WO2025056509A1 - Method for treating pyrolysis oil, including pre-fractionation and recycling - Google Patents
Method for treating pyrolysis oil, including pre-fractionation and recycling Download PDFInfo
- Publication number
- WO2025056509A1 WO2025056509A1 PCT/EP2024/075199 EP2024075199W WO2025056509A1 WO 2025056509 A1 WO2025056509 A1 WO 2025056509A1 EP 2024075199 W EP2024075199 W EP 2024075199W WO 2025056509 A1 WO2025056509 A1 WO 2025056509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cut
- hydrotreatment
- effluent
- weight
- reaction section
- Prior art date
Links
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 86
- 238000005194 fractionation Methods 0.000 title abstract description 11
- 238000004064 recycling Methods 0.000 title description 13
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 96
- 238000000926 separation method Methods 0.000 claims abstract description 56
- 239000000203 mixture Substances 0.000 claims abstract description 32
- 239000004033 plastic Substances 0.000 claims abstract description 27
- 229920003023 plastic Polymers 0.000 claims abstract description 27
- 239000007864 aqueous solution Substances 0.000 claims abstract description 20
- 239000000446 fuel Substances 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000003054 catalyst Substances 0.000 claims description 99
- 238000006243 chemical reaction Methods 0.000 claims description 98
- 239000001257 hydrogen Substances 0.000 claims description 79
- 229910052739 hydrogen Inorganic materials 0.000 claims description 79
- 239000007789 gas Substances 0.000 claims description 67
- 230000008569 process Effects 0.000 claims description 58
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 52
- 230000003197 catalytic effect Effects 0.000 claims description 42
- 238000004517 catalytic hydrocracking Methods 0.000 claims description 41
- 238000004230 steam cracking Methods 0.000 claims description 39
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 34
- -1 silica-aluminas Chemical compound 0.000 claims description 30
- 238000005406 washing Methods 0.000 claims description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- 150000002431 hydrogen Chemical class 0.000 claims description 24
- 238000001179 sorption measurement Methods 0.000 claims description 21
- 238000011144 upstream manufacturing Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000010457 zeolite Substances 0.000 claims description 15
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 14
- 229910021536 Zeolite Inorganic materials 0.000 claims description 13
- 238000004523 catalytic cracking Methods 0.000 claims description 13
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000000395 magnesium oxide Substances 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 6
- 238000005119 centrifugation Methods 0.000 claims description 4
- 238000010908 decantation Methods 0.000 claims description 4
- 230000001174 ascending effect Effects 0.000 claims description 3
- 239000003921 oil Substances 0.000 description 112
- 235000019198 oils Nutrition 0.000 description 112
- 229910052751 metal Inorganic materials 0.000 description 54
- 150000001875 compounds Chemical class 0.000 description 53
- 239000012535 impurity Substances 0.000 description 48
- 239000002184 metal Substances 0.000 description 42
- 150000001993 dienes Chemical class 0.000 description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 24
- 150000001336 alkenes Chemical class 0.000 description 24
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 22
- 229910052717 sulfur Inorganic materials 0.000 description 22
- 239000007788 liquid Substances 0.000 description 21
- 150000002739 metals Chemical class 0.000 description 21
- 239000011593 sulfur Substances 0.000 description 21
- 238000011282 treatment Methods 0.000 description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 19
- 229910052710 silicon Inorganic materials 0.000 description 19
- 239000010703 silicon Substances 0.000 description 19
- 239000002028 Biomass Substances 0.000 description 18
- 238000003860 storage Methods 0.000 description 17
- 150000005673 monoalkenes Chemical class 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 150000002430 hydrocarbons Chemical class 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000000460 chlorine Substances 0.000 description 14
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- 238000009835 boiling Methods 0.000 description 13
- 229910052801 chlorine Inorganic materials 0.000 description 13
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 12
- 229910052759 nickel Inorganic materials 0.000 description 12
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 11
- 239000011733 molybdenum Substances 0.000 description 11
- 239000003208 petroleum Substances 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000003350 kerosene Substances 0.000 description 10
- 150000003464 sulfur compounds Chemical class 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 8
- 229910001385 heavy metal Inorganic materials 0.000 description 8
- 229910052753 mercury Inorganic materials 0.000 description 8
- 229910017464 nitrogen compound Inorganic materials 0.000 description 8
- 150000002830 nitrogen compounds Chemical class 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 239000003463 adsorbent Substances 0.000 description 7
- 239000000356 contaminant Substances 0.000 description 7
- 238000004821 distillation Methods 0.000 description 7
- 239000003502 gasoline Substances 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 150000001491 aromatic compounds Chemical class 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 239000003925 fat Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 239000013502 plastic waste Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 101100008046 Caenorhabditis elegans cut-2 gene Proteins 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000004939 coking Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 239000004449 solid propellant Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 239000003637 basic solution Substances 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000010791 domestic waste Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940013317 fish oils Drugs 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000002029 lignocellulosic biomass Substances 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000012429 reaction media Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- 101100008047 Caenorhabditis elegans cut-3 gene Proteins 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- 239000004165 Methyl ester of fatty acids Substances 0.000 description 2
- 229910003294 NiMo Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010763 heavy fuel oil Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000003473 refuse derived fuel Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 101100008048 Caenorhabditis elegans cut-4 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 235000003901 Crambe Nutrition 0.000 description 1
- 241000220246 Crambe <angiosperm> Species 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000299507 Gossypium hirsutum Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000914 Metallic fiber Polymers 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical group [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- ZGSDJMADBJCNPN-UHFFFAOYSA-N [S-][NH3+] Chemical class [S-][NH3+] ZGSDJMADBJCNPN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000007233 catalytic pyrolysis Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010849 combustible waste Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000010787 construction and demolition waste Substances 0.000 description 1
- 239000008162 cooking oil Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005235 decoking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000010771 distillate fuel oil Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000010852 non-hazardous waste Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/04—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/06—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins
Definitions
- the present invention relates to the field of recycling plastics and/or tires and/or solid recovered fuels (SRF). More particularly, the present invention relates to a method for treating a feedstock comprising a plastic and/or tire and/or SRF pyrolysis oil, including in particular a prefractionation of the feedstock making it possible to extract a naphtha cut, said naphtha cut subsequently being subjected to a treatment making it possible to eliminate the impurities specifically contained in this cut with a view to using this cut in particular as a feedstock for a steam cracker to produce olefins.
- SRF solid recovered fuels
- Plastics from collection and sorting channels or recycled tires or solid recovered fuels (SRF) can undergo a pyrolysis step in order to recover them.
- Pyrolysis consists of heating with or without a catalyst a charge containing plastic and/or recycled tires and/or SRF in the absence of oxygen, leading to the formation of three main products: a liquid hydrocarbon phase at room temperature also called pyrolysis oil, a light gas phase also called pyrolysis gas and a solid residue also called char according to Anglo-Saxon terminology.
- the liquid hydrocarbon phase, pyrolysis oil can be recovered in a gasoline, kerosene or diesel fuel storage unit.
- Another way of recovering pyrolysis oils is to use them as feedstock for a steam cracking unit in order to (re)create olefins, the latter being monomers that make up certain polymers.
- pyrolysis oils contain impurities that are often at high levels and are incompatible with direct storage in a fuel storage unit or with steam cracking units or units located downstream of steam cracking units, in particular polymerization processes and selective hydrogenation processes. These impurities can cause operability problems, including corrosion problems (particularly due to the presence of chlorine), coking or deactivation. catalytic, or even incompatibility problems in the uses of the target polymers.
- the presence of diolefins can also lead to problems of instability of the pyrolysis oil characterized by the formation of gums. Gums and insolubles possibly present in the pyrolysis oil can generate clogging problems in the processes.
- H DT hydrotreatment
- the various impurities contained in pyrolysis oil that we seek to eliminate are generally found in different fractions of this oil. Indeed, depending on the origin of the pyrolysis oil, the oil can have a fairly wide range of boiling points (for example between 40°C and 700°C). Some impurities, notably chlorine, silicon or even diolefins and monoolefins are generally found in the lighter fraction of the oil (naphtha cut), while other impurities such as sulfur, nitrogen and metals are more concentrated in the heavier fractions of the oil.
- the process according to the invention proposes to extract a naphtha cut by prefractionation, then to carry out the elimination of the impurities contained in this very reactive cut by a hydrogenation treatment and possibly by adapted hydrotreatment, requiring the control of the exothermicity of the reactions by the recycling of a part of the treated naphtha cut.
- Prefractionation makes it possible to extract a naphtha cut from a pyrolysis oil and compatible in distillation interval with the operation of a steam cracking furnace but also to concentrate certain impurities harmful to the steam cracking unit (olefins, diolefins, chlorinated and silica compounds) with a view to their treatment.
- Another advantage of the invention is to prevent risks of blockage and/or corrosion of the treatment unit, in which the method of the invention is implemented, the risks being exacerbated by the presence, often in significant quantities, of diolefins, metals and halogenated compounds. These risks of blockage and/or corrosion are notably reduced by a separation step involving washing with an aqueous solution.
- This washing/separation step makes it possible in particular to eliminate the ammonium chloride salts, which are formed by reaction between the chloride ions, released by the hydrogenation of the chlorinated compounds in HCl form, in particular during the hydrogenation step then dissolution in water, and the ammonium ions, generated by the hydrogenation of the nitrogen compounds in the form of NH 3 during the hydrogenation and/or hydrotreatment step and/or supplied by injection of an amine when the content of chlorinated compounds is high, then dissolution in water.
- the invention relates to a method for treating a feedstock comprising a pyrolysis oil from plastic and/or tires and/or recovered solid fuels, said method comprising the following steps: a) a step of prefractionating the feedstock to obtain a naphtha cut and at least one heavier cut, b) a hydrogenation step carried out in a hydrogenation reaction section, implementing at least one fixed bed reactor having n catalytic beds, n being a number integer greater than or equal to 1, each comprising at least one hydrogenation catalyst, said hydrogenation reaction section being supplied at least with said naphtha cut from step a) in mixture with at least a portion of the naphtha cut from step d) and a gas stream comprising hydrogen, said hydrogenation reaction section being carried out at an average temperature between 120 and 380°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs.
- a hydrotreatment step implemented in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1 , each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least by said hydrogenated effluent from step b) and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at a temperature between 200 and 400°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs.
- a separation step fed with the hydrogenated effluent from step b) or with the hydrotreated effluent from step c) and an aqueous solution, said step being carried out in a separation section at a temperature between 20 and 300°C, to obtain at least one gaseous effluent, an aqueous effluent and a naphtha cut, part of which is recycled in step b).
- the process comprises step c) of hydrotreatment.
- step d) another part of the naphtha cut obtained in step d) is sent to a steam cracking unit.
- the steam cracking is carried out in at least one pyrolysis furnace at a temperature between 700 and 900°C and at a pressure between 0.05 and 0.3 MPa relative in the presence of water vapor.
- the weight ratio between the naphtha cut from step d) recycled in step b) and the naphtha cut from step a) and introduced into step b) is between 0.01 and 10.
- the process comprises at least one step of pretreatment of the feed or naphtha cut obtained in step a), said pretreatment step being carried out before or after step a) of prefractionation and upstream of step b) of hydrogenation and comprises an adsorption step and/or a filtration step and/or a centrifugation step and/or a decantation step and/or an electrostatic separation step and/or a washing step using an aqueous solution and/or a gas stripping step.
- said hydrogenation catalyst of step b) comprises a support chosen from alumina, silica, silica-aluminas, magnesia, clays and their mixtures and a hydro-dehydrogenating function comprising either at least one element from group VIII and at least one element from group VIB, or at least one element from group VIII.
- said hydrotreatment catalyst of step c) comprises a support chosen from alumina, silica, silica-aluminas, magnesia, clays and their mixtures, and a hydro-dehydrogenating function comprising at least one element from group VIII and/or at least one element from group VIB.
- the charge consists of plastic and/or tire pyrolysis oil and/or recovered solid fuels.
- said prefractionation step a) is carried out so as to obtain said naphtha cut and at least one middle distillate cut and one vacuum gas oil cut.
- At least a portion of said heavy cut, or of said middle distillate cut and/or of said vacuum gas oil cut is subjected to a dedicated hydrotreatment step, in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least by said heavy cut, or said one middle distillate cut and/or said vacuum gas oil cut and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at an average temperature between 250 and 430°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric velocity between 0.1 and 10.0 h -1 , to obtain a heavy hydrotreated effluent.
- At least a portion of the hydrotreated heavy effluent is sent to a hydrocracking step implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed at least by said hydrotreated heavy effluent and a gas stream comprising hydrogen, said hydrocracking reaction section being implemented at an average temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 20.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h -1 , to obtain a hydrocracked effluent.
- At least a portion of said heavy cut, or of said middle distillate cut and/or of said vacuum gas oil cut, or of the hydrotreated heavy effluent is sent to a fluidized bed catalytic cracking step implemented in a fluidized bed catalytic cracking reaction section in a substantially vertical reactor either in ascending mode or in descending mode in the presence of a zeolite catalyst at a reactor temperature of between 450°C and 600°C with a contact time in the reactor of less than 1 minute.
- the invention also relates to a product obtained by the process according to the invention.
- the product includes a bio-based carbon content according to ASTM D6866 of between 0 and 70% by weight.
- pyrolysis oil means oil from the pyrolysis of plastics and/or tires and/or CSR, unless otherwise stated. Where the origin of the pyrolysis oil is important, its origin is added (e.g., tire pyrolysis oil).
- the expressions "between ... and " and “between .... and " are equivalent and mean that the limit values of the interval are included in the range of values described. If this were not the case and the limit values were not included in the range described, such precision will be provided by the present invention.
- the different parameter ranges for a given step such as pressure ranges and temperature ranges may be used alone or in combination.
- a range of preferred pressure values may be combined with a range of preferred temperature values.
- the metal content is measured by X-ray fluorescence.
- the charge comprises a pyrolysis oil from plastic and/or tire and/or recovered solid fuels.
- Plastic waste is generally a mixture of several polymers.
- the feedstock used in the process according to the invention may comprise, alone or in a mixture, polyethylene (low and/or high density), polypropylene, polyethylene terephthalate, polyvinyl chloride and polystyrene.
- plastics may contain, in addition to polymers, other compounds, such as plasticizers, pigments, dyes or even residues of polymerization catalysts.
- Plastic waste may also contain, to a minor extent, biomass originating for example from household waste.
- the pyrolysis step can be carried out by thermal or catalytic pyrolysis treatment or can be prepared by hydropyrolysis (pyrolysis in the presence of a catalyst and hydrogen).
- the pyrolysis step is generally carried out at a temperature between 250°C and 750°C.
- the pyrolysis step can be carried out under more or less severe conditions.
- the low severity pyrolysis step is carried out at a temperature between 250°C and 450°C, preferably between 275°C and 425°C, and particularly preferably between 300°C and 400°C.
- the low severity pyrolysis step produces pyrolysis oils rich in mono- and diolefins as well as a significant amount of aromatics, and which may include chlorinated compounds.
- the high severity pyrolysis step is carried out at a temperature between 450°C and 750°C, preferably between 500°C and 700°C, and particularly preferably between 550°C and 650°C.
- the high severity pyrolysis step produces pyrolysis oils rich in aromatics, which may include chlorinated compounds.
- the pyrolysis unit may include one or more reactors configured to convert the feedstock into gas-phase and liquid-phase products (e.g., simultaneously).
- the reactor(s) may contain one or more beds of inert materials or pyrolysis catalysts including sand, zeolite, or combinations thereof.
- the pyrolysis catalyst is capable of transferring heat to the components undergoing the pyrolysis process in the pyrolysis unit.
- the pyrolysis unit may comprise one or more pieces of equipment, for example one or more heated extruders, a heated rotary kiln, heated tank-type reactors, empty heated vessels, closed heated surfaces where the feedstock flows along the wall, vessels surrounded by furnaces or ovens or other equipment providing a heated surface.
- heated extruders for example one or more heated extruders, a heated rotary kiln, heated tank-type reactors, empty heated vessels, closed heated surfaces where the feedstock flows along the wall, vessels surrounded by furnaces or ovens or other equipment providing a heated surface.
- a purge gas is used in all or part of the pyrolysis stage(s) to enhance plastics cracking, produce valuable products, provide feed for steam cracking, or combinations thereof.
- the purge gas may include hydrogen (H2), nitrogen (N2), steam, product gases, or combinations thereof.
- Pyrolysis oil whether from tires, plastics and/or CSR, generally has a boiling point range of between 40°C and 1000°C, preferably between 45 and 650°C, most preferably between 45°C and 550°C.
- the density of pyrolysis oil whether from tires, plastics and/or CSR, generally has a density, measured at 15°C according to the ASTM D4052 method, between 0.75 and 1.05 g/cm 3 , preferably between 0.75 and 0.95 g/cm 3 .
- the pyrolysis oil advantageously in liquid form at room temperature, comprises in particular a mixture of hydrocarbon compounds, in particular paraffins (n- and i-paraffins), olefins (mono- and/or diolefins), naphthenes and aromatics.
- the pyrolysis oil may comprise up to 70% by weight of paraffins, up to 90% by weight of naphthenes, up to 90% by weight of olefins and up to 90% by weight of aromatics, it being understood that the sum of the paraffins, naphthenes, olefins and aromatics is equal to 100% by weight of the hydrocarbon compounds.
- Pyrolysis oil may contain diolefins.
- the diolefin content is commonly determined indirectly as the maleic anhydride value (MAV).
- MAV maleic anhydride value
- the method is based on the Diels-Alder addition reaction between conjugated diolefins and maleic anhydride. The method for determining MAV is described in C. Lôpez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1, pp. 57-68. MAV is expressed as mg of maleic anhydride reacted with 1 g of sample (mg/g). MAV varies between 5 and 100 mg/g in pyrolysis oils.
- Pyrolysis oil may contain a portion of compounds of biological origin, such as for example tire pyrolysis oil produced from natural rubber elastomers, or plastic and/or CSR pyrolysis oil produced from plastic and/or CSR waste which may contain, to a minor extent, biomass from, for example, household waste.
- the biological carbon content (according to the analytical method of radiocarbon isotope C 14 according to ASTM D6866) may be between 0 and 70% by weight, preferably between 0.1 and 60% by weight relative to the total weight of the pyrolysis oil.
- this may comprise a biological carbon content (according to the analytical method of radiocarbon isotope C 14 according to ASTM D6866) of between 20 and 70% by weight, preferably between 30 and 60% by weight. relative to the total weight of the pyrolysis oil.
- a biological carbon content according to the analytical method of radiocarbon isotope C 14 according to ASTM D6866
- Pyrolysis oil may include, and most often does include, additional impurities such as metals, in particular iron, silicon, halogenated compounds, in particular chlorinated compounds. These impurities may be present at high levels, for example up to 500 ppm by weight or 700 ppm by weight or even 1000 ppm by weight, and even 5000 ppm by weight, of halogenated elements (in particular chlorine but also bromine, fluorine or iodine) provided by halogenated compounds, and generally between 1 and 1000 ppm by weight or between 1 and 700 ppm by weight or between 1 and 500 ppm by weight of halogenated elements.
- additional impurities such as metals, in particular iron, silicon, halogenated compounds, in particular chlorinated compounds.
- halogenated elements in particular chlorine but also bromine, fluorine or iodine
- Pyrolysis oil can contain up to 500 ppm by weight or 700 ppm by weight or even 1000 ppm by weight or even 5000 ppm by weight of chlorine element provided by chlorinated compounds, and generally between 1 and 1000 ppm by weight or between 1 and 700 ppm by weight or between 1 and 500 ppm by weight of chlorine element.
- Pyrolysis oil can contain up to 50 ppm by weight or even 100 ppm by weight of bromine element provided by brominated compounds, and generally between 1 and 100 ppm by weight or between 1 and 50 ppm by weight of bromine element.
- the oil may contain up to 200 ppm by weight, or even 1500 ppm by weight of metallic or semi-metallic elements, and generally between 1 and 200 ppm by weight or between 1 and 1500 ppm by weight of metallic or semi-metallic elements.
- Alkali metals, alkaline earth metals, transition metals, poor metals and metalloids may be considered as contaminants of a metallic nature, called metals or metallic or semi-metallic elements.
- metals or metallic or semi-metallic elements include silicon, iron or both of these elements.
- Pyrolysis oil may contain up to 200 ppm by weight or even 1000 ppm by weight of silicon, and generally between 1 and 200 ppm by weight or between 1 and 1000 ppm by weight or even between 1 and 500 ppm by weight of silicon.
- Pyrolysis oil may contain up to 50 ppm by weight or 100 ppm by weight of iron, and generally between 1 and 50 ppm by weight or between 1 and 100 ppm by weight of iron. Pyrolysis oil may also contain phosphorus, sodium, calcium, potassium and magnesium.
- the pyrolysis oil may also include other impurities such as heteroelements provided in particular by sulfur compounds, oxygenated compounds and/or nitrogenous compounds, at contents generally less than 40,000 ppm by weight of heteroelements and preferably less than 15,500 ppm by weight of heteroelements, and generally between 1 and 40,000 ppm by weight or between 1 and 15,500 ppm by weight of heteroelements.
- the sulfur compounds are generally present in a content of less than 15,000 ppm by weight and preferably less than 10,000 ppm by weight, and generally between 1 and 15,000 ppm by weight or between 1 and 10,000 ppm by weight of sulfur compounds.
- the oxygenated compounds are generally present in a content of less than 15,000 ppm by weight and preferably less than 10,000 ppm by weight, and generally between 1 and 15,000 ppm by weight or between 1 and 10,000 ppm by weight of oxygenated compounds.
- Nitrogen compounds are generally present in a content of less than 10,000 ppm by weight and preferably less than 5,000 ppm by weight, and generally between 1 and 10,000 ppm by weight or between 1 and 5,000 ppm by weight of nitrogen compounds.
- tire pyrolysis oils generally contain more heteroelements than plastic pyrolysis oils, particularly sulfur compounds.
- the feedstock of the process according to the invention comprises at least one plastic and/or tire and/or solid recovered fuel pyrolysis oil, and this in any proportion.
- Said feedstock may consist solely of pyrolysis oil(s).
- said feedstock comprises at least 50% by weight, preferably between 70 and 100% by weight, of pyrolysis oil relative to the total weight of the feedstock, i.e. preferably between 50 and 100% by weight, preferably between 70% and 100% by weight of pyrolysis oil.
- the feedstock resulting from the conversion of biomass can advantageously be chosen from vegetable oils, algae or algal oils, fish oils, oils used food, and fats of vegetable or animal origin; or mixtures of such fillers.
- Said vegetable oils may advantageously be crude or refined, totally or partially, and derived from plants chosen from rapeseed, sunflower, soybean, palm, olive, coconut, copra, castor, cotton, peanut, linseed and crambe oils and all oils derived for example from sunflower or rapeseed by genetic modification or hybridization, this list not being exhaustive.
- Said animal fats are advantageously chosen from lard and fats composed of residues from the food industry or from the catering industries. Frying oils, various animal oils such as fish oils, tallow, lard may also be used.
- the feedstock resulting from the conversion of biomass can also advantageously be chosen from methyl esters of fatty acids of plant and/or animal origin or even methyl esters of fatty acids from used edible vegetable oils.
- the process according to the invention may comprise a pretreatment step which may be carried out before or after the prefractionation step and upstream of the hydrogenation step.
- the feed comprising a pyrolysis oil can advantageously be pretreated in an optional pretreatment step, to obtain a pretreated feed which feeds the prefractionation step a).
- the pretreatment step may also be carried out on at least one heavy cut.
- the pretreatment step is carried out on at least one heavy cut, it is carried out independently of the pretreatment step of the naphtha cut.
- this optional pretreatment step can reduce the amount of contaminants and solid particles.
- This optional pretreatment step can notably eliminate sediments that can form due to the unstable nature of pyrolysis oils and/or a compatibility problem between two different feedstocks.
- Said optional pretreatment step may be implemented by any method known to those skilled in the art for reducing the quantity of contaminants. It may in particular comprise an adsorption step and/or a filtration step and/or a centrifugation step and/or a decantation step and/or an electrostatic separation step and/or a washing step using an aqueous solution and/or a gas stripping step.
- the optional pretreatment step is advantageously carried out at a temperature between 20 and 400°C, preferably between 40 and 350°C, and at a pressure between 0.15 and 10.0 MPa abs, preferably between 0.2 and 7.0 MPa abs.
- said optional pretreatment step is implemented in an adsorption section operated in the presence of at least one adsorbent.
- the adsorbent may be chosen from a zeolite, activated carbon, a clay, a silica or an alumina.
- said adsorbent comprises less than 1% by weight of metallic elements, preferably is free of metallic elements.
- metallic elements of the adsorbent it is meant the elements of groups 6 to 10 of the periodic table of elements (new IUPAC classification).
- said optional pretreatment step is implemented in a washing section with an aqueous solution, for example water or an acidic or basic solution, or with an organic solvent.
- This washing section may comprise equipment for bringing the feedstock, or the naphtha cut and/or at least one heavy cut obtained after pre-fractionation, into contact with the aqueous solution and for separating the phases so as to obtain the feedstock or a pre-treated cut on the one hand and the aqueous solution comprising impurities on the other hand.
- this equipment there may be for example a stirred reactor, a decanter, a mixer-decanter and/or a co- or counter-current washing column.
- said optional pretreatment step is implemented by filtration.
- the filtration step makes it possible to remove inorganic solids, sediments and/or fines contained in the feedstock, or the naphtha cut and/or at least one heavy cut obtained after pre-fractionation, in particular metals, metal oxides and metal chlorides.
- a filter is generally used whose pore size (for example the diameter or equivalent diameter) is less than 25 ⁇ m, preferably less than or equal to 10 ⁇ m, even more preferably less than or equal to 5 ⁇ m. It is also possible to use a series of filters with different pore sizes, in particular a series of filters having decreasing pore sizes in the direction of flow of the feedstock. These filter media are well known for industrial uses. Cartridge filters, self-cleaning filters, for example, are suitable.
- filter aids for example diatomaceous earth
- seeding i.e. suspended in the load or as a pre-coat (coating according to English terminology) on the filter.
- two filters can be used in parallel to carry out cleaning and maintenance on one while the other is in operation.
- said optional pretreatment step is implemented by centrifugation, by decantation or by electrostatic separation.
- said optional pretreatment step is implemented by gas stripping, thereby reducing the oxygen content in the feed.
- the gas stripping may remove oxygen (O2) that may be dissolved in the feed, or the naphtha cut and/or at least one heavy cut obtained after the pre-fractionation, thereby reducing the likelihood of formation of free radicals leading to polymerization in downstream steps.
- the process generally involves contacting the feed, or the naphtha cut and/or at least one heavy cut obtained after the pre-fractionation, with a stripping gas (e.g. H2, N2 or a mixture thereof), thereby transferring at least a portion of the dissolved oxygen from the feed or cut to the stripping gas, followed by separation of the stripping gas from the feed or cut. Any dissolved H2 remaining in the feed, or the naphtha cut and/or at least one heavy cut obtained after prefractionation, after the gas extraction step is not a problem, given the hydrogenation steps performed downstream.
- a stripping gas e.g. H2, N2 or a mixture thereof
- Said optional pre-processing step generally comprises one or more, preferably several, treatments described above.
- the process according to the invention comprises a step a) of prefractionation of the charge, optionally pretreated, to obtain a naphtha cut and at least one heavy cut.
- naphtha cut means a hydrocarbon cut comprising compounds having a boiling point generally less than or equal to 175°C, in particular between 45 and 175°C.
- a "heavy cut” is a hydrocarbon cut comprising compounds with a boiling point generally above 175°C.
- the heavy cut may include middle distillates such as a diesel cut and/or a kerosene cut. It may also include heavier compounds such as a vacuum gas oil (or VGO).
- the kerosene cut generally has initial and final boiling points in a range of approximately 175 to 250°C and the diesel cut generally has initial and final boiling points in a range of approximately 250°C to 370°C.
- the vacuum gas oil cut it generally has boiling points above 370°C.
- the person skilled in the art will adjust the cut points in the stripping and/or distillation operations. For example, it may be necessary to adjust the end point of the naphtha cut to 150, 175, 180 or 200°C, or even 250°C.
- the prefractionation step can be carried out to obtain a naphtha cut and a (single) heavy cut. It can also be carried out to obtain a naphtha cut, a middle distillate cut and a vacuum diesel cut.
- the middle distillate cut can also be fractionated into a kerosene cut and a diesel cut.
- the prefractionation step is advantageously carried out at a pressure less than or equal to 1.0 MPa abs., preferably between 0.1 and 1.0 MPa abs.
- the prefractionation step can advantageously be implemented by any method known to those skilled in the art, such as for example the combination of one or more separator(s) (balloon(s)), and/or one or more stripping column(s), and/or a distillation column, this or these separator(s) (balloon(s)) and/or columns optionally being able to be supplied with a stripping gas, for example a hydrogen-rich gas stream.
- the prefractionation step uses a distillation column.
- the impurities contained in the starting pyrolysis oil are not distributed in the same way among the different cuts after prefractionation.
- the naphtha cut generally contains the majority of diolefins, monoolefins, chlorinated compounds, and silica compounds.
- the heavy cut As for the heavy cut, it generally contains no or very few diolefins. In addition, it contains fewer chlorinated compounds and silica compounds than the naphtha cut. However, sulfur and/or nitrogen-based impurities are generally concentrated in the heavy cut.
- the process comprises a hydrogenation step b) implemented in a hydrogenation reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrogenation catalyst, said hydrogenation reaction section being fed at least with said naphtha cut from step a) in a mixture with at least a portion of the naphtha cut from step d) and a gas stream comprising hydrogen, said hydrogenation reaction section being implemented at an average temperature between 120 and 380°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h' 1 , to obtain a hydrogenated effluent.
- Step b) is carried out in particular under hydrogen pressure and temperature conditions enabling the hydrogenation of the diolefins and monoolefins to be carried out at the start of the hydrogenation reaction section while enabling, by means of a rising temperature profile, the hydrodemetallation and hydrodechlorination to be carried out, in particular at the end of the hydrogenation reaction section.
- a necessary quantity of hydrogen is injected so as to enable the hydrogenation of at least a portion of the diolefins and monoolefins present in the pyrolysis oil, the hydrodemetallation of at least a portion of the metals, in particular the retention of silicon, and also the conversion of at least a portion, and preferably all, of the chlorine (into HCl).
- Said reaction section implements hydrogenation in the presence of at least one hydrogenation catalyst, advantageously at an average temperature (or WABT as defined below) between 120 and 380°C, preferably between 180 and 350°C, and particularly preferably between 200 and 330°C, a hydrogen partial pressure between 1.0 and 10.0 MPa abs, preferably between 1.5 and 8.0 MPa abs. and very preferably between 2.0 and 6.0 MPa abs. and at an hourly volumetric flow rate (WH) between 0.1 and 10.0 h' 1 , preferably between 0.2 and 5.0 h' 1 , and very preferably between 0.3 and 3.0 h' 1 .
- WABT average temperature
- the “average temperature” of a reaction section corresponds to the Weight Average Bed Temperature (WABT) according to the established Anglo-Saxon term, well known to those skilled in the art.
- WABT Weight Average Bed Temperature
- the average temperature is advantageously determined according to the catalytic systems, the equipment, and the configuration thereof, used.
- the average temperature (or WABT) is calculated as follows:
- WABT (Tentrw + Tout ) /2 with Tin: the temperature of the effluent at the inlet of the reaction section and Tout: the temperature of the effluent at the outlet of the reaction section. Unless otherwise indicated, the “average temperature” of a reaction section is given at start-of-cycle conditions.
- the hourly volume flow rate (WH) is defined here as the ratio between the hourly volume flow rate of the feedstock (fresh naphtha cut) and the volume of catalyst(s).
- the quantity of the gas flow comprising hydrogen (H2) feeding said reaction section is advantageously such that the hydrogen coverage is between 100 and 1500 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ), preferably between 120 and 1000 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ), more preferably between 150 and 800 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ).
- Hydrogen coverage is defined as the ratio of the volume flow rate of hydrogen taken under standard temperature and pressure conditions to the volume flow rate of the charge (fresh naphtha cut), without taking into account the recycled fraction, at 15°C (in normal m 3 , noted Nm 3 , of H2 per m 3 of charge).
- the reaction section of said step b) comprises between 1 and 5 reactors, preferably between 2 and 5 reactors, and particularly preferably it comprises two reactors.
- Each reactor comprises at least one catalytic bed, for example between 1 and 10 catalytic beds.
- these reactors operate in permutable mode, called "PRS" for Permutable Reactor System or "lead and lag".
- PRS Permutable Reactor System
- the association of at least two reactors in PRS mode makes it possible to isolate a reactor, unload the spent catalyst, reload the reactor with fresh catalyst and put said reactor back into service without stopping the process.
- the PRS technology is described, in particular, in patent FR2681871.
- the hydrogenation reaction section of step b) comprises two reactors operating in permutable mode.
- reactor internals for example of the filter tray type, can be used to prevent clogging of the reactor(s).
- An example of a filter tray is described in patent FR3051375.
- said hydrogenation catalyst comprises a support, preferably mineral, and a hydro-dehydrogenating function.
- the hydro-dehydrogenating function comprises in particular at least one element from group VIII, preferably chosen from nickel and cobalt, and at least one element from group VI B, preferably chosen from molybdenum and tungsten.
- the total content expressed as oxides of the metallic elements from groups VI B and VIII is preferably between 1% and 40% by weight, preferably from 5% to 30% by weight relative to the total weight of the catalyst.
- the metal content is expressed as CoO and NiO respectively.
- the metal content is expressed as MoOa and WO3 respectively.
- the weight ratio expressed in metal oxide between the metal (or metals) of group VI B relative to the metal (or metals) of group VIII is preferably between 1 and 20, and preferably between 2 and 10.
- the reaction section of said step b) comprises for example a hydrogenation catalyst comprising between 0.5% and 12% by weight of nickel, preferably between 0.9% and 10% by weight of nickel (expressed as nickel oxide NiO relative to the weight of said catalyst), and between 1% and 30% by weight of molybdenum, preferably between 3% and 20% by weight of molybdenum (expressed as molybdenum oxide MoOa relative to the weight of said catalyst) on a preferably mineral support, preferably on an alumina support.
- a hydrogenation catalyst comprising between 0.5% and 12% by weight of nickel, preferably between 0.9% and 10% by weight of nickel (expressed as nickel oxide NiO relative to the weight of said catalyst), and between 1% and 30% by weight of molybdenum, preferably between 3% and 20% by weight of molybdenum (expressed as molybdenum oxide MoOa relative to the weight of said catalyst) on a preferably mineral support, preferably on an alumina support.
- the hydro-dehydrogenating function comprises, and is preferably made up of, at least one element from group VIII, preferably nickel.
- the content of nickel oxides is preferably between 1 and 50% by weight, preferably between 10% and 30% by weight relative to the weight of said catalyst.
- This type of catalyst is preferably used in its reduced form, on a preferably mineral support, preferably on an alumina support.
- the support of said hydrogenation catalyst is preferably chosen from alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof.
- Said support may contain doping compounds, in particular oxides chosen from boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides.
- said hydrogenation catalyst comprises an alumina support, optionally doped with phosphorus and optionally boron.
- phosphoric anhydride P2O5 When phosphoric anhydride P2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina.
- boron trioxide B2O3 When boron trioxide B2O3 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina.
- the alumina used may be, for example, a y (gamma) or q (eta) alumina.
- the said hydrogenation catalyst is, for example, in the form of extrudates.
- step b) may implement, in addition to the hydrogenation catalyst(s) described above, also at least one hydrogenation catalyst used in step b) comprising less than 1% by weight of nickel and at least 0.1% by weight of nickel, preferably 0.5% by weight of nickel, expressed as nickel oxide NiO relative to the weight of said catalyst, and less than 5% by weight of molybdenum and at least 0.1% by weight of molybdenum, preferably 0.5% by weight of molybdenum, expressed as molybdenum oxide MoOs relative to the weight of said catalyst, on an alumina support.
- This catalyst with a low metal content may preferably be placed upstream or downstream of the hydrogenation catalyst(s) described above, preferably upstream.
- the hydrogenation catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur (additive catalyst).
- a catalyst is often referred to as "additive catalyst”.
- the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulfone, sulfoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide or compounds including a furan cycle or sugars.
- the hydrogenation step may use, upstream of the hydrogenation catalyst(s), at least one guard bed containing adsorbents of the alumina, silica-alumina, zeolite and/or activated carbon type, possibly containing metals from group VIB and/or VIII. It is also possible to use a series of guard beds with particles of different diameters, in particular a series of guard beds having decreasing diameters in the direction of circulation of the feedstock (also called “grading” according to English terminology).
- all or part of the feed (naphtha cut) can be injected in a staged manner at the inlet of each catalytic bed so as to manage the exotherms as described in FR2969642.
- the total flow of the feed (naphtha cut) is divided into a certain number of different partial flows equal to the number of catalytic beds in the reactor, the different partial flows are injected at the inlet of the successive catalytic beds in increasing proportions.
- the temperature difference (delta T) between the outlet and the inlet of each catalytic bed of hydrogenation step b) is generally less than 30°C, or even less than 25°C.
- the quantity of the naphtha cut from step d) recycled i.e. the fraction of product obtained recycled, is adjusted so that the weight ratio between the naphtha cut from step d) recycled into step b) and the naphtha cut from step a) and introduced into step b) is between 0.01 and 10, preferably between 0.1 and 7, and particularly preferably between 0.2 and 5.
- This recycle rate makes it possible to control the temperature rise in step b). Indeed, when the recycle rate is high, the dilution rate of the feedstock is high, and the temperature rise at the start of the reaction section of step b), is thus controllable by the dilution effect.
- the injection of at least a portion of the naphtha cut from step d) can be carried out at the first catalytic bed of the reaction section, or between the different catalytic beds of each section.
- the reaction section comprises two reactors operating in permutable mode
- at least a portion of the naphtha cut from step d) can be injected between the two reactors.
- a liquid and/or gaseous diluent may be injected in step b) (also called quench according to English terminology) in addition to the naphtha cut from step d).
- the injection of the liquid and/or gaseous diluent may be carried out in the same manner as described above.
- the liquid diluent (or liquid quench) may be an external liquid, for example a fossil naphtha cut.
- the gaseous diluent (or gaseous quench) is generally a gaseous stream comprising fresh and/or recycled hydrogen.
- the gaseous diluent may be at least a part of the gaseous effluent obtained in step d) which contains hydrogen, possibly purified.
- Said hydrogenation step b) makes it possible to obtain a hydrogenated effluent, i.e. an effluent with a reduced content of olefins, in particular diolefins, metals, in particular silicon, and halogens, in particular chlorine. It also makes it possible to hydrogenate the monoolefins.
- Hydrogenation step b) generally makes it possible to convert at least 40%, and preferably at least 60% of the diolefins as well as at least 40%, and preferably at least 60% of the monoolefins contained in the initial feedstock.
- the heat released by the saturation of the double bonds makes it possible to raise the temperature of the reaction medium and to initiate the hydrotreatment reactions, in particular the elimination, at least in part, of other contaminants, such as for example silicon and chlorine or nitrogen.
- other contaminants such as for example silicon and chlorine or nitrogen.
- at least 50%, and more preferably at least 75% of the chlorine and silicon of the initial charge are respectively removed during step b).
- the silicon content is less than 10 ppm by weight in the hydrogenated effluent from step b).
- this cut may be subjected to a hydrotreatment step.
- a hydrotreatment step is generally necessary in order to achieve the sulfur and nitrogen specifications.
- the effluent obtained at the end of step b) is sent at least in part and preferably in whole, preferably directly, to step c) of hydrotreatment.
- step b) When it is desired to send this cut to a fuel storage unit, a hydrotreatment step may not be necessary.
- the effluent obtained at the end of step b) is sent at least in part and preferably in full, preferably directly, to the separation step d).
- the treatment method may comprise a hydrotreatment step c) implemented in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least with said hydrogenated effluent from step b) and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at an average temperature between 200 and 400°C, a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h' 1 , to obtain a hydrotreated effluent.
- step c) implements hydrotreatment reactions well known to those skilled in the art, and more particularly hydrotreatment reactions such as the hydrogenation of aromatics, hydrodesulfurization and hydrodenitrogenation.
- hydrotreatment reactions such as the hydrogenation of aromatics, hydrodesulfurization and hydrodenitrogenation.
- the hydrogenation of the remaining olefins and halogenated compounds as well as the hydrodemetalation can continue even if the majority and preferably all of these impurities have been removed during step b).
- Said hydrotreatment reaction section is advantageously carried out at an average hydrotreatment temperature between 200 and 400°C, preferably between 250 and 360°C, at a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and at an hourly volumetric flow rate (WH) between 0.1 and 10.0 h -1 , preferably between 0.1 and 5.0 h -1 , preferentially between 0.2 and 2.0 h -1 , more preferably between 0.2 and 1h' 1 .
- the hydrogen coverage in step d) is advantageously between 100 and 1500 Nm 3 of hydrogen per m 3 of the feedstock which feeds step d), and preferably between 120 and 1000 Nm 3 /m 3 , more preferably between 150 and 800 Nm 3 /m 3 .
- the definitions of the average temperature (WABT), the WH and the hydrogen coverage correspond to those described above.
- WABT average temperature
- the operating conditions of the hydrogenation step as well as those of the hydrotreatment step can be milder in the process according to the invention (in particular a lower temperature and/or a higher WH).
- the sulfur and nitrogen impurities, in particular the most refractory ones are found after prefractionation mainly in said heavy cut.
- the reaction section of said step c) comprises between 1 and 5 reactors, preferably between 2 and 5 reactors. These reactors can operate in series and/or in parallel and/or in permutable mode (or PRS).
- said hydrotreatment reaction section comprises a single fixed-bed reactor containing n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, more preferably between two and five.
- the hydrogenation reaction section of step b) comprises two reactors operating in switchable mode followed by the hydrotreatment reaction section of step c) which comprises a single fixed-bed reactor.
- said hydrogenation reaction section and said hydrotreatment section may be located in a single (single) fixed bed reactor containing n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, more preferably between two and seven.
- n being an integer greater than or equal to one, preferably between one and ten, more preferably between two and seven.
- the naphtha cut first passes through the hydrogenation reaction section and then the hydrotreatment section.
- PRS switchable mode
- reactor internals for example of the filter tray type as described above, may be used to prevent clogging of the reactor(s).
- said hydrotreatment catalyst may be chosen from known hydrodemetallization, hydrotreatment, silicon capture catalysts, used in particular for the treatment of petroleum fractions, and combinations thereof.
- Known hydrodemetallization catalysts are, for example, those described in patents EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 and US 5089463.
- Known hydrotreatment catalysts are, for example, those described in patents EP 0113297, EP 0113284, US 6589908, US 4818743 or US 6332976.
- Known silicon capture methods are, for example, those described in patent applications CN 102051202 and US 2007/080099.
- said hydrotreatment catalyst comprises a support, preferably mineral, and at least one metallic element having a hydro-dehydrogenating function.
- Said metallic element having a hydro-dehydrogenating function advantageously comprises at least one element from group VIII, preferably chosen from the group consisting of nickel and cobalt, and/or at least one element from group VI B, preferably chosen from the group consisting of molybdenum and tungsten.
- the total content expressed as oxides of the metallic elements from groups VI B and VIII is preferably between 0.1% and 40% by weight, preferably from 5% to 35% by weight, relative to the total weight of the catalyst. When the metal is cobalt or nickel, the metal content is expressed as CoO and NiO respectively.
- the metal content is expressed as MoOa and WO3 respectively.
- the weight ratio expressed as metal oxide between the metal (or metals) of group VIB relative to the metal (or metals) of group VIII is preferably between 1.0 and 20, preferably between 2.0 and 10.
- the hydrotreatment reaction section of step d) of the process comprises a hydrotreatment catalyst comprising between 0.5% and 10% by weight of nickel, preferably between 1% and 8% by weight of nickel, expressed as nickel oxide NiO relative to the total weight of the hydrotreatment catalyst, and between 1.0% and 30% by weight of molybdenum, preferably between 3.0% and 29% by weight of molybdenum, expressed as molybdenum oxide MoOs relative to the total weight of the hydrotreatment catalyst, on a mineral support, preferably on an alumina support.
- boron trioxide B2O3 When boron trioxide B2O3 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina.
- the alumina used may be, for example, a ⁇ (gamma) or (eta) alumina.
- Said hydrotreatment catalyst is for example in the form of extrudates.
- said hydrotreatment catalyst of the process has a specific surface area greater than or equal to 250 m 2 /g, preferably greater than or equal to 300 m 2 /g.
- the specific surface area of said hydrotreatment catalyst is advantageously less than or equal to 800 m 2 /g, preferably less than or equal to 600 m 2 /g, in particular less than or equal to 400 m 2 /g.
- the specific surface area of the hydrotreatment catalyst is measured by the BET method, i.e. the specific surface area determined by nitrogen adsorption in accordance with ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the periodical The Journal of the American Chemical Society, 6Q, 309 (1938).
- Such a specific surface area makes it possible to further improve the removal of contaminants, in particular metals such as silicon.
- the hydrotreatment catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur as described above (additive catalyst).
- step c) can implement upstream of the hydrotreatment catalyst(s) at least one guard bed or a series of guard beds of the “grading” type as described above for step b).
- hydrotreatment step c) allows the hydrogenation of at least 80%, and preferably of all of the olefins and halogenated compounds remaining after hydrogenation step b), but also the conversion at least in part of other impurities present in the feedstock, such as aromatic compounds, metallic compounds, sulfur compounds, nitrogen compounds, oxygenated compounds.
- the nitrogen content at the outlet of step c) is less than 100 ppm by weight, and preferably less than 10 ppm by weight.
- the sulfur content at the outlet of step c) is less than 100 ppm by weight, and preferably less than 10 ppm by weight.
- Step c) can also make it possible to further reduce the contaminant content, such as that of metals, in particular the silicon content.
- the metal content at the outlet of step c) is less than 10 ppm by weight, and preferably less than 2 ppm by weight, and the silicon content is less than 5 ppm by weight.
- the halogen element content at the outlet of step c) is less than 5 ppm by weight.
- the hydrotreated effluent from hydrotreatment step c) is then sent, in part or in full, to a separation step d).
- Any reaction section of steps b) and c) is advantageously fed at the level of the first catalytic bed of the first reactor in operation.
- An injection of at least one part of the charge and/or at least part of hydrogen between the different catalytic beds is also possible.
- Any reaction section of steps b) and c) implementing at least one fixed-bed reactor can operate with a descending or ascending flow of gas and liquid.
- the gas stream comprising hydrogen which feeds at least one reaction section of steps b) and c) may consist of a hydrogen make-up and/or recycled hydrogen and/or hydrogen originating from the upstream step.
- the gas stream comprising hydrogen may come from a fossil source or a renewable source, for example from the gasification of plastic waste or produced by electrolysis.
- an additional gas flow comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the reaction section.
- the preparation of the catalysts of steps b) and c) is known and generally comprises a step of impregnation of the metals of group VIII and group VIB when present, and possibly phosphorus and/or boron on the support, followed by drying, then possibly calcination.
- the preparation is generally carried out by simple drying without calcination after introduction of the organic compound.
- calcination means a heat treatment under a gas containing air or oxygen at a temperature greater than or equal to 200°C.
- the catalysts are generally subjected to sulfurization in order to form the active species.
- the preparation involves a reduction step.
- a stream containing a sulfurizing agent can be injected upstream of the optional pretreatment step and/or the hydrogenation step and/or the optional hydrotreatment step, preferably upstream of the hydrogenation step and/or the hydrotreatment step in order to ensure a sufficient quantity of sulfur to form the active species of the catalyst (in sulfide form).
- This activation or sulfurization step is carried out by methods well known to those skilled in the art, and advantageously under a sulfide-reducing atmosphere in the presence of hydrogen and hydrogen sulfide.
- the sulfurizing agents are preferably H2S gas, elemental sulfur, CS2, mercaptans, sulfides and/or polysulfides, fractions hydrocarbons with a boiling point below 400°C containing sulfur compounds or any other sulfur-containing compound used for the activation of hydrocarbon feedstocks in order to sulfurize the catalyst.
- Said sulfur-containing compounds are advantageously chosen from alkyl disulfides such as, for example, dimethyl disulfide (DMDS), alkyl sulfides, such as, for example, dimethyl sulfide, thiols such as, for example, n-butyl mercaptan (or 1-butanethiol) and polysulfide compounds of the tert-onylpolysulfide type.
- the catalyst can also be sulfurized by the sulfur contained in the feedstock to be desulfurized.
- the catalyst is sulfurized in situ in the presence of a sulfurizing agent and a hydrocarbon feedstock.
- the catalyst is sulfurized in situ in the presence of the feedstock with added dimethyl disulfide.
- the injection of a sulfurizing agent is particularly necessary at the beginning of the catalytic cycle, while the hLS is forming. Additional injections throughout the catalytic cycle may be necessary to compensate for the natural loss.
- the process comprises a separation step d), fed with at least part and preferably all of the hydrogenated effluent from step b) or with the hydrotreated effluent from step c) and an aqueous solution, said step being carried out in a separation section at a temperature between 30 and 300°C, to obtain at least one gaseous effluent, one aqueous effluent and a naphtha cut freed from its impurities and part of which is recycled in step b).
- This washing/separation step makes it possible in particular to eliminate the ammonium chloride salts, which are formed by reaction between the chloride ions, released by the hydrogenation of the chlorinated compounds in HCl form, in particular during the hydrogenation step then dissolution in water, and the ammonium ions, generated in particular by the hydrogenation of the nitrogen compounds in the form of NH 3 during the hydrogenation and/or hydrotreatment step and/or supplied by injection of an amine then dissolution in water, and thus to limit the risks of blockage, in particular in the transfer lines and/or in the sections of the process of the invention and/or the transfer lines to the steam cracker, due to the precipitation of the ammonium chloride salts.
- This step also removes hydrochloric acid formed by the reaction of hydrogen ions and halide ions released by the hydrogenation of halogenated compounds during the hydrogenation step which dissolve in the aqueous solution.
- the washing/separation step also removes ammonium sulfide salts (NH ⁇ S) which are formed by the reaction between H2S resulting from the hydrodesulfurization of sulfur compounds and NH3 by dissolving them in aqueous solution.
- NH ⁇ S ammonium sulfide salts
- the washing/separation step is advantageously carried out at a temperature between 20 and 300°C, preferably between 25 and 200°C, preferably between 30 and 150°C, and particularly preferably between 30 and 100°C.
- the washing/separation step is carried out at a pressure close to that used in the hydrotreatment step, preferably between 1.0 and 10.0 MPa abs, so as to facilitate the recycling of hydrogen.
- the aqueous solution can be water. It can also be a basic aqueous solution (by adding NaOH for example). Using a basic solution helps neutralize hydrogen halides and any dissolved salts.
- Said separation section may comprise any separation means known to those skilled in the art, in particular one or more separator drums arranged in series, and/or one or more steam and/or hydrogen stripping columns, and/or an atmospheric distillation column, and/or a vacuum distillation column.
- the washing/separation step may advantageously be carried out in common or separate washing and separation equipment, this equipment being well known (separator drums capable of operating at different pressures and temperatures, pumps, heat exchangers, washing columns, etc.).
- the washing/separation step comprises an injection of an aqueous solution, preferably an injection of water, into the hydrogenated or hydrotreated effluent, upstream of the washing/separation section, so as to dissolve at least in part and preferably all of the hydrogen halides (HCl in particular) and any salts present.
- an aqueous solution preferably an injection of water
- the washing/separation step comprises the injection of an aqueous solution into the hydrogenated or hydrotreated effluent, followed by the washing/separation section advantageously comprising a separation phase making it possible to obtain at least one aqueous effluent loaded with hydrogen halides (HCl in particular) and any dissolved salts, said naphtha cut freed from these impurities and a partially washed gaseous effluent.
- Said aqueous effluent and the washed naphtha cut can then be separated in a settling tank in order to obtain said washed naphtha cut and said aqueous effluent.
- Said partially washed gaseous effluent can in parallel be introduced into a washing column where it circulates countercurrent to an aqueous flow, preferably of the same nature as the aqueous solution injected into the hydrotreated effluent, which makes it possible to eliminate at least in part, preferably in full, the hydrochloric acid contained in the partially washed gaseous effluent and thus obtain said gaseous effluent, preferably essentially comprising hydrogen, and an acidic aqueous stream.
- Said aqueous effluent from the settling tank may optionally be mixed with said acidic aqueous stream, and be used, optionally in a mixture with said acidic aqueous stream in a water recycling circuit to supply the washing/separation step with said aqueous solution upstream of the washing/separation section and/or with said aqueous stream in the washing column.
- Said water recycling circuit may include a make-up of water and/or a basic solution and/or a purge to remove impurities.
- a stream containing a nitrogen compound such as ammonia or an amine may be injected upstream of the hydrogenation step and/or upstream of the hydrotreatment step in order to ensure a sufficient quantity of ammonium ions to combine the chloride ions formed during the hydrotreatment step in the form of ammonium chloride salts, thus making it possible to limit the formation of hydrochloric acid and thus to limit corrosion downstream of the separation section.
- a nitrogen compound such as ammonia or an amine, for example monoethanolamine, diethanolamine, monodiethanolamine and/or aniline
- Said gaseous effluent obtained at the end of the washing/separation step advantageously comprises hydrogen, preferably comprises at least 60% by volume, preferably at least 70% by volume, of hydrogen.
- Said gaseous effluent obtained at the end of the washing/separation step contains very little chlorine, generally at a content of less than 3 ppm by weight of chlorine, which makes it possible to send it to a refining unit requiring hydrogen.
- said gaseous effluent can at least partly be recycled to one of the steps of the process according to the invention requiring hydrogen (steps b) and/or c)), the recycling system being able to comprise a purification section (for example adsorption of heavy metals such as mercury).
- the aqueous effluent obtained from the washing/separation step advantageously comprises ammonium salts and/or hydrochloric acid.
- said naphtha cut, freed from its impurities and washed is preferably sent to a steam stripping stage preferably operating at a pressure of between 0.5 and 2 MPa abs, to separate the hydrogen sulfide (H2S) dissolved in said naphtha cut, freed from its impurities.
- H2S hydrogen sulfide
- a portion of said naphtha cut from step d) is recycled upstream of the hydrogenation step, and possibly upstream of the hydrotreatment step.
- part or all of said naphtha cut from step d) and recycled to the hydrogenation and/or hydrotreatment step can advantageously be either cooled, or preheated, if necessary, or kept at the same temperature.
- the temperature changes of all or part of said recycled naphtha cut will be made by any means known to those skilled in the art (exchanger, air cooler, furnace, etc.) and will make it possible to adjust the temperature profile (inlet temperature, delta T) of the catalytic beds of the hydrogenation and/or hydrotreatment steps as required.
- another part of said naphtha cut from step d) can also be sent in part or in full to a fuel storage unit, for example a naphtha storage unit, from conventional petroleum feedstocks.
- another part of said naphtha cut from step d) is sent directly to the inlet of a steam cracking unit.
- the process according to the invention allows the hydrogenation of at least 80%, and preferably of all of the olefins (mono- and diolefins), but also the conversion at least in part of other impurities present in said naphtha cut obtained after prefractionation, such as aromatic compounds, metallic compounds, sulfur compounds, nitrogen compounds, halogenated compounds (in particular chlorinated compounds), oxygenated compounds.
- said naphtha cut obtained after separation step d) has a nitrogen content of less than 10 ppm by weight, preferably less than 5 ppm by weight.
- said naphtha cut obtained after separation step d) has a sulfur content of less than 10 ppm by weight.
- said naphtha cut obtained after separation step d) has an oxygen content of less than 10 ppm by weight.
- said naphtha cut obtained after separation step d) has a metal content of less than 10 ppm by weight, preferably less than 2 ppm by weight, and the silicon content is less than 5 ppm by weight.
- said naphtha cut obtained after separation step d) has a halogen content (in particular chlorine) of less than 3 ppm by weight.
- a portion of said naphtha cut freed from its impurities from step d) can be sent to a steam cracking step, possibly mixed with a fossil feedstock suitable for the steam cracker.
- Said steam cracking step is advantageously carried out in at least one pyrolysis furnace at a temperature between 700 and 900°C, preferably between 750 and 850°C, and at a pressure between 0.05 and 0.3 MPa relative.
- the residence time of the hydrocarbon compounds is generally less than or equal to 1.0 seconds (denoted s), preferably between 0.1 and 0.5 s.
- water vapor is introduced upstream of the steam cracking step and after the separation (or fractionation).
- the quantity of water introduced, advantageously in the form of water vapor is advantageously between 0.3 and 3.0 kg of water per kg of hydrocarbon compounds at the inlet of the steam cracking step.
- the steam cracking step is carried out in several pyrolysis furnaces in parallel so as to adapt the operating conditions to the different streams, and also to manage the decoking times of the tubes.
- a furnace comprises one or more tubes arranged in parallel.
- a furnace can also designate a group of furnaces operating in parallel. For example, one furnace can be dedicated to cracking the naphtha cut and another dedicated to the middle distillate cut.
- the effluents from the various steam cracking furnaces are generally recombined before separation in order to constitute an effluent.
- the steam cracking stage includes the steam cracking furnaces but also the sub-stages associated with steam cracking well known to those skilled in the art. These sub-stages may include in particular heat exchangers, columns and catalytic reactors and recycles to the furnaces.
- a column generally makes it possible to fractionate the effluent in order to recover at least a light fraction comprising hydrogen and compounds having 2 to 5 carbon atoms, and a fraction comprising pyrolysis gasoline, and possibly a heavier fraction.
- C2, C3 and/or C4 olefins at satisfactory contents, in particular greater than or equal to 30% by weight, in particular greater than or equal to 40% by weight, or even greater than or equal to 50% by weight of total olefins comprising 2, 3 and 4 carbon atoms relative to the weight of the steam cracking effluent in question.
- Said C2, C3 and C4 olefins can then be advantageously used as polyolefin monomers.
- One or more further processing stages of the heavy cut, or of the other cut(s) from the heavy cut during prefractionation stage a) may be carried out in order to recover them.
- Such a step may include at least one step chosen from the list consisting of hydrotreatment, steam cracking, hydrocracking or fluidized bed catalytic cracking. These examples of further treatment are not exhaustive.
- the further processing steps may be carried out on a single cut or several of the cuts resulting from step a) of prefractionation in a mixture, alone or in a mixture with an oil feedstock and/or a feedstock resulting from the conversion of the biomass.
- hydrotreatment is generally necessary before the cut(s) can be sent either to other subsequent treatments or to a storage unit in order to protect the catalysts from subsequent treatments or to meet the required specifications.
- Hydrotreatment can be carried out on the heavy cut (whole) or on the middle distillate cut including a diesel cut and a kerosene cut, or on the vacuum diesel cut from prefractionation step a), alone or in a mixture.
- Co-processing can also be carried out by mixing the heavy cut, or the other cut(s) from the heavy cut with a petroleum feedstock and/or a feedstock from biomass conversion.
- feedstocks are gasolines, diesels, vacuum diesels, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuel oils, oils, waxes and paraffins, used oils, residues or deasphalted crudes, feedstocks from thermal or catalytic conversion processes, lignocellulosic feedstocks or more generally feedstocks from biomass such as vegetable oils, algae or algal oils, fish oils, used cooking oils, and fats of vegetable or animal origin, taken alone or in a mixture.
- the heavy (whole) cut from the prefractionation step is subjected to a hydrotreatment step implemented in a hydrotreatment section, preferably in a fixed bed, which is carried out under the operating conditions and with hydrotreatment catalysts as described for the hydrotreatment step c) of the naphtha cut.
- a hydrotreatment dedicated to each cut can be carried out, in particular a hydrotreatment dedicated to the middle distillate cut (including a diesel cut or a kerosene cut) and/or a hydrotreatment dedicated to the vacuum diesel cut.
- the middle distillate cut and/or the vacuum gas oil cut may be sent to a dedicated hydrotreatment section which is different from the hydrotreatment section of the naphtha cut of step c).
- the operating conditions in particular the temperature and the pressure, may be higher than those of the hydrotreatment step of the naphtha cut in order to eliminate the sulfur and nitrogen-based impurities which are often more significant and refractory in this cut.
- At least a portion of said heavy cut, or of said middle distillate cut and/or of said vacuum gas oil cut may be subjected to a dedicated hydrotreatment step, in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least by said heavy cut, or said middle distillate cut and/or said vacuum gas oil cut and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at an average temperature between 250 and 430°C, a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and an hourly volumetric velocity between 0.1 and 10.0 h -1 , to obtain a heavy hydrotreated effluent.
- the middle distillate cut freed from its impurities can then be introduced, alone or in a mixture with the naphtha cut freed from its impurities, into a steam cracking unit or be sent to a fuel storage unit, for example a unit diesel storage or a kerosene storage unit, from conventional petroleum feedstocks or even be recycled in a step of the process according to the invention, for example in steps b) and/or c).
- a fuel storage unit for example a unit diesel storage or a kerosene storage unit
- the vacuum gas oil cut freed from its impurities can then be introduced, alone or mixed with the middle distillate cut, into a hydrocracking unit or into a fluidized bed catalytic cracking unit or even be recycled in a stage of the process according to the invention, for example in stages b) and/or c).
- the hydrotreated heavy effluent (the hydrotreated heavy cut, or the hydrotreated middle distillate cut and/or the hydrotreated vacuum gas oil cut) from the heavy cut during the prefractionation step a) can then be introduced into a hydrocracking step which converts the cut into lighter and more valuable products (naphtha, middle distillates).
- Compounds with a boiling point above 175°C contain, compared to lighter compounds, more naphthenic, naphtheno-aromatic and aromatic compounds, thus leading to a higher C/H ratio. This high ratio is a cause of coking in the steam cracker, thus requiring steam cracking furnaces dedicated to this cut.
- Co-processing can also be carried out by mixing the hydrotreated heavy cut or the hydrotreated middle distillate cut and/or the hydrotreated vacuum gas oil cut with a petroleum feedstock and/or a feedstock from biomass conversion.
- a feedstock is generally a hydrocarbon feedstock of which at least 50% by weight of the compounds have an initial boiling point above 300°C and a final boiling point below 650°C.
- HCO Heavy Cycle Oil according to the English terminology (heavy gas oils from a catalytic cracking unit)
- vacuum distillates for example gas oils from the direct distillation of crude or from conversion units such as catalytic cracking, coker or visbreaking, feedstocks from aromatic extraction units, lubricating oil bases or from solvent dewaxing of lubricating oil bases, distillates from fixed bed or ebullated bed desulfurization or hydroconversion processes of atmospheric residues and/or vacuum residues and/or deasphalted oils, or the feedstock can be a deasphalted oil or include vegetable oils or even come from the conversion of feedstocks from biomass. It can also be paraffins from the Fischer-Tropsch process. Said feedstock may also be a mixture of said feedstocks mentioned above.
- the co-feedstock is a vacuum distillate.
- the hydrocracking is carried out in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed with said hydrotreated heavy effluent (the hydrotreated heavy cut, or the hydrotreated middle distillate cut and/or the hydrotreated vacuum gas oil cut), and a gas stream comprising hydrogen, said hydrocracking reaction section being carried out at an average temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 20.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h' 1 , to obtain a hydrocracked effluent.
- a hydrocracking reaction section implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed with said hydrotreated heavy effluent (the hydrotreated heavy cut, or the hydrotreated middle distill
- said hydrocracking reaction section is advantageously carried out at an average temperature between 250 and 480°C, preferably between 320 and 450°C, at a hydrogen partial pressure between 1.5 and 20.0 MPa abs., preferably between 2 and 18.0 MPa abs., and at an hourly volumetric flow rate (WH) between 0.1 and 10.0 h' 1 , preferably between 0.1 and 5.0 h' 1 , preferentially between 0.2 and 4 h' 1 .
- the hydrogen coverage in the hydrocracking step is advantageously between 80 and 2000 Nm 3 of hydrogen per m 3 of feedstock feeding the hydrocracking step, and preferably between 200 and 1800 Nm 3 of hydrogen per m 3 of feedstock feeding the hydrocracking step.
- the definitions of the average temperature (WABT), the WH and the hydrogen coverage correspond to those described above.
- the hydrotreatment step and the hydrocracking step can advantageously be carried out in the same reactor or in different reactors.
- the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrotreatment catalyst(s) and the following catalytic beds comprising the hydrocracking catalyst(s).
- the hydrocracking step can be carried out in one or two stages. When it is carried out in two stages, a separation of the effluent from the first hydrocracking stage is carried out to obtain a heavy cut (middle distillate cut and/or unreacted vacuum gas oil cut), which is introduced into the second hydrocracking stage comprising a second dedicated hydrocracking reaction section, different from the first hydrocracking reaction section.
- a heavy cut middle distillate cut and/or unreacted vacuum gas oil cut
- This configuration is particularly suitable when it is desired to produce only a naphtha cut.
- the preferred operating conditions and catalysts used in the second hydrocracking stage are those described for the first hydrocracking stage.
- the operating conditions and catalysts used in the two hydrocracking stages may be identical or different.
- the hydrocracking catalyst(s) used in the hydrocracking step(s) are conventional hydrocracking catalysts known to those skilled in the art, of the bifunctional type combining an acid function with a hydro-dehydrogenating function and optionally at least one binding matrix.
- the acid function is provided by supports with a large surface area (generally 150 to 800 m 2 /g) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron and aluminum oxides, amorphous silica-aluminas and zeolites.
- the hydro-dehydrogenating function is provided by at least one metal from group VI B of the periodic table and/or at least one metal from group VIII. Hydro-dehydrogenating functions of the NiMo, NiMoW, NiW type are preferred.
- Metal contents are generally as described for hydrotreating catalysts.
- Hydrocracking catalysts may also contain phosphorus and/or an organic compound containing oxygen and/or nitrogen and/or sulfur in levels as described for hydrotreating catalysts.
- the hydrocracked effluent is then generally subjected to a fractionation step to recover lighter cuts, for example a naphtha cut and at least one middle distillate cut, and an unconverted cut which can be recycled in the hydrocracking step.
- lighter cuts for example a naphtha cut and at least one middle distillate cut
- an unconverted cut which can be recycled in the hydrocracking step.
- the naphtha cut and/or at least one middle distillate cut can then be sent to a steam cracking unit or be sent to a fuel storage unit or even be recycled in a step of the process according to the invention, for example in steps b) and/or c).
- the heavy cut, or the middle distillate cut and/or the vacuum diesel cut, from the heavy cut during prefractionation step a), hydrotreated or not, can also be subjected to a fluidized bed catalytic cracking step (FCC for Fluid Catalytic Cracking according to the English terminology) to produce products such as high octane gasoline, light fuel oil, heavy fuel oil, light olefin-rich gas (propylene, butylene) and coke.
- FCC Fluid Catalytic Cracking according to the English terminology
- Co-processing can also be carried out by mixing the heavy cut, or the middle distillate cut and/or the vacuum diesel cut, hydrotreated or not, with a petroleum feedstock and/or a feedstock from biomass conversion.
- a feedstock is a atmospheric diesel, vacuum diesel and atmospheric residue, a lignocellulosic feedstock or more generally a feedstock from biomass, taken alone or in a mixture.
- the FCC unit uses a high activity zeolite catalyst to crack heavy hydrocarbon molecules.
- a conventional FCC unit is used.
- catalytic cracking first industrially implemented in 1936 (HOUDRY process) or in 1942 for the use of fluidized bed catalyst
- HOUDRY process HOUDRY process
- fluidized bed catalyst a brief description of catalytic cracking (first industrially implemented in 1936 (HOUDRY process) or in 1942 for the use of fluidized bed catalyst) can be found in ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY VOLUME A 18, 1991, pages 61 to 64.
- the choice of catalyst and operating conditions depend on the desired products depending on the feedstock being treated, as described, for example, in the article by M. MARCILLY pages 990-991 published in the journal of the French Petroleum Institute Nov.-Dec. 1975 pages 969-1006.
- Fluidized bed catalytic cracking is generally carried out in a fluidized bed catalytic cracking reaction section in a substantially vertical reactor either in riser mode or in downer mode in the presence of the heavy cut or the middle distillates cut and/or the vacuum gas oil cut and a zeolite catalyst at a reactor temperature between 450°C and 600°C with a contact time in the reactor of less than 1 minute, often from 0.1 to 50 seconds.
- a conventional zeolite catalyst comprising a matrix, optionally an additive and at least one zeolite is usually used in the FCC process.
- the amount of zeolite is variable but usually 3 to 60% by weight, often 6 to 50% by weight and most often 10 to 45% by weight relative to the weight of the catalyst.
- the zeolite is usually dispersed in the matrix.
- the amount of additive is usually 0 to 30% by weight and often 0 to 20% by weight relative to the weight of the catalyst.
- the amount of matrix represents the balance to 100% by weight.
- the additive is generally selected from the group formed by the oxides of the metals of group HA of the periodic table of elements such as for example magnesium oxide or calcium oxide, the oxides of the rare earths and the titanates of the metals of group HA.
- the matrix is most often silica, alumina, silica-alumina, silica-magnesia, clay, or a mixture of two or more of these.
- the most commonly used zeolite is zeo
- Any gaseous effluent and/or any liquid effluent from separation step d) may be subjected to an optional heavy metal adsorption step.
- the optional adsorption step makes it possible to eliminate or reduce the quantity of metallic impurities, in particular the quantity of heavy metals such as arsenic, zinc, lead, and in particular mercury, possibly present in said gaseous and liquid effluents.
- the metallic impurities, and in particular the heavy metals are present in the feedstock.
- Certain impurities, in particular mercury-based can be transformed in one of the steps of the process according to the invention. Their transformed form is easier to trap.
- an optional step of adsorption of a gaseous effluent and/or a hydrocarbon effluent from the process according to the invention is advantageously carried out in particular when at least one of these effluents or the feed respectively comprises more than 20 ppb by weight, in particular more than 15 ppb by weight of heavy metal metallic elements (As, Zn, Pb, Hg, etc.), and in particular when at least one of these effluents or the feed respectively comprises more than 10 ppb by weight of mercury, more particularly more than 15 ppb by weight of mercury.
- As, Zn, Pb, Hg, etc. heavy metal metallic elements
- Said optional adsorption step is advantageously carried out at a temperature between 20 and 250°C, preferably between 40 and 200°C, and at a pressure between 0.15 and 10.0 MPa abs, preferably between 0.2 and 1.0 MPa abs.
- Said optional adsorption step can be implemented by any adsorbent known to those skilled in the art making it possible to reduce the quantity of such contaminants.
- said optional adsorption step is implemented in an adsorption section operated in the presence of at least one adsorbent comprising a porous support, and optionally at least one active phase which may be based on sulfur in elemental form, or in the form of metal sulfide or metal oxide, or even in metallic form in elemental form.
- the porous support can be chosen from the families of aluminas, silica-aluminas, silicas, zeolites and/or activated carbons.
- the porous support is based on alumina.
- Said adsorption section may comprise one or more adsorption columns.
- a mode of operation may be a so-called “swing" operation, according to the established Anglo-Saxon term, in which one of the columns is online, i.e. in operation, while the other column is in reserve.
- Another mode of operation is to have at least two columns operating in series in permutable mode.
- said adsorption section comprises an adsorption column for the gaseous effluent(s) and an adsorption column for the liquid effluent(s).
- Figure 1 represents the diagram of a particular embodiment of the method of the present invention, comprising:
- a feedstock comprising a plastic pyrolysis oil and/or tires and/or recovered solid fuels 1 to obtain a naphtha cut 2, a middle distillate cut 3 and a vacuum diesel oil (VGO) cut 4.
- VGO vacuum diesel oil
- step d supplied with the hydrotreated effluent 10 from step c) and an aqueous solution 11, said step being carried out at a temperature between 20 and 300°C, to obtain at least one gaseous effluent 12, one aqueous effluent 13 and a naphtha cut freed from these impurities 14, a part 15 of which is recycled in step b).
- step d another part of the naphtha cut freed from these impurities 14 can be sent to a steam cracking process (not shown). Another part of the naphtha cut freed from these impurities 14 can also feed the hydrotreatment step c) (not shown).
- the middle distillate cut 3 can be sent to a dedicated hydrotreatment stage, undergo stripping to remove in particular hydrogen and H2S, then be sent to a fuel storage unit, for example a diesel storage unit or a kerosene storage unit, from conventional petroleum feedstocks (not shown).
- the vacuum gas oil (VGO) 4 cut, and possibly the middle distillate cut can be introduced into a dedicated hydrotreatment stage, then into a hydrocracking stage, undergo a separation stage to remove in particular the hydrogen and the H2S and a heavy cut which has not been hydrocracked, then be sent to a fuel storage unit, for example a diesel storage unit or a kerosene storage unit, from conventional petroleum feedstocks (not shown).
- Feedstock 1 treated in the process is a plastic pyrolysis oil (i.e. comprising 100% by weight of said plastic pyrolysis oil).
- Charge 1 is subjected to a prefractionation step a) to obtain a naphtha cut 2 having a boiling point between 36 and 180°C and a heavy cut (distillates 180°C+) having a boiling point above 180°C.
- a prefractionation step a to obtain a naphtha cut 2 having a boiling point between 36 and 180°C and a heavy cut (distillates 180°C+) having a boiling point above 180°C.
- the characteristics of the charge and the cuts are indicated in Table 2.
- the naphtha cut 2 is subjected to a hydrogenation step b) carried out in a fixed bed reactor and in the presence of hydrogen 5 as well as a recycle of a fraction of the hydrotreated naphtha cut 15 from the separation step d) and a hydrogenation catalyst of the type
- the hydrogenated effluent from hydrogenation step b) is subjected directly, without separation, to a hydrotreatment step c) carried out in a fixed bed and in the presence of hydrogen 9, and a NiMo-on-alumina hydrotreatment catalyst under the conditions presented in Table 4.
- a fraction of the hydrogen-rich gas 12 from separation step d) is mixed with the hydrogenated effluent from step b) in order to satisfy the average temperature and H2/HC ratio criteria of hydrotreatment step c).
- Table 4 Conditions of hydrotreatment step c)
- the temperature difference between the inlet and outlet of the hydrotreatment reactor does not pose a problem (AT ⁇ 5°C) in the process according to the invention.
- the hydrotreated effluent 10 from hydrotreatment step c) is subjected to a separation step d) in which a stream of water is injected into the effluent from hydrotreatment step c); the mixture having reached a temperature of 45°C, it is then separated in a separator drum so as to obtain a hydrogen-rich gaseous effluent sent to an acid gas scrubbing column and a liquid effluent which is then treated in a two-phase separator drum so as to obtain an aqueous effluent and a washed naphtha cut.
- a separation step d) in which a stream of water is injected into the effluent from hydrotreatment step c); the mixture having reached a temperature of 45°C, it is then separated in a separator drum so as to obtain a hydrogen-rich gaseous effluent sent to an acid gas scrubbing column and a liquid effluent which is then treated in a two-phase separator drum so as to obtain an aqueous
- the washed naphtha cut is then partly recycled to hydrogenation step b) in order to control the reaction exotherms and partly directed into a stripping column so as to obtain a naphtha cut freed from its impurities.
- the yields and qualities obtained after separation are indicated in Table 5 (the yields corresponding to the ratios of the mass quantities of the different products obtained in relation to the mass of charge upstream of step b), expressed as a percentage and noted % m/m).
- Table 5 Yields of the different products obtained after separation and fractionation
- Table 6 The characteristics of the liquid naphtha PI+ cut obtained after separation step d) are presented in table 6:
- the PI+ naphtha cut has a composition compatible with a steam cracking unit since:
- metal contents in particular iron (Fe) and silicon (metal content not detected; Fe content not detected; Si content ⁇ 0.2 ppm wt) and below the limits required for a steam cracker feed ( ⁇ 5.0 ppm wt, very preferably ⁇ 1 ppm wt for metals; ⁇ 100 ppb wt for Fe; ⁇ 0.6 ppm weight for Si);
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
PROCEDE DE TRAITEMENT D’HUILE DE PYROLYSE INCLUANT UN PREFRACTIONNEMENT ET UN RECYCLEPYROLYSIS OIL TREATMENT PROCESS INCLUDING PREFRACTIONATION AND RECYCLE
DOMAINE TECHNIQUE TECHNICAL FIELD
La présente invention s’inscrit dans le domaine du recyclage de plastiques et/ou de pneus et/ou de combustibles solides de récupération (CSR). Plus particulièrement, la présente invention concerne un procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques et/ou de pneus et/ou de CSR incluant notamment un préfractionnement de la charge permettant d’extraire une coupe naphta, ladite coupe naphta étant par la suite soumise à un traitement permettant d’éliminer les impuretés spécifiquement contenues dans cette coupe en vue d’utiliser cette coupe notamment comme une charge pour un vapocraqueur pour produire des d’oléfines. The present invention relates to the field of recycling plastics and/or tires and/or solid recovered fuels (SRF). More particularly, the present invention relates to a method for treating a feedstock comprising a plastic and/or tire and/or SRF pyrolysis oil, including in particular a prefractionation of the feedstock making it possible to extract a naphtha cut, said naphtha cut subsequently being subjected to a treatment making it possible to eliminate the impurities specifically contained in this cut with a view to using this cut in particular as a feedstock for a steam cracker to produce olefins.
TECHNIQUE ANTERIEURE PRIOR TECHNIQUE
Les plastiques issus des filières de collecte et de tri ou les pneus recyclés ou encore les combustibles solides de récupération (CSR) peuvent subir une étape de pyrolyse afin de les valoriser. La pyrolyse consiste à chauffer avec ou sans catalyseur une charge contenant du plastique et/ou des pneus recyclés et/ou encore les CSR en l’absence d’oxygène, conduisant à la formation de trois produits principaux : une phase hydrocarbure liquide à température ambiante aussi appelée huile de pyrolyse, une phase gaz légère aussi appelée gaz de pyrolyse et un résidu solide aussi appelé char selon la terminologie anglo-saxonne. Plastics from collection and sorting channels or recycled tires or solid recovered fuels (SRF) can undergo a pyrolysis step in order to recover them. Pyrolysis consists of heating with or without a catalyst a charge containing plastic and/or recycled tires and/or SRF in the absence of oxygen, leading to the formation of three main products: a liquid hydrocarbon phase at room temperature also called pyrolysis oil, a light gas phase also called pyrolysis gas and a solid residue also called char according to Anglo-Saxon terminology.
La phase hydrocarbure liquide, l’huile de pyrolyse, peut être valorisée dans une unité de stockage de carburants essence, kérosène ou gazole. The liquid hydrocarbon phase, pyrolysis oil, can be recovered in a gasoline, kerosene or diesel fuel storage unit.
Une autre voie de valorisation des huiles de pyrolyse est l’utilisation de ces huiles de pyrolyse en tant que charge d’une unité de vapocraquage afin de (re)créer des oléfines, ces dernières étant des monomères constitutifs de certains polymères. Another way of recovering pyrolysis oils is to use them as feedstock for a steam cracking unit in order to (re)create olefins, the latter being monomers that make up certain polymers.
Cependant, les huiles de pyrolyse ont des impuretés à des teneurs souvent élevées et incompatibles avec un stockage direct dans une unité de stockage de carburants ou avec les unités de vapocraquage ou les unités situées en aval des unités de vapocraquage, notamment les procédés de polymérisation et les procédés d’hydrogénation sélective. Ces impuretés peuvent générer des problèmes d’opérabilité et notamment des problèmes de corrosion (notamment dus à la présence de chlore), de cokage ou de désactivation catalytique, ou encore des problèmes d’incompatibilité dans les usages des polymères cibles. La présence de dioléfines peut également conduire à des problèmes d’instabilité de l’huile de pyrolyse se caractérisant par la formation de gommes. Les gommes et les insolubles éventuellement présents dans l’huile de pyrolyse peuvent générer des problèmes de colmatage dans les procédés. However, pyrolysis oils contain impurities that are often at high levels and are incompatible with direct storage in a fuel storage unit or with steam cracking units or units located downstream of steam cracking units, in particular polymerization processes and selective hydrogenation processes. These impurities can cause operability problems, including corrosion problems (particularly due to the presence of chlorine), coking or deactivation. catalytic, or even incompatibility problems in the uses of the target polymers. The presence of diolefins can also lead to problems of instability of the pyrolysis oil characterized by the formation of gums. Gums and insolubles possibly present in the pyrolysis oil can generate clogging problems in the processes.
Une voie pour éliminer ces impuretés contenues dans les huiles de pyrolyse de plastiques et/ou de pneus est d’effectuer un hydrotraitement (H DT) en présence de catalyseurs. De tels procédés sont par exemples décrits dans WO2018/055555, WO2021/165178 ou encore WO2022/144235. Tous ces procédés ont en commun que l’intégralité de l’huile de pyrolyse est hydrotraité (sans préfractionnement). One way to remove these impurities from plastic and/or tire pyrolysis oils is to carry out hydrotreatment (H DT) in the presence of catalysts. Such processes are described, for example, in WO2018/055555, WO2021/165178 or WO2022/144235. All these processes have in common that the entire pyrolysis oil is hydrotreated (without prefractionation).
Or, les différentes impuretés qui sont contenues dans l’huile de pyrolyse et qu’on cherche à éliminer se trouvent en générale dans différentes fractions de cette huile. En effet, selon l’origine de l’huile de pyrolyse, l’huile peut avoir une gamme de points d’ébullition assez large (par exemple entre 40°C et 700°C). Certaines impuretés, notamment le chlore, le silicium ou encore les dioléfines et les monooléfines se trouvent en générale plutôt dans la fraction plus légère de l’huile (coupe naphta), alors que d’autres impuretés comme par exemples le soufre, l’azote et les métaux se concentrent plus dans les fractions plus lourdes de l’huile. However, the various impurities contained in pyrolysis oil that we seek to eliminate are generally found in different fractions of this oil. Indeed, depending on the origin of the pyrolysis oil, the oil can have a fairly wide range of boiling points (for example between 40°C and 700°C). Some impurities, notably chlorine, silicon or even diolefins and monoolefins are generally found in the lighter fraction of the oil (naphtha cut), while other impurities such as sulfur, nitrogen and metals are more concentrated in the heavier fractions of the oil.
La présente invention propose ainsi d’adapter le type de traitement d’élimination des impuretés aux différentes fractions de l’huile en effectuant au préalable un préfractionnement. Elle vise notamment à produire une coupe naphta en vue d’utiliser cette coupe comme une charge pour un vapocraqueur pour produire des d’oléfines. The present invention thus proposes to adapt the type of impurity removal treatment to the different fractions of the oil by first carrying out a prefractionation. It aims in particular to produce a naphtha cut with a view to using this cut as a feedstock for a steam cracker to produce olefins.
Lors de l’étape de vapocraquage, les rendements en oléfines légères recherchées pour la pétrochimie, notamment l’éthylène et le propylène, dépendent fortement de la qualité des charges envoyées au vapocraquage. Le BMCI (Bureau of Mines Correlation Index selon la terminologie anglo-saxonne) est souvent utilisé pour caractériser les coupes hydrocarbonées. Globalement, les rendements en oléfines légères augmentent quand la teneur en paraffines augmente et/ou quand le BMCI diminue. A l’inverse, les rendements en composés lourds non recherchés et/ou en coke augmentent quand le BMCI augmente. During the steam cracking stage, the yields of light olefins sought for petrochemicals, particularly ethylene and propylene, depend heavily on the quality of the feedstocks sent to the steam cracking process. The BMCI (Bureau of Mines Correlation Index) is often used to characterize hydrocarbon fractions. Overall, light olefin yields increase when the paraffin content increases and/or when the BMCI decreases. Conversely, yields of undesired heavy compounds and/or coke increase when the BMCI increases.
Bien qu’une coupe lourde de type distillât moyens puisse être envoyée vers une unité de vapocraquage, peu de raffineurs favorisent cette option. En effet, la coupe lourde a un BMCI élevé et contient par rapport à la coupe naphta plus de composés naphténiques, naphténo- aromatiques et aromatiques menant ainsi à un ratio C/H plus élevé. Ce ratio élevé est une cause de cokage dans le vapocraqueur, nécessitant ainsi des fours de vapocraquage dédiés à cette coupe. De plus, le vapocraquage d’une telle coupe lourde produit moins de produits d’intérêts qui sont notamment l’éthylène et le propylène mais davantage d’essence de pyrolyse. Although a heavy middle distillate cut can be sent to a steam cracking unit, few refiners favor this option. Indeed, the heavy cut has a high BMCI and contains more naphthenic, naphtheno-aromatic, and aromatic compounds than the naphtha cut, leading to a higher C/H ratio. This high ratio causes coking in the steam cracker, requiring dedicated steam cracking furnaces for this cut. In addition, steam cracking such a heavy cut produces fewer products. of interest which are notably ethylene and propylene but more pyrolysis gasoline.
Il serait donc avantageux d’extraire la coupe naphta de l’huile de pyrolyse et d’éliminer les impuretés spécifiques qu’elle contient par un traitement dédié à cette coupe en vue d’utiliser cette coupe comme une charge pour un vapocraqueur. It would therefore be advantageous to extract the naphtha cut from the pyrolysis oil and eliminate the specific impurities it contains by a treatment dedicated to this cut with a view to using this cut as a charge for a steam cracker.
Des procédés de traitement d’huile de pyrolyse avec préfractionnement de l’huile de pyrolyse sont par exemple décrits dans WO2018/069794, EP4108737, WO2022/034287, US2022/340824, sans pour autant adapter le traitement d’une fraction à la nature des impuretés tel que proposé dans la présente invention. Methods for treating pyrolysis oil with prefractionation of the pyrolysis oil are for example described in WO2018/069794, EP4108737, WO2022/034287, US2022/340824, without however adapting the treatment of a fraction to the nature of the impurities as proposed in the present invention.
Le document US2023/0013013 décrit un procédé de traitement de plastiques incluant une étape de pyrolyse permettant d’obtenir une huile de pyrolyse qui est ensuite fractionnée en une fraction comprenant du naphta et du diesel et une fraction gasoil sous vide (VGO pour Vacuum Gas Oil selon la terminologie anglo-saxonne). La fraction comprenant du naphta et du diesel est ensuite soumise à trois étapes d’hydrotraitement consécutives, une première permettant d’éliminer les dioléfines, une deuxième permettant d’éliminer les monooléfines et une troisième permettant d’éliminer les soufre et l’azote. Ce document décrit également la possibilité d’un préfractionnement en 3 fractions, une fraction naphta, une fraction diesel et une fraction gasoil sous vide. La fraction naphta et la fraction diésel sont ensuite indépendamment soumises en parallèle aux trois étapes d’hydrotraitement décrites ci-dessus. La fraction gasoil sous vide quant à elle peut être soumise à une étape d’hydrodémétallation ou une étape de désasphaltage par solvent. Ce document vise la production de carburants. Document US2023/0013013 describes a process for treating plastics including a pyrolysis step to obtain a pyrolysis oil which is then fractionated into a fraction comprising naphtha and diesel and a vacuum gas oil (VGO) fraction. The fraction comprising naphtha and diesel is then subjected to three consecutive hydrotreatment steps, a first to remove diolefins, a second to remove monoolefins and a third to remove sulfur and nitrogen. This document also describes the possibility of prefractionation into 3 fractions, a naphtha fraction, a diesel fraction and a vacuum gas oil fraction. The naphtha fraction and the diesel fraction are then independently subjected in parallel to the three hydrotreatment steps described above. The vacuum gas oil fraction can be subjected to a hydrodemetallation step or a solvent deasphalting step. This document is aimed at the production of fuels.
Le document WO2022/144491 décrit un procédé de traitement d’une huile de pyrolyse comprenant une étape de stripage qui permet de séparer l’huile en une coupe distillât comprenant des dioléfines et du naphta et une coupe plus lourde. La coupe distillât est ensuite soumise à un hydrotraitement permettant d’éliminer les dioléfines, puis soumise à une distillation afin de récupérer au moins une coupe naphta qui est de nouveau hydrotraitée afin de fournir une coupe naphta qui convient pour un vapocraqueur. Les autres coupes peuvent être mélangées avec du pétrole brut et traitées ultérieurement dans une raffinerie de pétrole. WO2022/144491 describes a method for treating pyrolysis oil comprising a stripping step that separates the oil into a distillate cut comprising diolefins and naphtha and a heavier cut. The distillate cut is then subjected to hydrotreatment to remove the diolefins, then subjected to distillation to recover at least one naphtha cut that is further hydrotreated to provide a naphtha cut suitable for a steam cracker. The other cuts can be blended with crude oil and further processed in an oil refinery.
Le procédé selon l’invention propose d’extraire une coupe naphta par préfractionnement, puis d’effectuer l’élimination des impuretés contenues dans cette coupe très réactive par un traitement d’hydrogénation et éventuellement d’hydrotraitement adaptés, nécessitant le contrôle de l’exothermie des réactions par le recyclage d’une partie de la coupe naphta traitée. Le préfractionnement permet d’extraire une coupe naphta issue d’une huile de pyrolyse et compatible en intervalle de distillation avec le fonctionnement d’un four de vapocraquage mais aussi de concentrer certaines impuretés néfastes pour l’unité de vapocraquage (oléfines, dioléfines, composés chlorés et silicés) en vue de leur traitement. Le traitement par le procédé selon l’invention permet d’abattre une grande partie des impuretés concentrées dans la coupe naphta et de la rendre compatible avec une utilisation au vapocraqueur, tout en maitrisant les forts exothermes réactionnels engendrés par la concentration des monooléfines/dioléfines au sein de cette coupe plus légère (coupe naphta) notamment par un recycle d’une partie de la coupe naphta traitée. The process according to the invention proposes to extract a naphtha cut by prefractionation, then to carry out the elimination of the impurities contained in this very reactive cut by a hydrogenation treatment and possibly by adapted hydrotreatment, requiring the control of the exothermicity of the reactions by the recycling of a part of the treated naphtha cut. Prefractionation makes it possible to extract a naphtha cut from a pyrolysis oil and compatible in distillation interval with the operation of a steam cracking furnace but also to concentrate certain impurities harmful to the steam cracking unit (olefins, diolefins, chlorinated and silica compounds) with a view to their treatment. The treatment by the process according to the invention makes it possible to reduce a large part of the impurities concentrated in the naphtha cut and to make it compatible with use in the steam cracker, while controlling the strong reaction exotherms generated by the concentration of monoolefins/diolefins within this lighter cut (naphtha cut) in particular by recycling a part of the treated naphtha cut.
C’est en effet la forte concentration d’oléfines, et notamment de dioléfines, dans cette coupe naphta qui nécessite un contrôle de la température du milieu réactionnel, les réactions d’hydrogénation, notamment d’une partie des monooléfines et des dioléfines, étant fortement exothermiques. Ainsi, en raison de la nature fortement exothermique de l'ensemble des réactions mises en œuvre dans l’étape b) d’hydrogénation, un contrôle de la température du milieu réactionnel s'avère très important car un niveau trop élevé des températures favorise :It is in fact the high concentration of olefins, and in particular diolefins, in this naphtha cut that requires control of the temperature of the reaction medium, the hydrogenation reactions, in particular of some of the monoolefins and diolefins, being highly exothermic. Thus, due to the highly exothermic nature of all the reactions carried out in hydrogenation step b), control of the temperature of the reaction medium is very important because too high a temperature level promotes:
- l’auto-entretien, voire l'emballement des réactions par effet d'accélération thermique des cinétiques. - self-maintenance, or even runaway reactions due to the effect of thermal acceleration of kinetics.
- des réactions secondaires indésirables, telles que par exemple la polymérisation, le cokage des catalyseurs ou encore des réactions de craquage. - undesirable side reactions, such as polymerization, coking of catalysts or cracking reactions.
Il est connu que le recyclage d’une partie du produit obtenu vers ou en amont d’au moins une des étapes réactionnelles permet avantageusement d’une part de diluer les impuretés et d’autre part de contrôler la température dans la ou les étape(s) réactionnelle(s), dans la(les)quelle(s) des réactions mises en jeu peuvent être fortement exothermiques. It is known that recycling part of the product obtained to or upstream of at least one of the reaction stages advantageously makes it possible, on the one hand, to dilute the impurities and, on the other hand, to control the temperature in the reaction stage(s), in which the reactions involved may be highly exothermic.
La présente invention fournit ainsi un perfectionnement de ce principe de contrôle de l’exothermie par recyclage en proposant un schéma de procédé de traitement d’une coupe naphta fortement chargée en impuretés très réactifs issue d’une charge comprenant une huile de pyrolyse, permettant par la mise en œuvre d'un recycle en entrée de l’étape b) d’hydrogénation, un contrôle précis des températures, une maîtrise améliorée de l’exothermie et des différentes réactions ayant lieu dans les différentes zones catalytiques. The present invention thus provides an improvement to this principle of controlling exothermicity by recycling by proposing a process diagram for treating a naphtha cut heavily loaded with highly reactive impurities from a feedstock comprising a pyrolysis oil, allowing, by implementing a recycle at the inlet of step b) of hydrogenation, precise control of temperatures, improved control of exothermicity and of the different reactions taking place in the different catalytic zones.
Un des objectifs de la présente invention est de contrôler l'avancement et l’exothermie des réactions dans l’étape b) d’hydrogénation, tout en assurant l'apport de chaleur nécessaire au démarrage et au contrôle des différentes réactions et en particulier l'hydrogénation dans l’étape b) nécessitant des conditions opératoires en température spécifiques. Le traitement de la fraction légère de l’huile de pyrolyse (coupe naphta) et non de sa globalité permet également d’adoucir les conditions opératoires (pression partielle d’hydrogène, température, ...). A vitesse volumique horaire identique par rapport à une unité qui traiterait l’intégralité de l’huile de pyrolyse, un gain sur la capacité de l’unité est réalisé ainsi que sur le prix d’investissement et l’empreinte au sol. One of the objectives of the present invention is to control the progress and exothermicity of the reactions in hydrogenation step b), while ensuring the heat supply necessary for starting and controlling the various reactions and in particular the hydrogenation in step b) requiring specific temperature operating conditions. The treatment of the light fraction of the pyrolysis oil (naphtha cut) and not its entirety also allows for softening the operating conditions (partial pressure of hydrogen, temperature, etc.). At the same hourly volumetric flow rate as a unit that would treat the entire pyrolysis oil, a gain in the unit's capacity is achieved as well as in the investment price and the footprint.
Grâce au préfractionnement, certaines impuretés particulièrement néfastes pour l’unité de vapocraquage se retrouvent d’avantage concentrées dans la fraction légère naphta. A l’inverse, ces mêmes composés se trouvent déconcentrés de la ou les coupes plus lourde(s), ce qui favorise leur traitement dans des unités aval. Elle(s) contien(nen)t en général pas ou peu de dioléfines. De plus, elle(s) contien(nen)t moins de composés chlorés et de composés silicés que la coupe naphta. La ou les coupe(s) lourde(s) peu(ven)t donc être soumise(s) à des traitements ultérieurs spécifiquement adaptés, de type hydrotraitement, puis hydrocraquage, ou craquage catalytique en lit fluidisé, optionnellement en co-processing avec des charges d’origine fossile ou biosourcée. Le procédé selon l’invention offre donc de la flexibilité quant à l’usage des fractions les plus lourdes de l’huile de pyrolyse. Thanks to prefractionation, certain impurities that are particularly harmful to the steam cracking unit are found to be more concentrated in the light naphtha fraction. Conversely, these same compounds are deconcentrated from the heavier fraction(s), which favors their treatment in downstream units. It (these) generally contains little or no diolefins. In addition, it (these) contains fewer chlorinated compounds and siliceous compounds than the naphtha fraction. The heavy fraction(s) can therefore be subjected to specifically adapted subsequent treatments, such as hydrotreatment, then hydrocracking, or fluidized bed catalytic cracking, optionally in co-processing with feedstocks of fossil or biosourced origin. The process according to the invention therefore offers flexibility in the use of the heaviest fractions of the pyrolysis oil.
Un autre avantage de l’invention est de prévenir des risques de bouchage et/ou de corrosion de l’unité de traitement, dans laquelle le procédé de l’invention est mis en œuvre, les risques étant exacerbés par la présence, souvent en quantités importantes, de dioléfines, de métaux et de composés halogénés. Ces risques de bouchage et/ou de corrosion sont notamment diminués par une étape de séparation impliquant un lavage par une solution aqueuse. Cette étape de lavage/séparation permet en particulier d’éliminer les sels de chlorure d’ammonium, qui se forment par réaction entre les ions chlorure, libérés par l’hydrogénation des composés chlorés sous forme HCl notamment lors de l’étape d’hydrogénation puis dissolution dans l’eau, et les ions ammonium, générés par l’hydrogénation des composés azotés sous forme de NH3 lors de l’étape d’hydrogénation et/ou d’hydrotraitement et/ou apportés par injection d’une amine lorsque la teneur en composés chlorés est élevée, puis dissolution dans l’eau. Another advantage of the invention is to prevent risks of blockage and/or corrosion of the treatment unit, in which the method of the invention is implemented, the risks being exacerbated by the presence, often in significant quantities, of diolefins, metals and halogenated compounds. These risks of blockage and/or corrosion are notably reduced by a separation step involving washing with an aqueous solution. This washing/separation step makes it possible in particular to eliminate the ammonium chloride salts, which are formed by reaction between the chloride ions, released by the hydrogenation of the chlorinated compounds in HCl form, in particular during the hydrogenation step then dissolution in water, and the ammonium ions, generated by the hydrogenation of the nitrogen compounds in the form of NH 3 during the hydrogenation and/or hydrotreatment step and/or supplied by injection of an amine when the content of chlorinated compounds is high, then dissolution in water.
RESUME DE L’INVENTION SUMMARY OF THE INVENTION
Plus précisément, l’invention concerne un procédé de traitement d’une charge comprenant une huile de pyrolyse de plastique et/ou de pneus et/ou de combustibles solides de récupération, ledit procédé comprenant les étapes suivantes : a) une étape de préfractionnement de la charge pour obtenir une coupe naphta et au moins une coupe plus lourde, b) une étape d’hydrogénation mise en œuvre dans une section réactionnelle d’hydrogénation, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1 , comprenant chacun au moins un catalyseur d'hydrogénation, ladite section réactionnelle d’hydrogénation étant alimentée au moins par ladite coupe naphta issue de l’étape a) en mélange avec au moins une partie de la coupe naphta issue de l’étape d) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrogénation étant mise en œuvre à une température moyenne entre 120 et 380°C, une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h- 1, pour obtenir un effluent hydrogéné, c) optionnellement une étape d’hydrotraitement mise en œuvre dans une section réactionnelle d’hydrotraitement, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1 , comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au moins par ledit effluent hydrogéné issu de l’étape b) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrotraitement étant mise en œuvre à une température entre 200 et 400°C, une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h'1, pour obtenir un effluent d’hydrotraité, d) une étape de séparation, alimentée par l’effluent hydrogéné issu de l’étape b) ou par l’effluent hydrotraité issu de l’étape c) et une solution aqueuse, ladite étape étant opérée dans une section de séparation à une température entre 20 et 300°C, pour obtenir au moins un effluent gazeux, un effluent aqueux et une coupe naphta dont une partie est recyclée dans l’étape b). More specifically, the invention relates to a method for treating a feedstock comprising a pyrolysis oil from plastic and/or tires and/or recovered solid fuels, said method comprising the following steps: a) a step of prefractionating the feedstock to obtain a naphtha cut and at least one heavier cut, b) a hydrogenation step carried out in a hydrogenation reaction section, implementing at least one fixed bed reactor having n catalytic beds, n being a number integer greater than or equal to 1, each comprising at least one hydrogenation catalyst, said hydrogenation reaction section being supplied at least with said naphtha cut from step a) in mixture with at least a portion of the naphtha cut from step d) and a gas stream comprising hydrogen, said hydrogenation reaction section being carried out at an average temperature between 120 and 380°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h- 1 , to obtain a hydrogenated effluent, c) optionally a hydrotreatment step implemented in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1 , each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least by said hydrogenated effluent from step b) and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at a temperature between 200 and 400°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h' 1 , to obtain a hydrotreated effluent, d) a separation step, fed with the hydrogenated effluent from step b) or with the hydrotreated effluent from step c) and an aqueous solution, said step being carried out in a separation section at a temperature between 20 and 300°C, to obtain at least one gaseous effluent, an aqueous effluent and a naphtha cut, part of which is recycled in step b).
Selon une variante, le procédé comprend l’étape c) d’hydrotraitement. According to one variant, the process comprises step c) of hydrotreatment.
Selon une variante, une autre partie de la coupe naphta obtenue à l’étape d) est envoyée dans une unité de vapocraquage. According to a variant, another part of the naphtha cut obtained in step d) is sent to a steam cracking unit.
Selon une variante, le vapocraquage est réalisé dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C et à une pression comprise entre 0,05 et 0,3 MPa relatif en présence de vapeur d’eau. According to one variant, the steam cracking is carried out in at least one pyrolysis furnace at a temperature between 700 and 900°C and at a pressure between 0.05 and 0.3 MPa relative in the presence of water vapor.
Selon une variante, le rapport pondéral entre la coupe naphta issue de l’étape d) recyclée dans l’étape b) et la coupe naphta issue de l’étape a) et introduite dans l’étape b) est compris entre 0,01 et 10. According to a variant, the weight ratio between the naphtha cut from step d) recycled in step b) and the naphtha cut from step a) and introduced into step b) is between 0.01 and 10.
Selon une variante, le procédé comprend au moins une étape de prétraitement de la charge ou de la coupe naphta obtenue à l’étape a), ladite étape de prétraitement étant mise en œuvre avant ou après l’étape a) de préfractionnement et en amont de l’étape b) d’hydrogénation et comprend une étape d’adsorption et/ou une étape de filtration et/ou une étape de centrifugation et/ou une étape de décantation et/ou une étape de séparation électrostatique et/ou une étape d’un lavage à l’aide d’une solution aqueuse et/ou une étape de stripage gazeux. According to a variant, the process comprises at least one step of pretreatment of the feed or naphtha cut obtained in step a), said pretreatment step being carried out before or after step a) of prefractionation and upstream of step b) of hydrogenation and comprises an adsorption step and/or a filtration step and/or a centrifugation step and/or a decantation step and/or an electrostatic separation step and/or a washing step using an aqueous solution and/or a gas stripping step.
Selon une variante, ledit catalyseur d’hydrogénation de l’étape b) comprend un support choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges et une fonction hydro-déshydrogénante comprenant soit au moins un élément du groupe VIII et au moins un élément du groupe VIB, soit au moins un élément du groupe VIII. According to a variant, said hydrogenation catalyst of step b) comprises a support chosen from alumina, silica, silica-aluminas, magnesia, clays and their mixtures and a hydro-dehydrogenating function comprising either at least one element from group VIII and at least one element from group VIB, or at least one element from group VIII.
Selon une variante, ledit catalyseur d’hydrotraitement de l’étape c) comprend un support choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges, et une fonction hydro-déshydrogénante comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB. According to a variant, said hydrotreatment catalyst of step c) comprises a support chosen from alumina, silica, silica-aluminas, magnesia, clays and their mixtures, and a hydro-dehydrogenating function comprising at least one element from group VIII and/or at least one element from group VIB.
Selon une variante, la charge est constituée d’une huile de pyrolyse de plastique et/ou de pneus et/ou de combustibles solides de récupération. Alternatively, the charge consists of plastic and/or tire pyrolysis oil and/or recovered solid fuels.
Selon une variante, ladite étape a) de préfractionnement est effectuée de manière à obtenir ladite coupe naphta et au moins une coupe distil lats moyens et une coupe gazole sous vide. According to a variant, said prefractionation step a) is carried out so as to obtain said naphtha cut and at least one middle distillate cut and one vacuum gas oil cut.
Selon une variante, au moins une partie de ladite coupe lourde, ou de ladite coupe distillats moyens et/ou de ladite coupe gazole sous vide est soumise à une étape d’hydrotraitement dédiée, dans une section réactionnelle d’hydrotraitement, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1 , comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au moins par ladite coupe lourde, ou ladite une coupe distillats moyens et/ou ladite coupe gazole sous vide et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrotraitement étant mise en œuvre à une température moyenne entre 250 et 430°C, une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h-1, pour obtenir un effluent lourd d’hydrotraité. According to a variant, at least a portion of said heavy cut, or of said middle distillate cut and/or of said vacuum gas oil cut is subjected to a dedicated hydrotreatment step, in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least by said heavy cut, or said one middle distillate cut and/or said vacuum gas oil cut and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at an average temperature between 250 and 430°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric velocity between 0.1 and 10.0 h -1 , to obtain a heavy hydrotreated effluent.
Selon une variante, au moins une partie de l’effluent lourd hydrotraité est envoyée dans une étape d’hydrocraquage mise en œuvre dans une section réactionnelle d’hydrocraquage, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1 , comprenant chacun au moins un catalyseur d’hydrocraquage, ladite section réactionnelle d’hydrocraquage étant alimentée au moins par ledit effluent lourd hydrotraité et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrocraquage étant mise en œuvre à une température moyenne entre 250 et 480°C, une pression partielle d’hydrogène entre 1 ,5 et 20,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h-1, pour obtenir un effluent hydrocraqué. According to a variant, at least a portion of the hydrotreated heavy effluent is sent to a hydrocracking step implemented in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed at least by said hydrotreated heavy effluent and a gas stream comprising hydrogen, said hydrocracking reaction section being implemented at an average temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 20.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h -1 , to obtain a hydrocracked effluent.
Selon une variante, au moins une partie de ladite coupe lourde, ou de ladite coupe distillats moyens et/ou de ladite coupe gazole sous vide, ou de l’effluent lourd hydrotraité est envoyé dans une étape de craquage catalytique en lit fluidisé mise en œuvre dans une section réactionnelle de craquage catalytique en lit fluidisé dans un réacteur sensiblement vertical soit en mode ascendant soit en mode descendant en présence d’un catalyseur de zéolite à une température de réacteur comprise entre 450°C et 600°C avec un temps de contact dans le réacteur inférieur à 1 minute. According to a variant, at least a portion of said heavy cut, or of said middle distillate cut and/or of said vacuum gas oil cut, or of the hydrotreated heavy effluent is sent to a fluidized bed catalytic cracking step implemented in a fluidized bed catalytic cracking reaction section in a substantially vertical reactor either in ascending mode or in descending mode in the presence of a zeolite catalyst at a reactor temperature of between 450°C and 600°C with a contact time in the reactor of less than 1 minute.
L’invention concerne également un produit obtenu par le procédé selon l’invention. The invention also relates to a product obtained by the process according to the invention.
Selon une variante, le produit comprend une teneur de carbone biologique selon ASTM D6866 comprise entre 0 et 70 % poids. Alternatively, the product includes a bio-based carbon content according to ASTM D6866 of between 0 and 70% by weight.
Dans la suite du texte, on entend par « huile de pyrolyse » une huile issue de la pyrolyse de plastiques et/ou de pneus et/ou de CSR, sauf indication contraire. Lorsque la provenance de l’huile de pyrolyse est importante, son origine est ajoutée (par exemple huile de pyrolyse de pneus). In the following text, "pyrolysis oil" means oil from the pyrolysis of plastics and/or tires and/or CSR, unless otherwise stated. Where the origin of the pyrolysis oil is important, its origin is added (e.g., tire pyrolysis oil).
Selon la présente invention, les expressions « compris entre ... et ... » et « entre .... et ... » sont équivalentes et signifient que les valeurs limites de l’intervalle sont incluses dans la gamme de valeurs décrite. Si tel n’était pas le cas et que les valeurs limites n’étaient pas incluses dans la gamme décrite, une telle précision sera apportée par la présente invention. According to the present invention, the expressions "between ... and ..." and "between .... and ..." are equivalent and mean that the limit values of the interval are included in the range of values described. If this were not the case and the limit values were not included in the range described, such precision will be provided by the present invention.
Dans la présente description, le terme « comprendre » est synonyme de (signifie la même chose que) « inclure » et « contenir », et est inclusif ou ouvert et n’exclut pas d’autres éléments qui ne seraient pas mentionnés. Il est entendu que le terme « comprendre » inclut le terme exclusif et fermé « consister ». In this description, the term “include” is synonymous with (means the same as) “include” and “contain”, and is inclusive or open and does not exclude other elements not mentioned. It is understood that the term “include” includes the exclusive and closed term “consist”.
Dans le sens de la présente invention, les différentes plages de paramètre pour une étape donnée tels que les plages de pression et les plages de température peuvent être utilisés seul ou en combinaison. Par exemple, dans le sens de la présente invention, une plage de valeurs préférées de pression peut être combinée avec une plage de valeurs de température préférées. For the purposes of the present invention, the different parameter ranges for a given step such as pressure ranges and temperature ranges may be used alone or in combination. For example, for the purposes of the present invention, a range of preferred pressure values may be combined with a range of preferred temperature values.
Dans la suite, des modes de réalisation particuliers et/ou préférés de l’invention peuvent être décrits. Ils pourront être mis en œuvre séparément ou combinés entre eux, sans limitation de combinaison lorsque c’est techniquement réalisable. Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII (ou VI 11 B) selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IIIPAC.In the following, particular and/or preferred embodiments of the invention may be described. They may be implemented separately or combined with each other, without limitation of combination when technically feasible. In the following, the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief DR Lide, 81st edition, 2000-2001). For example, group VIII (or VI 11 B) according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IIIPAC classification.
La teneur en métaux est mesurée par fluorescence X. The metal content is measured by X-ray fluorescence.
DESCRIPTION DETAILLEE DETAILED DESCRIPTION
La charge The charge
Selon l’invention, la charge comprend une huile de pyrolyse de plastique et/ou de pneu et/ou de combustibles solides de récupération. According to the invention, the charge comprises a pyrolysis oil from plastic and/or tire and/or recovered solid fuels.
Les déchets plastiques sont généralement des mélanges de plusieurs polymères. La charge utilisée dans le procédé selon l’invention peut comprendre seul ou en mélange du polyéthylène (basse et/ou haute densité), du polypropylène, du polyéthylène téréphtalate, du polychlorure de vinyle et du polystyrène. De plus, en fonction des usages, les plastiques peuvent contenir, en plus des polymères, d’autres composés, comme des plastifiants, des pigments, des colorants ou encore des résidus de catalyseurs de polymérisation. Les déchets plastiques peuvent en outre contenir, de manière minoritaire, de la biomasse provenant par exemple des ordures ménagères. Plastic waste is generally a mixture of several polymers. The feedstock used in the process according to the invention may comprise, alone or in a mixture, polyethylene (low and/or high density), polypropylene, polyethylene terephthalate, polyvinyl chloride and polystyrene. In addition, depending on the uses, plastics may contain, in addition to polymers, other compounds, such as plasticizers, pigments, dyes or even residues of polymerization catalysts. Plastic waste may also contain, to a minor extent, biomass originating for example from household waste.
Quant aux pneus, ils sont principalement constitués de gommes pour leur propriété élastique (mélange d’élastomères de type caoutchoucs naturels et synthétiques réticulés, additionnés d’adjuvants du type silice, résine, soufre, oxyde de zinc, noir de carbone, etc.) et de fibres textiles et métalliques pour leur propriété de renfort. As for tires, they are mainly made of rubber for their elastic property (mixture of elastomers of the crosslinked natural and synthetic rubber type, added with additives of the silica, resin, sulfur, zinc oxide, carbon black, etc. type) and textile and metallic fibers for their reinforcing property.
Les combustibles solides de récupération (CSR), aussi appelés « refuse derived fuel » (RDF), ou encore « solid recovered fuels » (SRF) selon la terminologie anglo-saxonne, sont des déchets non dangereux solides préparés en vue d’une valorisation énergétique, qu’ils proviennent de déchets ménagers et assimilés, de déchets d’activités économiques ou de déchets de construction démolition. Les CSR sont généralement un mélange de n'importe quel déchet combustible tel que des pneus usés, des sous-produits alimentaires (graisses, farines animales, etc.), des déchets de viscose et de bois, des fractions légères issues de déchiqueteuses (par exemple de véhicules usagés, d'équipements électriques et électroniques (DEEE), des déchets ménagers et commerciaux, des résidus du recyclage de divers types de déchets, dont de certains déchets municipaux, les déchets plastiques, textiles, bois entre autres. Les CSR contiennent en général des déchets plastiques. L’huile de pyrolyse compris dans la charge, qu’elle soit issue de pneus, de plastiques et/ou de CSR, est issue d’une étape de pyrolyse d’une charge contenant des pneus, du ou des plastique(s) et/ou des CSR dans une unité de pyrolyse. Solid recovered fuels (SRF), also known as refuse derived fuel (RDF), or solid recovered fuels (SRF), are solid non-hazardous waste prepared for energy recovery, whether they come from household and similar waste, waste from economic activities or construction and demolition waste. SRF are generally a mixture of any combustible waste such as used tires, food by-products (fats, animal meal, etc.), viscose and wood waste, light fractions from shredders (e.g. from used vehicles, electrical and electronic equipment (WEEE), household and commercial waste, residues from the recycling of various types of waste, including certain municipal waste, plastic waste, textiles, wood among others. SRF generally contains plastic waste. The pyrolysis oil included in the feedstock, whether from tires, plastics and/or CSR, comes from a pyrolysis step of a feedstock containing tires, plastic(s) and/or CSR in a pyrolysis unit.
L’étape de pyrolyse peut être effectuée par un traitement de pyrolyse thermique, catalytique ou encore être préparée par hydropyrolyse (pyrolyse en présence d’un catalyseur et d’hydrogène). The pyrolysis step can be carried out by thermal or catalytic pyrolysis treatment or can be prepared by hydropyrolysis (pyrolysis in the presence of a catalyst and hydrogen).
L’étape de pyrolyse est généralement effectuée à une température comprise entre 250°C et 750°C. L’étape de pyrolyse peut être opérée dans des conditions plus ou moins sévères. L’étape de pyrolyse à faible sévérité est effectuée à une température comprise entre 250°C et 450°C, de préférence comprise entre 275°C et 425°C, et de manière particulièrement préférée comprise entre 300°C et 400°C. L’étape de pyrolyse à faible sévérité produit des huiles de pyrolyse riches en mono- et dioléfines ainsi qu'une quantité significative d'aromatiques, et qui peuvent inclure des composés chlorés. The pyrolysis step is generally carried out at a temperature between 250°C and 750°C. The pyrolysis step can be carried out under more or less severe conditions. The low severity pyrolysis step is carried out at a temperature between 250°C and 450°C, preferably between 275°C and 425°C, and particularly preferably between 300°C and 400°C. The low severity pyrolysis step produces pyrolysis oils rich in mono- and diolefins as well as a significant amount of aromatics, and which may include chlorinated compounds.
L’étape de pyrolyse à haute sévérité est effectuée à une température comprise entre 450°C et 750°C, de préférence comprise entre 500°C et 700°C, et de manière particulièrement préférée comprise entre 550°C et 650°C. L’étape de pyrolyse à haute sévérité produit des huiles de pyrolyse riches en aromatiques, et qui peuvent inclure des composés chlorés. The high severity pyrolysis step is carried out at a temperature between 450°C and 750°C, preferably between 500°C and 700°C, and particularly preferably between 550°C and 650°C. The high severity pyrolysis step produces pyrolysis oils rich in aromatics, which may include chlorinated compounds.
L’unité de pyrolyse peut comprendre un ou plusieurs réacteurs configurés pour convertir la charge en produits en phase gazeuse et en phase liquide (par exemple simultanément). Le ou les réacteurs peuvent contenir un ou plusieurs lits de matériaux inertes ou de catalyseurs de pyrolyse comprenant du sable, de la zéolite ou des combinaisons de ceux-ci. Généralement, le catalyseur de pyrolyse est capable de transférer de la chaleur aux composants soumis au processus de pyrolyse dans l'unité de pyrolyse. The pyrolysis unit may include one or more reactors configured to convert the feedstock into gas-phase and liquid-phase products (e.g., simultaneously). The reactor(s) may contain one or more beds of inert materials or pyrolysis catalysts including sand, zeolite, or combinations thereof. Typically, the pyrolysis catalyst is capable of transferring heat to the components undergoing the pyrolysis process in the pyrolysis unit.
L'unité de pyrolyse peut comprendre un ou plusieurs équipements, par exemple une ou plusieurs extrudeuses chauffées, un four rotatif chauffé, des réacteurs de type réservoir chauffés, des récipients chauffés vides, des surfaces chauffées fermées où la charge coule le long de la paroi, des récipients entourés de fours ou de fours ou d'autres équipements offrant une surface chauffée. The pyrolysis unit may comprise one or more pieces of equipment, for example one or more heated extruders, a heated rotary kiln, heated tank-type reactors, empty heated vessels, closed heated surfaces where the feedstock flows along the wall, vessels surrounded by furnaces or ovens or other equipment providing a heated surface.
Dans un ou plusieurs modes de réalisation de l'unité de pyrolyse, un gaz de purge est utilisé dans tout ou partie du ou des étages de pyrolyse pour améliorer le craquage des plastiques, produire des produits de valeur, fournir une alimentation pour le vapocraquage, ou des combinaisons de ceux-ci. Le gaz de purge peut comprendre de l'hydrogène (H2), de l'azote (N2), de la vapeur, des gaz produits ou des combinaisons de ceux-ci. L’huile de pyrolyse, qu’elle soit issue de pneus, de plastiques et/ou de CSR, a généralement une gamme de points d’ébullition comprise entre 40°C et 1000°C, de préférence comprise entre 45 et 650°C, de manière préférée comprise entre 45°C et 550°C. In one or more embodiments of the pyrolysis unit, a purge gas is used in all or part of the pyrolysis stage(s) to enhance plastics cracking, produce valuable products, provide feed for steam cracking, or combinations thereof. The purge gas may include hydrogen (H2), nitrogen (N2), steam, product gases, or combinations thereof. Pyrolysis oil, whether from tires, plastics and/or CSR, generally has a boiling point range of between 40°C and 1000°C, preferably between 45 and 650°C, most preferably between 45°C and 550°C.
La densité de l’huile de pyrolyse, qu’elle soit issue de pneus, de plastiques et/ou de CSR, a généralement une densité, mesurée à 15°C selon la méthode ASTM D4052, comprise entre 0,75 et 1 ,05 g/cm3, de préférence comprise entre 0,75 et 0,95 g/cm3. The density of pyrolysis oil, whether from tires, plastics and/or CSR, generally has a density, measured at 15°C according to the ASTM D4052 method, between 0.75 and 1.05 g/cm 3 , preferably between 0.75 and 0.95 g/cm 3 .
L’huile de pyrolyse, avantageusement sous forme liquide à température ambiante, comprend en particulier un mélange de composés hydrocarbonés, notamment des paraffines (n- et i- paraffines), des oléfines (mono- et/ou dioléfines), des naphtènes et des aromatiques. En particulier, selon l’origine de la charge traitée par l’unité de pyrolyse, l’huile de pyrolyse peut comprendre jusqu’à 70% poids en paraffines, jusqu’à 90 % poids en naphtènes, jusqu’à 90 % poids en oléfines et jusqu’à 90 % poids en aromatiques, étant entendu que la somme des paraffines, des naphtènes, des oléfines et des aromatiques est égale à 100 % poids des composées hydrocarbonés. The pyrolysis oil, advantageously in liquid form at room temperature, comprises in particular a mixture of hydrocarbon compounds, in particular paraffins (n- and i-paraffins), olefins (mono- and/or diolefins), naphthenes and aromatics. In particular, depending on the origin of the feedstock treated by the pyrolysis unit, the pyrolysis oil may comprise up to 70% by weight of paraffins, up to 90% by weight of naphthenes, up to 90% by weight of olefins and up to 90% by weight of aromatics, it being understood that the sum of the paraffins, naphthenes, olefins and aromatics is equal to 100% by weight of the hydrocarbon compounds.
L’huile de pyrolyse peut comprendre des dioléfines. La teneur en dioléfines est communément déterminée indirectement comme l’indice d’anhydride maléique (ou MAV pour Maleic Anhydrid Value selon la terminologie anglo-saxonne). La méthode est basée sur la réaction d’addition de Diels-Alder entre les dioléfines conjuguées et l’anhydride maléique. La méthode de détermination de la MAV est décrite dans C. Lôpez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1 , pp. 57-68. La MAV est exprimée en mg d’anhydride maléique ayant réagi avec 1 g d’échantillon (mg/g). La MAV varie entre 5 et 100 mg/g dans les huiles de pyrolyse. Pyrolysis oil may contain diolefins. The diolefin content is commonly determined indirectly as the maleic anhydride value (MAV). The method is based on the Diels-Alder addition reaction between conjugated diolefins and maleic anhydride. The method for determining MAV is described in C. Lôpez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1, pp. 57-68. MAV is expressed as mg of maleic anhydride reacted with 1 g of sample (mg/g). MAV varies between 5 and 100 mg/g in pyrolysis oils.
L’huile de pyrolyse, qu’elle soit issue de pneus, de plastiques et/ou de CSR, peut contenir une partie des composés d’origine biologique, comme par exemple une huile de pyrolyse de pneus qui est produite à partir des élastomères de type caoutchoucs naturels, ou une huile de pyrolyse de plastiques et/ou CSR produite(s) à partir de déchets plastiques et/ou CSR pouvant contenir, de manière minoritaire, de la biomasse provenant par exemple des ordures ménagères. La teneur de carbone biologique (selon la méthode analytique de radiocarbone d’isotope C14 selon ASTM D6866) peut être comprise entre 0 et 70 % poids, de préférence comprise entre 0,1 et 60 % poids par rapport au poids total de l’huile de pyrolyse. Dans le cas d’une huile de pyrolyse de pneus, celle-ci peut comprendre une teneur de carbone biologique (selon la méthode analytique de radiocarbone d’isotope C14 selon ASTM D6866) comprise entre 20 et 70 % poids, de préférence comprise entre 30 et 60 % poids par rapport au poids total de l’huile de pyrolyse. Cela permet d’incorporer une composition biologique dans les produits du procédé selon l’invention. Pyrolysis oil, whether from tires, plastics and/or CSR, may contain a portion of compounds of biological origin, such as for example tire pyrolysis oil produced from natural rubber elastomers, or plastic and/or CSR pyrolysis oil produced from plastic and/or CSR waste which may contain, to a minor extent, biomass from, for example, household waste. The biological carbon content (according to the analytical method of radiocarbon isotope C 14 according to ASTM D6866) may be between 0 and 70% by weight, preferably between 0.1 and 60% by weight relative to the total weight of the pyrolysis oil. In the case of a tire pyrolysis oil, this may comprise a biological carbon content (according to the analytical method of radiocarbon isotope C 14 according to ASTM D6866) of between 20 and 70% by weight, preferably between 30 and 60% by weight. relative to the total weight of the pyrolysis oil. This makes it possible to incorporate a biological composition into the products of the process according to the invention.
L’huile de pyrolyse peut comprendre, et le plus souvent comprend, en outre des impuretés comme des métaux, notamment du fer, du silicium, des composés halogénés, notamment des composés chlorés. Ces impuretés peuvent être présentes à des teneurs élevées, par exemple jusqu’à 500 ppm poids ou encore 700 ppm poids voire 1000 ppm poids, et même 5000 ppm poids, d’éléments halogène (notamment du chlore mais aussi du brome, du fluor ou de l’iode) apportés par des composés halogénés, et généralement entre 1 et 1000 ppm poids ou entre 1 et 700 ppm poids ou encore entre 1 et 500 ppm poids d’éléments halogène. L’huile de pyrolyse peut contenir jusqu’à 500 ppm poids ou encore 700 ppm poids voire 1000 ppm poids et même 5000 ppm poids d’élément chlore apportés par des composés chlorés, et généralement entre 1 et 1000 ppm poids ou entre 1 et 700 ppm poids ou encore entre 1 et 500 ppm poids d’élément chlore. L’huile de pyrolyse peut contenir jusqu’à 50 ppm poids ou encore 100 ppm poids d’élément brome apportés par des composés bromés, et généralement entre 1 et 100 ppm poids ou entre 1 et 50 ppm poids d’élément brome. Pyrolysis oil may include, and most often does include, additional impurities such as metals, in particular iron, silicon, halogenated compounds, in particular chlorinated compounds. These impurities may be present at high levels, for example up to 500 ppm by weight or 700 ppm by weight or even 1000 ppm by weight, and even 5000 ppm by weight, of halogenated elements (in particular chlorine but also bromine, fluorine or iodine) provided by halogenated compounds, and generally between 1 and 1000 ppm by weight or between 1 and 700 ppm by weight or between 1 and 500 ppm by weight of halogenated elements. Pyrolysis oil can contain up to 500 ppm by weight or 700 ppm by weight or even 1000 ppm by weight or even 5000 ppm by weight of chlorine element provided by chlorinated compounds, and generally between 1 and 1000 ppm by weight or between 1 and 700 ppm by weight or between 1 and 500 ppm by weight of chlorine element. Pyrolysis oil can contain up to 50 ppm by weight or even 100 ppm by weight of bromine element provided by brominated compounds, and generally between 1 and 100 ppm by weight or between 1 and 50 ppm by weight of bromine element.
L’huile peut comprendre jusqu’à 200 ppm poids, voire 1500 ppm poids d’éléments métalliques ou semi-métalliques, et généralement entre 1 et 200 ppm poids ou entre 1 et 1500 ppm poids d’éléments métalliques ou semi-métalliques. Les métaux alcalins, les alcalino-terreux, les métaux de transition, les métaux pauvres et les métalloïdes peuvent être assimilés aux contaminants de nature métallique, appelés métaux ou éléments métalliques ou semi métalliques. De manière particulière, les métaux ou éléments métalliques ou semi métalliques comprennent du silicium, du fer ou ces deux éléments. L’huile de pyrolyse peut notamment comprendre jusqu’à 200 ppm poids ou encore 1000 ppm poids de silicium, et généralement entre 1 et 200 ppm poids ou entre 1 et 1000 ppm poids ou encore entre 1 et 500 ppm poids de silicium. L’huile de pyrolyse peut notamment comprendre jusqu’à 50 ppm poids ou encore 100 ppm poids de fer, et généralement entre 1 et 50 ppm poids ou entre 1 et 100 ppm poids de fer. L’huile de pyrolyse peut également comprendre du phosphore, du sodium, du calcium, du potassium et du magnésium. The oil may contain up to 200 ppm by weight, or even 1500 ppm by weight of metallic or semi-metallic elements, and generally between 1 and 200 ppm by weight or between 1 and 1500 ppm by weight of metallic or semi-metallic elements. Alkali metals, alkaline earth metals, transition metals, poor metals and metalloids may be considered as contaminants of a metallic nature, called metals or metallic or semi-metallic elements. In particular, metals or metallic or semi-metallic elements include silicon, iron or both of these elements. Pyrolysis oil may contain up to 200 ppm by weight or even 1000 ppm by weight of silicon, and generally between 1 and 200 ppm by weight or between 1 and 1000 ppm by weight or even between 1 and 500 ppm by weight of silicon. Pyrolysis oil may contain up to 50 ppm by weight or 100 ppm by weight of iron, and generally between 1 and 50 ppm by weight or between 1 and 100 ppm by weight of iron. Pyrolysis oil may also contain phosphorus, sodium, calcium, potassium and magnesium.
L’huile de pyrolyse peut également comprendre d’autres impuretés comme des hétéroéléments apportés notamment par des composés soufrés, des composés oxygénés et/ou des composés azotés, à des teneurs généralement inférieures à 40000 ppm poids d’hétéroéléments et de préférence inférieures à 15500 ppm poids d’hétéroéléments, et généralement entre 1 et 40000 ppm poids ou entre 1 et 15500 ppm poids d’hétéroéléments. Les composés soufrés sont généralement présents dans une teneur inférieure à 15000 ppm poids et de préférence inférieure à 10000 ppm poids, et généralement entre 1 et 15000 ppm poids ou entre 1 et 10000 ppm poids de composés soufrés. The pyrolysis oil may also include other impurities such as heteroelements provided in particular by sulfur compounds, oxygenated compounds and/or nitrogenous compounds, at contents generally less than 40,000 ppm by weight of heteroelements and preferably less than 15,500 ppm by weight of heteroelements, and generally between 1 and 40,000 ppm by weight or between 1 and 15,500 ppm by weight of heteroelements. The sulfur compounds are generally present in a content of less than 15,000 ppm by weight and preferably less than 10,000 ppm by weight, and generally between 1 and 15,000 ppm by weight or between 1 and 10,000 ppm by weight of sulfur compounds.
Les composés oxygénés sont généralement présents dans une teneur inférieure à 15000 ppm poids et de préférence inférieure à 10000 ppm poids, et généralement entre 1 et 15000 ppm poids ou entre 1 et 10000 ppm poids de composés oxygénés. The oxygenated compounds are generally present in a content of less than 15,000 ppm by weight and preferably less than 10,000 ppm by weight, and generally between 1 and 15,000 ppm by weight or between 1 and 10,000 ppm by weight of oxygenated compounds.
Les composés azotés sont généralement présents dans une teneur inférieure à 10000 ppm poids et de préférence inférieure à 5000 ppm poids, et généralement entre 1 et 10000 ppm poids ou entre 1 et 5000 ppm poids de composés azotés. Nitrogen compounds are generally present in a content of less than 10,000 ppm by weight and preferably less than 5,000 ppm by weight, and generally between 1 and 10,000 ppm by weight or between 1 and 5,000 ppm by weight of nitrogen compounds.
Les teneurs en composés soufrés, oxygénés et/ou azotés dépendent souvent de l’origine de la charge traitée. Ainsi, les huiles de pyrolyse de pneus contiennent généralement plus d’hétéroéléments que les huiles de pyrolyse de plastiques, notamment des composés soufrés. The contents of sulfur, oxygenated and/or nitrogenous compounds often depend on the origin of the treated feedstock. Thus, tire pyrolysis oils generally contain more heteroelements than plastic pyrolysis oils, particularly sulfur compounds.
L’huile de pyrolyse peut également comprendre d’autres impuretés comme des métaux lourds tels que le mercure, l'arsenic, le zinc et le plomb, par exemple jusqu’à 100 ppb poids ou encore 200 ppb poids de mercure ou d’arsenic, et généralement entre 1 et 200 ppb poids ou entre 1 et 100 ppb poids de métaux lourds. Pyrolysis oil may also include other impurities such as heavy metals such as mercury, arsenic, zinc and lead, for example up to 100 ppb by weight or 200 ppb by weight of mercury or arsenic, and generally between 1 and 200 ppb by weight or between 1 and 100 ppb by weight of heavy metals.
La charge du procédé selon l’invention comprend au moins une huile de pyrolyse de plastique et/ou de pneu et/ou de combustibles solides de récupération, et ceci dans n’importe quelle proportion. Ladite charge peut être constituée uniquement d’huile(s) de pyrolyse. De préférence, ladite charge comprend au moins 50% poids, de manière préférée entre 70 et 100% poids, d’huile de pyrolyse par rapport au poids total de la charge, c’est-à- dire de préférence entre 50 et 100% poids, de manière préférée entre 70% et 100% poids de d’huile de pyrolyse. The feedstock of the process according to the invention comprises at least one plastic and/or tire and/or solid recovered fuel pyrolysis oil, and this in any proportion. Said feedstock may consist solely of pyrolysis oil(s). Preferably, said feedstock comprises at least 50% by weight, preferably between 70 and 100% by weight, of pyrolysis oil relative to the total weight of the feedstock, i.e. preferably between 50 and 100% by weight, preferably between 70% and 100% by weight of pyrolysis oil.
La charge du procédé selon l’invention peut en outre comprendre, à une faible teneur, typiquement entre 1% et 50% poids de la charge, voire entre 1% et 30% ou entre 1 et 10% poids, en plus de l’huile de pyrolyse, une charge pétrolière conventionnelle ou une charge issue de la conversion de la biomasse qui est alors co-traitée avec l’huile de pyrolyse de la charge. The feedstock of the process according to the invention may further comprise, at a low content, typically between 1% and 50% by weight of the feedstock, or even between 1% and 30% or between 1 and 10% by weight, in addition to the pyrolysis oil, a conventional petroleum feedstock or a feedstock resulting from the conversion of biomass which is then co-treated with the pyrolysis oil of the feedstock.
La charge pétrolière conventionnelle peut avantageusement être une coupe ou un mélange de coupes de type naphta, gazole ou gazole sous vide. The conventional petroleum feedstock can advantageously be a cut or a mixture of cuts of the naphtha, diesel or vacuum diesel type.
La charge issue de la conversion de la biomasse peut avantageusement être choisie parmi les huiles végétales, les huiles d'algues ou algales, les huiles de poissons, les huiles alimentaires usagées, et les graisses d'origine végétale ou animale ; ou des mélanges de telles charges. Lesdites huiles végétales peuvent avantageusement être brutes ou raffinées, totalement ou en partie, et issues des végétaux choisis parmi le colza, le tournesol, le soja, le palmier, l'olive, la noix de coco, le coprah, le ricin, le coton, les huiles d'arachides, de lin et de crambe et toutes les huiles issues par exemple du tournesol ou du colza par modification génétique ou hybridation, cette liste n'étant pas limitative. Lesdites graisses animales sont avantageusement choisies parmi le lard et les graisses composées de résidus de l'industrie alimentaire ou issus des industries de la restauration. Les huiles de fritures, les huiles animales variées comme les huiles de poisson, le suif, le saindoux peuvent également être utilisées. La charge issue de la conversion de la biomasse peut également avantageusement être choisi parmi les esters méthyliques d’acides gras d’origine végétale et/ou animale ou encore des esters méthyliques d’acides gras de huiles végétales alimentaires usagées. The feedstock resulting from the conversion of biomass can advantageously be chosen from vegetable oils, algae or algal oils, fish oils, oils used food, and fats of vegetable or animal origin; or mixtures of such fillers. Said vegetable oils may advantageously be crude or refined, totally or partially, and derived from plants chosen from rapeseed, sunflower, soybean, palm, olive, coconut, copra, castor, cotton, peanut, linseed and crambe oils and all oils derived for example from sunflower or rapeseed by genetic modification or hybridization, this list not being exhaustive. Said animal fats are advantageously chosen from lard and fats composed of residues from the food industry or from the catering industries. Frying oils, various animal oils such as fish oils, tallow, lard may also be used. The feedstock resulting from the conversion of biomass can also advantageously be chosen from methyl esters of fatty acids of plant and/or animal origin or even methyl esters of fatty acids from used edible vegetable oils.
La charge issue de la conversion de la biomasse peut également être choisie parmi des charges provenant des procédés de conversions thermiques ou catalytiques de biomasse, tel que des huiles qui sont produits à partir de la biomasse, en particulier de la biomasse lignocellulosique, avec diverses méthodes de liquéfaction, telles que la liquéfaction hydrothermale ou la pyrolyse. Le terme «biomasse» fait référence à un matériau dérivé d'organismes récemment vivants, qui comprend les plantes, les animaux et leurs sous- produits. Le terme «biomasse lignocellulosique» désigne la biomasse dérivée de plantes ou de leurs sous-produits. La biomasse lignocellulosique est composée de polymères glucidiques (cellulose, hémicellulose) et d'un polymère aromatique (lignine). The feedstock from biomass conversion may also be selected from feedstocks from thermal or catalytic biomass conversion processes, such as oils that are produced from biomass, particularly lignocellulosic biomass, with various liquefaction methods, such as hydrothermal liquefaction or pyrolysis. The term "biomass" refers to material derived from recently living organisms, which includes plants, animals and their by-products. The term "lignocellulosic biomass" refers to biomass derived from plants or their by-products. Lignocellulosic biomass is composed of carbohydrate polymers (cellulose, hemicellulose) and an aromatic polymer (lignin).
La charge issue de la conversion de la biomasse peut également avantageusement être choisie parmi des charges issues de l’industrie papetière. The feedstock from biomass conversion can also advantageously be chosen from feedstocks from the paper industry.
Etape de prétraitement (optionnelle) Pre-processing step (optional)
Le procédé selon l’invention peut comprendre une étape de prétraitement qui peut être effectuée avant ou après l’étape de préfractionnement et en amont de l’étape d’hydrogénation. The process according to the invention may comprise a pretreatment step which may be carried out before or after the prefractionation step and upstream of the hydrogenation step.
Ainsi, selon le mode de réalisation d’effectuer le prétraitement avant l’étape a) de préfractionnement, la charge comprenant une huile de pyrolyse peut avantageusement être prétraitée dans une étape optionnelle de prétraitement, pour obtenir une charge prétraitée qui alimente l’étape a) de préfractionnement. Thus, according to the embodiment of carrying out the pretreatment before the prefractionation step a), the feed comprising a pyrolysis oil can advantageously be pretreated in an optional pretreatment step, to obtain a pretreated feed which feeds the prefractionation step a).
Selon le mode de réalisation d’effectuer le prétraitement après l’étape a) de préfractionnement, la coupe naphta issue de l’étape de préfractionnement peut avantageusement être prétraitée dans une étape optionnelle de prétraitement, préalablement à l’étape b) d’hydrogénation, pour obtenir une coupe naphta prétraitée qui alimente l’étape b) d’hydrogénation. According to the embodiment of carrying out the pretreatment after the prefractionation step a), the naphtha cut resulting from the prefractionation step can advantageously be pretreated in an optional pretreatment step, previously in hydrogenation step b), to obtain a pretreated naphtha cut which feeds hydrogenation step b).
L’étape de prétraitement peut également être effectuée sur au moins une coupe lourde. Lorsque l’étape de prétraitement est effectuée sur au moins une coupe lourde, elle est réalisée de façon indépendante de l’étape de prétraitement de la coupe naphta. The pretreatment step may also be carried out on at least one heavy cut. When the pretreatment step is carried out on at least one heavy cut, it is carried out independently of the pretreatment step of the naphtha cut.
Selon une variante, cette étape optionnelle de prétraitement permet de diminuer la quantité de contaminants et en particules solides. Cette étape optionnelle de prétraitement permet notamment l’élimination de sédiments qui peuvent se former du fait du caractère instable des huiles de pyrolyses et/ou d’un problème de compatibilité entre deux charges différentes. Alternatively, this optional pretreatment step can reduce the amount of contaminants and solid particles. This optional pretreatment step can notably eliminate sediments that can form due to the unstable nature of pyrolysis oils and/or a compatibility problem between two different feedstocks.
Ladite étape optionnelle de prétraitement peut être mise en œuvre par n’importe quelle méthode connue par l’homme du métier permettant de diminuer la quantité de contaminants. Elle peut notamment comprendre une étape d’adsorption et/ou une étape de filtration et/ou une étape de centrifugation et/ou une étape de décantation et/ou une étape de séparation électrostatique et/ou une étape d’un lavage à l’aide d’une solution aqueuse et/ou une étape de stripage gazeux. Said optional pretreatment step may be implemented by any method known to those skilled in the art for reducing the quantity of contaminants. It may in particular comprise an adsorption step and/or a filtration step and/or a centrifugation step and/or a decantation step and/or an electrostatic separation step and/or a washing step using an aqueous solution and/or a gas stripping step.
L’étape optionnelle de prétraitement est avantageusement mise en œuvre à une température entre 20 et 400°C, de préférence entre 40 et 350°C, et à une pression entre 0,15 et 10,0 MPa abs, de préférence entre 0,2 et 7,0 MPa abs. The optional pretreatment step is advantageously carried out at a temperature between 20 and 400°C, preferably between 40 and 350°C, and at a pressure between 0.15 and 10.0 MPa abs, preferably between 0.2 and 7.0 MPa abs.
Selon une variante, ladite étape optionnelle de prétraitement est mise en œuvre dans une section d’adsorption opérée en présence d’au moins un adsorbant. L’adsorbant peut être choisie parmi une zéolithe, du charbon actif, une argile, une silice ou une alumine. Avantageusement, ledit adsorbant comprend moins de 1% poids d’éléments métalliques, de préférence est exempt d’éléments métalliques. Par éléments métalliques de l’adsorbant, il faut entendre les éléments des groupes 6 à 10 du tableau périodique des éléments (nouvelle classification IUPAC). According to a variant, said optional pretreatment step is implemented in an adsorption section operated in the presence of at least one adsorbent. The adsorbent may be chosen from a zeolite, activated carbon, a clay, a silica or an alumina. Advantageously, said adsorbent comprises less than 1% by weight of metallic elements, preferably is free of metallic elements. By metallic elements of the adsorbent, it is meant the elements of groups 6 to 10 of the periodic table of elements (new IUPAC classification).
Selon une autre variante, ladite étape optionnelle de prétraitement est mise en œuvre dans une section de lavage avec une solution aqueuse, par exemple de l’eau ou une solution acide ou basique, ou encore avec un solvant organique. Cette section de lavage peut comporter des équipements permettant de mettre en contact la charge, ou la coupe naphta et/ou au moins une coupe lourde obtenues après le pré-fractionnement, avec la solution aqueuse et de séparer les phases de manière à obtenir la charge ou une coupe prétraitée d’une part et la solution aqueuse comprenant des impuretés d’autre part. Parmi ces équipements, il peut y avoir par exemple un réacteur agité, un décanteur, un mélangeur- décanteur et/ou une colonne de lavage à co- ou contre-courant. Selon une autre variante, ladite étape optionnelle de prétraitement est mise en œuvre par filtration. L’étape de filtration permet d’éliminer les solides inorganiques, des sédiments et/ou des fines contenus dans la charge, ou la coupe naphta et/ou au moins une coupe lourde obtenues après le pré-fractionnement, notamment les métaux, les oxydes métalliques et les chlorures métalliques. On utilise généralement un filtre dont la taille (par exemple le diamètre ou diamètre équivalent) des pores est inférieure à 25 pm, de préférence inférieure ou égale à 10 pm, de manière encore plus préférée inférieure ou égale à 5 pm. On peut également utiliser une série de filtres avec différentes tailles de pores, notamment une série de filtres ayant des tailles de pores décroissantes dans le sens de la circulation de la charge. Ces médias filtrants sont bien connus pour des utilisations industrielles. Les filtres à cartouche, les filtres auto- nettoyants, sont par exemple adaptés. According to another variant, said optional pretreatment step is implemented in a washing section with an aqueous solution, for example water or an acidic or basic solution, or with an organic solvent. This washing section may comprise equipment for bringing the feedstock, or the naphtha cut and/or at least one heavy cut obtained after pre-fractionation, into contact with the aqueous solution and for separating the phases so as to obtain the feedstock or a pre-treated cut on the one hand and the aqueous solution comprising impurities on the other hand. Among this equipment, there may be for example a stirred reactor, a decanter, a mixer-decanter and/or a co- or counter-current washing column. According to another variant, said optional pretreatment step is implemented by filtration. The filtration step makes it possible to remove inorganic solids, sediments and/or fines contained in the feedstock, or the naphtha cut and/or at least one heavy cut obtained after pre-fractionation, in particular metals, metal oxides and metal chlorides. A filter is generally used whose pore size (for example the diameter or equivalent diameter) is less than 25 μm, preferably less than or equal to 10 μm, even more preferably less than or equal to 5 μm. It is also possible to use a series of filters with different pore sizes, in particular a series of filters having decreasing pore sizes in the direction of flow of the feedstock. These filter media are well known for industrial uses. Cartridge filters, self-cleaning filters, for example, are suitable.
Selon une variante, des adjuvants de filtration, par exemple des terres de diatomées, peuvent être utilisées dans le système de filtration, en ensemencement, c’est-à-dire en suspension dans la charge ou en précouche (coating selon la terminologie anglo-saxonne) sur le filtre. Alternatively, filter aids, for example diatomaceous earth, can be used in the filtration system, as seeding, i.e. suspended in the load or as a pre-coat (coating according to English terminology) on the filter.
Quel que soit les filtres, en particulier avec adjuvants, on peut utiliser deux filtres en parallèle pour faire le décolmatage et la maintenance sur un, pendant que l'autre est en opération. Regardless of the filters, especially those with additives, two filters can be used in parallel to carry out cleaning and maintenance on one while the other is in operation.
Selon une autre variante, ladite étape optionnelle de prétraitement est mise en œuvre par centrifugation, par décantation ou encore par séparation électrostatique. According to another variant, said optional pretreatment step is implemented by centrifugation, by decantation or by electrostatic separation.
Selon une autre variante, ladite étape optionnelle de prétraitement est mise en œuvre par stripage gazeux, réduisant ainsi la teneur en oxygène dans la charge. L'extraction de gaz peut éliminer l'oxygène (O2) qui peut être dissous dans la charge, ou la coupe naphta et/ou au moins une coupe lourde obtenues après le pré-fractionnement, réduisant ainsi la probabilité de formation de radicaux libres conduisant à la polymérisation dans les étapes en aval. Le procédé implique généralement la mise en contact de la charge, ou la coupe naphta et/ou au moins une coupe lourde obtenues après le pré-fractionnement, avec un gaz d'extraction (par exemple H2, N2 ou un mélange de ceux-ci), transférant ainsi au moins une partie de l'oxygène dissous de la charge ou la coupe au gaz d'extraction, suivi de la séparation du gaz d'extraction de la charge ou la coupe. Tout H2 dissous restant dans la charge, ou la coupe naphta et/ou au moins une coupe lourde obtenues après le préfractionnement, après l'étape d'extraction du gaz n'est pas un problème, compte tenu des l’étapes d'hydrogénation effectuées en aval. According to another variant, said optional pretreatment step is implemented by gas stripping, thereby reducing the oxygen content in the feed. The gas stripping may remove oxygen (O2) that may be dissolved in the feed, or the naphtha cut and/or at least one heavy cut obtained after the pre-fractionation, thereby reducing the likelihood of formation of free radicals leading to polymerization in downstream steps. The process generally involves contacting the feed, or the naphtha cut and/or at least one heavy cut obtained after the pre-fractionation, with a stripping gas (e.g. H2, N2 or a mixture thereof), thereby transferring at least a portion of the dissolved oxygen from the feed or cut to the stripping gas, followed by separation of the stripping gas from the feed or cut. Any dissolved H2 remaining in the feed, or the naphtha cut and/or at least one heavy cut obtained after prefractionation, after the gas extraction step is not a problem, given the hydrogenation steps performed downstream.
Ladite étape optionnelle de prétraitement comprend généralement un ou plusieurs, de préférence plusieurs traitements décrits ci-dessus. Etape a) de préfractionnement Said optional pre-processing step generally comprises one or more, preferably several, treatments described above. Step a) of prefractionation
Le procédé selon l’invention comprend une étape a) de préfractionnement de la charge, éventuellement prétraitée, pour obtenir une coupe naphta et au moins une coupe lourde. The process according to the invention comprises a step a) of prefractionation of the charge, optionally pretreated, to obtain a naphtha cut and at least one heavy cut.
On entend par « coupe naphta » une coupe hydrocarbonée comprenant des composés ayant un point d’ébullition généralement inférieur ou égal à 175°C, en particulier entre 45 et 175°C. The term “naphtha cut” means a hydrocarbon cut comprising compounds having a boiling point generally less than or equal to 175°C, in particular between 45 and 175°C.
On entend par « coupe lourde » une coupe hydrocarbonée comprenant des composés ayant un point d’ébullition généralement supérieur à 175°C. La coupe lourde peut inclure des distillats moyens tels qu’une coupe diesel et/ou une coupe kérosène. Elle peut aussi comprendre des composés plus lourds tels qu’un gazole sous vide (ou VGO pour vacuum gas oil selon la terminologie anglo-saxonne). La coupe kérosène a généralement des points d’ébullition initiaux et finaux dans un intervalle allant d’environ de 175 à 250°C et la coupe diesel a généralement des points d’ébullition initiaux et finaux compris dans un intervalle allant d’environ de 250°C à 370°C. Quant à la coupe gazole sous vide, elle a généralement des points d’ébullition supérieure à 370°C. A "heavy cut" is a hydrocarbon cut comprising compounds with a boiling point generally above 175°C. The heavy cut may include middle distillates such as a diesel cut and/or a kerosene cut. It may also include heavier compounds such as a vacuum gas oil (or VGO). The kerosene cut generally has initial and final boiling points in a range of approximately 175 to 250°C and the diesel cut generally has initial and final boiling points in a range of approximately 250°C to 370°C. As for the vacuum gas oil cut, it generally has boiling points above 370°C.
Selon la destination ou l’utilisation des coupes issues de l’étape de préfractionnement, l’homme du métier ajustera les points de coupes dans les opérations de stripage et/ou de distillation. Par exemple, il peut être nécessaire d’ajuster le point final de la coupe naphta à 150, 175, 180 ou 200°C, voire 250°C. Depending on the destination or use of the cuts from the prefractionation step, the person skilled in the art will adjust the cut points in the stripping and/or distillation operations. For example, it may be necessary to adjust the end point of the naphtha cut to 150, 175, 180 or 200°C, or even 250°C.
L’étape de préfractionnement peut être effectuée de manière à obtenir une coupe naphta et une (seule) coupe lourde. Elle peut aussi être effectuée de manière à obtenir une coupe naphta, une coupe distillats moyens et une coupe gazole sous vide. La coupe distillât moyens peut en plus être fractionnée en une coupe kérosène et en une coupe diesel. The prefractionation step can be carried out to obtain a naphtha cut and a (single) heavy cut. It can also be carried out to obtain a naphtha cut, a middle distillate cut and a vacuum diesel cut. The middle distillate cut can also be fractionated into a kerosene cut and a diesel cut.
L’étape de préfractionnement est avantageusement opérée à une pression inférieure ou égale à 1,0 MPa abs., de préférence entre 0,1 et 1,0 MPa abs. The prefractionation step is advantageously carried out at a pressure less than or equal to 1.0 MPa abs., preferably between 0.1 and 1.0 MPa abs.
L'étape de préfractionnement peut avantageusement être mise en œuvre par toute méthode connue de l'homme du métier, telle que par exemple la combinaison d’un ou plusieurs séparateur(s) (ballon(s)), et/ou une ou plusieurs colonne(s) de stripage, et/ou une colonne de distillation, ce ou ces séparateur(s) (ballon(s)) et/ou colonnes pouvant optionnellement être alimenté(s) par un gaz de stripage, par exemple un flux de gaz riche en hydrogène. De préférence, l’étape de préfractionnement mets en œuvre une colonne de distillation. Les impuretés contenues dans l’huile de pyrolyse de départ ne sont pas reparties de la même manière dans les différentes coupes après le préfractionnement. La coupe naphta contient généralement la majorité des dioléfines, des monooléfines, des composés chlorés et des composés silicés. Quant à la coupe lourde, elle ne contient en général pas ou très peu de dioléfines. De plus elle contient moins de composés chlorés et de composés silicés que la coupe naphta. Cependant, les impuretés à base de soufre et/ou d’azote sont généralement concentrées dans la coupe lourde. The prefractionation step can advantageously be implemented by any method known to those skilled in the art, such as for example the combination of one or more separator(s) (balloon(s)), and/or one or more stripping column(s), and/or a distillation column, this or these separator(s) (balloon(s)) and/or columns optionally being able to be supplied with a stripping gas, for example a hydrogen-rich gas stream. Preferably, the prefractionation step uses a distillation column. The impurities contained in the starting pyrolysis oil are not distributed in the same way among the different cuts after prefractionation. The naphtha cut generally contains the majority of diolefins, monoolefins, chlorinated compounds, and silica compounds. As for the heavy cut, it generally contains no or very few diolefins. In addition, it contains fewer chlorinated compounds and silica compounds than the naphtha cut. However, sulfur and/or nitrogen-based impurities are generally concentrated in the heavy cut.
Etape b) d’hydrogénation Step b) of hydrogenation
Selon l’invention, le procédé comprend une étape b) d’hydrogénation mise en œuvre dans une section réactionnelle d’hydrogénation, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrogénation, ladite section réactionnelle d’hydrogénation étant alimentée au moins par ladite coupe naphta issue de l’étape a) en mélange avec au moins une partie de la coupe naphta issue de l’étape d) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrogénation étant mise en œuvre à une température moyenne entre 120 et 380°C, une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h'1, pour obtenir un effluent hydrogéné. According to the invention, the process comprises a hydrogenation step b) implemented in a hydrogenation reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrogenation catalyst, said hydrogenation reaction section being fed at least with said naphtha cut from step a) in a mixture with at least a portion of the naphtha cut from step d) and a gas stream comprising hydrogen, said hydrogenation reaction section being implemented at an average temperature between 120 and 380°C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h' 1 , to obtain a hydrogenated effluent.
L’étape b) est notamment effectuée dans des conditions de pression en hydrogène et de température permettant d’effectuer l’hydrogénation des dioléfines et des monooléfines en début de la section réactionnelle d’hydrogénation tout en permettant par un profil montant de la température d’effectuer l’hydrodémétallation et l’hydrodéchloration notamment en fin de la section réactionnelle d’hydrogénation. Une quantité d’hydrogène nécessaire est injectée de manière à permettre l’hydrogénation d’au moins une partie des dioléfines et des monooléfines présentes dans l’huile de pyrolyse, l’hydrodémétallation d’au moins une partie des métaux, notamment la rétention du silicium, et aussi la conversion d’au moins une partie, et de préférence de la totalité, du chlore (en HCl). L’hydrogénation des dioléfines et des monooléfines permet ainsi d’éviter ou au moins de limiter la formation de « gommes », c’est- à-dire la polymérisation des dioléfines et des monooléfines et donc la formation d’oligomères et polymères, pouvant boucher la section réactionnelle de l’étape c) d’hydrotraitement. En parallèle de l’hydrogénation, l’hydrodémétallation, et notamment la rétention du silicium lors de l’étape b), permet de limiter la désactivation catalytique de la section réactionnelle de l’étape c) d’hydrotraitement en aval lorsqu’elle est présente. L’homme du métier comprend aisément que, dans l’étape b) d’hydrogénation, on effectue des réactions d’hydrogénation telles que décrites ci-dessus mais parallèlement aussi une partie des autres réactions d’hydrotraitement, et notamment d’hydrodésulfuration et d’hydrodéazotation, même si ces réactions sont plutôt favorisées dans l’étape c) d’hydrotraitement étant généralement effectuée à plus haute température. Step b) is carried out in particular under hydrogen pressure and temperature conditions enabling the hydrogenation of the diolefins and monoolefins to be carried out at the start of the hydrogenation reaction section while enabling, by means of a rising temperature profile, the hydrodemetallation and hydrodechlorination to be carried out, in particular at the end of the hydrogenation reaction section. A necessary quantity of hydrogen is injected so as to enable the hydrogenation of at least a portion of the diolefins and monoolefins present in the pyrolysis oil, the hydrodemetallation of at least a portion of the metals, in particular the retention of silicon, and also the conversion of at least a portion, and preferably all, of the chlorine (into HCl). The hydrogenation of diolefins and monoolefins thus makes it possible to avoid or at least limit the formation of "gums", i.e. the polymerization of diolefins and monoolefins and therefore the formation of oligomers and polymers, which can block the reaction section of hydrotreatment step c). In parallel with hydrogenation, hydrodemetallation, and in particular the retention of silicon during step b), makes it possible to limit the catalytic deactivation of the reaction section of hydrotreatment step c) downstream when it is present. The person skilled in the art easily understands that, in hydrogenation step b), hydrogenation reactions are carried out as described above but also in parallel some of the other hydrotreatment reactions, and in particular hydrodesulfurization and hydrodenitrogenation, even if these reactions are rather favored in hydrotreatment step c), which is generally carried out at a higher temperature.
Ladite section réactionnelle met en œuvre une hydrogénation en présence d’au moins un catalyseur d’hydrogénation, avantageusement à une température moyenne (ou WABT telle que définie ci-dessous) entre 120 et 380°C, de préférence entre 180 et 350°C, et de manière particulièrement préférée entre 200 et 330°C, une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs, de manière préférée entre 1 ,5 et 8,0 MPa abs. et de manière très préférée entre 2,0 et 6,0 MPa abs. et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h'1, de manière préférée entre 0,2 et 5,0 h'1, et de manière très préférée entre 0,3 et 3,0 h'1. Said reaction section implements hydrogenation in the presence of at least one hydrogenation catalyst, advantageously at an average temperature (or WABT as defined below) between 120 and 380°C, preferably between 180 and 350°C, and particularly preferably between 200 and 330°C, a hydrogen partial pressure between 1.0 and 10.0 MPa abs, preferably between 1.5 and 8.0 MPa abs. and very preferably between 2.0 and 6.0 MPa abs. and at an hourly volumetric flow rate (WH) between 0.1 and 10.0 h' 1 , preferably between 0.2 and 5.0 h' 1 , and very preferably between 0.3 and 3.0 h' 1 .
Selon l’invention, la « température moyenne » d’une section réactionnelle correspond à la Weight Average Bed Temperature (WABT) selon le terme anglo-saxon consacré, bien connue de l’Homme du métier. La température moyenne est avantageusement déterminée en fonction des systèmes catalytiques, des équipements, de la configuration de ceux-ci, utilisés. La température moyenne (ou WABT) est calculée de la manière suivante : According to the invention, the “average temperature” of a reaction section corresponds to the Weight Average Bed Temperature (WABT) according to the established Anglo-Saxon term, well known to those skilled in the art. The average temperature is advantageously determined according to the catalytic systems, the equipment, and the configuration thereof, used. The average temperature (or WABT) is calculated as follows:
WABT = (Tentrw + Tsortie)/2 avec Tentrée : la température de l’effluent en entrée de la section réactionnelle et Tsortie : la température de l’effluent en sortie de section réactionnelle. Sauf indication contraire, la « température moyenne » d’une section réactionnelle est donnée à des conditions de début de cycle. WABT = (Tentrw + Tout ) /2 with Tin: the temperature of the effluent at the inlet of the reaction section and Tout: the temperature of the effluent at the outlet of the reaction section. Unless otherwise indicated, the “average temperature” of a reaction section is given at start-of-cycle conditions.
La vitesse volumique horaire (WH) est définie ici comme le ratio entre le débit volumique horaire de la charge (coupe naphta fraiche) par le volume de catalyseur(s). The hourly volume flow rate (WH) is defined here as the ratio between the hourly volume flow rate of the feedstock (fresh naphtha cut) and the volume of catalyst(s).
La quantité du flux gazeux comprenant de l’hydrogène (H2) alimentant ladite section réactionnelle est avantageusement telle que la couverture en hydrogène est comprise entre 100 et 1500 Nm3 d’hydrogène par m3 de charge (Nm3/m3), de préférence entre 120 et 1000 Nm3 d’hydrogène par m3 de charge (Nm3/m3), de manière préférée entre 150 et 800 Nm3 d’hydrogène par m3 de charge (Nm3/m3). The quantity of the gas flow comprising hydrogen (H2) feeding said reaction section is advantageously such that the hydrogen coverage is between 100 and 1500 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ), preferably between 120 and 1000 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ), more preferably between 150 and 800 Nm 3 of hydrogen per m 3 of charge (Nm 3 /m 3 ).
La couverture en hydrogène est définie comme le rapport du débit volumique d’hydrogène pris dans les conditions normales de température et pression par rapport au débit volumique de la charge (coupe naphta fraiche), sans tenir compte de la fraction recyclée, à 15°C (en normaux m3, noté Nm3, de H2 par m3 de charge). Hydrogen coverage is defined as the ratio of the volume flow rate of hydrogen taken under standard temperature and pressure conditions to the volume flow rate of the charge (fresh naphtha cut), without taking into account the recycled fraction, at 15°C (in normal m 3 , noted Nm 3 , of H2 per m 3 of charge).
Avantageusement, la section réactionnelle de ladite étape b) comprend entre 1 et 5 réacteurs, de préférence entre 2 et 5 réacteurs, et manière particulièrement préférée elle comprend deux réacteurs. Chaque réacteur comprend au moins un lit catalytique, par exemple entre 1 et 10 lits catalytiques. Advantageously, the reaction section of said step b) comprises between 1 and 5 reactors, preferably between 2 and 5 reactors, and particularly preferably it comprises two reactors. Each reactor comprises at least one catalytic bed, for example between 1 and 10 catalytic beds.
Selon une variante préférée, ces réacteurs fonctionnent en mode permutable, appelé selon le terme anglais « PRS » pour Permutable Reactor System ou encore « lead and lag ». L’association d’au moins deux réacteurs en mode PRS permet d’isoler un réacteur, de décharger le catalyseur usé, de recharger le réacteur en catalyseur frais et remettre en service ledit réacteur sans arrêt du procédé. La technologie PRS est décrite, en particulier, dans le brevet FR2681871. Selon une variante particulièrement préférée, la section réactionnelle d’hydrogénation de l’étape b) comprend deux réacteurs fonctionnent en mode permutable. According to a preferred variant, these reactors operate in permutable mode, called "PRS" for Permutable Reactor System or "lead and lag". The association of at least two reactors in PRS mode makes it possible to isolate a reactor, unload the spent catalyst, reload the reactor with fresh catalyst and put said reactor back into service without stopping the process. The PRS technology is described, in particular, in patent FR2681871. According to a particularly preferred variant, the hydrogenation reaction section of step b) comprises two reactors operating in permutable mode.
Avantageusement, des internes de réacteurs, par exemple de type plateaux filtrants, peuvent être utilisés pour prévenir le bouchage du(des) réacteur(s). Un exemple de plateau filtrant est décrit dans le brevet FR3051375. Advantageously, reactor internals, for example of the filter tray type, can be used to prevent clogging of the reactor(s). An example of a filter tray is described in patent FR3051375.
Avantageusement, ledit catalyseur d’hydrogénation comprend un support, de préférence minéral, et une fonction hydro-déshydrogénante. Advantageously, said hydrogenation catalyst comprises a support, preferably mineral, and a hydro-dehydrogenating function.
Selon une variante, la fonction hydro-déshydrogénante comprend en particulier au moins un élément du groupe VIII, de préférence choisi parmi le nickel et le cobalt, et au moins un élément du groupe VI B, de préférence choisi parmi le molybdène et le tungstène. Selon cette variante, la teneur totale exprimée en oxydes des éléments métalliques des groupes VI B et VIII est de préférence comprise entre 1 % et 40% en poids, préférentiellement de 5% à 30% en poids par rapport au poids total du catalyseur. Lorsque le métal est le cobalt ou le nickel, la teneur en métal s’exprime en CoO et NiO respectivement. Lorsque le métal est le molybdène ou le tungstène, la teneur en métal s’exprime en MoOa et WO3 respectivement. According to one variant, the hydro-dehydrogenating function comprises in particular at least one element from group VIII, preferably chosen from nickel and cobalt, and at least one element from group VI B, preferably chosen from molybdenum and tungsten. According to this variant, the total content expressed as oxides of the metallic elements from groups VI B and VIII is preferably between 1% and 40% by weight, preferably from 5% to 30% by weight relative to the total weight of the catalyst. When the metal is cobalt or nickel, the metal content is expressed as CoO and NiO respectively. When the metal is molybdenum or tungsten, the metal content is expressed as MoOa and WO3 respectively.
Le rapport pondéral exprimé en oxyde métallique entre le métal (ou les métaux) du groupe VI B par rapport au métal (ou aux métaux) du groupe VIII est de préférence compris entre 1 et 20, et de manière préférée entre 2 et 10. The weight ratio expressed in metal oxide between the metal (or metals) of group VI B relative to the metal (or metals) of group VIII is preferably between 1 and 20, and preferably between 2 and 10.
Selon cette variante, la section réactionnelle de ladite étape b) comprend par exemple un catalyseur d’hydrogénation comprenant entre 0,5% et 12% en poids de nickel, de préférence entre 0,9% et 10% en poids de nickel (exprimé en oxyde de nickel NiO par rapport au poids dudit catalyseur), et entre 1% et 30% en poids de molybdène, de préférence entre 3% et 20% en poids de molybdène (exprimé en oxyde de molybdène MoOa par rapport au poids dudit catalyseur) sur un support de préférence minéral, de préférence sur un support d’alumine. According to this variant, the reaction section of said step b) comprises for example a hydrogenation catalyst comprising between 0.5% and 12% by weight of nickel, preferably between 0.9% and 10% by weight of nickel (expressed as nickel oxide NiO relative to the weight of said catalyst), and between 1% and 30% by weight of molybdenum, preferably between 3% and 20% by weight of molybdenum (expressed as molybdenum oxide MoOa relative to the weight of said catalyst) on a preferably mineral support, preferably on an alumina support.
Selon une autre variante, la fonction hydro-déshydrogénante comprend, et est de préférence constituée d’au moins un élément du groupe VIII, de préférence du nickel. Selon cette variante, la teneur en oxydes de nickel est de préférence comprise entre 1 et 50 % en poids, de préférence entre 10% et 30% en poids par rapport au poids dudit catalyseur. Ce type de catalyseur est de préférence utilisé sous sa forme réduite, sur un support de préférence minéral, de préférence sur un support d’alumine. According to another variant, the hydro-dehydrogenating function comprises, and is preferably made up of, at least one element from group VIII, preferably nickel. According to this variant, the content of nickel oxides is preferably between 1 and 50% by weight, preferably between 10% and 30% by weight relative to the weight of said catalyst. This type of catalyst is preferably used in its reduced form, on a preferably mineral support, preferably on an alumina support.
Le support dudit catalyseur d’hydrogénation est de préférence choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges. Ledit support peut renfermer des composés dopants, notamment des oxydes choisis parmi l’oxyde de bore, en particulier le trioxyde de bore, la zircone, la cérine, l’oxyde de titane, l’anhydride phosphorique et un mélange de ces oxydes. De préférence, ledit catalyseur d’hydrogénation comprend un support d’alumine, éventuellement dopé avec du phosphore et éventuellement du bore. Lorsque l’anhydride phosphorique P2O5 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % poids par rapport au poids total de l’alumine. Lorsque le trioxyde de bore B2O3 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % par rapport au poids total de l’alumine. L’alumine utilisée peut être par exemple une alumine y (gamma) ou q (êta). The support of said hydrogenation catalyst is preferably chosen from alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof. Said support may contain doping compounds, in particular oxides chosen from boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides. Preferably, said hydrogenation catalyst comprises an alumina support, optionally doped with phosphorus and optionally boron. When phosphoric anhydride P2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina. When boron trioxide B2O3 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina. The alumina used may be, for example, a y (gamma) or q (eta) alumina.
Ledit catalyseur d’hydrogénation est par exemple sous forme d’extrudés. The said hydrogenation catalyst is, for example, in the form of extrudates.
De manière très préférée, l’étape b) peut mettre en œuvre en plus du ou des catalyseurs d’hydrogénation décrits ci-dessus en outre au moins un catalyseur d’hydrogénation utilisé dans l’étape b) comprenant moins de 1 % en poids de nickel et au moins 0,1 % poids de nickel, de préférence 0,5% poids de nickel, exprimé en oxyde de nickel NiO par rapport au poids dudit catalyseur, et moins de 5% en poids de molybdène et au moins 0,1 % poids de molybdène, de préférence 0,5% poids de molybdène, exprimé en oxyde de molybdène MoOs par rapport au poids dudit catalyseur, sur un support d’alumine. Ce catalyseur peu chargé en métaux peut être mis de préférence en amont ou en aval du ou des catalyseurs d’hydrogénation décrits ci-dessus, de préférence en amont. Selon un autre aspect de l'invention, le catalyseur d'hydrogénation tel que décrit plus haut comprend en outre un ou plusieurs composés organiques contenant de l'oxygène et/ou de l'azote et/ou du soufre (catalyseur additivé). Un tel catalyseur est souvent désigné par le terme "catalyseur additivé". Généralement, le composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, amine, nitrile, imide, oxime, urée et amide ou encore les composés incluant un cycle furanique ou encore les sucres. Very preferably, step b) may implement, in addition to the hydrogenation catalyst(s) described above, also at least one hydrogenation catalyst used in step b) comprising less than 1% by weight of nickel and at least 0.1% by weight of nickel, preferably 0.5% by weight of nickel, expressed as nickel oxide NiO relative to the weight of said catalyst, and less than 5% by weight of molybdenum and at least 0.1% by weight of molybdenum, preferably 0.5% by weight of molybdenum, expressed as molybdenum oxide MoOs relative to the weight of said catalyst, on an alumina support. This catalyst with a low metal content may preferably be placed upstream or downstream of the hydrogenation catalyst(s) described above, preferably upstream. According to another aspect of the invention, the hydrogenation catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur (additive catalyst). Such a catalyst is often referred to as "additive catalyst". Generally, the organic compound is chosen from a compound comprising one or more chemical functions chosen from a carboxylic function, alcohol, thiol, thioether, sulfone, sulfoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide or compounds including a furan cycle or sugars.
De manière préférée, l’étape d’hydrogénation peut mettre en œuvre en amont du ou des catalyseurs d’hydrogénation au moins un lit de garde contenant des adsorbants de type alumine, silice-alumine, zéolithe et/ou charbon actif contenant éventuellement des métaux du groupe VIB et/ou VIII. On peut également utiliser une série de lits de garde avec des particules de différents diamètres, notamment une série de lit de garde ayant des diamètres décroissants dans le sens de la circulation de la charge (aussi appelé « grading » selon la terminologie anglo-saxonne). Preferably, the hydrogenation step may use, upstream of the hydrogenation catalyst(s), at least one guard bed containing adsorbents of the alumina, silica-alumina, zeolite and/or activated carbon type, possibly containing metals from group VIB and/or VIII. It is also possible to use a series of guard beds with particles of different diameters, in particular a series of guard beds having decreasing diameters in the direction of circulation of the feedstock (also called “grading” according to English terminology).
Selon un mode de réalisation particulier, tout ou partie de la charge (coupe naphta) peut être injectée de manière étagée en entrée de chaque lit catalytique de manière à gérer les exothermes tel que décrit dans FR2969642. Dans ce cas, le flux total de la charge (coupe naphta) est divisé en un certain nombre de différents flux partiels égal au nombre de lits catalytiques dans le réacteur, les différents flux partiels sont injectés en entrée des lits catalytiques successives dans des proportions croissantes. According to a particular embodiment, all or part of the feed (naphtha cut) can be injected in a staged manner at the inlet of each catalytic bed so as to manage the exotherms as described in FR2969642. In this case, the total flow of the feed (naphtha cut) is divided into a certain number of different partial flows equal to the number of catalytic beds in the reactor, the different partial flows are injected at the inlet of the successive catalytic beds in increasing proportions.
Les réactions d’hydrogénation, notamment d’une partie des oléfines et des dioléfines, étant fortement exothermiques, on observe alors un profil montant de la température dans la section réactionnelle d’hydrogénation. Cette température plus élevée en fin de ladite section permet d’effectuer les réactions d’hydrodémétallation et d’hydrodéchloration. Since hydrogenation reactions, particularly of some olefins and diolefins, are highly exothermic, a rising temperature profile is observed in the hydrogenation reaction section. This higher temperature at the end of the section allows hydrodemetallation and hydrodechlorination reactions to be carried out.
La différence de température (delta T) entre la sortie et l’entrée de chaque lit catalytique de l’étape b) d’hydrogénation est généralement inférieure à 30°C, voire inférieure à 25°C. The temperature difference (delta T) between the outlet and the inlet of each catalytic bed of hydrogenation step b) is generally less than 30°C, or even less than 25°C.
Afin de pouvoir gérer l’exothermie dans la section réactionnelle, une partie de la coupe naphta issue de l’étape d) doit être recyclée dans l’étape b). Avantageusement, la quantité de la coupe naphta issue de l’étape d) recyclée, c’est-à-dire la fraction de produit obtenu recyclée, est ajustée de sorte que le rapport pondéral entre la coupe naphta issue de l’étape d) recyclée dans l’étape b) et la coupe naphta issue de l’étape a) et introduite dans l’étape b) est compris entre 0,01 et 10, de préférence compris entre 0,1 et 7, et de manière particulièrement préférée compris entre 0,2 et 5. Ce taux de recycle permet de contrôler la montée de la température dans l’étape b). En effet, lorsque le taux de recycle est élevé, le taux de dilution de la charge est élevé, et la montée de température en début de section réactionnelle de l’étape b), est ainsi contrôlable par l’effet de dilution. In order to be able to manage the exothermicity in the reaction section, a portion of the naphtha cut from step d) must be recycled into step b). Advantageously, the quantity of the naphtha cut from step d) recycled, i.e. the fraction of product obtained recycled, is adjusted so that the weight ratio between the naphtha cut from step d) recycled into step b) and the naphtha cut from step a) and introduced into step b) is between 0.01 and 10, preferably between 0.1 and 7, and particularly preferably between 0.2 and 5. This recycle rate makes it possible to control the temperature rise in step b). Indeed, when the recycle rate is high, the dilution rate of the feedstock is high, and the temperature rise at the start of the reaction section of step b), is thus controllable by the dilution effect.
L’injection d’au moins une partie de la coupe naphta issue de l’étape d) peut être effectuée au niveau du premier lit catalytique de la section réactionnelle, ou entre les différents lits catalytiques de chaque section. Lorsque la section réactionnelle comprend deux réacteurs fonctionnant en mode permutable, au moins une partie de la coupe naphta issue de l’étape d) peut être injecté entre les deux réacteurs. The injection of at least a portion of the naphtha cut from step d) can be carried out at the first catalytic bed of the reaction section, or between the different catalytic beds of each section. When the reaction section comprises two reactors operating in permutable mode, at least a portion of the naphtha cut from step d) can be injected between the two reactors.
De plus, un diluant liquide et/ou gazeux peut être injecté dans l’étape b) (aussi appelé quench selon la terminologie anglosaxonne) en complément de la coupe naphta issue de l’étape d). L’injection du diluant liquide et/ou gazeux peut être effectuée de la même manière telle que décrite ci-dessus. Le diluant liquide (ou quench liquide) peut être un liquide externe, par exemple une coupe naphta fossile. Le diluant gazeux (ou quench gazeux) est généralement un flux gazeux comprenant de l’hydrogène frais et/ou recyclé. Le diluant gazeux peut être au moins une partie l’effluent gazeux obtenu à l’étape d) qui contient de l’hydrogène, éventuellement purifié. In addition, a liquid and/or gaseous diluent may be injected in step b) (also called quench according to English terminology) in addition to the naphtha cut from step d). The injection of the liquid and/or gaseous diluent may be carried out in the same manner as described above. The liquid diluent (or liquid quench) may be an external liquid, for example a fossil naphtha cut. The gaseous diluent (or gaseous quench) is generally a gaseous stream comprising fresh and/or recycled hydrogen. The gaseous diluent may be at least a part of the gaseous effluent obtained in step d) which contains hydrogen, possibly purified.
Ladite étape b) d’hydrogénation permet d’obtenir un effluent hydrogéné, c’est-à-dire un effluent à teneur réduite en oléfines, en particulier en dioléfines, en métaux, en particulier en silicium, et en halogènes, en particulier en chlore. Elle permet également d’hydrogéner les mono- oléfines. L’étape b) d’hydrogénation permet généralement de convertir au moins 40 %, et de préférence au moins 60 % des dioléfines ainsi qu’au moins 40 %, et de préférence au moins 60 % des monooléfines contenues dans la charge initiale. La chaleur dégagée par la saturation des doubles liaisons permet d'élever la température du milieu réactionnel et d'amorcer les réactions d’hydrotraitement, notamment l’élimination, au moins en partie, d’autres contaminants, comme par exemple le silicium et le chlore ou encore l’azote. De préférence, au moins 50%, et plus préférentiellement au moins 75% du chlore et du silicium de la charge initiale sont respectivement éliminés lors de l’étape b). Généralement, la teneur en silicium est inférieure à 10 ppm poids dans l’effluent hydrogéné de l’étape b). Said hydrogenation step b) makes it possible to obtain a hydrogenated effluent, i.e. an effluent with a reduced content of olefins, in particular diolefins, metals, in particular silicon, and halogens, in particular chlorine. It also makes it possible to hydrogenate the monoolefins. Hydrogenation step b) generally makes it possible to convert at least 40%, and preferably at least 60% of the diolefins as well as at least 40%, and preferably at least 60% of the monoolefins contained in the initial feedstock. The heat released by the saturation of the double bonds makes it possible to raise the temperature of the reaction medium and to initiate the hydrotreatment reactions, in particular the elimination, at least in part, of other contaminants, such as for example silicon and chlorine or nitrogen. Preferably, at least 50%, and more preferably at least 75% of the chlorine and silicon of the initial charge are respectively removed during step b). Generally, the silicon content is less than 10 ppm by weight in the hydrogenated effluent from step b).
Selon la teneur en impuretés résiduelles dans la coupe naphta hydrogéné obtenue après l’étape b) et sa destination finale, cette coupe peut être soumise à une étape d’hydrotraitement. Lorsqu’on souhaite utiliser cette coupe comme une charge pour un vapocraqueur pour produire des d’oléfines, une étape d’hydrotraitement est généralement nécessaire afin d’atteindre les spécifications en soufre et en azote. Dans ce cas, l’effluent obtenu à l’issue de l’étape b) est envoyé au moins en partie et de préférence en totalité, de préférence directement, vers l’étape c) d’hydrotraitement. Depending on the residual impurity content in the hydrogenated naphtha cut obtained after step b) and its final destination, this cut may be subjected to a hydrotreatment step. When it is desired to use this cut as a feedstock for a steam cracker to produce olefins, a hydrotreatment step is generally necessary in order to achieve the sulfur and nitrogen specifications. In this case, the effluent obtained at the end of step b) is sent at least in part and preferably in whole, preferably directly, to step c) of hydrotreatment.
Lorsqu’on souhaite envoyer cette coupe vers une unité de stockage carburant, une étape d’hydrotraitement peut ne pas être nécessaire. Dans ce cas, l’effluent obtenu à l’issue de l’étape b) est envoyé au moins en partie et de préférence en totalité, de préférence directement, vers l’étape d) de séparation. When it is desired to send this cut to a fuel storage unit, a hydrotreatment step may not be necessary. In this case, the effluent obtained at the end of step b) is sent at least in part and preferably in full, preferably directly, to the separation step d).
Etape c) d’hydrotraitement (optionnelle) Step c) of hydrotreatment (optional)
Selon l’invention, le procédé de traitement peut comprendre une étape c) d’hydrotraitement mise en œuvre dans une section réactionnelle d’hydrotraitement, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1 , comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au moins par ledit effluent hydrogéné issu de l’étape b) et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrotraitement étant mise en œuvre à une température moyenne entre 200 et 400°C, une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h'1, pour obtenir un effluent hydrotraité. According to the invention, the treatment method may comprise a hydrotreatment step c) implemented in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least with said hydrogenated effluent from step b) and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at an average temperature between 200 and 400°C, a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h' 1 , to obtain a hydrotreated effluent.
Avantageusement, l’étape c) met en œuvre les réactions d’hydrotraitement bien connues de l’homme du métier, et plus particulièrement des réactions d’hydrotraitement telles que l’hydrogénation des aromatiques, l’hydrodésulfuration et l’hydrodéazotation. De plus, l’hydrogénation des oléfines et des composés halogénés restants ainsi que l’hydrodémétallation peuvent se poursuivre même si la majeure partie et de préférence la totalité de ces impuretés a été éliminée lors de l’étape b). Advantageously, step c) implements hydrotreatment reactions well known to those skilled in the art, and more particularly hydrotreatment reactions such as the hydrogenation of aromatics, hydrodesulfurization and hydrodenitrogenation. In addition, the hydrogenation of the remaining olefins and halogenated compounds as well as the hydrodemetalation can continue even if the majority and preferably all of these impurities have been removed during step b).
Ladite section réactionnelle d’hydrotraitement est avantageusement mise en œuvre à une température moyenne d’hydrotraitement entre 200 et 400°C, de préférence entre 250 et 360°C, à une pression partielle d’hydrogène entre 1 ,0 et 10,0 MPa abs. et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h-1, de préférence entre 0,1 et 5,0 h-1, préférentiellement entre 0,2 et 2,0 h-1, de manière préférée entre 0,2 et 1h’1. La couverture en hydrogène dans l’étape d) est avantageusement comprise entre 100 et 1500 Nm3 d’hydrogène par m3 de la charge qui alimente l’étape d), et de préférence entre 120 et 1000 Nm3/m3, de manière préférée entre 150 et 800 Nm3/m3. Les définitions de la température moyenne (WABT), de la WH et de la couverture en hydrogène correspondent à celles décrites ci-dessus. Par rapport aux procédés de traitement d’une charge comprenant une huile de pyrolyse qui traitent l’intégralité de l’huile de pyrolyse (sans préfractionnement), les conditions opératoires de l’étape d’hydrogénation ainsi que celles de l’étape d’hydrotraitement peuvent être plus douces dans le procédé selon l’invention (notamment une température plus basse et/ou une WH plus élevée). En effet, les impuretés soufrés et azotés, notamment les plus réfractaires, se trouvent après le préfractionnement majoritairement dans ladite coupe lourde. Said hydrotreatment reaction section is advantageously carried out at an average hydrotreatment temperature between 200 and 400°C, preferably between 250 and 360°C, at a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and at an hourly volumetric flow rate (WH) between 0.1 and 10.0 h -1 , preferably between 0.1 and 5.0 h -1 , preferentially between 0.2 and 2.0 h -1 , more preferably between 0.2 and 1h' 1 . The hydrogen coverage in step d) is advantageously between 100 and 1500 Nm 3 of hydrogen per m 3 of the feedstock which feeds step d), and preferably between 120 and 1000 Nm 3 /m 3 , more preferably between 150 and 800 Nm 3 /m 3 . The definitions of the average temperature (WABT), the WH and the hydrogen coverage correspond to those described above. Compared to the processes for treating a feedstock comprising a pyrolysis oil which treat the entire pyrolysis oil (without prefractionation), the operating conditions of the hydrogenation step as well as those of the hydrotreatment step can be milder in the process according to the invention (in particular a lower temperature and/or a higher WH). Indeed, the sulfur and nitrogen impurities, in particular the most refractory ones, are found after prefractionation mainly in said heavy cut.
Avantageusement, la section réactionnelle de ladite étape c) comprend entre 1 et 5 réacteurs, de préférence entre 2 et 5 réacteurs. Ces réacteurs peuvent fonctionner en série et/ou en parallèle et/ou en mode permutable (ou PRS). Advantageously, the reaction section of said step c) comprises between 1 and 5 reactors, preferably between 2 and 5 reactors. These reactors can operate in series and/or in parallel and/or in permutable mode (or PRS).
Dans un mode préféré, ladite section réactionnelle d’hydrotraitement comprend un seul réacteur à lit fixe contenant n lits catalytiques, n étant un nombre entier supérieur ou égal à un, de préférence compris entre un et dix, de manière préférée compris entre deux et cinq. Dans un mode particulièrement préféré, la section réactionnelle d’hydrogénation de l’étape b) comprend deux réacteurs fonctionnent en mode permutable suivie de la section réactionnelle d’hydrotraitement de l’étape c) qui comprend un seul réacteur à lit fixe. In a preferred embodiment, said hydrotreatment reaction section comprises a single fixed-bed reactor containing n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, more preferably between two and five. In a particularly preferred embodiment, the hydrogenation reaction section of step b) comprises two reactors operating in switchable mode followed by the hydrotreatment reaction section of step c) which comprises a single fixed-bed reactor.
Dans un autre mode de réalisation, ladite section réactionnelle d’hydrogénation et ladite section d’hydrotraitement peuvent se trouver dans un seul (unique) réacteur à lit fixe contenant n lits catalytiques, n étant un nombre entier supérieur ou égal à un, de préférence compris entre un et dix, de manière préférée compris entre deux et sept. Dans ce cas, la coupe naphta traverse d’abord la section réactionnelle d’hydrogénation puis la section d’hydrotraitement. In another embodiment, said hydrogenation reaction section and said hydrotreatment section may be located in a single (single) fixed bed reactor containing n catalytic beds, n being an integer greater than or equal to one, preferably between one and ten, more preferably between two and seven. In this case, the naphtha cut first passes through the hydrogenation reaction section and then the hydrotreatment section.
Dans un autre mode de réalisation, on peut avoir au moins deux réacteurs, de préférence entre 2 et 5 réacteurs, fonctionnant en mode permutable (PRS), chaque réacteur contenant une section réactionnelle d’hydrogénation puis une section d’hydrotraitement. In another embodiment, there may be at least two reactors, preferably between 2 and 5 reactors, operating in switchable mode (PRS), each reactor containing a hydrogenation reaction section and then a hydrotreatment section.
Avantageusement, des internes de réacteurs, par exemple de type plateaux filtrants tels que décrit ci-dessus, peuvent être utilisés pour prévenir le bouchage du(des) réacteur(s). Advantageously, reactor internals, for example of the filter tray type as described above, may be used to prevent clogging of the reactor(s).
Avantageusement, ledit catalyseur d'hydrotraitement peut être choisi parmi des catalyseurs connus d’hydrodémétallation, d’hydrotraitement, de captation du silicium, utilisés notamment pour le traitement des coupes pétrolières, et leurs combinaisons. Des catalyseurs d’hydrodémétallation connus sont par exemple ceux décrits dans les brevets EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 et US 5089463. Des catalyseurs d’hydrotraitement connus sont par exemple ceux décrits dans les brevets EP 0113297, EP 0113284, US 6589908, US 4818743 ou US 6332976. Des catalyseurs de captation du silicium connus sont par exemple ceux décrits dans les demandes de brevets CN 102051202 et US 2007/080099. Advantageously, said hydrotreatment catalyst may be chosen from known hydrodemetallization, hydrotreatment, silicon capture catalysts, used in particular for the treatment of petroleum fractions, and combinations thereof. Known hydrodemetallization catalysts are, for example, those described in patents EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 and US 5089463. Known hydrotreatment catalysts are, for example, those described in patents EP 0113297, EP 0113284, US 6589908, US 4818743 or US 6332976. Known silicon capture methods are, for example, those described in patent applications CN 102051202 and US 2007/080099.
En particulier, ledit catalyseur d’hydrotraitement comprend un support, de préférence minéral, et au moins un élément métallique ayant une fonction hydro-déshydrogénante. Ledit élément métallique ayant une fonction hydro-déshydrogénante comprend avantageusement au moins un élément du groupe VIII, de préférence choisi dans le groupe constitué par le nickel et le cobalt, et/ou au moins un élément du groupe VI B, de préférence choisi dans le groupe constitué par le molybdène et le tungstène. La teneur totale exprimée en oxydes des éléments métalliques des groupes VIB et VIII est de préférence entre 0,1 % et 40% en poids, préférentiellement de 5% à 35% en poids, par rapport au poids total du catalyseur. Lorsque le métal est le cobalt ou le nickel, la teneur en métal s’exprime en CoO et NiO respectivement. Lorsque le métal est le molybdène ou le tungstène, la teneur en métal s’exprime en MoOa et WO3 respectivement. Le rapport pondéral exprimé en oxyde métallique entre le métal (ou les métaux) du groupe VIB par rapport au métal (ou aux métaux) du groupe VIII est de préférence compris entre 1 ,0 et 20, de manière préférée entre 2,0 et 10. Par exemple, la section réactionnelle d’hydrotraitement de l’étape d) du procédé comprend un catalyseur d’hydrotraitement comprenant entre 0,5% et 10% en poids de nickel, de préférence entre 1 % et 8% en poids de nickel, exprimé en oxyde de nickel NiO par rapport au poids total du catalyseur d’hydrotraitement, et entre 1 ,0% et 30% en poids de molybdène, de préférence entre 3,0% et 29% en poids de molybdène, exprimé en oxyde de molybdène MoOs par rapport au poids total du catalyseur d’hydrotraitement, sur un support minéral, de préférence sur un support d’alumine. In particular, said hydrotreatment catalyst comprises a support, preferably mineral, and at least one metallic element having a hydro-dehydrogenating function. Said metallic element having a hydro-dehydrogenating function advantageously comprises at least one element from group VIII, preferably chosen from the group consisting of nickel and cobalt, and/or at least one element from group VI B, preferably chosen from the group consisting of molybdenum and tungsten. The total content expressed as oxides of the metallic elements from groups VI B and VIII is preferably between 0.1% and 40% by weight, preferably from 5% to 35% by weight, relative to the total weight of the catalyst. When the metal is cobalt or nickel, the metal content is expressed as CoO and NiO respectively. When the metal is molybdenum or tungsten, the metal content is expressed as MoOa and WO3 respectively. The weight ratio expressed as metal oxide between the metal (or metals) of group VIB relative to the metal (or metals) of group VIII is preferably between 1.0 and 20, preferably between 2.0 and 10. For example, the hydrotreatment reaction section of step d) of the process comprises a hydrotreatment catalyst comprising between 0.5% and 10% by weight of nickel, preferably between 1% and 8% by weight of nickel, expressed as nickel oxide NiO relative to the total weight of the hydrotreatment catalyst, and between 1.0% and 30% by weight of molybdenum, preferably between 3.0% and 29% by weight of molybdenum, expressed as molybdenum oxide MoOs relative to the total weight of the hydrotreatment catalyst, on a mineral support, preferably on an alumina support.
Le support dudit catalyseur d’hydrotraitement est avantageusement choisi parmi l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges. Ledit support peut en outre renfermer des composés dopants, notamment des oxydes choisis parmi l’oxyde de bore, en particulier le trioxyde de bore, la zircone, la cérine, l’oxyde de titane, l’anhydride phosphorique et un mélange de ces oxydes. De préférence, ledit catalyseur d’hydrotraitement comprend un support d’alumine, de manière préférée un support d’alumine dopé avec du phosphore et éventuellement du bore. Lorsque l’anhydride phosphorique P2O5 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % poids par rapport au poids total de l’alumine. Lorsque le trioxyde de bore B2O3 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % par rapport au poids total de l’alumine. L’alumine utilisée peut être par exemple une alumine y (gamma) ou (êta). Ledit catalyseur d’hydrotraitement est par exemple sous forme d’extrudés. The support of said hydrotreatment catalyst is advantageously chosen from alumina, silica, silica-aluminas, magnesia, clays and mixtures thereof. Said support may also contain doping compounds, in particular oxides chosen from boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides. Preferably, said hydrotreatment catalyst comprises an alumina support, preferably an alumina support doped with phosphorus and optionally boron. When phosphoric anhydride P2O5 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina. When boron trioxide B2O3 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina. The alumina used may be, for example, a γ (gamma) or (eta) alumina. Said hydrotreatment catalyst is for example in the form of extrudates.
Avantageusement, ledit catalyseur d’hydrotraitement du procédé présente une surface spécifique supérieure ou égale à 250 m2/g, de préférence supérieure ou égale à 300 m2/g. La surface spécifique dudit catalyseur d’hydrotraitement est avantageusement inférieure ou égale à 800 m2/g, de préférence inférieure ou égale à 600 m2/g, en particulier inférieure ou égale à 400 m2/g. La surface spécifique du catalyseur d’hydrotraitement est mesurée par la méthode BET, c’est-à-dire la surface spécifique déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER- EMMETT-TELLER décrite dans le périodique The Journal of the American Chemical Society, 6Q, 309 (1938). Une telle surface spécifique permet d’améliorer encore l’élimination des contaminants, en particulier des métaux comme le silicium. Advantageously, said hydrotreatment catalyst of the process has a specific surface area greater than or equal to 250 m 2 /g, preferably greater than or equal to 300 m 2 /g. The specific surface area of said hydrotreatment catalyst is advantageously less than or equal to 800 m 2 /g, preferably less than or equal to 600 m 2 /g, in particular less than or equal to 400 m 2 /g. The specific surface area of the hydrotreatment catalyst is measured by the BET method, i.e. the specific surface area determined by nitrogen adsorption in accordance with ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the periodical The Journal of the American Chemical Society, 6Q, 309 (1938). Such a specific surface area makes it possible to further improve the removal of contaminants, in particular metals such as silicon.
Selon un autre aspect de l'invention, le catalyseur d'hydrotraitement tel que décrit plus haut comprend en outre un ou plusieurs composés organiques contenant de l'oxygène et/ou de l'azote et/ou du soufre tel que décrit ci-dessus (catalyseur additivé). According to another aspect of the invention, the hydrotreatment catalyst as described above further comprises one or more organic compounds containing oxygen and/or nitrogen and/or sulfur as described above (additive catalyst).
De manière préférée, l’étape c) peut mettre en œuvre en amont du ou des catalyseurs d’hydrotraitement au moins un lit de garde ou une série de lits de garde de type « grading » tel que décrit ci-dessus pour l’étape b). Preferably, step c) can implement upstream of the hydrotreatment catalyst(s) at least one guard bed or a series of guard beds of the “grading” type as described above for step b).
Avantageusement, l’étape c) d’hydrotraitement permet l’hydrogénation d’au moins 80%, et de préférence de la totalité des oléfines et composés halogénés restants après l’étape b) d’hydrogénation, mais aussi la conversion au moins en partie d’autres impuretés présentes dans la charge, comme les composés aromatiques, les composés métalliques, les composés soufrés, les composés azotés, les composés oxygénés. De préférence, la teneur en azote en sortie de l’étape c) est inférieure à 100 ppm poids, et de manière préférée inférieure à 10 ppm poids. De préférence, la teneur en soufre en sortie de l’étape c) est inférieure à 100 ppm poids, et de manière préférée inférieure à 10 ppm poids. L’étape c) peut également permettre de réduire encore la teneur en contaminants, comme celle des métaux, en particulier la teneur en silicium. De préférence, la teneur en métaux en sortie de l’étape c) est inférieure à 10 ppm poids, et de manière préférée inférieure à 2 ppm poids, et la teneur en silicium est inférieure à 5 ppm poids. De préférence, la teneur en élément halogène en sortie de l’étape c) est inférieure à 5 ppm poids. Advantageously, hydrotreatment step c) allows the hydrogenation of at least 80%, and preferably of all of the olefins and halogenated compounds remaining after hydrogenation step b), but also the conversion at least in part of other impurities present in the feedstock, such as aromatic compounds, metallic compounds, sulfur compounds, nitrogen compounds, oxygenated compounds. Preferably, the nitrogen content at the outlet of step c) is less than 100 ppm by weight, and preferably less than 10 ppm by weight. Preferably, the sulfur content at the outlet of step c) is less than 100 ppm by weight, and preferably less than 10 ppm by weight. Step c) can also make it possible to further reduce the contaminant content, such as that of metals, in particular the silicon content. Preferably, the metal content at the outlet of step c) is less than 10 ppm by weight, and preferably less than 2 ppm by weight, and the silicon content is less than 5 ppm by weight. Preferably, the halogen element content at the outlet of step c) is less than 5 ppm by weight.
L’effluent hydrotraité issu de l’étape c) d’hydrotraitement est ensuite envoyé, en partie ou en totalité, vers une étape d) de séparation. The hydrotreated effluent from hydrotreatment step c) is then sent, in part or in full, to a separation step d).
Toute section réactionnelle des étapes b) et c) est avantageusement alimentée au niveau du premier lit catalytique du premier réacteur en fonctionnement. Une injection d’au moins une partie de la charge et/ou au moins une partie d’hydrogène entre les différents lits catalytiques est également possible. Any reaction section of steps b) and c) is advantageously fed at the level of the first catalytic bed of the first reactor in operation. An injection of at least one part of the charge and/or at least part of hydrogen between the different catalytic beds is also possible.
Toute section réactionnelle des étapes b) et c) mettant en œuvre au moins un réacteur à lit fixe peut fonctionner à courant descendant ou ascendant de gaz et de liquide. Any reaction section of steps b) and c) implementing at least one fixed-bed reactor can operate with a descending or ascending flow of gas and liquid.
Le flux gazeux comprenant de l’hydrogène, qui alimente au moins une section réactionnelle des étapes b) et c) peut être constitué d’un appoint en hydrogène et/ou d’hydrogène recyclé et/ou d’hydrogène provenant de l’étape en amont. Le flux gazeux comprenant de l’hydrogène peut être issu d’une source fossile ou d’une source renouvelable, par exemple issu de la gazéification de déchets plastiques ou produit par électrolyse. The gas stream comprising hydrogen, which feeds at least one reaction section of steps b) and c) may consist of a hydrogen make-up and/or recycled hydrogen and/or hydrogen originating from the upstream step. The gas stream comprising hydrogen may come from a fossil source or a renewable source, for example from the gasification of plastic waste or produced by electrolysis.
De préférence, un flux gazeux supplémentaire comprenant de l’hydrogène est avantageusement introduit en entrée de chaque réacteur, en particulier fonctionnant en série, et/ou en entrée de chaque lit catalytique à partir du second lit catalytique de la section réactionnelle. Preferably, an additional gas flow comprising hydrogen is advantageously introduced at the inlet of each reactor, in particular operating in series, and/or at the inlet of each catalytic bed from the second catalytic bed of the reaction section.
La préparation des catalyseurs des étapes b) et c) est connue et comprend généralement une étape d’imprégnation des métaux du groupe VIII et du groupe VIB lorsqu’il est présent, et éventuellement du phosphore et/ou du bore sur le support, suivie d’un séchage, puis éventuellement d’une calcination. Dans le cas de catalyseur additivé, la préparation se fait généralement par simple séchage sans calcination après introduction du composé organique. On entend ici par calcination un traitement thermique sous un gaz contenant de l’air ou de l’oxygène à une température supérieure ou égale à 200°C. Avant leur utilisation dans une étape du procédé, les catalyseurs sont généralement soumis à une sulfuration afin de former l’espèce active. Lorsque le catalyseur est un catalyseur utilisé sous sa forme réduite, la préparation implique une étape de réduction. The preparation of the catalysts of steps b) and c) is known and generally comprises a step of impregnation of the metals of group VIII and group VIB when present, and possibly phosphorus and/or boron on the support, followed by drying, then possibly calcination. In the case of an additive catalyst, the preparation is generally carried out by simple drying without calcination after introduction of the organic compound. Here, calcination means a heat treatment under a gas containing air or oxygen at a temperature greater than or equal to 200°C. Before their use in a step of the process, the catalysts are generally subjected to sulfurization in order to form the active species. When the catalyst is a catalyst used in its reduced form, the preparation involves a reduction step.
En fonction de la teneur en composés soufrés dans la charge initiale à traiter, un flux contenant un agent sulfurant peut être injecté en amont de l’étape optionnelle de prétraitement et/ou de l’étape d’hydrogénation et/ou l’étape optionnelle d’hydrotraitement, de préférence en amont de l’étape hydrogénation et/ou l’étape d’hydrotraitement afin d’assurer une quantité suffisante en soufre pour former l’espèce active du catalyseur (sous forme sulfures). Depending on the content of sulfur compounds in the initial feed to be treated, a stream containing a sulfurizing agent can be injected upstream of the optional pretreatment step and/or the hydrogenation step and/or the optional hydrotreatment step, preferably upstream of the hydrogenation step and/or the hydrotreatment step in order to ensure a sufficient quantity of sulfur to form the active species of the catalyst (in sulfide form).
Cette étape d’activation ou de sulfuration s’effectue par les méthodes bien connues de l'Homme de l'art, et avantageusement sous une atmosphère sulfo-réductrice en présence d’hydrogène et d’hydrogène sulfuré. Les agents sulfurants sont préférablement le gaz H2S, le soufre élémentaire, le CS2, les mercaptans, les sulfures et/ou polysulfures, les coupes hydrocarbonées à point d'ébullition inférieur à 400°C contenant des composés soufrés ou tout autre composé contenant du soufre utilisé pour l’activation des charges hydrocarbures en vue de sulfurer le catalyseur. Lesdits composés contenant du soufre sont avantageusement choisis parmi les disulfures d’alkyle tel que par exemple le disulfure de diméthyle (DMDS), les sulfures d’alkyle, tel que par exemple le sulfure de diméthyle, les thiols tel que par exemple le n-butylmercaptan (ou 1 -butanethiol) et les composés polysulfures de type tertiononylpolysulfure. Le catalyseur peut également être sulfuré par le soufre contenu dans la charge à désulfurer. De manière préférée, le catalyseur est sulfuré in situ en présence d'un agent sulfurant et d'une charge hydrocarbonée. De manière très préférée le catalyseur est sulfuré in situ en présence de la charge additivée de disulfure de diméthyle. L’injection d’un agent sulfurant est notamment nécessaire en début du cycle catalytique, le temps que l’hLS se forme. Des injections supplémentaires tout au long du cycle catalytique peuvent être nécessaires afin de compenser la perte naturelle. This activation or sulfurization step is carried out by methods well known to those skilled in the art, and advantageously under a sulfide-reducing atmosphere in the presence of hydrogen and hydrogen sulfide. The sulfurizing agents are preferably H2S gas, elemental sulfur, CS2, mercaptans, sulfides and/or polysulfides, fractions hydrocarbons with a boiling point below 400°C containing sulfur compounds or any other sulfur-containing compound used for the activation of hydrocarbon feedstocks in order to sulfurize the catalyst. Said sulfur-containing compounds are advantageously chosen from alkyl disulfides such as, for example, dimethyl disulfide (DMDS), alkyl sulfides, such as, for example, dimethyl sulfide, thiols such as, for example, n-butyl mercaptan (or 1-butanethiol) and polysulfide compounds of the tert-onylpolysulfide type. The catalyst can also be sulfurized by the sulfur contained in the feedstock to be desulfurized. Preferably, the catalyst is sulfurized in situ in the presence of a sulfurizing agent and a hydrocarbon feedstock. Very preferably, the catalyst is sulfurized in situ in the presence of the feedstock with added dimethyl disulfide. The injection of a sulfurizing agent is particularly necessary at the beginning of the catalytic cycle, while the hLS is forming. Additional injections throughout the catalytic cycle may be necessary to compensate for the natural loss.
Etape d) de lavage/séparation Step d) washing/separation
Selon l’invention, le procédé comprend une étape d) de séparation, alimentée par une partie au moins et de préférence la totalité de l’effluent hydrogéné issu de l’étape b) ou par l’effluent hydrotraité issu de l’étape c) et une solution aqueuse, ladite étape étant opérée dans une section de séparation à une température entre 30 et 300°C, pour obtenir au moins un effluent gazeux, un effluent aqueux et une coupe naphta débarrassée de ses impuretés et dont une partie est recyclée dans l’étape b). According to the invention, the process comprises a separation step d), fed with at least part and preferably all of the hydrogenated effluent from step b) or with the hydrotreated effluent from step c) and an aqueous solution, said step being carried out in a separation section at a temperature between 30 and 300°C, to obtain at least one gaseous effluent, one aqueous effluent and a naphtha cut freed from its impurities and part of which is recycled in step b).
Cette étape lavage/séparation permet en particulier d’éliminer les sels de chlorure d’ammonium, qui se forment par réaction entre les ions chlorure, libérés par l’hydrogénation des composés chlorés sous forme HCl notamment lors de l’étape d’hydrogénation puis dissolution dans l’eau, et les ions ammonium, générés notamment par l’hydrogénation des composés azotés sous forme de NH3 lors de l’étape d’hydrogénation et/ou d’hydrotraitement et/ou apportés par injection d’une amine puis dissolution dans l’eau, et ainsi de limiter les risques de bouchage, en particulier dans les lignes de transfert et/ou dans les sections du procédé de l’invention et/ou les lignes de transfert vers le vapocraqueur, dû à la précipitation des sels de chlorure d’ammonium. Cette étape permet aussi d’éliminer l’acide chlorhydrique formé par la réaction des ions hydrogène et des ions halogénure libérés par l’hydrogénation des composés halogénés lors de l’étape d’hydrogénation qui se dissolvent dans la solution aqueuse. Lorsque du H2S est formé, l’étape de lavage/séparation permet également d’éliminer des sels de sulfure d’ammonium ((NH^S) qui se forment par réaction entre l’H2S issu de l’hydrodésulfuration des composés sulfurés et le NH3 en les dissolvant dans la solution aqueuse. This washing/separation step makes it possible in particular to eliminate the ammonium chloride salts, which are formed by reaction between the chloride ions, released by the hydrogenation of the chlorinated compounds in HCl form, in particular during the hydrogenation step then dissolution in water, and the ammonium ions, generated in particular by the hydrogenation of the nitrogen compounds in the form of NH 3 during the hydrogenation and/or hydrotreatment step and/or supplied by injection of an amine then dissolution in water, and thus to limit the risks of blockage, in particular in the transfer lines and/or in the sections of the process of the invention and/or the transfer lines to the steam cracker, due to the precipitation of the ammonium chloride salts. This step also removes hydrochloric acid formed by the reaction of hydrogen ions and halide ions released by the hydrogenation of halogenated compounds during the hydrogenation step which dissolve in the aqueous solution. When H2S is formed, the washing/separation step also removes ammonium sulfide salts (NH^S) which are formed by the reaction between H2S resulting from the hydrodesulfurization of sulfur compounds and NH3 by dissolving them in aqueous solution.
L’étape de lavage/séparation est avantageusement opérée à une température comprise entre 20 et 300°C, préférentiellement entre 25 et 200°C, de manière préférée entre 30 et 150°C, et de manière particulièrement préférée entre 30 et 100°C. Avantageusement, l’étape de lavage/séparation est opérée à une pression proche de celle mise en œuvre dans l’étape d’hydrotraitement, de préférence entre 1 ,0 et 10,0 MPa abs, de manière à faciliter le recyclage d’hydrogène. The washing/separation step is advantageously carried out at a temperature between 20 and 300°C, preferably between 25 and 200°C, preferably between 30 and 150°C, and particularly preferably between 30 and 100°C. Advantageously, the washing/separation step is carried out at a pressure close to that used in the hydrotreatment step, preferably between 1.0 and 10.0 MPa abs, so as to facilitate the recycling of hydrogen.
La solution aqueuse peut être de l’eau. Elle peut également être une solution aqueuse basique (par ajout de NaOH par exemple). L’utilisation d’une solution basique permet de neutraliser les halogénures d'hydrogène et les éventuels sels dissous. The aqueous solution can be water. It can also be a basic aqueous solution (by adding NaOH for example). Using a basic solution helps neutralize hydrogen halides and any dissolved salts.
Ladite section de séparation peut comprendre tout moyen de séparation connu par l'homme du métier, notamment un ou plusieurs ballons séparateurs agencés en série, et/ou une ou plusieurs colonnes de stripage de vapeur et/ou à l’hydrogène, et/ou une colonne de distillation atmosphérique, et/ou une colonne de distillation sous vide. L'étape de lavage/séparation peut avantageusement être réalisée dans des équipements de lavage et de séparation communs ou distincts, ces équipements étant bien connus (ballons séparateurs pouvant opérés à différentes pressions et températures, pompes, échangeurs de chaleurs, colonnes de lavage, etc.). Said separation section may comprise any separation means known to those skilled in the art, in particular one or more separator drums arranged in series, and/or one or more steam and/or hydrogen stripping columns, and/or an atmospheric distillation column, and/or a vacuum distillation column. The washing/separation step may advantageously be carried out in common or separate washing and separation equipment, this equipment being well known (separator drums capable of operating at different pressures and temperatures, pumps, heat exchangers, washing columns, etc.).
Avantageusement, l’étape lavage/séparation comprend une injection d’une solution aqueuse, de préférence une injection d’eau, dans l’effluent hydrogéné ou hydrotraité, en amont de la section de lavage/séparation, de manière à dissoudre au moins en partie et de préférence la totalité des halogénures d'hydrogène (HCl notamment) et des éventuels sels présents. Advantageously, the washing/separation step comprises an injection of an aqueous solution, preferably an injection of water, into the hydrogenated or hydrotreated effluent, upstream of the washing/separation section, so as to dissolve at least in part and preferably all of the hydrogen halides (HCl in particular) and any salts present.
Dans un mode de réalisation éventuel de l’invention, l’étape de lavage/séparation comprend l’injection d’une solution aqueuse dans l’effluent hydrogéné ou hydrotraité, suivi de la section de lavage/séparation comprenant avantageusement une phase de séparation permettant d’obtenir au moins un effluent aqueux chargé en halogénures d'hydrogène (HCl notamment) et des éventuels sels dissous, ladite coupe naphta débarrassée de ces impuretés et un effluent gazeux partiellement lavé. Ledit effluent aqueux et la coupe naphta lavé peuvent ensuite être séparés dans un ballon décanteur afin d’obtenir ladite coupe naphta lavé et ledit effluent aqueux. Ledit effluent gazeux partiellement lavé peut parallèlement être introduit dans une colonne de lavage où il circule à contrecourant d’un flux aqueux, de préférence de même nature que la solution aqueuse injectée dans l’effluent hydrotraité, ce qui permet d’éliminer au moins en partie, de préférence en totalité, l’acide chlorhydrique contenu dans l’effluent gazeux partiellement lavé et d’obtenir ainsi ledit effluent gazeux, comprenant de préférence essentiellement de l’hydrogène, et un flux aqueux acide. Ledit effluent aqueux issu du ballon décanteur peut éventuellement être mélangé avec ledit flux aqueux acide, et être utilisé, éventuellement en mélange avec ledit flux aqueux acide dans un circuit de recyclage d’eau pour alimenter l’étape de lavage/séparation en ladite solution aqueuse en amont de la section de lavage/séparation et/ou en ledit flux aqueux dans la colonne de lavage. Ledit circuit de recyclage d’eau peut comporter un appoint d’eau et/ou d’une solution basique et/ou une purge permettant d’évacuer les impuretés. In a possible embodiment of the invention, the washing/separation step comprises the injection of an aqueous solution into the hydrogenated or hydrotreated effluent, followed by the washing/separation section advantageously comprising a separation phase making it possible to obtain at least one aqueous effluent loaded with hydrogen halides (HCl in particular) and any dissolved salts, said naphtha cut freed from these impurities and a partially washed gaseous effluent. Said aqueous effluent and the washed naphtha cut can then be separated in a settling tank in order to obtain said washed naphtha cut and said aqueous effluent. Said partially washed gaseous effluent can in parallel be introduced into a washing column where it circulates countercurrent to an aqueous flow, preferably of the same nature as the aqueous solution injected into the hydrotreated effluent, which makes it possible to eliminate at least in part, preferably in full, the hydrochloric acid contained in the partially washed gaseous effluent and thus obtain said gaseous effluent, preferably essentially comprising hydrogen, and an acidic aqueous stream. Said aqueous effluent from the settling tank may optionally be mixed with said acidic aqueous stream, and be used, optionally in a mixture with said acidic aqueous stream in a water recycling circuit to supply the washing/separation step with said aqueous solution upstream of the washing/separation section and/or with said aqueous stream in the washing column. Said water recycling circuit may include a make-up of water and/or a basic solution and/or a purge to remove impurities.
Selon un mode de réalisation, et en fonction de la teneur en composés chlorés dans ladite coupe naphta obtenue après le préfractionnement, un flux contenant un composé azoté telle que l’ammoniac ou une amine, par exemple la monoéthanolamine, la diéthanolamine, la monodiéthanolamine et/ou l’aniline peut être injecté en amont de l’étape d’hydrogénation et/ou en amont de l’étape d’hydrotraitement afin d’assurer une quantité suffisante en ions ammonium pour combiner les ions chlorure formés lors de l’étape d’hydrotraitement sous forme de sels de chlorure d’ammonium, permettant ainsi de limiter la formation d’acide chlorhydrique et ainsi de limiter la corrosion en aval de la section de séparation. According to one embodiment, and depending on the content of chlorinated compounds in said naphtha cut obtained after prefractionation, a stream containing a nitrogen compound such as ammonia or an amine, for example monoethanolamine, diethanolamine, monodiethanolamine and/or aniline, may be injected upstream of the hydrogenation step and/or upstream of the hydrotreatment step in order to ensure a sufficient quantity of ammonium ions to combine the chloride ions formed during the hydrotreatment step in the form of ammonium chloride salts, thus making it possible to limit the formation of hydrochloric acid and thus to limit corrosion downstream of the separation section.
Ledit effluent gazeux obtenu à l’issu de l’étape de lavage/séparation comprend avantageusement de l’hydrogène, de préférence comprend au moins 60 % volume, de préférence au moins 70 % volume, d’hydrogène. Ledit effluent gazeux obtenu à l’issu de l’étape de lavage/séparation contient que très peu de chlore, généralement à une teneur inférieure à 3 ppm poids chlore, ce qui permet de l’envoyer dans une unité de raffinage nécessitant de l’hydrogène. Selon un mode de réalisation, ledit effluent gazeux peut au moins en partie être recyclé vers une des étapes du procédé selon l’invention nécessitant de l’hydrogène (étapes b) et/ou c)), le système de recyclage pouvant comprendre une section de purification (par exemple d’adsorption de métaux lourds tel que le mercure). Said gaseous effluent obtained at the end of the washing/separation step advantageously comprises hydrogen, preferably comprises at least 60% by volume, preferably at least 70% by volume, of hydrogen. Said gaseous effluent obtained at the end of the washing/separation step contains very little chlorine, generally at a content of less than 3 ppm by weight of chlorine, which makes it possible to send it to a refining unit requiring hydrogen. According to one embodiment, said gaseous effluent can at least partly be recycled to one of the steps of the process according to the invention requiring hydrogen (steps b) and/or c)), the recycling system being able to comprise a purification section (for example adsorption of heavy metals such as mercury).
L’effluent aqueux obtenu à l’issu de l’étape de lavage/séparation comprend avantageusement des sels d’ammonium et/ou de l’acide chlorhydrique. The aqueous effluent obtained from the washing/separation step advantageously comprises ammonium salts and/or hydrochloric acid.
Après la séparation de l’effluent gazeux, ladite coupe naphta débarrassée de ses impuretés et lavé est préférentiellement envoyée vers une étape de stripage à la vapeur opérant de préférence à une pression comprise entre 0,5 et 2 MPa abs, pour réaliser une séparation de l'hydrogène sulfuré (H2S) dissous dans ladite coupe naphta débarrassée de ses impuretés. After separation of the gaseous effluent, said naphtha cut, freed from its impurities and washed, is preferably sent to a steam stripping stage preferably operating at a pressure of between 0.5 and 2 MPa abs, to separate the hydrogen sulfide (H2S) dissolved in said naphtha cut, freed from its impurities.
Une partie de ladite coupe naphta issue de l’étape d) est recyclée en amont de l’étape d’hydrogénation, et éventuellement en amont de l’étape d’hydrotraitement. Selon une variante, une partie ou la totalité de ladite coupe naphta issue de l’étape d) et recyclée vers l’étape d’hydrogénation et/ou d’hydrotraitement peut être avantageusement soit refroidie, soit préchauffée, si nécessaire, soit gardée à la même température. Les modifications de température de tout ou partie de ladite coupe naphta recyclée se feront par tout moyen connu de l’homme du métier (échangeur, aéroréfrigérant, four etc.) et permettront d’ajuster le profil de température (température d’entrée, delta T) des lits catalytiques des étapes d’hydrogénation et/ou d’hydrotraitement selon le besoin. A portion of said naphtha cut from step d) is recycled upstream of the hydrogenation step, and possibly upstream of the hydrotreatment step. According to a variant, part or all of said naphtha cut from step d) and recycled to the hydrogenation and/or hydrotreatment step can advantageously be either cooled, or preheated, if necessary, or kept at the same temperature. The temperature changes of all or part of said recycled naphtha cut will be made by any means known to those skilled in the art (exchanger, air cooler, furnace, etc.) and will make it possible to adjust the temperature profile (inlet temperature, delta T) of the catalytic beds of the hydrogenation and/or hydrotreatment steps as required.
Selon un mode de réalisation, une autre partie de ladite coupe naphta issue de l’étape d) peut aussi être envoyée en partie ou en totalité vers une unité de stockage carburant, par exemple une unité de stockage naphta, issu de charges pétrolières conventionnelles. According to one embodiment, another part of said naphtha cut from step d) can also be sent in part or in full to a fuel storage unit, for example a naphtha storage unit, from conventional petroleum feedstocks.
Selon un autre mode de réalisation, préféré, une autre partie de ladite coupe naphta issue de l’étape d) est envoyée directement en entrée d’une unité de vapocraquage. According to another preferred embodiment, another part of said naphtha cut from step d) is sent directly to the inlet of a steam cracking unit.
Avantageusement, le procédé selon l’invention permet l’hydrogénation d’au moins 80%, et de préférence de la totalité des oléfines (mono- et dioléfines), mais aussi la conversion au moins en partie d’autres impuretés présentes dans ladite coupe naphta obtenu après le préfractionnement, comme les composés aromatiques, les composés métalliques, les composés soufrés, les composés azotés, les composés halogénés (notamment les composés chlorés), les composés oxygénés. Advantageously, the process according to the invention allows the hydrogenation of at least 80%, and preferably of all of the olefins (mono- and diolefins), but also the conversion at least in part of other impurities present in said naphtha cut obtained after prefractionation, such as aromatic compounds, metallic compounds, sulfur compounds, nitrogen compounds, halogenated compounds (in particular chlorinated compounds), oxygenated compounds.
De préférence, ladite coupe naphta obtenue après l’étape d) de séparation a une teneur en azote inférieure à 10 ppm poids de manière préférée inférieure à 5 ppm poids. Preferably, said naphtha cut obtained after separation step d) has a nitrogen content of less than 10 ppm by weight, preferably less than 5 ppm by weight.
De préférence, ladite coupe naphta obtenue après l’étape d) de séparation a une teneur en soufre inférieure à 10 ppm poids. Preferably, said naphtha cut obtained after separation step d) has a sulfur content of less than 10 ppm by weight.
De préférence, ladite coupe naphta obtenue après l’étape d) de séparation a une teneur en oxygène inférieure à 10 ppm poids. Preferably, said naphtha cut obtained after separation step d) has an oxygen content of less than 10 ppm by weight.
De préférence, ladite coupe naphta obtenue après l’étape d) de séparation a une teneur en métaux inférieure à 10 ppm poids, de manière préférée inférieure à 2 ppm poids, et la teneur en silicium est inférieure à 5 ppm poids. Preferably, said naphtha cut obtained after separation step d) has a metal content of less than 10 ppm by weight, preferably less than 2 ppm by weight, and the silicon content is less than 5 ppm by weight.
De préférence, ladite coupe naphta obtenue après l’étape d) de séparation a une teneur en halogène (notamment chlore) inférieure à 3 ppm poids. Preferably, said naphtha cut obtained after separation step d) has a halogen content (in particular chlorine) of less than 3 ppm by weight.
Les teneurs sont données en concentrations pondérales relatives, pourcentage (%) poids, partie(s) par million (ppm) poids ou partie(s) par milliard (ppb) poids, par rapport au poids total du flux considéré. Etape de vapocraquage (optionnelle) The contents are given in relative weight concentrations, percentage (%) by weight, part(s) per million (ppm) by weight or part(s) per billion (ppb) by weight, relative to the total weight of the flow considered. Steam cracking step (optional)
Une partie de ladite coupe naphta débarrassée de ses impuretés issue de l’étape d) peut être envoyée vers une étape de vapocraquage, éventuellement en mélangé avec une charge fossile adaptée au vapocraqueur. A portion of said naphtha cut freed from its impurities from step d) can be sent to a steam cracking step, possibly mixed with a fossil feedstock suitable for the steam cracker.
Ladite étape de vapocraquage est avantageusement réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C, de préférence entre 750 et 850°C, et à une pression comprise entre 0,05 et 0,3 MPa relatif. Le temps de séjour des composés hydrocarbonés est généralement inférieur ou égale à 1 ,0 seconde (noté s), de préférence compris entre 0,1 et 0,5 s. Avantageusement, de la vapeur d’eau est introduite en amont de l’étape de vapocraquage et après la séparation (ou le fractionnement). La quantité d’eau introduite, avantageusement sous forme de vapeur d’eau, est avantageusement comprise entre 0,3 et 3,0 kg d’eau par kg de composés hydrocarbonés en entrée de l’étape de vapocraquage. De préférence, l’étape de vapocraquage est réalisée dans plusieurs fours de pyrolyse en parallèle de manière à adapter les conditions opératoires aux différents flux, et aussi à gérer les temps de décokage des tubes. Un four comprend un ou plusieurs tubes disposés en parallèle. Un four peut également désigner un groupe de fours opérant en parallèle. Par exemple, un four peut être dédié au craquage de la coupe naphta et un autre dédié à la coupe distillats moyens. Said steam cracking step is advantageously carried out in at least one pyrolysis furnace at a temperature between 700 and 900°C, preferably between 750 and 850°C, and at a pressure between 0.05 and 0.3 MPa relative. The residence time of the hydrocarbon compounds is generally less than or equal to 1.0 seconds (denoted s), preferably between 0.1 and 0.5 s. Advantageously, water vapor is introduced upstream of the steam cracking step and after the separation (or fractionation). The quantity of water introduced, advantageously in the form of water vapor, is advantageously between 0.3 and 3.0 kg of water per kg of hydrocarbon compounds at the inlet of the steam cracking step. Preferably, the steam cracking step is carried out in several pyrolysis furnaces in parallel so as to adapt the operating conditions to the different streams, and also to manage the decoking times of the tubes. A furnace comprises one or more tubes arranged in parallel. A furnace can also designate a group of furnaces operating in parallel. For example, one furnace can be dedicated to cracking the naphtha cut and another dedicated to the middle distillate cut.
Les effluents des différents fours de vapocraquage sont généralement recombinés avant séparation en vue de constituer un effluent. Il est entendu que l’étape de vapocraquage comporte les fours de vapocraquage mais aussi les sous étapes associées au vapocraquage bien connues de l’Homme du métier. Ces sous étapes peuvent comporter notamment des échangeurs de chaleur, des colonnes et des réacteurs catalytiques et des recyclages vers les fours. Une colonne permet généralement de fractionner l’effluent en vue de récupérer au moins une fraction légère comprenant de l’hydrogène et des composés ayant 2 à 5 atomes de carbone, et une fraction comprenant de l’essence de pyrolyse, et éventuellement une fraction plus lourde. Des colonnes permettent de séparer les différents constituants de la fraction légère de fractionnement afin de récupérer au moins une coupe riche en éthylène (coupe C2) et une coupe riche en propylène (coupe C3) et éventuellement une coupe riche en butènes (coupe C4). Les réacteurs catalytiques permettent notamment de réaliser des hydrogénations des coupes C2, C3 voire C4 et de l’essence de pyrolyse. Les composés saturés, notamment les composés saturés ayant 2 à 4 atomes de carbone sont avantageusement recyclés vers les fours de vapocraquage de manière à accroitre les rendements globaux en oléfines. Cette étape de vapocraquage permet d’obtenir au moins un effluent contenant des oléfines comprenant 2, 3 et/ou 4 atomes de carbone (c’est-à-dire des oléfines en C2, C3 et/ou C4), à des teneurs satisfaisantes, en particulier supérieures ou égales à 30% poids, notamment supérieures ou égales 40% poids, voire supérieures ou égales 50% poids d’oléfines totales comprenant 2, 3 et 4 atomes de carbone par rapport au poids de l’effluent de vapocraquage considéré. Lesdites oléfines en C2, C3 et C4 peuvent ensuite être avantageusement utilisées comme monomères de polyoléfines. The effluents from the various steam cracking furnaces are generally recombined before separation in order to constitute an effluent. It is understood that the steam cracking stage includes the steam cracking furnaces but also the sub-stages associated with steam cracking well known to those skilled in the art. These sub-stages may include in particular heat exchangers, columns and catalytic reactors and recycles to the furnaces. A column generally makes it possible to fractionate the effluent in order to recover at least a light fraction comprising hydrogen and compounds having 2 to 5 carbon atoms, and a fraction comprising pyrolysis gasoline, and possibly a heavier fraction. Columns make it possible to separate the different constituents of the light fractionation fraction in order to recover at least an ethylene-rich cut (C2 cut) and a propylene-rich cut (C3 cut) and possibly a butene-rich cut (C4 cut). Catalytic reactors are used in particular to carry out hydrogenation of C2, C3 and even C4 cuts and pyrolysis gasoline. Saturated compounds, particularly saturated compounds with 2 to 4 carbon atoms, are advantageously recycled to steam cracking furnaces in order to increase overall olefin yields. This steam cracking step makes it possible to obtain at least one effluent containing olefins comprising 2, 3 and/or 4 carbon atoms (i.e. C2, C3 and/or C4 olefins), at satisfactory contents, in particular greater than or equal to 30% by weight, in particular greater than or equal to 40% by weight, or even greater than or equal to 50% by weight of total olefins comprising 2, 3 and 4 carbon atoms relative to the weight of the steam cracking effluent in question. Said C2, C3 and C4 olefins can then be advantageously used as polyolefin monomers.
Valorisation de la coupe lourde Valorization of heavy cutting
Une ou plusieurs étapes de traitement ultérieur de la coupe lourde, ou de la ou des autres coupes issues de la coupe lourde lors de l’étape a) de préfractionnement (coupe distillats moyens incluant une coupe diesel et une coupe kérosène, coupe gazole sous vide) autre que la coupe naphta, peuvent être réalisées afin de les valoriser. One or more further processing stages of the heavy cut, or of the other cut(s) from the heavy cut during prefractionation stage a) (middle distillate cut including a diesel cut and a kerosene cut, vacuum diesel cut) other than the naphtha cut, may be carried out in order to recover them.
Une telle étape peut comprendre au moins une étape choisie dans la liste constituée par l’ hydrotraitement, le vapocraquage, l’hydrocraquage ou encore le craquage catalytique en lit fluidisé. Ces exemples de traitement ultérieur ne sont pas exhaustifs. Such a step may include at least one step chosen from the list consisting of hydrotreatment, steam cracking, hydrocracking or fluidized bed catalytic cracking. These examples of further treatment are not exhaustive.
Les étapes de traitement ultérieur peuvent être effectuées sur une coupe seule ou plusieurs des coupes issues de l’étape a) de préfractionnement en mélange, seule ou en mélange avec une charge pétrolière et/ou d’une charge issue de la conversion de la biomasse. The further processing steps may be carried out on a single cut or several of the cuts resulting from step a) of prefractionation in a mixture, alone or in a mixture with an oil feedstock and/or a feedstock resulting from the conversion of the biomass.
Hydrotraitement Hydrotreatment
Compte tenu des impuretés contenues dans la coupe lourde ou dans la ou les autres coupes issues de la coupe lourde lors de l’étape a) de préfractionnement un hydrotraitement est généralement nécessaire avant de pouvoir envoyer la ou les coupes soit dans d’autres traitements ultérieurs, soit dans une unité de stockage afin de protéger les catalyseurs de traitements ultérieurs ou de respecter les spécifications requises. Given the impurities contained in the heavy cut or in the other cut(s) from the heavy cut during prefractionation step a), hydrotreatment is generally necessary before the cut(s) can be sent either to other subsequent treatments or to a storage unit in order to protect the catalysts from subsequent treatments or to meet the required specifications.
L’hydrotraitement peut être effectué sur la coupe lourde (entière) ou sur la coupe distillats moyens incluant une coupe diesel et une coupe kérosène, ou sur la coupe gazole sous vide issue de l’étape a) de préfractionnement, seule ou en mélange. Hydrotreatment can be carried out on the heavy cut (whole) or on the middle distillate cut including a diesel cut and a kerosene cut, or on the vacuum diesel cut from prefractionation step a), alone or in a mixture.
On peut également effectuer un co-processing en mélangeant la coupe lourde, ou la ou les autres coupes issues de la coupe lourde avec une charge pétrolière et/ou une charge issue de la conversion de la biomasse. De telles charges sont des essences, des gazoles, des gazoles sous vide, des résidus atmosphériques, des résidus sous vide, des distillats atmosphériques, des distillats sous vide, des fuels lourds, des huiles, des cires et des paraffines, des huiles usagées, des résidus ou des bruts désasphaltés, des charges provenant des procédés de conversions thermiques ou catalytiques, des charges lignocellulosiques ou plus généralement des charges issues de la biomasse telles que des huiles végétales, des huiles d'algues ou algales, des huiles de poissons, des huiles alimentaires usagées, et des graisses d'origine végétale ou animale, prises seules ou en mélange. Co-processing can also be carried out by mixing the heavy cut, or the other cut(s) from the heavy cut with a petroleum feedstock and/or a feedstock from biomass conversion. Such feedstocks are gasolines, diesels, vacuum diesels, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuel oils, oils, waxes and paraffins, used oils, residues or deasphalted crudes, feedstocks from thermal or catalytic conversion processes, lignocellulosic feedstocks or more generally feedstocks from biomass such as vegetable oils, algae or algal oils, fish oils, used cooking oils, and fats of vegetable or animal origin, taken alone or in a mixture.
Selon un premier mode de réalisation, la coupe lourde (entière) issue de l’étape de préfractionnement être soumise à une étape d’hydrotraitement mise en œuvre dans une section d’hydrotraitement, de préférence en lit fixe, qui est effectuée dans les conditions opératoires et avec des catalyseurs d’hydrotraitement tels que décrits pour l’étape d’hydrotraitement c) de la coupe naphta. According to a first embodiment, the heavy (whole) cut from the prefractionation step is subjected to a hydrotreatment step implemented in a hydrotreatment section, preferably in a fixed bed, which is carried out under the operating conditions and with hydrotreatment catalysts as described for the hydrotreatment step c) of the naphtha cut.
Selon un deuxième mode de réalisation, on peut effectuer un hydrotraitement dédié à chaque coupe, notamment un hydrotraitement dédié à la coupe distillât moyens (incluant une coupe diesel ou une coupe kérosène) et/ou un hydrotraitement dédié à la coupe gazole sous vide. According to a second embodiment, a hydrotreatment dedicated to each cut can be carried out, in particular a hydrotreatment dedicated to the middle distillate cut (including a diesel cut or a kerosene cut) and/or a hydrotreatment dedicated to the vacuum diesel cut.
Selon un mode de cette réalisation, la coupe distillât moyens et/ou la coupe gazole sous vide peut être envoyée dans une section d’hydrotraitement dédiée qui est différente que la section d’hydrotraitement de la coupe naphta de l’étape c). Dans ce cas, les conditions opératoires, notamment la température et la pression peuvent être plus élevées que celles de l’étape d’hydrotraitement de la coupe naphta afin d’éliminer les impuretés à base de soufre et d’azote souvent plus importantes et réfractaires dans cette coupe. According to one embodiment of this embodiment, the middle distillate cut and/or the vacuum gas oil cut may be sent to a dedicated hydrotreatment section which is different from the hydrotreatment section of the naphtha cut of step c). In this case, the operating conditions, in particular the temperature and the pressure, may be higher than those of the hydrotreatment step of the naphtha cut in order to eliminate the sulfur and nitrogen-based impurities which are often more significant and refractory in this cut.
Dans ce cas, au moins une partie de ladite coupe lourde, ou de ladite coupe distillats moyens et/ou de ladite coupe gazole sous vide peut être soumise à une étape d’hydrotraitement dédiée, dans une section réactionnelle d’hydrotraitement, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au moins par ladite coupe lourde, ou ladite coupe distillats moyens et/ou ladite coupe gazole sous vide et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrotraitement étant mise en œuvre à une température moyenne entre 250 et 430°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h-1, pour obtenir un effluent lourd d’hydrotraité. In this case, at least a portion of said heavy cut, or of said middle distillate cut and/or of said vacuum gas oil cut may be subjected to a dedicated hydrotreatment step, in a hydrotreatment reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrotreatment catalyst, said hydrotreatment reaction section being fed at least by said heavy cut, or said middle distillate cut and/or said vacuum gas oil cut and a gas stream comprising hydrogen, said hydrotreatment reaction section being implemented at an average temperature between 250 and 430°C, a hydrogen partial pressure between 1.0 and 10.0 MPa abs. and an hourly volumetric velocity between 0.1 and 10.0 h -1 , to obtain a heavy hydrotreated effluent.
La coupe distillât moyens débarrassée de ses impuretés peut ensuite être introduite, seul ou en mélange avec la coupe naphta débarrassées de ses impuretés dans une unité de vapocraquage ou être envoyée vers une unité de stockage carburant, par exemple une unité de stockage diesel ou une unité de stockage kérosène, issu de charges pétrolières conventionnelles ou encore être recyclée dans une étape du procédé selon l’invention, par exemple dans les étapes b) et/ou c). The middle distillate cut freed from its impurities can then be introduced, alone or in a mixture with the naphtha cut freed from its impurities, into a steam cracking unit or be sent to a fuel storage unit, for example a unit diesel storage or a kerosene storage unit, from conventional petroleum feedstocks or even be recycled in a step of the process according to the invention, for example in steps b) and/or c).
La coupe gazole sous vide débarrassée de ses impuretés peut ensuite être introduite, seul ou en mélange avec la coupe distillât moyens, dans une unité de d’hydrocraquage ou dans une unité de craquage catalytique en lit fluidisé craquage ou encore être recyclée dans une étape du procédé selon l’invention, par exemple dans les étapes b) et/ou c). The vacuum gas oil cut freed from its impurities can then be introduced, alone or mixed with the middle distillate cut, into a hydrocracking unit or into a fluidized bed catalytic cracking unit or even be recycled in a stage of the process according to the invention, for example in stages b) and/or c).
Hydrocraquage Hydrocracking
L’effluent lourd hydrotraité (la coupe lourde hydrotraitée, ou la coupe distillats moyens hydrotraitée et/ou la coupe gazole sous vide hydrotraitée) issu de la coupe lourde lors de l’étape a) de préfractionnement peut ensuite être introduit dans une étape d’hydrocraquage qui permet de convertir la coupe en produits plus légers et plus valorisables (naphta, distillats moyens). Les composés ayant un point d’ébullition supérieur à 175°C contiennent par rapport à des composés plus légers, plus de composés naphténiques, naphténo- aromatiques et aromatiques menant ainsi à un ratio C/H plus élevé. Ce ratio élevé est une cause de cokage dans le vapocraqueur, nécessitant ainsi des fours de vapocraquage dédiés à cette coupe. Lorsqu’on souhaite minimiser le rendement de ces composés lourds (coupe distillât moyens) et maximiser le rendement de composés légers (coupe naphta), on peut transformer ces composés au moins en partie en composés légers par hydrocraquage, coupe généralement favorisée pour une unité de vapocraquage. The hydrotreated heavy effluent (the hydrotreated heavy cut, or the hydrotreated middle distillate cut and/or the hydrotreated vacuum gas oil cut) from the heavy cut during the prefractionation step a) can then be introduced into a hydrocracking step which converts the cut into lighter and more valuable products (naphtha, middle distillates). Compounds with a boiling point above 175°C contain, compared to lighter compounds, more naphthenic, naphtheno-aromatic and aromatic compounds, thus leading to a higher C/H ratio. This high ratio is a cause of coking in the steam cracker, thus requiring steam cracking furnaces dedicated to this cut. When we want to minimize the yield of these heavy compounds (middle distillate cut) and maximize the yield of light compounds (naphtha cut), we can transform these compounds at least in part into light compounds by hydrocracking, a cut generally favored for a steam cracking unit.
On peut également effectuer un co-processing en mélangeant la coupe lourde hydrotraitée ou la coupe distillats moyens hydrotraitée et/ou la coupe gazole sous vide hydrotraitée avec une charge pétrolière et/ou une charge issue de la conversion de la biomasse. Une telle charge est généralement une charge hydrocarbonée dont au moins 50% poids des composés présentent un point d’ébullition initial supérieur à 300°C et un point d’ébullition final inférieur à 650°C. Elle peut être choisie parmi les HCO (Heavy Cycle Oil selon la terminologie anglo-saxonne (gazoles lourds issus d'une unité de craquage catalytique)), les distillats sous vide, par exemple gasoils issus de la distillation directe du brut ou d'unités de conversion telles que le craquage catalytique, le coker ou la viscoréduction, les charges provenant d'unités d'extraction d'aromatiques, des bases d’huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, les distillats provenant de procédés de désulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de résidus atmosphériques et/ou de résidus sous vide et/ou d'huiles désasphaltées, ou encore la charge peut être une huile désasphaltée ou comprendre des huiles végétales ou bien encore provenir de la conversion de charges issues de la biomasse. Elle peut aussi être des paraffines issues du procédé Fischer-Tropsch. Ladite charge peut encore être un mélange desdites charges précédemment citées. De préférence, lorsqu’on souhaite effectuer une coprocessing, la co-charge est un distillât sous vide. Co-processing can also be carried out by mixing the hydrotreated heavy cut or the hydrotreated middle distillate cut and/or the hydrotreated vacuum gas oil cut with a petroleum feedstock and/or a feedstock from biomass conversion. Such a feedstock is generally a hydrocarbon feedstock of which at least 50% by weight of the compounds have an initial boiling point above 300°C and a final boiling point below 650°C. It can be chosen from HCO (Heavy Cycle Oil according to the English terminology (heavy gas oils from a catalytic cracking unit)), vacuum distillates, for example gas oils from the direct distillation of crude or from conversion units such as catalytic cracking, coker or visbreaking, feedstocks from aromatic extraction units, lubricating oil bases or from solvent dewaxing of lubricating oil bases, distillates from fixed bed or ebullated bed desulfurization or hydroconversion processes of atmospheric residues and/or vacuum residues and/or deasphalted oils, or the feedstock can be a deasphalted oil or include vegetable oils or even come from the conversion of feedstocks from biomass. It can also be paraffins from the Fischer-Tropsch process. Said feedstock may also be a mixture of said feedstocks mentioned above. Preferably, when coprocessing is desired, the co-feedstock is a vacuum distillate.
L’hydrocraquage est mis en œuvre dans une section réactionnelle d’hydrocraquage, mettant en œuvre au moins un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, comprenant chacun au moins un catalyseur d’hydrocraquage, ladite section réactionnelle d’hydrocraquage étant alimentée par ledit effluent lourd hydrotraité (la coupe lourde hydrotraitée, ou la coupe distillats moyens hydrotraitée et/ou la coupe gazole sous vide hydrotraitée), et un flux gazeux comprenant de l’hydrogène, ladite section réactionnelle d’hydrocraquage étant mise en œuvre à une température moyenne entre 250 et 480°C, une pression partielle d’hydrogène entre 1 ,5 et 20,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h'1, pour obtenir un effluent hydrocraqué. The hydrocracking is carried out in a hydrocracking reaction section, implementing at least one fixed-bed reactor having n catalytic beds, n being an integer greater than or equal to 1, each comprising at least one hydrocracking catalyst, said hydrocracking reaction section being fed with said hydrotreated heavy effluent (the hydrotreated heavy cut, or the hydrotreated middle distillate cut and/or the hydrotreated vacuum gas oil cut), and a gas stream comprising hydrogen, said hydrocracking reaction section being carried out at an average temperature between 250 and 480°C, a hydrogen partial pressure between 1.5 and 20.0 MPa abs. and an hourly volumetric flow rate between 0.1 and 10.0 h' 1 , to obtain a hydrocracked effluent.
Ainsi, ladite section réactionnelle d’hydrocraquage est avantageusement mise en œuvre à une température moyenne entre 250 et 480°C, de préférence entre 320 et 450°C, à une pression partielle d’hydrogène entre 1 ,5 et 20,0 MPa abs., de préférence entre 2 et 18,0 MPa abs, et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h'1, de préférence entre 0,1 et 5,0 h'1, préférentiellement entre 0,2 et 4 h'1. La couverture en hydrogène dans l’étape d’hydrocraquage est avantageusement comprise entre 80 et 2000 Nm3 d’hydrogène par m3 de charge qui alimente l’étape d’hydrocraquage, et de préférence entre 200 et 1800 Nm3 d’hydrogène par m3 de charge qui alimente l’étape d’hydrocraquage. Les définitions de la température moyenne (WABT), de la WH et de la couverture en hydrogène correspondent à celles décrites ci-dessus. Thus, said hydrocracking reaction section is advantageously carried out at an average temperature between 250 and 480°C, preferably between 320 and 450°C, at a hydrogen partial pressure between 1.5 and 20.0 MPa abs., preferably between 2 and 18.0 MPa abs., and at an hourly volumetric flow rate (WH) between 0.1 and 10.0 h' 1 , preferably between 0.1 and 5.0 h' 1 , preferentially between 0.2 and 4 h' 1 . The hydrogen coverage in the hydrocracking step is advantageously between 80 and 2000 Nm 3 of hydrogen per m 3 of feedstock feeding the hydrocracking step, and preferably between 200 and 1800 Nm 3 of hydrogen per m 3 of feedstock feeding the hydrocracking step. The definitions of the average temperature (WABT), the WH and the hydrogen coverage correspond to those described above.
L’étape d’hydrotraitement et l’étape d’hydrocraquage peuvent avantageusement être réalisées dans un même réacteur ou dans des réacteurs différents. Dans le cas où elles sont réalisées dans un même réacteur, le réacteur comprend plusieurs lits catalytiques, les premiers lits catalytiques comprenant le ou les catalyseurs d’hydrotraitement et les lits catalytiques suivants comprenant le ou les catalyseurs d’hydrocraquage. The hydrotreatment step and the hydrocracking step can advantageously be carried out in the same reactor or in different reactors. In the case where they are carried out in the same reactor, the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrotreatment catalyst(s) and the following catalytic beds comprising the hydrocracking catalyst(s).
L’étape d’hydrocraquage peut être effectuée en une ou deux étapes. Lorsqu’elle est effectuée en deux étapes, on effectue une séparation de l’effluent issue de la première étape d’hydrocraquage permettant d’obtenir une coupe lourde (coupe distillât moyens et/ou coupe gazole sous vide non réagit), laquelle est introduite dans la deuxième étape d’hydrocraquage comprenant une deuxième section réactionnelle d’hydrocraquage dédiée, différente à la première section réactionnelle d’hydrocraquage. Cette configuration est particulièrement adaptée lorsqu’on souhaite produire uniquement une coupe naphta. Les conditions opératoires préférées et catalyseurs utilisés dans la deuxième étape d’hydrocraquage sont celles décrites pour la première étape d’hydrocraquage. Les conditions opératoires et catalyseurs utilisés dans les deux étapes d’hydrocraquage peuvent être identiques ou différentes. The hydrocracking step can be carried out in one or two stages. When it is carried out in two stages, a separation of the effluent from the first hydrocracking stage is carried out to obtain a heavy cut (middle distillate cut and/or unreacted vacuum gas oil cut), which is introduced into the second hydrocracking stage comprising a second dedicated hydrocracking reaction section, different from the first hydrocracking reaction section. This configuration is particularly suitable when it is desired to produce only a naphtha cut. The preferred operating conditions and catalysts used in the second hydrocracking stage are those described for the first hydrocracking stage. The operating conditions and catalysts used in the two hydrocracking stages may be identical or different.
Le ou les catalyseur(s) d’hydrocraquage utilisé(s) dans la ou les étape(s) d’hydrocraquage sont des catalyseurs classiques d’hydrocraquage connus de l'Homme du métier, de type bifonctionnel associant une fonction acide à une fonction hydro-déshydrogénante et éventuellement au moins une matrice liante. La fonction acide est apportée par des supports de grande surface (150 à 800 m2/g généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d’oxydes de bore et d’aluminium, les silice-alumines amorphes et les zéolithes. La fonction hydro- déshydrogénante est apportée par au moins un métal du groupe VI B de la classification périodique et/ou au moins un métal du groupe VIII. Des fonctions hydro-déshydrogénantes de type NiMo, NiMoW, NiW sont préférées. The hydrocracking catalyst(s) used in the hydrocracking step(s) are conventional hydrocracking catalysts known to those skilled in the art, of the bifunctional type combining an acid function with a hydro-dehydrogenating function and optionally at least one binding matrix. The acid function is provided by supports with a large surface area (generally 150 to 800 m 2 /g) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron and aluminum oxides, amorphous silica-aluminas and zeolites. The hydro-dehydrogenating function is provided by at least one metal from group VI B of the periodic table and/or at least one metal from group VIII. Hydro-dehydrogenating functions of the NiMo, NiMoW, NiW type are preferred.
Les teneurs en métaux sont généralement telles que décrites pour les catalyseurs d’hydrotraitement. Metal contents are generally as described for hydrotreating catalysts.
Les catalyseurs d’hydrocraquage peuvent également contenir du phosphore et/ou un composé organique contenant de l'oxygène et/ou de l'azote et/ou du soufre dans des teneurs telles que décrites pour les catalyseurs d’hydrotraitement. Hydrocracking catalysts may also contain phosphorus and/or an organic compound containing oxygen and/or nitrogen and/or sulfur in levels as described for hydrotreating catalysts.
L’effluent hydrocraqué est ensuite généralement soumis à une étape de fractionnement permettant de récupérer des coupes plus légères, par exemple une coupe naphta et au moins une coupe distillât moyens, et une coupe non convertie qui peut être recyclée dans l’étape d’hydrocraquage. La coupe naphta et/ou au moins une coupe distillât moyens peuvent ensuite être envoyés dans une unité de vapocraquage ou être envoyée vers une unité de stockage carburant ou encore être recyclée dans une étape du procédé selon l’invention, par exemple dans les étapes b) et/ou c). The hydrocracked effluent is then generally subjected to a fractionation step to recover lighter cuts, for example a naphtha cut and at least one middle distillate cut, and an unconverted cut which can be recycled in the hydrocracking step. The naphtha cut and/or at least one middle distillate cut can then be sent to a steam cracking unit or be sent to a fuel storage unit or even be recycled in a step of the process according to the invention, for example in steps b) and/or c).
FCC FCC
La coupe lourde, ou la coupe distillats moyens et/ou la coupe gazole sous vide, issues de la coupe lourde lors de l’étape a) de préfractionnement, hydrotraitée ou non, peut également être soumise à une étape de craquage catalytique en lit fluidisé (FCC pour Fluid Catalytic Cracking selon la terminologie anglo-saxonne) pour produire des produits tels qu’une essence à indice d'octane élevé, un fioul léger, un fioul lourd, un gaz léger riche en oléfines (propylène, butylène) et du coke. The heavy cut, or the middle distillate cut and/or the vacuum diesel cut, from the heavy cut during prefractionation step a), hydrotreated or not, can also be subjected to a fluidized bed catalytic cracking step (FCC for Fluid Catalytic Cracking according to the English terminology) to produce products such as high octane gasoline, light fuel oil, heavy fuel oil, light olefin-rich gas (propylene, butylene) and coke.
On peut également effectuer un co-processing en mélangeant la coupe lourde, ou la coupe distillats moyens et/ou la coupe gazole sous vide, hydrotraitée ou non, avec une charge pétrolière et/ou une charge issue de la conversion de la biomasse. Une telle charge est un gazole atmosphérique, un gazole sous vide et un résidu atmosphérique, une charge lignocellulosique ou plus généralement d’une charge issue de la biomasse, prises seules ou en mélange. Co-processing can also be carried out by mixing the heavy cut, or the middle distillate cut and/or the vacuum diesel cut, hydrotreated or not, with a petroleum feedstock and/or a feedstock from biomass conversion. Such a feedstock is a atmospheric diesel, vacuum diesel and atmospheric residue, a lignocellulosic feedstock or more generally a feedstock from biomass, taken alone or in a mixture.
L’unité de FCC utilise un catalyseur de zéolite à haute activité pour craquer les molécules d'hydrocarbures lourds. Une unité FCC conventionnelle est utilisée. On trouvera par exemple une description sommaire du craquage catalytique (dont la première mise en œuvre industrielle remonte à 1936 (procédé HOUDRY) ou en 1942 pour l'utilisation de catalyseur en lit fluidisé) dans ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY VOLUME A 18, 1991, pages 61 à 64. Le choix du catalyseur et des conditions opératoires sont fonctions des produits recherchés en fonction de la charge traitée comme cela est par exemple décrit dans l'article de M. MARCILLY pages 990-991 publie dans la revue de l'institut français du pétrole nov.-dec. 1975 pages 969-1006. The FCC unit uses a high activity zeolite catalyst to crack heavy hydrocarbon molecules. A conventional FCC unit is used. For example, a brief description of catalytic cracking (first industrially implemented in 1936 (HOUDRY process) or in 1942 for the use of fluidized bed catalyst) can be found in ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY VOLUME A 18, 1991, pages 61 to 64. The choice of catalyst and operating conditions depend on the desired products depending on the feedstock being treated, as described, for example, in the article by M. MARCILLY pages 990-991 published in the journal of the French Petroleum Institute Nov.-Dec. 1975 pages 969-1006.
Le craquage catalytique en lit fluidisé est généralement mise en œuvre dans une section réactionnelle de craquage catalytique en lit fluidisé dans un réacteur sensiblement vertical soit en mode ascendant (riser selon la terminologie anglo-saxonne) soit en mode descendant (downer selon la terminologie anglo-saxonne) en présence de la coupe lourde ou de la coupe distil lats moyens et/ou de la coupe gazole sous vide et d’un catalyseur de zéolite à une température de réacteur comprise entre 450°C et 600°C avec un temps de contact dans le réacteur inférieur à 1 minute, souvent de 0,1 à 50 secondes. Fluidized bed catalytic cracking is generally carried out in a fluidized bed catalytic cracking reaction section in a substantially vertical reactor either in riser mode or in downer mode in the presence of the heavy cut or the middle distillates cut and/or the vacuum gas oil cut and a zeolite catalyst at a reactor temperature between 450°C and 600°C with a contact time in the reactor of less than 1 minute, often from 0.1 to 50 seconds.
On utilise habituellement un catalyseur de zéolite classique comprenant une matrice, éventuellement un additif et au moins une zéolithe dans le procédé FCC. La quantité de zéolithe est variable mais habituellement de 3 à 60 % en poids, souvent de 6 à 50 % en poids et le plus souvent de 10 à 45 % en poids par rapport au poids du catalyseur. La zéolithe est habituellement dispersée dans la matrice. La quantité d'additif est habituellement de 0 à 30 % en poids et souvent de 0 à 20 % en poids par rapport au poids du catalyseur. La quantité de matrice représente le complément à 100 % en poids. L'additif est généralement choisi dans le groupe forme par les oxydes des métaux du groupe HA de la classification périodique des éléments tels que par exemple l'oxyde de magnésium ou l'oxyde de calcium, les oxydes des terres rares et les titanates des métaux du groupe HA. La matrice est le plus souvent une silice, une alumine, une silice-alumine, une silice-magnésie, une argile ou un mélange de deux ou plusieurs de ces produits. La zéolithe la plus couramment utilisée est la zéolithe Y. A conventional zeolite catalyst comprising a matrix, optionally an additive and at least one zeolite is usually used in the FCC process. The amount of zeolite is variable but usually 3 to 60% by weight, often 6 to 50% by weight and most often 10 to 45% by weight relative to the weight of the catalyst. The zeolite is usually dispersed in the matrix. The amount of additive is usually 0 to 30% by weight and often 0 to 20% by weight relative to the weight of the catalyst. The amount of matrix represents the balance to 100% by weight. The additive is generally selected from the group formed by the oxides of the metals of group HA of the periodic table of elements such as for example magnesium oxide or calcium oxide, the oxides of the rare earths and the titanates of the metals of group HA. The matrix is most often silica, alumina, silica-alumina, silica-magnesia, clay, or a mixture of two or more of these. The most commonly used zeolite is zeolite Y.
Etape (optionnelle) d’adsorption de métaux lourds (Optional) heavy metal adsorption step
Tout effluent gazeux et/ou tout effluent liquide issu(s) de l’étape de séparation d) peut être soumis à une étape optionnelle d’adsorption de métaux lourds. L’étape optionnelle d’adsorption permet d’éliminer ou de diminuer la quantité d’impuretés métalliques, en particulier la quantité de métaux lourds tels que l'arsenic, le zinc, le plomb, et notamment le mercure, éventuellement présents dans lesdits effluents gazeux et liquides. Les impuretés métalliques, et en particulier les métaux lourds, sont présentes dans la charge. Certaines impuretés, notamment à base de mercure, peuvent être transformées dans une des étapes du procédé selon l’invention. Leur forme transformée est plus facile à piéger. Leur élimination ou diminution peut notamment être nécessaire lorsqu’une partie au moins desdits effluents gazeux et liquides est destinée à être envoyée, soit directement, soit après avoir subie une ou des étapes supplémentaires optionnelles de séparation, dans une étape ayant des spécifications en impuretés métalliques sévères, telle qu’une étape de vapocraquage. Any gaseous effluent and/or any liquid effluent from separation step d) may be subjected to an optional heavy metal adsorption step. The optional adsorption step makes it possible to eliminate or reduce the quantity of metallic impurities, in particular the quantity of heavy metals such as arsenic, zinc, lead, and in particular mercury, possibly present in said gaseous and liquid effluents. The metallic impurities, and in particular the heavy metals, are present in the feedstock. Certain impurities, in particular mercury-based, can be transformed in one of the steps of the process according to the invention. Their transformed form is easier to trap. Their elimination or reduction may in particular be necessary when at least part of said gaseous and liquid effluents is intended to be sent, either directly or after having undergone one or more optional additional separation steps, to a step having strict specifications for metallic impurities, such as a steam cracking step.
Ainsi, une étape optionnelle d’adsorption d’un effluent gazeux et/ou d’un effluent hydrocarboné issu du procédé selon l’invention est avantageusement réalisée en particulier lorsque au moins un de ces effluents ou la charge comprennent respectivement plus de 20 ppb poids, notamment plus de 15 ppb poids d’éléments métalliques de métaux lourds (As, Zn, Pb, Hg, ...), et en particulier lorsque au moins un de ces effluents ou la charge comprennent respectivement plus de 10 ppb poids de mercure, plus particulièrement plus de 15 ppb poids de mercure. Thus, an optional step of adsorption of a gaseous effluent and/or a hydrocarbon effluent from the process according to the invention is advantageously carried out in particular when at least one of these effluents or the feed respectively comprises more than 20 ppb by weight, in particular more than 15 ppb by weight of heavy metal metallic elements (As, Zn, Pb, Hg, etc.), and in particular when at least one of these effluents or the feed respectively comprises more than 10 ppb by weight of mercury, more particularly more than 15 ppb by weight of mercury.
Ladite étape optionnelle d’adsorption est avantageusement mise en œuvre à une température entre 20 et 250°C, de préférence entre 40 et 200°C, et à une pression entre 0,15 et 10,0 MPa abs, de préférence entre 0,2 et 1 ,0 MPa abs. Said optional adsorption step is advantageously carried out at a temperature between 20 and 250°C, preferably between 40 and 200°C, and at a pressure between 0.15 and 10.0 MPa abs, preferably between 0.2 and 1.0 MPa abs.
Ladite étape optionnelle d’adsorption peut être mise en œuvre par n’importe quel adsorbant connu par l’homme du métier permettant de diminuer la quantité de tels contaminants. Said optional adsorption step can be implemented by any adsorbent known to those skilled in the art making it possible to reduce the quantity of such contaminants.
Selon une variante, ladite étape optionnelle d’adsorption est mise en œuvre dans une section d’adsorption opérée en présence d’au moins un adsorbant comprenant un support poreux, et éventuellement au moins une phase active qui peut être à base de soufre sous la forme élémentaire, ou sous la forme de sulfure métallique ou d’oxyde métallique, ou encore sous forme métallique sous forme élémentaire. According to a variant, said optional adsorption step is implemented in an adsorption section operated in the presence of at least one adsorbent comprising a porous support, and optionally at least one active phase which may be based on sulfur in elemental form, or in the form of metal sulfide or metal oxide, or even in metallic form in elemental form.
Le support poreux peut être indifféremment choisi parmi les familles des alumines, des silices-alumines, des silices, des zéolithes et/ou des charbons actifs. Avantageusement, le support poreux est à base d'alumine. The porous support can be chosen from the families of aluminas, silica-aluminas, silicas, zeolites and/or activated carbons. Advantageously, the porous support is based on alumina.
Ladite section d’adsorption peut comprendre une ou plusieurs colonnes d’adsorption, Lorsque la section d’adsorption comprend deux colonnes d’adsorption, un mode de fonctionnement peut être un fonctionnement appelé « en swing », selon le terme anglo- saxon consacré, dans lequel l’une des colonnes est en ligne, c’est-à-dire en fonctionnement, tandis que l’autre colonne est en réserve. Un autre mode de fonctionnement est d’avoir au moins deux colonnes fonctionnant en série en mode permutable. De préférence, ladite section d’adsorption comprend une colonne d’adsorption pour le ou les effluents gazeux et une colonne d’adsorption pour le ou les effluents liquides. Said adsorption section may comprise one or more adsorption columns. When the adsorption section comprises two adsorption columns, a mode of operation may be a so-called "swing" operation, according to the established Anglo-Saxon term, in which one of the columns is online, i.e. in operation, while the other column is in reserve. Another mode of operation is to have at least two columns operating in series in permutable mode. Preferably, said adsorption section comprises an adsorption column for the gaseous effluent(s) and an adsorption column for the liquid effluent(s).
Méthodes d’analyse utilisées Analysis methods used
Les méthodes d’analyses et/ou normes utilisées pour déterminer les caractéristiques des différents flux en particulier de la charge à traiter et des effluents, sont connues de l’Homme du métier. Elles sont en particulier listées ci-dessous à titre de renseignements dans le tableau 1. D’autres méthodes réputées équivalentes peuvent aussi être utilisées, notamment des méthodes équivalentes IP, EN ou ISO : The analysis methods and/or standards used to determine the characteristics of the various flows, in particular the load to be treated and the effluents, are known to those skilled in the art. They are in particular listed below for information purposes in Table 1. Other methods deemed equivalent may also be used, in particular equivalent IP, EN or ISO methods:
Tableau 1 (1) Méthode MAV décrite dans l’article : C. Lôpez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1, pp. 57-68 Table 1 (1) MAV method described in the article: C. Lôpez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1, pp. 57-68
LISTE DES FIGURES LIST OF FIGURES
La mention des éléments référencés dans la Figure 1 permet une meilleure compréhension de l’invention, sans que celle-ci ne se limite aux modes de réalisation particuliers illustrés dans la Figure 1. Les différents modes de réalisation présentés peuvent être utilisés seul ou en combinaison les uns avec les autres, sans limitation de combinaison. The mention of the elements referenced in Figure 1 allows a better understanding of the invention, without it being limited to the particular embodiments illustrated in Figure 1. The different embodiments presented can be used alone or in combination with each other, without limitation of combination.
La Figure 1 représente le schéma d’un mode de réalisation particulier du procédé de la présente invention, comprenant : Figure 1 represents the diagram of a particular embodiment of the method of the present invention, comprising:
- une étape a) de préfractionnement d’une charge comprenant une huile de pyrolyse de plastique et/ou des pneus et/ou des combustibles solides de récupération 1 pour obtenir une coupe naphta 2, une coupe distillât moyens 3 et une coupe gazole sous vide (VGO) 4. - a step a) of prefractionation of a feedstock comprising a plastic pyrolysis oil and/or tires and/or recovered solid fuels 1 to obtain a naphtha cut 2, a middle distillate cut 3 and a vacuum diesel oil (VGO) cut 4.
- une étape b) d’hydrogénation mise en œuvre dans une section réactionnelle alimentée par ladite coupe naphta 2 et un flux gazeux comprenant de l’hydrogène 5, en présence d’au moins un catalyseur d’hydrogénation, et éventuellement d’une amine apporté par le flux 6 et éventuellement d’un composé soufré par le flux 7, pour obtenir un effluent hydrogéné 8 ;- a hydrogenation step b) carried out in a reaction section supplied by said naphtha cut 2 and a gas stream comprising hydrogen 5, in the presence of at least one hydrogenation catalyst, and optionally an amine supplied by stream 6 and optionally a sulfur compound by stream 7, to obtain a hydrogenated effluent 8;
- une étape c) d’hydrotraitement de l’effluent hydrogéné 8 issu de l’étape b), en présence d’hydrogène 9 réalisée dans au moins un réacteur en lit fixe comportant au moins un catalyseur d’hydrotraitement, pour obtenir un effluent hydrotraité 10 ; - a step c) of hydrotreatment of the hydrogenated effluent 8 from step b), in the presence of hydrogen 9 carried out in at least one fixed-bed reactor comprising at least one hydrotreatment catalyst, to obtain a hydrotreated effluent 10;
- une étape d) de séparation, alimentée par l’effluent hydrotraité 10 issu de l’étape c) et une solution aqueuse 11 , ladite étape étant opérée à une température entre 20 et 300°C, pour obtenir au moins un effluent gazeux 12, un effluent aqueux 13 et une coupe naphta débarrassée de ces impuretés 14 dont une partie 15 est recyclée dans l’étape b). - a separation step d), supplied with the hydrotreated effluent 10 from step c) and an aqueous solution 11, said step being carried out at a temperature between 20 and 300°C, to obtain at least one gaseous effluent 12, one aqueous effluent 13 and a naphtha cut freed from these impurities 14, a part 15 of which is recycled in step b).
A l’issue de l’étape d), une autre partie de la coupe naphta débarrassée de ces impuretés 14 peut être envoyée vers un procédé de vapocraquage (non représentée). Une autre partie de la coupe naphta débarrassée de ces impuretés 14 peut également alimenter l’étape c) d’hydrotraitement (non représentée). At the end of step d), another part of the naphtha cut freed from these impurities 14 can be sent to a steam cracking process (not shown). Another part of the naphtha cut freed from these impurities 14 can also feed the hydrotreatment step c) (not shown).
La coupe distillât moyens 3 peut être envoyée dans une étape d’hydrotraitement dédié, subir un stripage pour enlever notamment l’hydrogène et I’ H2S, puis être envoyée vers une unité de stockage carburant, par exemple une unité de stockage diesel ou une unité de stockage kérosène, issu de charges pétrolières conventionnelles (non représentée). La coupe gazole sous vide (VGO) 4, et éventuellement la coupe distillât moyens peu(ven)t être introduite(s) dans une étape d’hydrotraitement dédié, puis dans une étape d’hydrocraquage, subir une étape de séparation pour enlever notamment l’hydrogène et l’H2S et une coupe lourde qui n’a pas été hydrocraquée, puis être envoyée vers une unité de stockage carburant, par exemple une unité de stockage diesel ou une unité de stockage kérosène, issu de charges pétrolières conventionnelles (non représentée). The middle distillate cut 3 can be sent to a dedicated hydrotreatment stage, undergo stripping to remove in particular hydrogen and H2S, then be sent to a fuel storage unit, for example a diesel storage unit or a kerosene storage unit, from conventional petroleum feedstocks (not shown). The vacuum gas oil (VGO) 4 cut, and possibly the middle distillate cut, can be introduced into a dedicated hydrotreatment stage, then into a hydrocracking stage, undergo a separation stage to remove in particular the hydrogen and the H2S and a heavy cut which has not been hydrocracked, then be sent to a fuel storage unit, for example a diesel storage unit or a kerosene storage unit, from conventional petroleum feedstocks (not shown).
Seules les principales étapes, avec les flux principaux, sont représentées sur la Figure 1 , afin de permettre une meilleure compréhension de l’invention. Il est bien entendu que tous les équipements nécessaires au fonctionnement sont présents (ballons, pompes, échangeurs, fours, colonnes, etc.), même si non représentés. Il est également entendu que des flux de gaz riche en hydrogène (appoint ou recycle), comme décrit ci-dessus, peuvent être injectés en entrée de chaque réacteur ou lit catalytique ou entre deux réacteurs ou deux lits catalytiques. Des moyens bien connus de l’homme du métier de purification et de recyclage d’hydrogène peuvent être également mis en œuvre. Only the main steps, with the main flows, are shown in Figure 1, in order to allow a better understanding of the invention. It is understood that all the equipment necessary for operation is present (balloons, pumps, exchangers, furnaces, columns, etc.), even if not shown. It is also understood that hydrogen-rich gas flows (make-up or recycle), as described above, can be injected at the inlet of each reactor or catalytic bed or between two reactors or two catalytic beds. Means well known to those skilled in the art for purifying and recycling hydrogen can also be implemented.
EXEMPLE EXAMPLE
La charge 1 traitée dans le procédé est une huile de pyrolyse de plastiques (c’est-à-dire comprenant 100% poids de ladite huile de pyrolyse de plastiques). Feedstock 1 treated in the process is a plastic pyrolysis oil (i.e. comprising 100% by weight of said plastic pyrolysis oil).
La charge 1 est soumise à une étape a) de préfractionnement pour obtenir une coupe 2 naphta ayant un point d’ébullition entre 36 et 180°C et une coupe lourde (distillats 180°C+) ayant un point d’ébullition supérieur à 180°C. Les caractéristiques de la charge et des coupes sont indiquées dans le tableau 2. Charge 1 is subjected to a prefractionation step a) to obtain a naphtha cut 2 having a boiling point between 36 and 180°C and a heavy cut (distillates 180°C+) having a boiling point above 180°C. The characteristics of the charge and the cuts are indicated in Table 2.
Grâce au fractionnement, certaines impuretés particulièrement néfastes pour l’unité de vapocraquage se retrouvent d’avantage concentrées dans la fraction légère naphta. Cela concerne les composés chlorés, silicés, les monooléfines et les dioléfines. Thanks to fractionation, certain impurities that are particularly harmful to the steam cracking unit are found to be more concentrated in the light naphtha fraction. This concerns chlorinated and silica compounds, monoolefins and diolefins.
A l’inverse, ces mêmes composés se trouvent déconcentrés de la fraction plus lourde 180°C+, ce qui favorise leur traitement dans des unités aval directement en co-processing. En particulier, la teneur en chlorés/silicés obtenue au sein de la coupe lourde (Cl = 30 ppm poids, Si = 15 ppm pds) après préfractionnement rend possible l’incorporation de cette fraction directement dans la charge de l’unité FCC. Tableau 2 : caractéristiques de la charge et des coupes après préfractionnement Conversely, these same compounds are deconcentrated from the heavier 180°C+ fraction, which favors their treatment in downstream units directly in co-processing. In particular, the chlorinated/silicon content obtained within the heavy cut (Cl = 30 ppm weight, Si = 15 ppm weight) after prefractionation makes it possible to incorporate this fraction directly into the FCC unit feed. Table 2: Characteristics of the load and cuts after prefractionation
La coupe naphta 2 est soumise à une étape b) d’hydrogénation réalisée dans un réacteur en lit fixe et en présence d’hydrogène 5 ainsi que d’un recycle d’une fraction de la coupe naphta hydrotraitée 15 issue de l’étape d) de séparation et d’un catalyseur d’hydrogénation de typeThe naphtha cut 2 is subjected to a hydrogenation step b) carried out in a fixed bed reactor and in the presence of hydrogen 5 as well as a recycle of a fraction of the hydrotreated naphtha cut 15 from the separation step d) and a hydrogenation catalyst of the type
NiMo sur alumine dans les conditions indiquées dans le tableau 3. NiMo on alumina under the conditions indicated in Table 3.
Tableau 3 : conditions de l’étape b) d’hydrogénation Table 3: Conditions for hydrogenation step b)
(2) Ici défini par rapport au volume de charge totale liquide dans les conditions standard, soit charge fraiche + recycle liquide (2) Here defined in relation to the volume of total liquid charge under standard conditions, i.e. fresh charge + liquid recycle
(3) Défini comme le ratio pondéral suivant débit massique naphta hydrotraitée issu de l’étape d)/débit massique charge fraiche naphta) (3) Defined as the following weight ratio: hydrotreated naphtha mass flow rate from step d)/fresh naphtha feed mass flow rate)
A l’issue de l’étape b) d’hydrogénation, la totalité des dioléfines et monooléfines initialement présentes dans la charge a été convertie. Compte tenu de la forte exothermicité des réactions en jeu, la concentration des monooléfines/dioléfines au sein de la charge naphta pose un enjeu en terme de contrôle du profil thermique. At the end of hydrogenation step b), all the diolefins and monoolefins initially present in the feedstock have been converted. Given the high exothermicity of the reactions involved, the concentration of monoolefins/diolefins within the naphtha feedstock poses a challenge in terms of controlling the thermal profile.
Dans le procédé selon l’invention et selon le tableau 3, la mise en œuvre d’un fort recyclage liquide à l’entrée du premier lit permet maitrise des exothermes réactionnels. In the process according to the invention and according to table 3, the implementation of strong liquid recycling at the inlet of the first bed allows control of reaction exotherms.
L’effluent hydrogéné issu de l’étape b) d’hydrogénation est soumis directement, sans séparation, à une étape c) d’hydrotraitement réalisée en lit fixe et en présence d’hydrogène 9, et d’un catalyseur d’hydrotraitement de type NiMo sur alumine dans les conditions présentées dans le tableau 4. Une fraction du gaz riche en hydrogène 12 issu de l’étape d) de séparation est mélangée avec l’effluent hydrogéné issu de l’étape b) afin de satisfaire les critères de température moyenne et de ratio H2/HC de l’étape c) d’hydrotraitement. Tableau 4 : conditions de l’étape c) d’hydrotraitement The hydrogenated effluent from hydrogenation step b) is subjected directly, without separation, to a hydrotreatment step c) carried out in a fixed bed and in the presence of hydrogen 9, and a NiMo-on-alumina hydrotreatment catalyst under the conditions presented in Table 4. A fraction of the hydrogen-rich gas 12 from separation step d) is mixed with the hydrogenated effluent from step b) in order to satisfy the average temperature and H2/HC ratio criteria of hydrotreatment step c). Table 4: Conditions of hydrotreatment step c)
(4) Ici défini par rapport au volume de charge totale liquide dans les conditions standard, soit charge fraiche + recycle/quench liquide si applicable (4) Here defined in relation to the total liquid charge volume under standard conditions, i.e. fresh charge + liquid recycle/quench if applicable
A l’issue de l’étape c) d’hydrotraitement, les composés soufrés, azotés ainsi que les aromatiques sont convertis de manière suffisante à satisfaire les spécifications d’entrée du vapocraqueur (tableau 6). D’un point de vue exotherme réactionnel, il faut noter que : At the end of hydrotreatment step c), the sulfur and nitrogen compounds as well as the aromatics are converted sufficiently to meet the steam cracker input specifications (Table 6). From an exothermic reaction point of view, it should be noted that:
D’une part, le phénomène de reconcentration observé pour les oléfines/dioléfines au sein de la coupe naphta n’est pas valable pour les composés soufrés, azotés et aromatiques On the one hand, the reconcentration phenomenon observed for olefins/diolefins within the naphtha cut is not valid for sulfur, nitrogen and aromatic compounds
L’exotherme des réactions d’hydrodéazotation, d’hydrodésulfuration et d’hydrogénation des aromatiques est moins élevé que pour l’hydrogénation des oléfines. The exotherm of the hydrodenitrogenation, hydrodesulfurization and hydrogenation reactions of aromatics is lower than for the hydrogenation of olefins.
Ainsi, selon le tableau 4, la différence de température entre l’entrée et la sortie du réacteur d’hydrotraitement ne pose pas d’enjeu (AT < 5°C) dans le procédé selon l’invention. Thus, according to Table 4, the temperature difference between the inlet and outlet of the hydrotreatment reactor does not pose a problem (AT < 5°C) in the process according to the invention.
L’effluent hydrotraité 10 issu de l’étape c) d’hydrotraitement est soumis à une étape d) de séparation dans laquelle un flux d’eau est injecté dans l’effluent issu de l’étape c) d’hydrotraitement ; le mélange ayant atteint une température de 45°C, il est ensuite séparé dans un ballon séparateur de manière à obtenir un effluent gazeux riche en hydrogène envoyé dans une colonne de lavage des gaz acides et un effluent liquide qui est ensuite traité dans un ballon séparateur diphasique de manière à obtenir un effluent aqueux et une coupe naphta lavée. La coupe naphta lavée est ensuite en partie recyclée vers l’étape b) d’hydrogénation en vue de contrôler les exothermes réactionnels et en partie dirigée dans une colonne de stripage de manière à obtenir une coupe naphta débarrassée de ses impuretés. Les rendements et qualités obtenues après séparation sont indiqués dans le tableau 5 (les rendements correspondant aux rapports des quantités massiques des différents produits obtenus par rapport à la masse de charge en amont de l’étape b), exprimés en pourcentage et notés % m/m). The hydrotreated effluent 10 from hydrotreatment step c) is subjected to a separation step d) in which a stream of water is injected into the effluent from hydrotreatment step c); the mixture having reached a temperature of 45°C, it is then separated in a separator drum so as to obtain a hydrogen-rich gaseous effluent sent to an acid gas scrubbing column and a liquid effluent which is then treated in a two-phase separator drum so as to obtain an aqueous effluent and a washed naphtha cut. The washed naphtha cut is then partly recycled to hydrogenation step b) in order to control the reaction exotherms and partly directed into a stripping column so as to obtain a naphtha cut freed from its impurities. The yields and qualities obtained after separation are indicated in Table 5 (the yields corresponding to the ratios of the mass quantities of the different products obtained in relation to the mass of charge upstream of step b), expressed as a percentage and noted % m/m).
Tableau 5 : rendements des différents produits obtenus après séparation et fractionnement Les caractéristiques de la coupe liquide naphta PI+ obtenue après l’étape d) de séparation sont présentés tableau 6 : Table 5: Yields of the different products obtained after separation and fractionation The characteristics of the liquid naphtha PI+ cut obtained after separation step d) are presented in table 6:
Tableau 6 : caractéristiques de la coupe liquide naphta PI+ Table 6: characteristics of the liquid naphtha PI+ cut
La coupe naphta PI+ présente une composition compatible avec une unité de vapocraquage puisque : The PI+ naphtha cut has a composition compatible with a steam cracking unit since:
- elle ne contient pas de dioléfines et peu de monooléfines ; - it does not contain diolefins and few monoolefins;
- elle présente une teneur en élément chlore très faibles (teneur non détectée) et inférieures à la limite requise pour une charge de vapocraqueur (< 50 ppb poids) ; - it has a very low chlorine element content (content not detected) and lower than the limit required for a steam cracker load (< 50 ppb weight);
- elle présente des teneurs en métaux, en particulier en fer (Fe) et en silicium, très faibles (teneur en métaux non détectée; teneurs en Fe non détectée ; teneur en Si < 0.2 ppm pds) et inférieures aux limites requises pour une charge de vapocraqueur (< 5,0 ppm poids, de manière très préférée < 1 ppm poids pour les métaux ; < 100 ppb poids pour le Fe ; < 0.6 ppm poids pour le Si) ; - it has very low metal contents, in particular iron (Fe) and silicon (metal content not detected; Fe content not detected; Si content < 0.2 ppm wt) and below the limits required for a steam cracker feed (< 5.0 ppm wt, very preferably < 1 ppm wt for metals; < 100 ppb wt for Fe; < 0.6 ppm weight for Si);
- enfin elle contient peu de soufre (2 ppm poids) et peu d’azote (<5 ppm poids), ces teneurs sont très inférieures aux limites requises pour une charge de vapocraqueur (< 500 ppm poids, de préférence < 200 ppm poids pour S et N). - finally it contains little sulfur (2 ppm by weight) and little nitrogen (<5 ppm by weight), these contents are much lower than the limits required for a steam cracker load (<500 ppm by weight, preferably <200 ppm by weight for S and N).
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2309630 | 2023-09-13 | ||
FR2309630A FR3152812A1 (en) | 2023-09-13 | 2023-09-13 | PYROLYSIS OIL TREATMENT PROCESS INCLUDING PREFRACTIONATION AND RECYCLE |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025056509A1 true WO2025056509A1 (en) | 2025-03-20 |
Family
ID=88690288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2024/075199 WO2025056509A1 (en) | 2023-09-13 | 2024-09-10 | Method for treating pyrolysis oil, including pre-fractionation and recycling |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3152812A1 (en) |
WO (1) | WO2025056509A1 (en) |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0113284A1 (en) | 1982-12-30 | 1984-07-11 | Institut Français du Pétrole | Treatment of a heavy hydrocarbon oil or a heavy hydrocarbon oil fraction for their conversion into lighter fractions |
EP0113297A1 (en) | 1982-12-31 | 1984-07-11 | Institut Français du Pétrole | Hydrotreatment process for the conversion in at least two steps of a heavy hydrocarbon fraction containing sulfuric and metallic impurities |
US4818743A (en) | 1983-04-07 | 1989-04-04 | Union Oil Company Of California | Desulfurization catalyst and the catalyst prepared by a method |
US5089463A (en) | 1988-10-04 | 1992-02-18 | Chevron Research And Technology Company | Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity |
FR2681871A1 (en) | 1991-09-26 | 1993-04-02 | Inst Francais Du Petrole | PROCESS FOR HYDROTREATING A HEAVY FRACTION OF HYDROCARBONS WITH A VIEW TO REFINING IT AND CONVERTING IT TO LIGHT FRACTIONS. |
US5221656A (en) | 1992-03-25 | 1993-06-22 | Amoco Corporation | Hydroprocessing catalyst |
US5622616A (en) | 1991-05-02 | 1997-04-22 | Texaco Development Corporation | Hydroconversion process and catalyst |
US5827421A (en) | 1992-04-20 | 1998-10-27 | Texaco Inc | Hydroconversion process employing catalyst with specified pore size distribution and no added silica |
US6332976B1 (en) | 1996-11-13 | 2001-12-25 | Institut Francais Du Petrole | Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst |
US6589908B1 (en) | 2000-11-28 | 2003-07-08 | Shell Oil Company | Method of making alumina having bimodal pore structure, and catalysts made therefrom |
US7119045B2 (en) | 2002-05-24 | 2006-10-10 | Institut Francais Du Petrole | Catalyst for hydrorefining and/or hydroconversion and its use in hydrotreatment processes for batches containing hydrocarbons |
US20070080099A1 (en) | 2003-05-16 | 2007-04-12 | Reid Terry A | Process and catalyst for removal arsenic and one or more other metal compounds from a hydrocarbon feedstock |
CN102051202A (en) | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Silicon trap for coker naphtha and application thereof |
FR2969642A1 (en) | 2010-12-22 | 2012-06-29 | IFP Energies Nouvelles | PRODUCTION OF PARAFFINIC FUELS FROM RENEWABLE MATERIALS BY A CONTINUOUS HYDROTREATING PROCESS |
US20150014218A1 (en) * | 2013-07-10 | 2015-01-15 | Uop Llc | Hydrotreating Process and Apparatus |
FR3051375A1 (en) | 2016-05-18 | 2017-11-24 | Ifp Energies Now | FILTRATION AND DISTRIBUTION DEVICE FOR CATALYTIC REACTOR. |
FR3054558A1 (en) * | 2016-07-27 | 2018-02-02 | IFP Energies Nouvelles | MULTI-BED PROCESS IN SINGLE FIXED BED REACTOR FOR SELECTIVE HYDROGENATION AND HYDRODESULFURATION OF PYROLYTIC ESSENCE |
WO2018055555A1 (en) | 2016-09-22 | 2018-03-29 | Sabic Global Technologies, B.V. | An integrated process configuration involving the steps of pyrolysis, hydrocracking, hydrodealkylation and steam cracking |
WO2018069794A1 (en) | 2016-10-11 | 2018-04-19 | Sabic Global Technologies, B.V. | Maximizing high-value chemicals from mixed plastic using different steam-cracker configurations |
WO2021165178A1 (en) | 2020-02-21 | 2021-08-26 | IFP Energies Nouvelles | Optimized method for processing plastic pyrolysis oils for improving their use |
WO2022034287A1 (en) | 2020-08-14 | 2022-02-17 | Clean Planet Energy, A Trading Name Of Pyroplast Energy Ltd | Commercial grade ultra-low sulphur diesel production process from mixed waste plastics pyrolysis oil |
WO2022144491A1 (en) | 2020-12-30 | 2022-07-07 | Neste Oyj | Method for processing liquefied waste polymers |
WO2022144235A1 (en) | 2021-01-04 | 2022-07-07 | IFP Energies Nouvelles | Method, including a hydrogenation step, for treating plastic pyrolysis oils |
US20220340824A1 (en) | 2021-04-21 | 2022-10-27 | Sk Innovation Co., Ltd. | Solvent Composition Prepared from Waste Oil and Method of Preparing the Same |
WO2022233688A1 (en) * | 2021-05-07 | 2022-11-10 | IFP Energies Nouvelles | Process for the simultaneous processing of plastics pyrolysis oils and of a feedstock originating from renewable resources |
EP4108737A1 (en) | 2021-06-25 | 2022-12-28 | Neoliquid Advanced Biofuels and Biochemicals S.L | Method for improving quality and stability of pyrolisis oils obtained from waste |
US20230013013A1 (en) | 2021-06-23 | 2023-01-19 | Saudi Arabian Oil Company | Method of producing pyrolysis products from a mixed plastics stream and integration of the same in a refinery |
-
2023
- 2023-09-13 FR FR2309630A patent/FR3152812A1/en active Pending
-
2024
- 2024-09-10 WO PCT/EP2024/075199 patent/WO2025056509A1/en unknown
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0113284A1 (en) | 1982-12-30 | 1984-07-11 | Institut Français du Pétrole | Treatment of a heavy hydrocarbon oil or a heavy hydrocarbon oil fraction for their conversion into lighter fractions |
EP0113297A1 (en) | 1982-12-31 | 1984-07-11 | Institut Français du Pétrole | Hydrotreatment process for the conversion in at least two steps of a heavy hydrocarbon fraction containing sulfuric and metallic impurities |
US4818743A (en) | 1983-04-07 | 1989-04-04 | Union Oil Company Of California | Desulfurization catalyst and the catalyst prepared by a method |
US5089463A (en) | 1988-10-04 | 1992-02-18 | Chevron Research And Technology Company | Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity |
US5622616A (en) | 1991-05-02 | 1997-04-22 | Texaco Development Corporation | Hydroconversion process and catalyst |
FR2681871A1 (en) | 1991-09-26 | 1993-04-02 | Inst Francais Du Petrole | PROCESS FOR HYDROTREATING A HEAVY FRACTION OF HYDROCARBONS WITH A VIEW TO REFINING IT AND CONVERTING IT TO LIGHT FRACTIONS. |
US5221656A (en) | 1992-03-25 | 1993-06-22 | Amoco Corporation | Hydroprocessing catalyst |
US5827421A (en) | 1992-04-20 | 1998-10-27 | Texaco Inc | Hydroconversion process employing catalyst with specified pore size distribution and no added silica |
US6332976B1 (en) | 1996-11-13 | 2001-12-25 | Institut Francais Du Petrole | Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst |
US6589908B1 (en) | 2000-11-28 | 2003-07-08 | Shell Oil Company | Method of making alumina having bimodal pore structure, and catalysts made therefrom |
US7119045B2 (en) | 2002-05-24 | 2006-10-10 | Institut Francais Du Petrole | Catalyst for hydrorefining and/or hydroconversion and its use in hydrotreatment processes for batches containing hydrocarbons |
US20070080099A1 (en) | 2003-05-16 | 2007-04-12 | Reid Terry A | Process and catalyst for removal arsenic and one or more other metal compounds from a hydrocarbon feedstock |
CN102051202A (en) | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Silicon trap for coker naphtha and application thereof |
FR2969642A1 (en) | 2010-12-22 | 2012-06-29 | IFP Energies Nouvelles | PRODUCTION OF PARAFFINIC FUELS FROM RENEWABLE MATERIALS BY A CONTINUOUS HYDROTREATING PROCESS |
US20150014218A1 (en) * | 2013-07-10 | 2015-01-15 | Uop Llc | Hydrotreating Process and Apparatus |
FR3051375A1 (en) | 2016-05-18 | 2017-11-24 | Ifp Energies Now | FILTRATION AND DISTRIBUTION DEVICE FOR CATALYTIC REACTOR. |
FR3054558A1 (en) * | 2016-07-27 | 2018-02-02 | IFP Energies Nouvelles | MULTI-BED PROCESS IN SINGLE FIXED BED REACTOR FOR SELECTIVE HYDROGENATION AND HYDRODESULFURATION OF PYROLYTIC ESSENCE |
WO2018055555A1 (en) | 2016-09-22 | 2018-03-29 | Sabic Global Technologies, B.V. | An integrated process configuration involving the steps of pyrolysis, hydrocracking, hydrodealkylation and steam cracking |
WO2018069794A1 (en) | 2016-10-11 | 2018-04-19 | Sabic Global Technologies, B.V. | Maximizing high-value chemicals from mixed plastic using different steam-cracker configurations |
WO2021165178A1 (en) | 2020-02-21 | 2021-08-26 | IFP Energies Nouvelles | Optimized method for processing plastic pyrolysis oils for improving their use |
WO2022034287A1 (en) | 2020-08-14 | 2022-02-17 | Clean Planet Energy, A Trading Name Of Pyroplast Energy Ltd | Commercial grade ultra-low sulphur diesel production process from mixed waste plastics pyrolysis oil |
WO2022144491A1 (en) | 2020-12-30 | 2022-07-07 | Neste Oyj | Method for processing liquefied waste polymers |
WO2022144235A1 (en) | 2021-01-04 | 2022-07-07 | IFP Energies Nouvelles | Method, including a hydrogenation step, for treating plastic pyrolysis oils |
US20220340824A1 (en) | 2021-04-21 | 2022-10-27 | Sk Innovation Co., Ltd. | Solvent Composition Prepared from Waste Oil and Method of Preparing the Same |
WO2022233688A1 (en) * | 2021-05-07 | 2022-11-10 | IFP Energies Nouvelles | Process for the simultaneous processing of plastics pyrolysis oils and of a feedstock originating from renewable resources |
US20230013013A1 (en) | 2021-06-23 | 2023-01-19 | Saudi Arabian Oil Company | Method of producing pyrolysis products from a mixed plastics stream and integration of the same in a refinery |
EP4108737A1 (en) | 2021-06-25 | 2022-12-28 | Neoliquid Advanced Biofuels and Biochemicals S.L | Method for improving quality and stability of pyrolisis oils obtained from waste |
Non-Patent Citations (4)
Title |
---|
"CRC Handbook of Chemistry and Physics", 2000 |
"The Journal of the American Chemical Society", vol. 6Q, 1938, pages: 309 |
"ULLMANS ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY", vol. 18, 1991, pages: 61 - 64 |
C. LÔPEZ-GARCIA ET AL.: "Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology", REV. IFP, vol. 62, no. 1, 2007, pages 57 - 68 |
Also Published As
Publication number | Publication date |
---|---|
FR3152812A1 (en) | 2025-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4107233A1 (en) | Optimized method for processing plastic pyrolysis oils for improving their use | |
EP4069802A1 (en) | Method for processing plastic pyrolysis oils with a view to their use in a steam-cracking unit | |
WO2022063597A1 (en) | Method for processing pyrolysis oils from plastics and/or solid recovered fuels loaded with impurities | |
WO2022144235A1 (en) | Method, including a hydrogenation step, for treating plastic pyrolysis oils | |
EP4334410A1 (en) | Process for the simultaneous processing of plastics pyrolysis oils and of a feedstock originating from renewable resources | |
WO2022233687A1 (en) | Integrated method for processing pyrolysis oils of plastics and/or solid recovered fuels loaded with impurities | |
WO2023208636A1 (en) | Method for treating plastic pyrolysis oil including an h2s recycling step | |
WO2023066694A1 (en) | Method for processing pyrolysis oils from plastics and/or solid recovered fuels, loaded with impurities | |
WO2025056509A1 (en) | Method for treating pyrolysis oil, including pre-fractionation and recycling | |
WO2025056508A1 (en) | Method for treating pyrolysis oil, including a prefractionation | |
WO2024132436A1 (en) | Method for the treatment of plastic and/or tire pyrolysis oils, including removal of halides prior to a hydrotreatment step | |
FR3144152A1 (en) | METHOD FOR TREATMENT OF PYROLYSIS OILS FOR RECOVERY IN A STEAM CRACKING UNIT | |
WO2024132435A1 (en) | Method for the treatment of plastic and/or tire pyrolysis oils, including removal of halides by washing prior to a hydrotreatment step | |
WO2024132433A1 (en) | Method for treating pyrolysis oils for recycling in a catalytic cracking unit or hydrorefining units | |
FR3152811A1 (en) | PROCESS FOR TREATING TIRE PYROLYSIS OIL | |
WO2024175220A1 (en) | Process for producing olefins by steam cracking by upgrading a pyrolysis gas | |
WO2023099304A1 (en) | Method for treating plastic pyrolysis oils including a hydrogenation step and a hot separation | |
WO2024245769A1 (en) | Method for producing middle distillates and naphtha from a feedstock comprising a paraffinic and olefinic pyrolysis oil fraction | |
WO2024088793A1 (en) | Method for the fixed-bed treatment of a heavy fossil-based feedstock comprising a fraction of plastic pyrolysis oil | |
EP4419627A1 (en) | Method for processing pyrolysis oils from plastics and/or solid recovered fuels, loaded with impurities | |
WO2024245770A1 (en) | Method for producing middle distillates and naphtha from a feedstock comprising an aromatic pyrolysis oil fraction |