 423, and 424 may be formed in a shape other than a trapezoid. FIG. 11 is a diagram illustrating a variation in the shape of the extension 413 when viewed in the Z direction. In FIG. 11A, a step portion 4132 is provided above a base portion 4131 formed in a trapezoidal shape. The step portion 4132 is formed so that the extension 413 gradually expands in diameter toward the +Y direction. In FIG. 11B, an inclined surface 4133 is formed on the surface of the extension 413 facing the power element 40. The inclined surface 4133 is formed so that the extension 413 gradually expands in diameter toward the +Y direction. The extension 413 illustrated in FIG. 11A and FIG. 11B can also increase the mounting density of the power element 40 while ensuring the strength around the screw hole 428. The same is true for extensions 414, 423, and 424.

 以上説明した実施形態では、制御基板2、コンデンサ基板3及びパワー基板4の夫々の基板にコンデンサ30やパワー素子40のような電子部品が実装された。しかしながら、インバータ装置100はこのような構成に限定されない。インバータ装置100は、例えば、制御基板2及びコンデンサ基板3に実装される電子部品をパワー基板4に実装することでインバータ装置100が有する基板を1枚に集約してもよい。 In the embodiment described above, electronic components such as the capacitor 30 and power element 40 are mounted on each of the control board 2, the capacitor board 3, and the power board 4. However, the inverter device 100 is not limited to this configuration. For example, the inverter device 100 may consolidate the boards that the inverter device 100 has into a single board by mounting the electronic components mounted on the control board 2 and the capacitor board 3 on the power board 4.

 また、以上説明した実施形態及び変形例では延長部413、414、423、424が下底の幅W2よりも上底の幅W1の方が大きく形状に形成されたが、入力電極バスバー41、42の全体が断面視において下底の幅W2よりも上底の幅W1の方が大きく形成されてもよい。 In addition, in the above-described embodiment and modified example, the extensions 413, 414, 423, 424 are formed so that the width W1 of the upper base is larger than the width W2 of the lower base, but the entire input electrode busbars 41, 42 may be formed so that the width W1 of the upper base is larger than the width W2 of the lower base in a cross-sectional view.

 付記として、本発明の特徴を以下の通り示す。
(付記1)
 複数の電子部品が列状に実装される基板と、
 前記基板上に順に離間して設けた、第1電極バスバー及び第2電極バスバーを有し、
 前記第1電極バスバー及び前記第2電極バスバーは、それぞれ、
 互いに平行な2つの導体板と、前記2つの導体板間を電気的に接続する接続導体板と、
 前記2つの導体板に電力を供給する入力電極を有し、
 前記導体板はそれぞれ、前記電子部品に隣接配置されて前記電子部品と電気的に接続され、
 前記第1電極バスバーの接続導体板は、前記第2電極バスバーの接続導体板と重なるように配置されている
 電子機器。
(付記2)
 前記接続導体板のうちの前記重なるように配置される第1の部分は、前記接続導体板のうちの前記第1の部分以外の第2の部分よりも薄く形成される、
 付記1に記載の電子機器。
(付記3)
 前記第1電極バスバー及び前記第2電極バスバーの一方の前記第1の部分と他方の前記第1の部分との間には、隙間が形成される、
 付記2に記載の電子機器。
(付記4)
 前記第1電極バスバー及び前記第2電極バスバーは、入力電極バスバーであり、
 前記導体板の間には、出力電極を含む出力電極バスバーが前記導体板と平行に配置され、
 前記導体板と前記出力電極バスバーの間には、複数のパワー素子が前記導体板と平行に並んで配置され、
 前記入力電極と前記出力電極は、前記パワー素子が並ぶ方向において前記パワー素子を挟むように配置される、
 付記1に記載の電子機器。
(付記5)
 前記接続導体板は、前記基板のうち前記パワー素子が配置された領域とは異なる領域に配置される、
 付記4に記載の電子機器。
(付記6)
 前記パワー素子は、
 隣り合う前記入力電極バスバーと前記出力電極バスバーの間に配置される、
 付記4に記載の電子機器。
(付記7)
 前記基板の前記出力電極が配置された面側に配置される上方基板をさらに備え、
 前記入力電極には、前記上方基板と前記出力電極バスバーとの間に隙間を形成する高さに前記上方基板を支持する基板支持部が形成される、
 付記4または5に記載の電子機器。
(付記8)
 前記入力電極バスバーは、前記基板に接する第1の面の幅が前記第1の面とは反対側の第2の面の幅よりも狭く形成される、
 付記1から7のいずれかひとつに記載の電子機器。
(付記9)
 前記電子機器は、インバータである、
 付記1に記載の電子機器。
(付記10)
 複数の電子部品が列状に実装される基板と、
 前記基板上に順に離間して設けた、第1入力電極バスバー及び第2入力電極バスバーを有し、
 前記第1入力電極バスバー及び前記第2入力電極バスバーは、それぞれ、
 互いに平行な2つの導体板と、前記2つの導体板間を電気的に接続する接続導体板と、
 前記2つの導体板に電力を供給する入力電極を有し、
 前記導体板はそれぞれ、前記電子部品に隣接配置されて前記電子部品と電気的に接続され、
 前記第1入力電極バスバーの前記接続導体板は、前記第2入力電極バスバーの前記接続導体板と重なるように配置され、
 前記第1入力電極バスバーの前記2つの導体板と前記第2入力電極バスバーの前記2つの導体板は、交互に並んで平行に配置され、
 交互に並んで配置された前記導体板の間の夫々には、出力電極を含む出力電極バスバーが前記導体板と平行に配置され、
 前記導体板と前記出力電極バスバーとの間の夫々には、複数のパワー素子が前記導体板と平行に並んで配置され、
 前記入力電極と前記出力電極とは、前記パワー素子が並ぶ方向において前記パワー素子を挟むように配置され、
 前記第1入力電極バスバーが有する第1入力電極は電源の正極に接続され、
 前記第2入力電極バスバーが有する第2入力電極は前記電源の負極に接続され、
 前記出力電極バスバーは、
 三相交流電力のU相の交流電力を出力する第1出力電極を含む第1出力電極バスバーと、
 前記三相交流電力のV相の交流電力を出力する第2出力電極を含む第2出力電極バスバーと、
 前記三相交流電力のW相の交流電力を出力する第3出力電極を含む第3出力電極バスバーと、を含む、
 インバータ装置。
As an appendix, the features of the present invention are as follows:
(Appendix 1)
A substrate on which a plurality of electronic components are mounted in a row;
a first electrode bus bar and a second electrode bus bar provided in sequence and spaced apart on the substrate;
The first electrode bus bar and the second electrode bus bar each have
Two conductor plates parallel to each other, and a connecting conductor plate electrically connecting the two conductor plates;
an input electrode for supplying power to the two conductor plates;
each of the conductor plates is disposed adjacent to the electronic component and electrically connected to the electronic component;
the connection conductor plate of the first electrode bus bar is arranged to overlap with the connection conductor plate of the second electrode bus bar.
(Appendix 2)
the first portion of the connection conductor plate arranged to overlap the first portion is formed thinner than a second portion of the connection conductor plate other than the first portion;
2. The electronic device of claim 1.
(Appendix 3)
a gap is formed between the first portion of one of the first electrode bus bar and the second electrode bus bar and the first portion of the other of the first electrode bus bar and the second electrode bus bar.
3. The electronic device according to claim 2.
(Appendix 4)
the first electrode bus bar and the second electrode bus bar are input electrode bus bars,
an output electrode bus bar including an output electrode is disposed between the conductor plates in parallel with the conductor plates;
a plurality of power elements are arranged between the conductor plate and the output electrode bus bar in parallel with the conductor plate;
the input electrode and the output electrode are arranged to sandwich the power element in the direction in which the power elements are arranged.
2. The electronic device of claim 1.
(Appendix 5)
the connection conductor plate is disposed in a region of the substrate different from a region in which the power element is disposed.
5. The electronic device according to claim 4.
(Appendix 6)
The power element is
disposed between adjacent ones of the input electrode bus bar and the output electrode bus bar;
5. The electronic device according to claim 4.
(Appendix 7)
an upper substrate disposed on the surface of the substrate on which the output electrodes are disposed;
a substrate support portion for supporting the upper substrate at a height that forms a gap between the upper substrate and the output electrode bus bar is formed in the input electrode.
6. The electronic device according to claim 4 or 5.
(Appendix 8)
the input electrode bus bar is formed so that a width of a first surface in contact with the substrate is narrower than a width of a second surface opposite to the first surface;
8. An electronic device according to any one of claims 1 to 7.
(Appendix 9)
The electronic device is an inverter.
2. The electronic device of claim 1.
(Appendix 10)
A substrate on which a plurality of electronic components are mounted in a row;
a first input electrode bus bar and a second input electrode bus bar provided in sequence and spaced apart from each other on the substrate;
The first input electrode bus bar and the second input electrode bus bar each have
Two conductor plates parallel to each other, and a connecting conductor plate electrically connecting the two conductor plates;
an input electrode for supplying power to the two conductor plates;
the conductor plates are disposed adjacent to the electronic components and electrically connected to the electronic components,
the connection conductor plate of the first input electrode bus bar is arranged to overlap the connection conductor plate of the second input electrode bus bar,
the two conductor plates of the first input electrode bus bar and the two conductor plates of the second input electrode bus bar are arranged alternately in parallel,
an output electrode bus bar including an output electrode is disposed between each of the conductive plates arranged alternately in parallel with the conductive plates;
a plurality of power elements are arranged parallel to the conductor plate between each of the conductor plates and the output electrode bus bars;
the input electrode and the output electrode are arranged to sandwich the power element in the direction in which the power elements are arranged,
a first input electrode of the first input electrode bus bar connected to a positive electrode of a power source;
a second input electrode of the second input electrode bus bar connected to a negative electrode of the power source;
The output electrode bus bar is
a first output electrode bus bar including a first output electrode that outputs U-phase AC power of the three-phase AC power;
a second output electrode bus bar including a second output electrode that outputs V-phase AC power of the three-phase AC power;
a third output electrode bus bar including a third output electrode that outputs a W-phase AC power of the three-phase AC power,
Inverter device.

 2・・制御基板
 3・・コンデンサ基板
 4・・パワー基板
 11・・筐体
 12・・ヒートシンク
 13・・蓋部
 14・・呼吸弁
 15・・接続端子
 30・・コンデンサ
 31・・凹部
 32・・凹部
 33・・凹部
 35・・凹部
 36・・凹部
 40・・パワー素子
 41・・入力電極バスバー
 42・・入力電極バスバー
 51・・出力電極バスバー
 52・・出力電極バスバー
 53・・出力電極バスバー
 111・・爪部
 112・・爪部
 113・・爪部
 131・・貫通孔
 132・・貫通孔
 133・・貫通孔
 134・・貫通孔
 135・・貫通孔
 136・・爪部
 137・・爪部
 138・・爪部
 100・・インバータ装置
 200・・インバータ回路
 411・・入力電極
 412・・入力端子
 413・・延長部
 414・・延長部
 415・・接続部
 416A・・薄肉部
 416B・・基礎部
 417・・補強部
 421・・入力電極
 422・・入力端子
 423・・延長部
 424・・延長部
 425・・接続部
 426A・・薄肉部
 426B・・基礎部
 427・・補強部
 511・・出力電極
 512・・出力端子
 521・・出力電極
 522・・出力端子
 531・・出力電極
 532・・出力端子
 91・・ネジ
 92・・ネジ
 93・・絶縁ワッシャー
 D1・・電極群
 D2・・電極群
 D3・・電極群
 D4・・電極群
 D5・・電極群
 D6・・電極群
DESCRIPTION OF SYMBOLS 2: Control board 3: Capacitor board 4: Power board 11: Housing 12: Heat sink 13: Cover 14: Breathing valve 15: Connection terminal 30: Capacitor 31: Recess 32: Recess 33: Recess 35: Recess 36: Recess 40: Power element 41: Input electrode bus bar 42: Input electrode bus bar 51: Output electrode bus bar 52: Output electrode bus bar 53: Output electrode bus bar 111: Claw portion 112: Claw portion 113: Claw portion 131: Through hole 132: Through hole 133: Through hole 134: Through hole 135: Through hole 136: Claw portion 137: Claw portion 138: Claw portion 100: Inverter device 200: Inverter circuit 411: Input electrode 412: Input terminal 413: Extension portion 414: Extension portion 415: Connection portion 416A: Thin portion 416B: Base portion 417: Reinforcement portion 421: Input electrode 422: Input terminal 423: Extension portion 424: Extension portion 425: Connection portion 426A: Thin portion 426B: Base portion 427: Reinforcement portion 511: Output electrode 512: Output terminal 521: Output electrode 522: Output terminal 531: Output electrode 532: Output terminal 91: Screw 92: Screw 93: Insulating washer D1: Electrode group D2: Electrode group D3: Electrode group D4: Electrode group D5: Electrode group D6: Electrode group

Claims (10)

 複数の電子部品が列状に実装される基板と、
 前記基板上に順に離間して設けた、第1電極バスバー及び第2電極バスバーを有し、
 前記第1電極バスバー及び前記第2電極バスバーは、それぞれ、
 互いに平行な2つの導体板と、前記2つの導体板間を電気的に接続する接続導体板と、
 前記2つの導体板に電力を供給する入力電極を有し、
 前記導体板はそれぞれ、前記電子部品に隣接配置されて前記電子部品と電気的に接続され、
 前記第1電極バスバーの接続導体板は、前記第2電極バスバーの接続導体板と重なるように配置されている
 電子機器。
A substrate on which a plurality of electronic components are mounted in a row;
a first electrode bus bar and a second electrode bus bar provided in sequence and spaced apart on the substrate;
The first electrode bus bar and the second electrode bus bar each have
Two conductor plates parallel to each other, and a connecting conductor plate electrically connecting the two conductor plates;
an input electrode for supplying power to the two conductor plates;
the conductor plates are disposed adjacent to the electronic components and electrically connected to the electronic components,
the connection conductor plate of the first electrode bus bar is arranged to overlap with the connection conductor plate of the second electrode bus bar.
 前記接続導体板のうちの前記重なるように配置される第1の部分は、前記接続導体板のうちの前記第1の部分以外の第2の部分よりも薄く形成される、
 請求項1に記載の電子機器。
the first portion of the connection conductor plate arranged to overlap the first portion is formed thinner than a second portion of the connection conductor plate other than the first portion;
2. The electronic device according to claim 1.
 前記第1電極バスバー及び前記第2電極バスバーの一方の前記第1の部分と他方の前記第1の部分との間には、隙間が形成される、
 請求項2に記載の電子機器。
a gap is formed between the first portion of one of the first electrode bus bar and the second electrode bus bar and the first portion of the other of the first electrode bus bar and the second electrode bus bar.
3. The electronic device according to claim 2.
 前記第1電極バスバー及び前記第2電極バスバーは、入力電極バスバーであり、
 前記導体板の間には、出力電極を含む出力電極バスバーが前記導体板と平行に配置され、
 前記導体板と前記出力電極バスバーの間には、複数のパワー素子が前記導体板と平行に並んで配置され、
 前記入力電極と前記出力電極は、前記パワー素子が並ぶ方向において前記パワー素子を挟むように配置される、
 請求項1に記載の電子機器。
the first electrode bus bar and the second electrode bus bar are input electrode bus bars,
an output electrode bus bar including an output electrode is disposed between the conductor plates in parallel with the conductor plates;
a plurality of power elements are arranged between the conductor plate and the output electrode bus bar in parallel with the conductor plate;
the input electrode and the output electrode are arranged to sandwich the power element in the direction in which the power elements are arranged.
2. The electronic device according to claim 1.
 前記接続導体板は、前記基板のうち前記パワー素子が配置された領域とは異なる領域に配置される、
 請求項4に記載の電子機器。
the connection conductor plate is disposed in a region of the substrate different from a region in which the power element is disposed.
5. The electronic device according to claim 4.
 前記パワー素子は、
 隣り合う前記入力電極バスバーと前記出力電極バスバーの間に配置される、
 請求項4に記載の電子機器。
The power element is
disposed between adjacent ones of the input electrode bus bar and the output electrode bus bar;
5. The electronic device according to claim 4.
 前記基板の前記出力電極が配置された面側に配置される上方基板をさらに備え、
 前記入力電極には、前記上方基板と前記出力電極バスバーとの間に隙間を形成する高さに前記上方基板を支持する基板支持部が形成される、
 請求項4または5に記載の電子機器。
an upper substrate disposed on the surface of the substrate on which the output electrodes are disposed;
a substrate support portion for supporting the upper substrate at a height that forms a gap between the upper substrate and the output electrode bus bar is formed in the input electrode.
6. The electronic device according to claim 4 or 5.
 前記入力電極バスバーは、前記基板に接する第1の面の幅が前記第1の面とは反対側の第2の面の幅よりも狭く形成される、
 請求項1から7のいずれか一項に記載の電子機器。
the input electrode bus bar is formed so that a width of a first surface in contact with the substrate is narrower than a width of a second surface opposite to the first surface;
The electronic device according to claim 1 .
 前記電子機器は、インバータである、
 請求項1に記載の電子機器。
The electronic device is an inverter.
2. The electronic device according to claim 1.
 複数の電子部品が列状に実装される基板と、
 前記基板上に順に離間して設けた、第1入力電極バスバー及び第2入力電極バスバーを有し、
 前記第1入力電極バスバー及び前記第2入力電極バスバーは、それぞれ、
 互いに平行な2つの導体板と、前記2つの導体板間を電気的に接続する接続導体板と、
 前記2つの導体板に電力を供給する入力電極を有し、
 前記導体板はそれぞれ、前記電子部品に隣接配置されて前記電子部品と電気的に接続され、
 前記第1入力電極バスバーの前記接続導体板は、前記第2入力電極バスバーの前記接続導体板と重なるように配置され、
 前記第1入力電極バスバーの前記2つの導体板と前記第2入力電極バスバーの前記2つの導体板は、交互に並んで平行に配置され、
 交互に並んで配置された前記導体板の間の夫々には、出力電極を含む出力電極バスバーが前記導体板と平行に配置され、
 前記導体板と前記出力電極バスバーとの間の夫々には、複数のパワー素子が前記導体板と平行に並んで配置され、
 前記入力電極と前記出力電極は、前記パワー素子が並ぶ方向において前記パワー素子を挟むように配置され、
 前記第1入力電極バスバーが有する第1入力電極は電源の正極に接続され、
 前記第2入力電極バスバーが有する第2入力電極は前記電源の負極に接続され、
 前記出力電極バスバーは、
 三相交流電力のU相の交流電力を出力する第1出力電極を含む第1出力電極バスバーと、
 前記三相交流電力のV相の交流電力を出力する第2出力電極を含む第2出力電極バスバーと、
 前記三相交流電力のW相の交流電力を出力する第3出力電極を含む第3出力電極バスバーと、を含む、
 インバータ装置。
A substrate on which a plurality of electronic components are mounted in a row;
a first input electrode bus bar and a second input electrode bus bar provided in sequence and spaced apart from each other on the substrate;
The first input electrode bus bar and the second input electrode bus bar each have
Two conductor plates parallel to each other, and a connecting conductor plate electrically connecting the two conductor plates;
an input electrode for supplying power to the two conductor plates;
the conductor plates are disposed adjacent to the electronic components and electrically connected to the electronic components,
the connection conductor plate of the first input electrode bus bar is arranged to overlap the connection conductor plate of the second input electrode bus bar,
the two conductor plates of the first input electrode bus bar and the two conductor plates of the second input electrode bus bar are arranged alternately in parallel,
an output electrode bus bar including an output electrode is disposed in parallel with the conductor plates between the conductor plates that are alternately arranged,
a plurality of power elements are arranged parallel to the conductor plate between each of the conductor plates and the output electrode bus bars;
the input electrode and the output electrode are arranged to sandwich the power element in the direction in which the power elements are arranged,
a first input electrode of the first input electrode bus bar connected to a positive electrode of a power source;
a second input electrode of the second input electrode bus bar connected to a negative electrode of the power source;
The output electrode bus bar is
a first output electrode bus bar including a first output electrode that outputs U-phase AC power of the three-phase AC power;
a second output electrode bus bar including a second output electrode that outputs V-phase AC power of the three-phase AC power;
a third output electrode bus bar including a third output electrode that outputs a W-phase AC power of the three-phase AC power,
Inverter device.
PCT/JP2023/033755 2023-09-15 2023-09-15 Electronic apparatus and inverter device WO2025057415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/033755 WO2025057415A1 (en) 2023-09-15 2023-09-15 Electronic apparatus and inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/033755 WO2025057415A1 (en) 2023-09-15 2023-09-15 Electronic apparatus and inverter device

Publications (1)

Publication Number Publication Date
WO2025057415A1 true WO2025057415A1 (en) 2025-03-20

Family

ID=95021901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033755 WO2025057415A1 (en) 2023-09-15 2023-09-15 Electronic apparatus and inverter device

Country Status (1)

Country Link
WO (1) WO2025057415A1 (en)

Similar Documents

Publication Publication Date Title
US11246244B2 (en) Power electronics assembly
US7554817B2 (en) Inverter apparatus suitable for battery vehicle
US7869193B2 (en) Power conversion apparatus
WO2017046940A1 (en) Integrated electric power steering apparatus
JP3622782B2 (en) Semiconductor device
CN113646999B (en) Motor
CN109995246B (en) Switching power supply device
JP6326038B2 (en) Electrical circuit device
JP7303087B2 (en) MOTOR DRIVING DEVICE HAVING SMOOTHING CAPACITOR AND SNUBBER CAPACITOR
CN110190756B (en) Switching power supply device
JP4538474B2 (en) Inverter device
JP4476465B2 (en) Power converter
JP7628424B2 (en) Electronic Circuit Unit
JP7240526B2 (en) electronic switching unit
JP2016139702A (en) Attachment structure of capacitor and power converter
WO2025057415A1 (en) Electronic apparatus and inverter device
US12185504B2 (en) Electrical circuit device, electrical drive device and motor vehicle
WO2025057421A1 (en) Electronic device and electronic device manufacturing method
JP4758923B2 (en) Power converter, converter, inverter and terminal block
JP6979997B2 (en) Power semiconductor devices
JP5130870B2 (en) Motor control device
JP2017093168A (en) Power module
US11527357B2 (en) Busbar with tailored perforation sizes to provide thermal path
CN117833694A (en) Power conversion device
JP2019102477A (en) Circuit module