WO2025055869A1 - 涂层组合物、及其材料制品、套件和使用方法 - Google Patents
涂层组合物、及其材料制品、套件和使用方法 Download PDFInfo
- Publication number
- WO2025055869A1 WO2025055869A1 PCT/CN2024/117833 CN2024117833W WO2025055869A1 WO 2025055869 A1 WO2025055869 A1 WO 2025055869A1 CN 2024117833 W CN2024117833 W CN 2024117833W WO 2025055869 A1 WO2025055869 A1 WO 2025055869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating composition
- silane
- catalyst
- group
- coating
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/61—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
Definitions
- the invention relates to the field of coatings, and in particular to a coating composition and a material product, a kit and a use method thereof.
- the coating composition system includes epoxy resin system, polyurethane system and polyurea system, among which polyurethane coatings show good adhesion, toughness, water resistance, chemical resistance, UV resistance and weather resistance on many substrates (such as metal, wood, leather, masonry, etc.).
- polyurethane coatings require the participation of solvents during the synthesis process. Because the organic solvents used in the synthesis of traditional polyurethane coatings are highly volatile, they affect human health and environmental safety. Therefore, some studies focus on the research and application of water-based polyurethane coatings, but not all polymers are completely soluble in water, and the high latent heat of evaporation of water complicates the solidification and drying process of the coating. For this reason, many studies have focused on the realization of high-solid, ultra-high-solid, and even solvent-free polyurethanes.
- the present invention provides a coating composition comprising the following components:
- a main agent A wherein the main agent A comprises a silane small molecule containing a silane alkoxy group and/or a silane oligomer containing a silane alkoxy group, and
- Curing agent B wherein the curing agent B includes a small molecule containing an isocyanate group and/or a polymer whose monomer contains at least one isocyanate group.
- the coating composition of the present invention also satisfies at least one or more of the following conditions:
- the molar ratio of the silane group in the main agent A to the isocyanate group in the curing agent B is 1 to 10, preferably 1 to 5, more preferably 1.2 to 3, 1.5 to 3;
- the coating composition remains liquid in an anhydrous environment
- the silane small molecule containing silanoxy groups and/or the silane oligomer containing silanoxy groups and the small molecule containing isocyanate groups and/or the polymer containing at least one isocyanate group in the monomer do not undergo a one-step addition reaction;
- silane small molecules containing silane alkoxy groups and/or the silane oligomers containing silane alkoxy groups do not contain active hydrogen;
- the coating composition further comprises a catalyst C, wherein the catalyst C comprises at least one catalyst capable of catalyzing the reaction of the hydroxyl group of the alkyl alcohol with isocyanate.
- the catalyst C comprises at least one catalyst capable of catalyzing the reaction of the hydroxyl group of the alkyl alcohol with isocyanate.
- the coating composition further comprises a functional component D, which comprises a component with toughening, plasticizing or compatibilizing functions, and the component with toughening, plasticizing or compatibilizing functions comprises hydroxyl-terminated polydimethylsiloxane, hydroxyl acrylic resin or bisphenol A epoxy resin.
- a functional component D which comprises a component with toughening, plasticizing or compatibilizing functions
- the component with toughening, plasticizing or compatibilizing functions comprises hydroxyl-terminated polydimethylsiloxane, hydroxyl acrylic resin or bisphenol A epoxy resin.
- the main agent A may additionally satisfy at least one or more of the following conditions:
- the silane small molecule containing a silane alkoxy group is selected from at least one of alkoxysilanes containing a saturated alkyl group, alkoxysilanes containing an ester group, alkoxysilanes containing an aromatic hydrocarbon group, alkoxysilanes containing an unsaturated hydrocarbon group, or alkoxysilanes containing an epoxy group; preferably, selected from methacryloxypropyltrimethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, glycidyl ether propyltrimethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, One or more of methoxysilane, methacryloxypropyl triethoxysilane, vinyl triethoxysilane, phenyl triethoxysilane, g
- the silane oligomer containing silane alkoxy groups is polymerized from at least one monomer containing silane alkoxy groups, and has a degree of polymerization of 2 to 20;
- the viscosity of the silane oligomer containing silaneoxy groups at 25° C. is in the range of 10 centipoise to 10,000 centipoise; or
- the silane oligomer containing silane alkoxy groups is polymerized from one or more monomers selected from alkoxysilanes containing saturated alkyl groups, alkoxysilanes containing ester groups, alkoxysilanes containing aromatic hydrocarbon groups, alkoxysilanes containing unsaturated hydrocarbon groups, or alkoxysilanes containing epoxy groups.
- it is polymerized from one or more monomers selected from vinyltrimethoxysilane, dimethyldimethoxysilane, methacryloxypropyltrimethoxysilane, glycidyl ether propyltrimethoxysilane, and phenyltrimethoxysilane.
- the curing agent B may additionally satisfy at least one or more of the following conditions:
- the small molecule containing an isocyanate group is selected from aromatic isocyanate or aliphatic isocyanate;
- the polymer whose monomer contains at least one isocyanate group is selected from aromatic isocyanate polymers or aliphatic isocyanate polymers;
- the polymer having at least one isocyanate group has a viscosity of less than 10,000 centipoise at 40°C; or
- the monomers contain at least one isocyanate group and the molecular weight of the polymer is from 150 to 5000 grams per mole.
- the coating composition further comprises a catalyst C, and the catalyst C may additionally satisfy at least one or more of the following conditions:
- the catalyst C is a polyurethane catalyst, preferably a metal salt polyurethane catalyst or a tertiary amine polyurethane catalyst; or
- the catalyst C is a catalyst with a delay function, and is preferably a composition formed by a metal salt polyurethane catalyst and a complexing agent.
- Main agent A wherein the main agent A includes one or more of methacryloxypropyl trimethoxysilane, phenyl trimethoxysilane, vinyl trimethoxysilane, and glycidyl ether propyl trimethoxysilane,
- Curing agent B wherein the curing agent B includes one or more of diphenylmethane diisocyanate or a polymer thereof, hexamethylene diisocyanate or a polymer thereof, or toluene diisocyanate or a polymer thereof,
- Catalyst C wherein the catalyst C includes one or more of dibutyltin dilaurate (DBTL), 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30), or 1,8-diazacyclo[5,4,0]undecene-7 (DBU);
- DBTL dibutyltin dilaurate
- DMP-30 2,4,6-tris(dimethylaminomethyl)phenol
- DBU 1,8-diazacyclo[5,4,0]undecene-7
- the mass ratio of the catalyst C to the coating composition is no more than 5%, preferably no more than 1%, and more preferably no more than 0.2%.
- the present invention also provides another coating composition, which comprises:
- a main agent A wherein the main agent A comprises a silane small molecule containing a silane alkoxy group and/or a silane oligomer containing a silane alkoxy group, and
- the curing agent B comprises aromatic isocyanate and/or a polymer thereof.
- the silane small molecules containing silane alkoxy groups and/or silane oligomers containing silane alkoxy groups do not undergo a one-step addition reaction with the aromatic isocyanate and/or its polymer.
- the present invention also provides a coating material product, comprising a substrate and a coating in contact with the surface of the substrate, wherein the coating is prepared in an aqueous environment based on the coating composition provided by the present invention.
- the present invention also provides a coating kit, comprising the components of the coating composition provided by the present invention, wherein the components are physically independent of each other, or a mixture of some components is physically independent of other components.
- the main agent A and the curing agent B are physically independent of each other (e.g., independently packaged).
- the coating kit may further include a substrate; optionally, the coating kit may further include an instruction manual.
- the present invention also provides a method for using the above coating composition, comprising the step of coating the coating composition provided by the present invention on the surface of a substrate in a water environment.
- the present invention also provides a product coated with a coating prepared based on the above method.
- One of the substrates that triggers the reaction is water, especially water vapor in the air.
- the material does not undergo a major reaction in the barrel, which prevents the material from cross-linking too quickly in the barrel, thereby achieving the advantages of low viscosity, good construction performance, and sprayability;
- Isocyanate curing agents integrate the formula advantages of polyurethane systems, with adjustable operation time and curing speed and a variety of catalyst types;
- the anti-corrosion performance of the paint film can be effectively guaranteed, and it is resistant to salt spray, water, and chemical media, and meets the standards of the container industry;
- FIG. 1 is a typical process flow chart for the production and use of a coating composition.
- composition consists of two or more components and may be a mixture mixed together or a combination of physically independent components.
- the "kit” referred to in the present invention consists of two or more parts, each part being a physically independent combination, or a mixture of some components and a physically independent combination of other components.
- coating includes any method of applying the coating composition to the surface of the substrate, such as spraying, brushing, rolling, casting, etc. Those skilled in the art can make the decision based on the properties of the coating composition, the desired coating properties, the application environment, and cost-effectiveness.
- silane alkoxy group refers to an alkoxy functional group covalently bonded directly to a silicon atom.
- the "normal temperature and pressure" referred to in the present invention refers to a temperature of 25 degrees Celsius and a pressure of 101.325 kPa (1 standard atmospheric pressure, 760 mmHg).
- active hydrogen refers to hydrogen atoms that can participate in chemical reactions under normal temperature and pressure and in the absence of a catalyst.
- the "operable time” referred to in the present invention refers to the time range during which the coating composition can be operated or processed after construction. Those skilled in the art can determine it as needed according to conventional methods. The specific time range may vary depending on the component types of the coating composition, the test method, the application scenario, and the manufacturer's regulations.
- the "curing rate" referred to in the present invention refers to the speed at which the coating composition cures or hardens after application, and can be used to describe the time required for the coating composition to cure into a paint film after application.
- the curing rate is also affected by environmental factors such as temperature, humidity and ventilation. Generally, higher temperature, higher humidity and sufficient ventilation will accelerate the curing rate of the coating composition.
- the "finger pressure dry time” referred to in the present invention is the time to evaluate the surface dryness by pressing the coating surface with fingers and feeling whether it still has a sticky or tacky feeling and recording it.
- the "complete curing time” referred to in the present invention refers to the time required for the organic volatile components in the coating to have basically evaporated and the cross-linking and curing reaction of the coating components to have been mostly (or completely) completed, and the coating curing degree has reached the expected use target, that is, the paint film performance has reached or exceeded the expected target value.
- the expressions related to numerical ranges are generally understood to include the endpoint values (the actual number), except for those explicitly expressed as “greater than (>)” or “less than ( ⁇ )".
- “not more than” referred to in the present invention includes the endpoint values, that is, less than or equal to a certain endpoint value; "A to B" or “A ⁇ B” includes the endpoint values A and B.
- the coating composition provided by the present invention comprises the following components:
- the main agent A includes silane small molecules containing silaneoxy groups and/or silane oligomers containing silaneoxy groups
- the curing agent B includes small molecules containing isocyanate groups and/or polymers whose monomers contain at least one isocyanate group; wherein the molar ratio of the silaneoxy groups in the main agent A to the isocyanate groups in the curing agent B is 1 to 10.
- the above coating composition provided by the present invention further comprises:
- Catalyst C comprises at least one catalyst capable of catalyzing the addition reaction between the hydroxyl group of alkyl alcohol and the isocyanate group.
- the curing agent B includes aromatic isocyanate and/or a polymer thereof.
- the coating composition provided by the present invention comprises the following components:
- the main agent A includes silane small molecules containing silaneoxy groups and/or silane oligomers containing silaneoxy groups
- the curing agent B includes small molecules containing isocyanate groups and/or polymers whose monomers contain at least one isocyanate group; wherein the silane small molecules containing silaneoxy groups and/or silane oligomers containing silaneoxy groups of the main agent A do not contain active hydrogen that can undergo a one-step addition reaction with the small molecules containing isocyanate groups and/or the polymers whose monomers contain at least one isocyanate group of the curing agent B.
- the above coating composition provided by the present invention further comprises:
- Catalyst C comprises at least one catalyst capable of catalyzing the addition reaction between the hydroxyl group of alkyl alcohol and the isocyanate group.
- curing agent B includes aromatic isocyanate and/or a polymer thereof.
- the silane small molecules containing silane alkoxy groups and/or silane oligomers containing silane alkoxy groups in the main agent A and the small molecules containing isocyanate groups and/or the polymer containing at least one isocyanate group in the curing agent B do not undergo a one-step addition reaction;
- the silane small molecules containing silane alkoxy groups and/or the silane oligomers containing silane alkoxy groups of the main agent A do not contain active hydrogen;
- the solvent-free composition remains liquid in a water-free environment. Specifically, when the coating composition is in a single mixed form, it remains liquid in a water-free environment.
- the main agent A mainly includes silane small molecules containing silaneoxy groups and/or silane oligomers containing silaneoxy groups, which are the main raw material components for forming the paint film after cross-linking and curing.
- the main agent A is in liquid form within a temperature range of -50°C to 90°C.
- the silane small molecule containing a silane alkoxy group is selected from at least one of an alkoxysilane having a saturated alkyl group, an alkoxysilane having an ester group, an alkoxysilane having an aromatic hydrocarbon group, an alkoxysilane having an unsaturated hydrocarbon group, or an alkoxysilane having an epoxy group; preferably, selected from methacryloxypropyltrimethoxysilane (KH570), phenyltrimethoxysilane (KH631), vinyltrimethoxysilane (A171), glycidyl ether propyltrimethoxy (KH560), methyltrimethoxysilane (MTMS), dimethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, polyalkyl (C n H 2n+1 , n ⁇ 16) one or more of trimethoxysilane, me
- the silane oligomer containing a silane alkoxy group is selected from a polymer formed by polymerizing one or more monomers of alkoxysilane having a saturated alkyl group, alkoxysilane having an ester group, alkoxysilane having an aromatic hydrocarbon group, alkoxysilane having an unsaturated hydrocarbon group, or alkoxysilane having an epoxy group; preferably, it is a polymer formed by polymerizing one or more monomers of vinyltrimethoxysilane (A171), dimethyldimethoxysilane, methacryloxypropyltrimethoxysilane (KH570), glycidyl ether propyltrimethoxysilane (KH560), and phenyltrimethoxysilane (KH631).
- the silane oligomer containing silaneoxy groups is selected from polymers having a degree of polymerization of 2 to 20 and a viscosity of 10 to 10,000 centipoise at 25°C, preferably a polymer having a viscosity of 10 to 5000 centipoise at 25°C.
- the silane oligomer containing a silane alkoxy group may be selected from compounds formed and defined by the following structural formula ( A1 , A2 , or the product of further condensation between A1 and A2 molecules):
- the curing agent B mainly includes small molecules containing isocyanate groups and/or polymers containing at least one isocyanate group in the monomer.
- Curing agent also known as hardener, curing agent or curing agent, is a type of substance or mixture that promotes or controls the curing reaction. Resin curing is a process in which thermosetting resin undergoes irreversible changes through chemical reactions such as condensation, ring closure, addition or catalysis, and curing is accomplished by adding a curing (cross-linking) agent. Curing agent is an indispensable additive, and curing agent must be added whether it is used as an adhesive, coating, or casting material. The type of curing agent has a great influence on the mechanical properties, heat resistance, water resistance, corrosion resistance, etc. of the cured product.
- curing agent B is liquid in the range of -50°C to 100°C.
- the small molecule containing an isocyanate group may be selected from aromatic isocyanates or aliphatic isocyanates; the polymer having at least one isocyanate group in the monomer may be selected from aromatic isocyanate polymers or aliphatic isocyanate polymers;
- the small molecule containing an isocyanate group is preferably selected from aromatic isocyanates, and the polymer having at least one isocyanate group in the monomer is preferably selected from aromatic isocyanate polymers;
- the polymer containing at least one isocyanate group has a viscosity at 25°C of less than 10,000 centipoise, preferably less than 3000 centipoise;
- the molecular weight of the polymer containing at least one isocyanate group is selected from 150 to 5000 grams per mole, preferably from 150 to 2000 grams per mole.
- the amount of the main agent A and the curing agent B is determined according to the relative content of the key reactive groups therein.
- the molar ratio of the silane group in the main agent A to the isocyanate group in the curing agent B in the composition can be in the range of 1 to 10, preferably 1 to 5, more preferably 1.5 to 3, or 1.2 to 3.
- catalyst C can be selected from a polyurethane catalyst, preferably a metal salt polyurethane catalyst (such as organic tin, organic bismuth, organic zirconium, organic cobalt, etc.) or a tertiary amine polyurethane catalyst (such as 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30), or 1,8-diazacyclo[5,4,0]undecene-7 (DBU)).
- a metal salt polyurethane catalyst such as organic tin, organic bismuth, organic zirconium, organic cobalt, etc.
- a tertiary amine polyurethane catalyst such as 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30), or 1,8-diazacyclo[5,4,0]undecene-7 (DBU)
- the catalyst C is selected from a catalyst having a delay function, preferably a composition formed by a metal salt polyurethane catalyst and a complexing agent thereof;
- the complexing agent is a component having a complexing effect with the metal salt polyurethane catalyst, preferably some volatile, low-toxic and environmentally friendly components, such as acetylacetone, methyl acetoacetate or ethyl acetoacetate;
- the mass ratio of the metal salt polyurethane catalyst to its complexing agent is 1:(1-1000), preferably 1:(10-1000), and more preferably 1:(50-500).
- the metal salt polyurethane catalyst is dibutyltin dilaurate (DBTL)
- the complexing agent is acetylacetone
- the curing agent B comprises one or more of diphenylmethane diisocyanate (MDI) or a polymer thereof, hexamethylene diisocyanate (HDI) or a polymer thereof, or toluene diisocyanate or a polymer thereof,
- Catalyst C comprising one or more of dibutyltin dilaurate (DBTL), 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30), or 1,8-diazacyclo[5,4,0]undecene-7 (DBU);
- DBTL dibutyltin dilaurate
- DMP-30 2,4,6-tris(dimethylaminomethyl)phenol
- DBU 1,8-diazacyclo[5,4,0]undecene-7
- the mass ratio of the catalyst C to the coating composition is not more than 5%, preferably not more than 1%, and more preferably not more than 0.2%.
- the main agent A, the curing agent B or the catalyst C can be independently composed of a single substance, or can be a mixture of two or more substances.
- the "coating composition" referred to in the present invention can be used to prepare a high-solid coating composition, an ultra-high-solid coating composition and/or a solvent-free coating composition, and is particularly suitable for preparing an ultra-high-solid coating composition or a solvent-free coating composition.
- the main agent A is selected from low-volatile silanes (such as methacryloxypropyl triethoxysilane, epoxypropyl triethoxysilane) or silane oligomers with extremely low VOC emissions, and the ratio of the silane group of the main agent A to the isocyanate group of the curing agent B is close to 1.
- a solvent-free coating composition can be prepared.
- KH570 methacryloxypropyltrimethoxysilane
- KH631 phenyltrimethoxy
- the usage ratio of each component in the above curing agent B is determined based on the molar amount of isocyanate groups in each component molecule.
- the coating composition needs to be naturally and slowly cured within a required time after coating, wherein the curing agent B is preferably an aromatic isocyanate and/or a polymer thereof, more preferably an MDI polymer or a modified MDI prepolymer, such as polymethylene polyphenyl isocyanate (such as Wanhua Chemical PM200), or diphenylmethane diisocyanate or a polymer thereof (such as Covestro E21).
- the catalyst C component can be selected as needed.
- catalyst C can be selected from a mixture of dibutyltin dilaurate (DBTL) and acetylacetone; and for scenarios with fast curing requirements, catalyst C can be selected from tertiary amine polyurethane catalysts, such as 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30) or 1,8-diazacyclo[5,4,0]undecene-7 (DBU).
- DBTL dibutyltin dilaurate
- DMP-30 2,4,6-tris(dimethylaminomethyl)phenol
- DBU 1,8-diazacyclo[5,4,0]undecene-7
- the mass ratio of its usage to the coating composition is in the range of 0.01 ⁇ to 10 ⁇ , preferably in the range of 0.1 ⁇ to 1 ⁇ ; when the catalyst C is selected from a mixture of dibutyltin dilaurate (DBTL) and acetylacetone, the mass ratio of dibutyltin dilaurate (DBTL): acetylacetone is 1:(10 ⁇ 1000), preferably 1:(50 ⁇ 500).
- a functional component D may also be added to the coating composition to provide the coating composition with auxiliary functions such as regulating reaction crosslinking, enhancing adhesion to the substrate, improving substrate wetting, plasticization, compatibilization, toughening, leveling, anti-sagging, improving the gloss of the paint film, and satisfying the special functions of the coating.
- the functional component D may be a component having toughening, plasticizing or compatibilizing functions, preferably hydroxyl-terminated polydimethylsiloxane (PDMS) or hydroxyl acrylic resin.
- PDMS hydroxyl-terminated polydimethylsiloxane
- the functional component D can be various common additives for enhancing/improving coating properties, such as ultraviolet light absorbers and/or antioxidants, wherein the ultraviolet light absorber can be selected from BASF Tinuvin 99-2, Tinuvin 384-2, Tinuvin 928, Tinuvin 1130, Tinuvin CaroProtect, Tinuvin 400, Tinuvin 477, or Tinuvin 479, and the antioxidant can be selected from Antioxidant 264 (BHT), BASF Tinuvin 123, Tinuvin 249, Tinuvin 292, or Tinuvin 5151, etc.
- the ultraviolet light absorber can be selected from BASF Tinuvin 99-2, Tinuvin 384-2, Tinuvin 928, Tinuvin 1130, Tinuvin CaroProtect, Tinuvin 400, Tinuvin 477, or Tinuvin 479
- the antioxidant can be selected from Antioxidant 264 (BHT), BASF Tinuvin 123, Tinuvin 249, Tinuvin 292, or Tinuvin 5151, etc.
- the functional component D can be selected from hydroxyl-terminated polydimethylsiloxane (PDMS) having a molecular weight of 100 to 2000 grams per mole, preferably a molecular weight of 100 to 500 grams per mole; for scenarios requiring plasticization and compatibility, the functional component D can be selected from hydroxyl acrylic resin; for scenarios requiring cross-linking/auxiliary film formation, the functional component D can be selected from bisphenol A glycidyl ether type epoxy resin, such as a combination of one or more of E51, E44, E20, or E12.
- PDMS hydroxyl-terminated polydimethylsiloxane
- the mass ratio of its amount to the coating composition is in the range of 0 to 30%, preferably in the range of 2 to 20%, and more preferably in the range of 1 to 10%; when the functional component D is selected from hydroxyl acrylic resin, the mass ratio of its amount to the coating composition is in the range of 0.1 to 30%, preferably in the range of 1 to 10%.
- PDMS hydroxyl-terminated polydimethylsiloxane
- the functional component D may include common coating additives, such as pigments, fillers, dispersants, thickeners, defoamers, and the like.
- the present invention does not restrict the type or content of the functional component D in the provided coating composition.
- the technical personnel in this field can freely choose according to the needs of the actual use scenario based on their professional knowledge. For example, they can choose to add a certain type of substance with a specific auxiliary function, or they can choose to add a mixture of several types with the same or different auxiliary functions.
- the coating composition of the present invention may be a mixture mixed together, or a combination of some components physically independent.
- each different component may be stored in a different container, or two or more components may be mixed and then stored in a different container with other components.
- the three components of the coating composition provided by the present invention namely, the main agent A, the curing agent B, and the catalyst C, are stored or packaged in different containers, respectively.
- the three components of the main agent A, curing agent B, and catalyst C in the coating composition provided by the present invention are stored or packaged in different containers respectively, and the functional component D in the solvent-free composition can be stored or packaged in a separate container, or can be mixed and stored or packaged in the container of the main agent A, curing agent B, or catalyst C.
- the three components of the coating composition namely the main agent A, the curing agent B, and the catalyst C, are packaged separately.
- the step of mixing the separately packaged components in a certain proportion is included.
- the mixing step is preferably carried out under conditions that minimize or avoid curing.
- the coating composition provided by the present invention is physically mixed, and after being applied to a substrate, it absorbs water molecules and undergoes chemical reactions to generate polysiloxane (main structure) and polyurethane (or carbamate) plasticizer components, thereby forming a stable paint film on the surface of the substrate.
- Figure 1 shows a typical process flow for the production and use of a coating composition.
- the raw materials of each component used to prepare the coating composition are identified, and each raw material is produced according to a certain formulation method and/or process, which may include dispersion, grinding or coloring process steps; then, the product produced is quality inspected according to the preset standards, and the product that passes the quality inspection can enter the packaging process to form a coating composition product.
- a possible product form is to form a product including a main agent A, a curing agent B and a catalyst C that are separately packaged.
- the coating composition product When the coating composition product is used to coat the surface of a substrate, it is first necessary to mix and/or mature the components of each package, and the surface of the substrate can be pre-treated as needed, such as grinding or polishing; after the coating composition and the substrate are ready, the coating composition can be applied to the surface of the substrate according to the set construction parameters (such as temperature or humidity), and the coating composition is cured into a film, and then the work is completed.
- the set construction parameters such as temperature or humidity
- low temperature heating means can also be used to make the paint shop reach a suitable ambient temperature.
- the upper temperature limit can be reasonably adjusted according to factors such as silane volatility, coating anti-sagging, curing shrinkage, appearance, etc. In the actual production process, the heating energy consumption and benefits must be weighed.
- the temperature can be 20 to 80°C, preferably 40 to 80°C, such as 45°C, 50°C, 55°C, 60°C, 65°C, 70°C or 75°C.
- Construction temperature 0°C to 40°C (the temperature is not controlled, so the actual temperature depends on the air temperature in the workshop during construction);
- Construction humidity 5% RH to 95% RH, preferably 20% RH to 90% RH, more preferably 30% RH to 70% RH.
- Construction humidity 5% RH to 95% RH, preferably 20% RH to 90% RH, more preferably 30% RH to 70% RH.
- Construction humidity 5% RH to 95% RH, preferably 20% RH to 90% RH, more preferably 30% RH to 70% RH.
- the coating composition provided by the present invention has outstanding advantages over the general polyurethane (polyol + isocyanate) coating system.
- the coating composition provided by the present invention has a lower viscosity, which can achieve a longer and controllable operating time and facilitate construction operations;
- the coating composition provided by the present invention has extremely low VOC, which overcomes the pollution problem caused by the volatilization of organic solvents and is more environmentally friendly;
- the coating composition provided by the present invention has a lower ...
- the thickness of a single coating of the composition is increased without the need to add water for dilution, thus overcoming the solubility problem of some organic substances in water and solving the problem that waterborne polyurethane cannot be applied thickly.
- the present invention provides a coated material product, comprising a substrate and a coating in contact with the surface of the substrate, wherein the coating is prepared in an aqueous environment based on the coating composition provided by the present invention.
- the present invention also provides a coating kit, comprising a substrate, a coating composition provided by the present invention, and optionally, a user manual.
- the substrate may include common steel structural materials in the industrial field, composite materials (e.g., epoxy, polyurethane, unsaturated polyester coatings containing pigments and fillers, continuous fiber reinforced epoxy, fiber reinforced polyurethane, or fiber reinforced unsaturated ester, etc.), various engineering plastics, natural organic materials (e.g., wood), and cement or concrete-based inorganic building materials, etc.
- composite materials e.g., epoxy, polyurethane, unsaturated polyester coatings containing pigments and fillers, continuous fiber reinforced epoxy, fiber reinforced polyurethane, or fiber reinforced unsaturated ester, etc.
- various engineering plastics e.g., natural organic materials (e.g., wood), and cement or concrete-based inorganic building materials, etc.
- the substrate can be of any thickness; the substrate surface can be smooth, substantially smooth, or textured; and the substrate can be regular or irregular in shape.
- coated material product or solvent coating kit involved in the present invention can be independently applied to a variety of industries without special restrictions, including but not limited to the office supplies industry, the electronic and electrical products industry, and the construction industry.
- the coating composition in order to ensure good adhesion between the paint film and the substrate layer, may be pre-treated on the substrate surface before coating; for example, after removing impurities and oil stains, the surface may be physically sandblasted, polished or plasma treated.
- the present invention also provides a method for using the coating composition, comprising the step of coating the coating composition provided by the present invention on the surface of a substrate in a water environment.
- the method of using the coating composition comprises the following steps:
- certain curing parameters may be set to meet the environmental requirements for coating curing.
- the present invention also provides a product coated with a coating prepared based on the above method.
- reaction mechanism of the curing process of the coating system of the present invention is likely to be the following steps:
- Step 1 The silane or its oligomer having silane alkoxy groups in the main agent A reacts with water molecules in the air to form silanol and alkyl alcohol:
- Step 2 Under the catalytic action of catalyst C, the isocyanate group of curing agent B rapidly reacts with the alkyl alcohol product of step 1 to form (poly) alkyl carbamate. Since the alkyl alcohol product of step 1 is consumed, the reaction of step 1 rapidly proceeds in the forward direction, that is, the reaction of step 2 strongly promotes the reaction of step 1:
- Step 3 Under the promotion of step 2, a large amount of silanols are formed in step 1. Silanols can condense with themselves, releasing water molecules and forming silicon-oxygen-silicon covalent bonds, i.e., the main chain of polysiloxane:
- silanol can undergo addition substitution reaction with the siloxy group of the main agent A to form a silicon-oxygen-silicon covalent bond, i.e., a polysiloxane main chain structure, while releasing new alkyl alcohol:
- Step 4 The water molecules and alkyl alcohol generated by the above reaction repeatedly participate in reaction steps 1 to 3 to form more polysiloxane main chain structures.
- the proportion of the main chain structure increases as the reaction progresses, and finally a paint film with highly cross-linked and cured polysiloxane as the main component is formed.
- the applicant of the present invention believes that the water molecules preferentially react with the main agent A in the coating composition of the present invention in step 1, and will not react with the isocyanate groups in the curing agent B in large quantities.
- the alkyl alcohol produced in the technical solution of the present invention will further react with the isocyanate group in the curing agent B to form an alkyl urethane component that remains in the paint film (step 2), thereby avoiding the environmental pollution problem caused by VOC emissions and meeting the solvent-free/ultra-high solid content/high solid content standards.
- the alkyl urethane component helps to increase the adhesion between the coating and the substrate, so that the applicability of the technical solution of the present invention to various substrates has reached the same level as that of ordinary polyurethane systems, and is superior to common one-component silicone commercial product systems.
- Example 1 Preparation of coating compositions 1-1 to 1-18
- Each component was formulated according to the substance and content formula in Table 1 to obtain the corresponding coating composition.
- the molar content of the substance in the main agent A is calculated based on the molar content of the siloxy groups therein
- the molar content of the substance in the curing agent B is calculated based on the molar content of the isocyanate groups therein
- the content of the catalyst C and the functional component D is calculated based on the mass fraction of the coating composition they occupy.
- Example 2 Use of coating compositions 1-1 to 1-18
- Coating compositions 1-1 to 1-18 were prepared according to the formula in Table 1 to obtain uniform mixture coatings, which were applied to the surface of the substrate, and then dried and cured into paint films, and their respective finger-press dry time was recorded, as shown in Table 2.
- the test method of the finger-press dry time refers to the record of ASTM D 1640.
- the components of the coating composition in Example 3 and Comparative Example 1 are dispersed, ground, and uniformly mixed, and then "ripened", that is, mixed evenly and then waited for a period of time before construction, which is conducive to obtaining better component miscibility, thereby bringing better film-forming performance. After aging, it can be coated.
- D3 is a water-based two-component fluorocarbon polyurethane coating. Before coating, it is necessary to add an appropriate amount of deionized water to the coating composition to reach the construction viscosity. In this embodiment, the volume mixing ratio of D3 coating composition and deionized water is 100: (40-50).
- Initial mixed viscosity The viscosity of the system is measured within 5 to 10 minutes after the components are mixed into the coating composition to obtain the initial mixed viscosity.
- the viscosity is measured by Stormer viscometer method (reference GB-T 9269-2009), and the unit of the measured viscosity value is Krebs unit (KU).
- the technical solution disclosed in the present invention has a lower initial mixing viscosity (less than 70KU) than the prior art, which is convenient for construction and coating operations; correspondingly, the operable time of coating compositions 1-19 and 1-21 can reach more than 1 hour, while the operable time of coating compositions D1 and D2 are both less than 1 hour, and even the operable time of D2 is less than 10 minutes.
- the single sprayable thickness of the technical solution disclosed in the present invention can reach a level comparable to that of the two-component epoxy system (D1) and the two-component polyurea system (D2) of the prior art, and is much higher than the water-based two-component fluorocarbon polyurethane system (D3).
- the technical solution disclosed in the present invention can reach the level of ultra-high solid content coating compositions, and the solid content of coating compositions 1-19, 1-21 and 1-22 is above 90%.
- Example 6 Determination of coating film properties of coating compositions 1-19 to 1-22
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
Abstract
一种涂层组合物、及其材料制品、套件和使用方法,具有环保和高效应用的特点。该涂层组合物包括主剂A和固化剂B;其中,主剂A包括含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物,固化剂B包括含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物。该涂层组合物在水分子的参与下交联固化,形成具有优异物理和化学性能的漆膜。一种基于该涂层组合物的材料制品、套件和使用方法,适用于各种工业和商业应用。
Description
本申请要求申请日为2024年7月5日,名称为“涂层组合物、及其材料制品、套件和使用方法”的中国专利申请202410904143.9的优先权,该中国专利申请的全部内容通过引用并入本申请。
本发明涉及涂层涂料领域,尤其涉及一种涂层组合物及其材料制品、套件和使用方法。
涂层组合物体系包括环氧树脂体系、聚氨酯体系和聚脲体系等,其中,聚氨酯涂层在许多基材(如金属、木材、皮革、砖石等)上表现出良好的附着力、韧性、耐水性、耐化学性、抗紫外线性以及耐候性能。然而,绝大多数的聚氨酯涂料在合成过程中需要溶剂的参与。因传统聚氨酯涂料合成中所使用的有机溶剂挥发性强,影响人体健康和环境安全。因此,部分研究聚焦在聚氨酯涂料的水性化研究和应用上,但是并不是所有的聚合物都完全溶于水,且水的蒸发潜热高会使得涂层凝固和干燥过程复杂化。为此,许多研究都集中在高固含、超高固含、甚至无溶剂聚氨酯的实现上。
而一般无溶剂聚氨酯体系因黏度较高,存在因反应迅速放热和副反应导致操作时间短(<30min)、涂层发泡失效、涂层表面缺陷严重甚至不固化等问题。
因此,行业内对综合性能好(例如高防腐、高耐候)、施工便捷(例如低粘度可喷涂、操作时间可控)、且环保(VOC排放低)的涂层组合物仍有极大需求。
发明内容
针对现有的涂层组合物存在的缺陷,本发明提供了一种新型的涂层组合物,具有可操作性强(粘度低便于喷涂、固化速率可调、操作时间可控)、环境友好的优点,同时可以兼顾固化后漆膜的综合性能(高防腐、高耐候、高基材附着力等)。此外,本发明还提供了基于该涂层组合物的材料制品、套件和使用方法。
为达到上述目的,本发明提供了一种涂层组合物,包括如下组分:
主剂A,所述主剂A包括含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物,和
固化剂B,所述固化剂B包括含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物。
进一步地,本发明的上述涂层组合物还额外满足以下条件中的至少一个或多个:
所述主剂A中硅烷氧基和所述固化剂B中异氰酸酯基的摩尔比为1至10,优选是1至5,更优选是1.2至3、1.5至3;
所述涂层组合物在无水环境中保持液态;
在常温常压且无催化剂的条件下,所述含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物与所述含有异氰酸酯基的小分子和/或所述单体含有至少一个异氰酸酯基的聚合物不发生一步加成反应;
所述含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物中不含有活泼氢;
涂层组合物还包括催化剂C,所述催化剂C包括至少一种能催化烷基醇的羟基与异氰
酸酯基发生加成反应的催化剂;或者
涂层组合物还包括功能性组分D,功能性组分D包括具备增韧、增塑或增容功能的组分,具备增韧、增塑或增容功能的组分包括羟基封端聚二甲基硅氧烷、羟基丙烯酸树脂或双酚A型环氧树脂。
进一步地,在本发明的上述涂层组合物中,所述主剂A可以额外满足以下条件中的至少一个或多个:
在-50℃至90℃范围内呈液态;
所述含有硅烷氧基的硅烷小分子选自包括含有饱和烷基的烷氧基硅烷、含有酯基的烷氧基硅烷、含有芳香烃基的烷氧基硅烷、含有不饱和烃基的烷氧基硅烷、或含有环氧基的烷氧基硅烷中的至少一种;优选地,选自甲基丙烯酰氧丙基三甲氧基硅烷、苯基三甲氧基硅烷、乙烯基三甲氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、甲基三甲氧基硅烷、二甲基二甲氧基硅烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基丙烯酰氧丙基三乙氧基硅烷、乙烯基三乙氧基硅烷、苯基三乙氧基硅烷、缩水甘油醚基丙基三乙氧基硅烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、二苯基二乙氧基硅烷、或甲基苯基二乙氧基硅烷中的一种或多种;更优选地,选自乙烯基三甲氧基硅烷、二甲基二甲氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、或苯基三甲氧基硅烷中的一种或多种;
所述含有硅烷氧基的硅烷低聚物由至少一种含有硅烷氧基的单体聚合而成,其聚合度为2至20;
所述含有硅烷氧基的硅烷低聚物在25℃下的粘度处于10厘泊至10,000厘泊的范围内;或者
所述含有硅烷氧基的硅烷低聚物由选自含有饱和烷基的烷氧基硅烷、含有酯基的烷氧基硅烷、含有芳香烃基的烷氧基硅烷、含有不饱和烃基的烷氧基硅烷、或含有环氧基的烷氧基硅烷中的一种或多种单体聚合而成,优选地,由包括选自乙烯基三甲氧基硅烷、二甲基二甲氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、苯基三甲氧基硅烷中的一种或多种的单体聚合而成。
进一步地,在本发明的上述涂层组合物中,所述固化剂B可以额外满足以下条件中的至少一个或多个:
在-50℃至100℃范围内呈液态;
所述含有异氰酸酯基的小分子选自芳香族异氰酸酯或脂肪族异氰酸酯;
所述单体含有至少一个异氰酸酯基的聚合物选自芳香族异氰酸酯聚合物或脂肪族异氰酸酯聚合物;
所述单体含有至少一个异氰酸酯基的聚合物在40℃下的粘度低于10,000厘泊;或者
所述单体含有至少一个异氰酸酯基的聚合物的分子量为150至5000克每摩尔。
进一步地,在本发明的上述涂层组合物中,涂层组合物还包括催化剂C,所述催化剂C可以额外满足以下条件中的至少一个或多个:
所述催化剂C是聚氨酯催化剂,优选为金属盐类聚氨酯催化剂或叔胺类聚氨酯催化剂;或者
所述催化剂C是具备延迟功能的催化剂,优选为金属盐类聚氨酯催化剂与其络合剂形成的组合物。
本发明还提供另一种涂层组合物,其包括:
主剂A,所述主剂A包括甲基丙烯酰氧丙基三甲氧基硅烷、苯基三甲氧基硅烷、乙烯基三甲氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷中的一种或多种,
固化剂B,所述固化剂B包括二苯基甲烷二异氰酸酯或其聚合物、六亚甲基二异氰酸酯或其聚合物、或甲苯二异氰酸酯或其聚合物中的一种或多种,
催化剂C,所述催化剂C包括二月桂酸二丁基锡(DBTL)、2,4,6-三(二甲氨基甲基)苯酚(DMP-30)、或1,8-二氮杂环[5,4,0]十一烯-7(DBU)中的一种或多种;
其中,所述主剂A中硅烷氧基的摩尔量:所述固化剂B中异氰酸酯基的摩尔量=1:(0.1~1);
所述催化剂C与所述涂层组合物的质量比为不超过5%,优选为不超过1%,更优选为不超过0.2%。
本发明还提供另一种涂层组合物,其包括:
主剂A,所述主剂A包括含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物,和
固化剂B,所述固化剂B包括芳香族异氰酸酯和/或其聚合物。
进一步地,在本发明的上述涂层组合物中,在常温常压且无催化剂的条件下,所述含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物与所述芳香族异氰酸酯和/或其聚合物不发生一步加成反应。
本发明还提供一种涂层材料制品,包括基材以及与所述基材表面接触的涂层,其中,所述涂层基于本发明提供的涂层组合物在有水环境中制备而成。
本发明还提供一种涂层套件,包括本发明提供的涂层组合物的各组分,其中各组分相互物理独立,或部分组分的混合物与其他组分相互物理独立。优选地,主剂A和固化剂B相互物理独立(例如独立包装)。
其中,该涂层套件还可以包括基材;可选的,该涂层套件还可以包括说明书。
本发明还提供如上涂层组合物的使用方法,包括在有水环境下,将本发明提供的涂层组合物涂覆于基材表面的步骤。
本发明还提供基于上述的方法制备得到的涂覆有涂层的产品。
本发明提供的技术方案具备如下特点和有益效果:
(1)触发反应的底物之一为水,特别是空气中的水汽,在涂装施工前,理论上物料在母桶中并没有发生主体反应,避免物料在母桶里交联速度过快,从而达到粘度低,施工性能好,可喷涂的优势;
(2)巧妙利用了硅烷缩合产物烷基醇与异氰酸酯反应,使烷氧基基团通过交换的方式转移至氨酯基团上,解决了市售成熟缩合型有机硅聚合物反应过程中的主要VOC排放物——烷基醇排放问题;本发明中的优化配方可以实现理论上的VOC为0;
(3)异氰酸酯类固化剂整合了聚氨酯体系的配方优点,操作时间和固化速度可调、催化剂种类多;
(4)通过合理的组分选择,可有效保证漆膜的耐候性能,保光保色(≈氟碳或略低>聚氨酯);
(5)通过合理的组分选择,可有效保证漆膜的防腐性能,耐盐雾、耐水、耐化学介质,符合集装箱行业标准;
(6)原料供应充足,价格低廉。
图1为一种典型的涂层组合物的生产和使用工艺流程图。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的
范围。
在本发明中各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明所指的“组合物”由两种或更多种组分组成,可以是混合在一起的混合物,也可以是组分物理上独立的组合。
本发明所指的“套件”由两种或更多种部分组成,各部分为物理上独立的组合,或部分组分的混合物和其他组分物理上独立的组合。
本发明所指的“涂覆”包括任何将涂层组合物施于基材表面的方法,如喷涂、刷涂、滚涂、流延涂覆等。本领域技术人员可以基于涂层组合物的特性、所需涂层特性、应用环境以及成本效益等决定。
本发明所指的“硅烷氧基”是指直接与硅原子共价相连的烷氧基功能团。
本发明所指的“常温常压”是指温度为25摄氏度、压强为101.325kPa(1标准大气压,760mmHg)的情况。
本发明所指的“活泼氢”是指在常温常压且无催化剂存在的条件下能参与化学反应的氢原子。
本发明所指的“可操作时间”指涂层组合物在施工后可以进行操作或处理的时间范围。本领域技术人员可以根据常规方法按需进行测定。具体的时间范围可能会因涂层组合物的组分类型、测试方法、应用场景以及制造商的规定而有所差异。
本发明所指的“固化速率”指涂层组合物在施工后固化或硬化的速度,可以用于描述涂层组合物从涂覆到固化成漆膜所需的时间。一般来说,除了与涂层组合物的自身特性有关外,固化速率还会受到环境因素的影响,如温度、湿度和通风情况。通常情况下,温度较高、湿度较高和充足的通风会加快涂层组合物的固化速率。
本发明所指的“指压干时间”是通过手指指压涂层表面,通过感觉其是否还有黏性或粘连感来评定表面干燥状态并记录的时间。
本发明所指的“完全固化时间”是指涂层中的有机挥发组分已经基本挥发完毕且涂层组分交联固化反应完成绝大部分(或全部完成),涂层固化程度已经达到预期使用目标,即漆膜性能已经达到或超过预期目标值所需的时间。
本发明中涉及关于数值范围的表达一般理解为包括端点值(本数),明确表达为“大于(>)”、“小于(<)”的除外。例如,本发明所指的“不超过”包含端点值,即小于等于某一端点值;“A至B”或者“A~B”包括端点值A和B。
在一些实施方式中,本发明提供的涂层组合物,包括如下组分:
主剂A,包括含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物,和固化剂B,包括含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物;其中,主剂A中硅烷氧基和固化剂B中异氰酸酯基的摩尔比为1至10。
在一些具体的实施方式中,本发明提供的以上涂层组合物还包括:
催化剂C,包括至少一种能催化烷基醇的羟基与异氰酸酯基发生加成反应的催化剂。
在一些具体的实施方式中,其中,固化剂B包括芳香族异氰酸酯和/或其聚合物。
在一些实施方式中,本发明提供的涂层组合物,包括如下组分:
主剂A,包括含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物,和固化剂B,包括含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物;其中,主剂A的含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物中不含有与固化剂B的含有异氰酸酯基的小分子和/或所述单体含有至少一个异氰酸酯基的聚合物发生一步加成反应的活泼氢。
在一些具体的实施方式中,本发明提供的以上涂层组合物还包括:
催化剂C,包括至少一种能催化烷基醇的羟基与异氰酸酯基发生加成反应的催化剂。
在一些具体的实施方式中,固化剂B包括芳香族异氰酸酯和/或其聚合物。
在一些实施方式中,在常温常压且无催化剂的条件下,主剂A的含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物与固化剂B中的含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物不发生一步加成反应;
在一些实施方式中,主剂A的含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物中不含有活泼氢;
在一些实施方式中,该无溶剂组合物在无水环境中保持液态,具体的,当该涂层组合物呈单一混合形态时,其在无水环境中保持液态。
根据本发明所提供的技术方案的一些实施方式,其中,主剂A主要包括含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物,是交联固化后形成漆膜的主要原料成分。
在一些实施方式中,主剂A在-50℃至90℃范围内呈液态。
在一些实施方式中,含有硅烷氧基的硅烷小分子选自具有饱和烷基的烷氧基硅烷、具有酯基的烷氧基硅烷、具有芳香烃基的烷氧基硅烷、具有不饱和烃基的烷氧基硅烷、或具有环氧基的烷氧基硅烷中的至少一种;优选地,选自甲基丙烯酰氧丙基三甲氧基硅烷(KH570)、苯基三甲氧基硅烷(KH631)、乙烯基三甲氧基硅烷(A171)、缩水甘油醚基丙基三甲氧基(KH560)、甲基三甲氧基硅烷(MTMS)、二甲基二甲氧基硅烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷、多烷基(CnH2n+1,n≤16)三甲氧基硅烷、甲基丙烯酰氧丙基三乙氧基硅烷、乙烯基三乙氧基硅烷、苯基三乙氧基硅烷、缩水甘油醚基丙基三乙氧基硅烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、二苯基二乙氧基硅烷或甲基苯基二乙氧基硅烷中的一种或多种;更优选地,选自乙烯基三甲氧基硅烷(A171)、二甲基二甲氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷(KH570)、缩水甘油醚基丙基三甲氧基硅烷(KH560)、苯基三甲氧基硅烷(KH631)中的一种或多种。
在一些实施方式中,含有硅烷氧基的硅烷低聚物选自由具有饱和烷基的烷氧基硅烷、具有酯基的烷氧基硅烷、具有芳香烃基的烷氧基硅烷、具有不饱和烃基的烷氧基硅烷、或具有环氧基的烷氧基硅烷中的一种或多种单体聚合而成的聚合物;优选地,选自由乙烯基三甲氧基硅烷(A171)、二甲基二甲氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷(KH570)、缩水甘油醚基丙基三甲氧基硅烷(KH560)、苯基三甲氧基硅烷(KH631)中的一种或多种的单体聚合而成的聚合物。
在一些实施方式中,含有硅烷氧基的硅烷低聚物选自聚合度为2至20、并且在25℃下粘度处于10厘泊至10,000厘泊的范围内聚合物,优选为在25℃下粘度处于10厘泊至5000厘泊的范围内的聚合物。
在一些实施方式中,含有硅烷氧基的硅烷低聚物可以选自由以下结构式所生成和定义的化合物(A1、A2或者A1和A2分子间进一步缩合的产物):
其中,2≤n≤20,M可以为甲基或者乙基,Ra可以独立地为具有甲基丙烯酰氧丙基、苯基、乙烯基、(2,3-环氧丙氧)丙基、烷基、酯基、醚基、脲基、环氧基、或烃基中的至少一种。
根据本发明所提供的技术方案,其中,固化剂B主要包括含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物。固化剂又名硬化剂、熟化剂或变定剂,是一类增进或控制固化反应的物质或混合物。树脂固化是经过缩合、闭环、加成或催化等化学反应,使热固性树脂发生不可逆的变化过程,固化是通过添加固化(交联)剂来完成的。固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂。固化剂的品种对固化物的力学性能、耐热性、耐水性、耐腐蚀性等都有很大影响。
在一些实施方式中,固化剂B在-50℃至100℃范围内呈液态。
在一些实施方式中,含有异氰酸酯基的小分子可以选自芳香族异氰酸酯或脂肪族异氰酸酯;单体含有至少一个异氰酸酯基的聚合物可以选自芳香族异氰酸酯聚合物或脂肪族异氰酸酯聚合物;
在一些实施方式中,含有异氰酸酯基的小分子优选自芳香族异氰酸酯,单体含有至少一个异氰酸酯基的聚合物优选自芳香族异氰酸酯聚合物;
在一些实施方式中,含有至少一个异氰酸酯基的聚合物在25℃下的粘度低于10,000厘泊,优选为低于3000厘泊;
在一些实施方式中,含有至少一个异氰酸酯基的聚合物的分子量选自150至5000克每摩尔,优选自150至2000克每摩尔。
在一些实施方式中,主剂A和固化剂B的用量根据其中关键反应基团的相对含量确定。例如,可以使得组合物中的主剂A中硅烷氧基和固化剂B中异氰酸酯基的摩尔比在1至10的范围内,优选为1至5,更优选为1.5至3、或者1.2至3。
根据本发明所提供的技术方案,其中催化剂C主要用于催化烷基醇的羟基与异氰酸酯基发生加成反应,调控固化过程的速率。对于催化剂的种类或用量,本领域的技术人员可结合其专业知识,根据实际使用场景的需求进行自由选择。例如,在某些需要缓慢固化的场景中,可以选择不添加催化剂C、添加相对少量的催化剂C、或者选择添加催化效率较低的催化剂C;而在某些需要快速固化的场景中,可以选择添加相对大量的催化剂C或者选择添加催化效率相对较高的催化剂C。
在一些实施方式中,催化剂C可以选自聚氨酯催化剂,优选为金属盐类聚氨酯催化剂(例如有机锡、有机铋、有机锆、有机钴等)或叔胺类聚氨酯催化剂(例如2,4,6-三(二甲氨基甲基)苯酚(DMP-30)、或1,8-二氮杂环[5,4,0]十一烯-7(DBU))。
在一些实施方式中,催化剂C选自具备延迟功能的催化剂,优选为金属盐类聚氨酯催化剂与其络合剂形成的组合物;
在一些实施方式中,络合剂为与金属盐类聚氨酯催化剂具有络合效应的组分,优选为一些可挥发、低毒环保型的组分,例如乙酰丙酮、乙酰乙酸甲酯或乙酰乙酸乙酯;
在一些具体的实施方式中,金属盐类聚氨酯催化剂与其络合剂的用量的质量比为1:(1~1000),优选为1:(10~1000),更优选为1:(50~500)。例如,金属盐类聚氨酯催化剂为二月桂酸二丁基锡(DBTL),络合剂为乙酰丙酮,其用量的质量比为二月桂酸二丁基锡:乙酰丙酮=1:(10~1000),优选为1:(50~500)。
在一些实施方式中,催化剂C的用量可以根据主剂A或固化剂B的用量来确定。例如,可以使得催化剂C与所述涂层组合物的质量比在不超过5%,优选为不超过1%,更优选为不超过0.2%。
在一些具体的实施方式中,本发明提供的涂层组合物包括如下组成:
主剂A,包括甲基丙烯酰氧丙基三甲氧基硅烷(KH570)、苯基三甲氧基硅烷(KH631)、乙烯基三甲氧基硅烷(A171)、缩水甘油醚基丙基三甲氧基硅烷(KH560)中
的一种或多种,
固化剂B,包括二苯基甲烷二异氰酸酯(MDI)或其聚合物、六亚甲基二异氰酸酯(HDI)或其聚合物、或甲苯二异氰酸酯或其聚合物中的一种或多种,
催化剂C,包括二月桂酸二丁基锡(DBTL)、2,4,6-三(二甲氨基甲基)苯酚(DMP-30)、或1,8-二氮杂环[5,4,0]十一烯-7(DBU)中的一种或多种;
其中,主剂A中硅烷氧基的摩尔量:固化剂B中异氰酸酯基的摩尔量=1:(0.1~1);
催化剂C与所述涂层组合物的质量比在不超过5%,优选为不超过1%,更优选为不超过0.2%。
可以理解的,在一些实施方式中,主剂A、固化剂B或者催化剂C,可以分别独立地由单一物质构成,也可以是各自独立地由两种及以上物质构成的混合物。
可以理解的,在一些实施方式中,本发明所指的“涂层组合物”可以制备得到高固含涂层组合物、超高固含涂层组合物和/或无溶剂涂层组合物,尤其适用于制备得到超高固含涂层组合物或无溶剂涂层组合物。举例来说,在一种实施方式里,主剂A选自低挥发性硅烷(如甲基丙烯酰氧丙基三乙氧基硅烷,环氧丙基三乙氧基硅烷)或具有极低VOC排放的硅烷低聚物,并使得主剂A的硅烷氧基与固化剂B的异氰酸酯基配比接近1,通过适当调整无VOC组分的比例,可制备得到无溶剂涂层组合物。
需要说明的是,涂层组合物中具体组分的选择或者添加对固化过程(如指压干时间、固化温度等)、以及最终固化形成的漆膜的性质(例如耐候性能、防腐性能、增塑增容性能等)有不同影响,因此本领域技术人员可以根据具体的实际使用场景或使用需求,对涂层组合物的具体组分进行选择或者调整。
在一些实施方式中,对于漆膜耐候或防腐场景,主剂A可以选自甲基丙烯酰氧丙基三甲氧基硅烷(KH570);对于常温固化场景,主剂A可以选自苯基三甲氧基硅烷(KH631);对于低粘度+低温固化场景,主剂A可以选自硅烷氧基含量高的硅烷,优选自乙烯基三甲氧基硅烷(A171);对于难附着基材(例如尼龙基材)场景,主剂A可以选自富含环氧基的硅烷组分,优选自甲基丙烯酰氧丙基三甲氧基硅烷(KH570)和缩水甘油醚基丙基三甲氧基硅烷(KH560)的混合物,其用量比为KH570:KH560=75~100%:0~25%。对于常温/低温固化+难附着基材场景,主剂A可以选自甲基丙烯酰氧丙基三甲氧基硅烷(KH570)、苯基三甲氧基硅烷(KH631)、和缩水甘油醚基丙基三甲氧基硅烷(KH560)的混合物,其用量比为KH570:KH631:KH560=50~100%:0~25%:0~25%,优选用量比为KH570:KH631:KH560=80~100%:0~10%:0~10%;对于低温固化+无甲醇排放场景,主剂A可以选自甲基丙烯酰氧丙基三乙氧基硅烷、苯基三乙氧基硅烷、和缩水甘油醚基丙基三乙氧基硅烷的混合物,其用量比为甲基丙烯酰氧丙基三乙氧基硅烷:苯基三乙氧基硅烷:缩水甘油醚基丙基三乙氧基硅烷=0~50%:50~100%:0~50%,优选用量比为甲基丙烯酰氧丙基三乙氧基硅烷:苯基三乙氧基硅烷:缩水甘油醚基丙基三乙氧基硅烷=0~25%:50~100%:0~25%;对于高温固化+无甲醇排放(例如>80℃)场景,主剂A可以选自挥发性低的硅烷组分,优选自甲基丙烯酰氧丙基三乙氧基硅烷、和缩水甘油醚基丙基三乙氧基硅烷的混合物,其用量比为甲基丙烯酰氧丙基三乙氧基硅烷:缩水甘油醚基丙基三乙氧基硅烷=0~50%:50~100%,优选用量比为甲基丙烯酰氧丙基三乙氧基硅烷:缩水甘油醚基丙基三乙氧基硅烷=0~30%:70~100%。其中,以上主剂A中的各组分的用量比依据每个组分分子中的硅烷氧基的摩尔量来确定。
在一些实施方式中,对于漆膜耐候场景,固化剂B可以选自脂肪族异氰酸酯和/或其聚合物,例如HDI三聚体或者HDI脲二酮固化剂,比如1,6己二异氰酸酯及其预聚物(如科思创N3300,N3600,N3400),异氟尔酮二异氰酸酯(IPDI)及其预聚物,二环己基甲烷二异氰酸酯(HMDI)及其预聚物,或甲苯二异氰酸酯TDI及其预聚物(如科思创E14,
E15);对于漆膜防腐场景,固化剂B可以选自芳香族异氰酸酯和/或其聚合物,例如MDI聚合物或改性MDI预聚物,比如多亚甲基多苯基异氰酸酯(如万华化学PM200)、或二苯基甲烷二异氰酸酯或其聚合物(如科思创E21,或科思创CDC)。
在一些具体的实施方式中,对于高耐候场景,固化剂B可以为N3300,N3600,和N3400的混合物,其用量比为N3300:N3600:N3400=50~100%:0~50%:0~25%,优选用量比为N3300:N3600:N3400=50~100%:0~25%:0~10%;对于高防腐场景,固化剂B可以为PM200、E21、和N3300的混合物,其用量比为PM200:E21:N3300=50~100%:0~50%:0~50%,优选用量比为PM200:E21:N3300=80~100%:0~20%:0~20%。其中,以上固化剂B中的各组分的用量比依据每个组分分子中的异氰酸酯基的摩尔量来确定。
在一些实施方式中,尤其是针对需要缓慢固化的场景,例如需要使得该涂层组合物在完成涂覆后,在要求的时间内自然缓慢固化,其中固化剂B优选为芳香族异氰酸酯和/或其聚合物,更优选为MDI聚合物或改性MDI预聚物,比如多亚甲基多苯基异氰酸酯(如万华化学PM200)、或二苯基甲烷二异氰酸酯或其聚合物(如科思创E21)。一般地,在这种场景下,可以按需选择不添加催化剂C组分。
在一些实施方式中,对于操作友好(例如可操作时间长)场景,催化剂C可以选自二月桂酸二丁基锡(DBTL)和乙酰丙酮的混合物;而对于有快速固化需求的场景,催化剂C可以选自叔胺类聚氨酯催化剂,例如2,4,6-三(二甲氨基甲基)苯酚(DMP-30)或1,8-二氮杂环[5,4,0]十一烯-7(DBU)。
在一些具体的实施方式中,当催化剂C选自二月桂酸二丁基锡(DBTL)时,其用量与涂层组合物的质量比在0.01‰至10‰的范围内,优选质量比在0.1‰至1‰的范围内;当催化剂C选自二月桂酸二丁基锡(DBTL)和乙酰丙酮的混合物时,其中二月桂酸二丁基锡(DBTL):乙酰丙酮质量比为1:(10~1000),优选为1:(50~500)。
在一些实施方式中,还可以向涂层组合物中添加功能性组分D,从而为涂层组合物提供调节反应交联、提升与基材附着力、改善对基材润湿、增塑、增容、增韧、流平、抗流挂、改善漆膜的光泽度以及满足涂层特殊功能的辅助功能。
在一些具体的实施方式中,功能性组分D可以为具备增韧、增塑或增容功能的组分,优选为羟基封端聚二甲基硅氧烷(PDMS)或羟基丙烯酸树脂。
在另一些具体的实施方式中,功能性组分D可以为各种提升/改善涂层性能常见的助剂,例如紫外光吸收剂和/或抗氧化剂等,其中紫外光吸收剂可以选自巴斯夫Tinuvin 99-2,Tinuvin 384-2,Tinuvin 928,Tinuvin 1130,Tinuvin CaroProtect,Tinuvin 400,Tinuvin 477,或Tinuvin 479等,抗氧化剂可以选自抗氧剂264(BHT),巴斯夫Tinuvin 123,Tinuvin 249,Tinuvin 292,或Tinuvin 5151等。
在一些实施方式中,对于需要增塑和耐候的场景,功能性组分D可以选自羟基封端聚二甲基硅氧烷(PDMS),其分子量为100至2000克每摩尔,优选分子量为100至500克每摩尔;对于需要增塑和增容的场景,功能性组分D可以选自羟基丙烯酸树脂;对于需要交联/辅助成膜场景,功能性组分D可以选自双酚A缩水甘油醚型环氧树脂,例如E51、E44、E20、或E12中的一种或多种的组合。
在一些具体的实施方式中,当功能性组分D选自羟基封端聚二甲基硅氧烷(PDMS)时,其用量与涂层组合物的质量比在0至30%的范围内,优选质量比在2%至20%的范围内,更优选为1%至10%的范围内;当功能性组分D选自羟基丙烯酸树脂时,其用量与涂层组合物的质量比在0.1%至30%的范围内,优选质量比在1%至10%的范围内。
在一些实施方式中,功能性组分D可以包括常见的涂料添加组分,例如颜料、填料、分散剂、增稠剂或消泡剂等。
可以理解的,本发明对所提供的涂层组合物中的功能性组分D的种类或者含量并不做
限制,本领域的技术人员可结合其专业知识,根据实际使用场景的需求进行自由选择。例如,可以选择添加具有特定辅助性功能的某一类物质,也可以选择添加某几类具有相同或不同辅助性功能的混合物。
需要说明的是,本发明涉及的涂层组合物可以是混合在一起的混合物,也可以是部分组分在物理上独立的组合。当其中至少部分组分在物理上独立存在时,可以将每一个不同的组分分别储存在不同的容器中,也可以将其中两个或多个组分混合后再与其他组分分别储存在不同的容器中。
在一些实施方式中,本发明提供的涂层组合物中的主剂A和固化剂B,分别储存或包装在不同的容器中。
在一些实施方式中,本发明提供的涂层组合物中的主剂A、固化剂B、和催化剂C三个组分,分别储存或包装在不同的容器中。
在一些实施方式中,本发明提供的涂层组合物中的主剂A、固化剂B、和催化剂C三个组分分别储存或包装在不同的容器中,无溶剂组合物中的功能性组分D可以储存或包装在单独的一个容器中,也可以混合储存或包装在主剂A、固化剂B、或催化剂C的容器中。
在一个具体的实施方式中,涂层组合物中的主剂A、固化剂B、和催化剂C三个组分分别包装,使用时包括将各分别包装的组分按照一定比例进行混合的步骤,混合步骤优选在使固化降至最低或者避免固化的条件下进行。
本发明提供的涂层组合物通过物理混合,涂于基材后,吸收水分子,经过化学反应生成聚硅氧烷(主结构)和聚胺酯(或氨基甲酸酯)增塑剂组分,从而在基材表面形成一层稳固的漆膜。
图1给出了一种典型的涂层组合物的生产和使用工艺流程。首先,确认用于制备涂层组合物的各个组分原材料,将各原材料按照一定的配制方法和/或工艺进行生产,例如可以包括分散、研磨或调色等工艺步骤;随后,根据预设的标准对生产得到的产品进行质检,质检通过的产品即可进入包装工序,形成涂层组合物产品,例如,一种可能的产品形态是形成包括主剂A、固化剂B和催化剂C各自分装的产品。使用该涂层组合物产品对基材表面进行涂装时,首先需要将各分装的组分进行混合和/熟化,同时按需可以对基材的表面进行预处理,例如打磨或抛光等;涂层组合物和基材均准备就绪后,即可按照设定的施工参数(例如温度或湿度)将该涂层组合物涂装在基材的表面,待其固化成膜,则完工。
在一些具体的实施方式中,可以将各组分混合均匀以形成涂层组合物后,涂于基材表面,从而形成厚度为5μm至1000μm,优选厚度为30至150μm的漆膜。一种举例的生产条件可以为:环境湿度保持在5%RH至95%RH,室温下(例如5至40℃),指压干时间为10分钟至6小时,从而形成固化漆膜。
在一种实施方式中,还可以使用加湿手段使涂装车间内达到适宜环境湿度,其中湿度可以选择为5%RH至100%RH,10%RH至95%RH,20%RH至95%RH,30%RH至95%RH,40%RH至95%RH,或50%RH至95%RH;优选湿度为20%RH至90%RH,更优选为30%RH至75%RH,例如35%RH,40%RH,50%RH,55%RH,60%RH,64%RH,65%RH,67%RH,70%RH,或75%RH。
在一种实施方式中,还可以使用低温加热手段使涂装车间内达到适宜环境温度,其温度上限可以根据硅烷挥发性、涂层抗流挂、固化收缩、外观等因素进行合理调节,在实际生产过程中还要权衡加热能耗和收益。具体的,温度可以为20至80℃,优选温度为40至80℃,例如45℃,50℃,55℃,60℃,65℃,70℃或75℃。
下面对一些可选的施工参数进行举例说明。
在一个具体的实施方式中,对于大体积工件,且加热条件受限时,可以采用如下施工参数:
(1)湿膜厚度50至100μm;
(2)催化剂含量:二月桂酸二丁基锡(总重量0.1‰至1‰)、DMP-30或DBU总重量0.1‰至1‰、乙酰丙酮(总重量0.5%至5%);
(3)施工温度:0℃至40℃(不控制温度,因此实际温度取决于施工时车间内气温);
(4)施工湿度:5%RH至95%RH,优选20%RH至90%RH,更优选30%RH至70%RH。
在一个具体的实施方式中,对于需要快速固化的场景,但加热条件受限时,可以采用如下施工参数:
(1)湿膜厚度30至50μm;
(2)催化剂:DMP-30或DBU(总重量0.5%至1%);二月桂酸二丁基锡(总重量0.5%至1%);
(3)施工温度:5℃至40℃(不控制温度,因此实际温度取决于施工时车间内气温);
(4)施工湿度:5%RH至95%RH,优选20%RH至90%RH,更优选30%RH至70%RH。
在一个具体的实施方式中,对于需要快速固化的场景,且可以加热固化时,可以采用如下施工参数:
(1)湿膜厚度50至150μm;
(2)催化剂:二月桂酸二丁基锡(总重量0.1‰至1‰):乙酰丙酮(总重量0.5%至5%);
(3)施工温度:加热到40℃至80℃;
(4)施工湿度:5%RH至95%RH,优选20%RH至90%RH,更优选30%RH至70%RH。
需要说明的是,基于本发明提供的涂层组合物得到的漆膜,相比于典型商业化涂层产品体系(例如环氧、聚脲以及聚氨酯),具有如下性能上的优势:
需要强调的是,本发明提供的涂层组合物,相对于一般的聚氨酯(多元醇+异氰酸酯)涂层体系具有突出的优势。举例来说,相对于高固含、超高固含、甚至无溶剂聚氨酯体系,本发明提供的涂层组合物具有较低的粘度,可以实现更长和可控的可操作时间,便于施工操作;相对于有机溶剂聚氨酯体系,本发明提供的涂层组合物具有极低的VOC,克服了有机溶剂挥发带来的污染问题,更加环保;相对于水性聚氨酯体系,本发明提供的涂层
组合物单道涂层厚度增加,无需加水稀释,克服了部分有机物在水中的溶解性问题,且解决了水性聚氨酯无法厚涂的问题。
另外,本发明提供一种被涂层的材料制品,包括基材以及与所述基材表面接触的涂层,其中,所述涂层基于本发明所提供的涂层组合物在有水环境中制备而成。
另外,本发明还提供一种涂层套件,包括基材、基于本发明所提供的涂层组合物。可选的,还包括使用说明书。
需要说明的是,本发明的技术方案对其适用的基材的材质、形状、结构、表面特性等并没有特殊限定。
在一些实施方式中,基材可以包括工业领域常见的钢结构材料、复合材料(例如,含有颜填料的环氧、聚氨酯、不饱和聚酯涂层,连续纤维增强环氧、纤维增强聚氨酯、或纤维增强不饱和酯等)、各种工程塑料、天然有机材料(例如木材)、以及水泥或混凝土类无机建筑材料等。
在一些实施方式中,基材可以具有任何厚度;基材表面可以光滑、基本上平滑、或带有纹理;基材可以是规则的或者不规则的形状。
需要说明的是,本发明涉及的被涂层的材料制品或溶剂涂层套件可以独立地适用于多种行业,对此没有特殊限制,包括但不限于办公用品行业、电子与电气用品行业、以及建筑行业等。
在一些实施方式中,为了保证漆膜与基材层间良好的附着力,涂层组合物在涂装前,可以先对基材表面进行预处理;例如,清除杂质油污后,对其表面进行物理喷砂、打磨或等离子体处理等。
另外,本发明还提供涂层组合物的使用方法,包括在有水环境下,将本发明所提供的涂层组合物涂覆于基材的表面的步骤。
在一些实施方式中,涂层组合物的使用方法包括如下步骤:
S1:将涂层组合物的各组分均匀混合;
S2:将S1中混合均匀的涂层组合物均匀涂覆在基材上;
S3:设置合适的湿度以使涂层固化;
S4:等待涂层组合物固化,从而形成漆膜。
在一些实施方式中,涂层组合物的使用方法包括如下步骤:
S1:将涂层组合物的各组分均匀混合;
S2:将S1中混合均匀的涂层组合物均匀涂覆在基材上;
S3:等待涂层组合物固化,从而形成漆膜;
根据需要,在步骤S3之前,可以设置一定的固化参数(例如温度和湿度),以满足涂层固化所需的环境要求。
另外,本发明还提供基于上述的方法制备得到的涂覆有涂层的制品。
本发明的涂层体系固化过程的反应机理很可能是如下步骤:
步骤1、主剂A的具有硅烷氧基的硅烷或其低聚物与空气中的水分子反应,形成硅醇和烷基醇:
步骤2、固化剂B的异氰酸酯基团在催化剂C的催化作用下,迅速与步骤1中产物烷基醇发生加成反应,形成(聚)氨基甲酸烷基酯。由于步骤1的产物烷基醇被消耗,因此步骤1反应迅速向正向进行,即步骤2反应对步骤1的反应有强烈的促进作用:
步骤3、在步骤2的促进作用下,步骤1中的产物硅醇大量形成。硅醇可以与自身缩合,释放水分子同时形成硅-氧-硅共价键,即聚硅氧烷主链:
或者,硅醇可以与主剂A的硅烷氧基发生加成取代反应,形成硅-氧-硅共价键即聚硅氧烷主链结构,同时释放新的烷基醇:
步骤4、上述反应生成的水分子和烷基醇,重复参与反应步骤1至3,形成更多的聚硅氧烷主链结构,主链结构的占比随着反应进程的进行而提高,最终形成高度交联固化的聚硅氧烷为主体成分的漆膜。
本发明的申请人认为,水分子优先与本发明涉及的涂层组合物中的主剂A发生步骤1的反应,而不会大量与固化剂B中的异氰酸酯基反应。
可以看到,相比于现有方案(例如将主剂A单独作为涂层原料,是商用单组分有机硅涂层的典型应用之一),本发明涉及的技术方案中产生的烷基醇会进一步与固化剂B中的异氰酸酯基作用形成烷基氨酯组分留在漆膜之中(步骤2),从而避免了VOC排放导致的环境污染问题,满足无溶剂/超高固含/高固含标准。同时,烷基氨酯组分有助于增加涂层与基材之间的附着力,使得本发明涉及的技术方案对各种基材的适用性达到了与普通聚氨酯体系的同等水平,优于常见单组分有机硅商用产品体系。
可以理解的,以上所述仅对本发明涉及的技术方案和技术效果从机理的角度做出的一种解释说明,并非因此限制本发明的保护范围。
以下将结合具体的实施例和对比例,对本发明的技术方案和技术效果展开进一步说明。
实施例1:涂层组合物1-1至1-18的制备
将各组分按照表1中的物质和含量配方进行配制,从而得到其对应的涂层组合物。
其中,主剂A中物质的摩尔含量以其中硅烷氧基的摩尔含量计算,固化剂B中物质的摩尔含量以其中异氰酸酯基的摩尔含量计算,催化剂C和功能性组分D的含量以其占据涂层组合物的质量分数计算。
表1:涂层组合物(1-1至1-18)的配方
实施例2:涂层组合物1-1至1-18的使用
将涂层组合物1-1至1-18分别按照表1中的配方进行配制并得到均匀的混合物涂料,将其涂覆于基材表面,而后进行烘干固化成漆膜,并记录各自的指压干时间,如下表2所示。其中,指压干时间的测试方法参考ASTM D 1640的记载。
表2:涂层组合物1-1至1-18的固化
根据表2数据可知,在本发明公开的技术方案的范围内,改变主剂A和固化剂B的种类和配比,形成的涂层组合物1-1至1-19在一定温度和湿度环境设定下均可成功固化形成漆膜。其中,通过比较涂层组合物1-1和1-8、涂层组合物1-2和1-10的数据可以发现,通过往涂层组合物的配方中添加适量的催化剂可以显著促进该涂层组合物固化形成漆膜的效率。通过比较涂层组合物1-3至1-7的数据可以发现,选择不同类型的主剂A可以在一定程度上调节形成漆膜的指压干时间,其中以KH570、KH631和KH560作为主剂A的指压干时间较短。通过比较涂层组合物1-8至1-11的数据可以发现,选择不同类型的固化剂B对调节形成漆膜的指压干时间也有一定作用,其中以二环己基甲烷二异氰酸酯作为固化剂B的指压干时间较长(适宜缓慢固化场景)。通过比较涂层组合物1-12至1-16的数据可知,当主剂A和固化剂B的配比在1到10的范围内变化时,均能固化形成漆膜。通过比较涂层组合物1-3和1-17的数据可知,催化剂的类型选择对调节形成漆膜的指压干时间有较大影响。通过比较涂层组合物1-3和1-18的数据可知,往涂层组合物中添加适量的功能性组分D,在为漆膜带来额外性能的同时,对其指压干时间的影响不大。通过比较涂层组合物1-3和1-3(低湿度)的数据可知,本发明公开的涂层组合物在低至10%RH的环境湿度下仍可成功固化形成漆膜,并且改变环境的湿度对漆膜的指压干时间有一定调节作用,一般来说,湿度越大固化速率越快。
实施例3:涂层组合物1-19至1-22的制备
根据表3中的物质和含量配方进行配制,得到涂层组合物1-19至1-22。其中,“份”指的是质量份数。
表3:涂层组合物(1-19至1-22)的配方
对比例1:市面上常用涂层组合物(D1、D2和D3)的制备
将各组分按照表4中的物质和含量进行配制,从而得到其对应的涂层组合物D1、D2和D3,其中,括号中的数字为各组分占该涂层组合物的质量分数。
表4:常用涂层组合物(D1、D2和D3)的配方
实施例4:涂层组合物1-19至1-22、D1至D3的使用
实施例3和对比例1中的涂层组合物的各组分经过分散、研磨、和均匀混合的步骤,再进行“熟化”,即,将其混合均匀后等待一段时间再施工,有利于获得更优的组分混溶性,从而带来更优的成膜性能。熟化完成后即可进行涂装,其中,D3为水性双组份氟碳聚氨酯涂料,其在涂装前需要先向涂层组合物中加入适量去离子水至施工粘度,本实施例中,D3涂层组合物与去离子水的体积混合比例为100:(40~50)。
在涂装车间中,将以上获得的涂层组合物分别按照如下表5中的施工参数,均匀喷涂在特定基材的表面,基材的选择和处理如表5所记载。
涂装过程中涉及的操作仪器如下:
喷涂:压缩空气小口径油漆喷枪;
刷涂:使用小型毛刷刷涂至对应基材;其中,D1和D2为刷涂。
烘箱:电热鼓风干燥箱。
其中,指压干时间:喷涂完成后,在一定温度和湿度的烘箱环境中记录其对应的指压干时间,其中指压干时间的测试方法参考ASTM D 1640的记载。
表5:施工参数
根据表5中的施工参数数据可知,各涂层组合物均能在一定的施工参数下固化形成漆膜。通过对比1-19的两组数据,本发明公开的技术方案还可以通过改变环境条件来灵活调整形成漆膜所需的指压干时间,例如,在同等条件下,通过将烘箱的湿度从10%RH调整为50%RH,指压干时间可大幅缩减。
实施例5:涂层组合物1-19至1-22、D1至D3的施工性能测定
通过实验测定,分别获得1-19至1-22、D1至D3涂层组合物的施工性能参数如下表6所示。
表6:各涂层组合物的施工性能
其中,各施工性能参数通过如下测定步骤或者计算方法获得:
初始混合粘度:在将各组分混合成为涂料组合物后的5~10分钟时间内测定体系的粘度值,从而得到初始混合粘度。粘度的测定方法为斯托默粘度计法(参考GB-T 9269-2009),测得粘度值单位为克雷布斯单位(KU)。
单次可喷涂厚度:漆膜外观、性能达标前提下,单次涂装尽可能厚的漆膜,对应干膜厚度为单次可喷涂厚度。其中,当单次喷涂厚度达到200微米时,发现仍能满足漆膜外观、性能达标,则停止测试,认为该涂料组合物的单次可喷涂厚度>200微米。
可操作时间:将油漆混合物容器置于35℃的恒温水浴锅中慢速搅拌(30~120转每分钟),从油漆混合开始计时,至旋转粘度大于85KU对应的时间。(其中,D1,D2由于初始混合粘度较高(已接近或大于80KU),其可操作时间为从油漆混合开始计时,至无法施工成膜对应的时间)
固含量:室温自然干燥7天的条件下,测量涂层组合物在固化前后的质量变化,计算固化后比固化前的质量分数。
根据以上表6中的数据可知,本发明公开的技术方案相比于现有技术,具有更低的初始混合粘度(低于70KU),便于施工涂覆操作;对应的,涂层组合物1-19和1-21的可操作时间可以达到1小时以上,而涂层组合物D1和D2的可操作时间均小于1小时,甚至其中D2的可操作时间小于10分钟。同时,本发明公开的技术方案的单次可喷涂厚度可以达到与现有技术的双组分环氧体系(D1)、双组分聚脲体系(D2)相当的水平,远高于水性双组分氟碳聚氨酯体系(D3)。此外,本发明公开的技术方案可以达到超高固含涂层组合物的水平,涂层组合物1-19、1-21和1-22的固含量在90%以上。
实施例6:涂层组合物1-19至1-22的漆膜性能测定
通过实验测定,分别获得以上涂层组合物在不同基材表面固化形成漆膜之后的性能测定数据如下表7所示。
表7:各涂层组合物形成的漆膜性能
其中,划格附着力、拉拔附着力或抗冲击性能测试主要用于评估漆膜的基材附着与柔韧性能,耐水密、耐盐雾主要用于评估漆膜的耐腐蚀性能,耐UVB老化、耐湿紫外主要用于评估漆膜的耐候性能。各漆膜性能参数通过如下测定步骤或者计算方法获得:
划格附着力的测试方法参考GB/T 9286;拉拔附着力的测试方法参考GB/T 5210;抗冲击的测试方法参考GB/T 1732;耐水密的测试方法参考ISO 6270-2,其中测试温度为60℃;耐盐雾的测试方法参考ISO9227;耐UVB老化的测试方法参考GB/T 23981的类型1(60℃进行4小时光照,50℃进行4小时喷淋);耐湿紫外使用3KW卤素灯进行测试,其中样板温度85~130℃,样板测试箱体环境湿度75%RH~95%RH,样板紫外光暴露辐照强度为1000~1300W/m2(UVB辐照强度占比UVB/(UVA+UVB)≈3~5%),辐照量计算方法为总辐照强度*测试时间,单位为kwh/m2。
根据表7中的数据可知,本发明公开的技术方案通过常规的配方调整后施工得到的漆膜,在基材附着性能、防腐性能、以及耐候性能等方面,均可以达到与现有技术相当甚至更优的标准。具体的,通过对比涂层组合物1-19、D1和D2在环氧玻璃钢材料,表面打磨至无亮光的基材上的性能测试数据可知,涂层组合物1-19的拉拔附着力和划格附着力水平与现有技术相当,且耐UVB老化性能相比现有技术更优。通过对比涂层组合物1-20和D3在磷铁板材料,表面打磨至无亮光的基材上的性能测试数据可知,涂层组合物1-20的划格附着力与现有技术相当,且耐湿紫外性能优秀,在相同的辐照量下色差变化更小。通过对
比涂层组合物1-21和D1在碳钢Q235材料,表面喷砂SA2.5和喷涂20微米厚M116-9080水性富锌底漆的基材上的性能测试数据可知,其划格附着力、抗冲击和耐盐雾性能均能达到与现有技术相当的水平。通过对比涂层组合物1-22和D1在碳钢Q235材料,不处理表面的基材上的性能测试数据可知,其划格附着力、抗冲击和耐水密性能同样可以达到与现有技术相当的水平。可见,根据本发明公开的技术方案所得到的漆膜的性能优异,具有较高的工业和商业应用价值。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。
Claims (16)
- 一种涂层组合物,其特征在于,包括如下组分:主剂A,所述主剂A包括含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物,和固化剂B,所述固化剂B包括含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物;其中,在常温常压且无催化剂的条件下,所述含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物与所述含有异氰酸酯基的小分子和/或单体含有至少一个异氰酸酯基的聚合物不发生一步加成反应,或所述含有硅烷氧基的硅烷小分子和/或含有硅烷氧基的硅烷低聚物中不含有活泼氢,或所述涂层组合物在无水环境中保持液态。
- 根据权利要求1所述的涂层组合物,还包括如下组分:催化剂C,所述催化剂C包括至少一种能催化烷基醇的羟基与异氰酸酯基发生加成反应的催化剂。
- 根据权利要求2所述的涂层组合物,其中:所述主剂A中硅烷氧基和所述固化剂B中异氰酸酯基的摩尔比为1至10。
- 根据权利要求2所述的涂层组合物,其中:所述含有硅烷氧基的硅烷小分子包括具有饱和烷基的烷氧基硅烷、具有酯基的烷氧基硅烷、具有芳香烃基的烷氧基硅烷、具有不饱和烃基的烷氧基硅烷、或具有环氧基的烷氧基硅烷中的至少一种;和/或所述含有硅烷氧基的硅烷低聚物由至少一种含有硅烷氧基的单体聚合而成,其聚合度为2至20,并且在25℃下的粘度处于10厘泊至10,000厘泊的范围内;和/或所述含有硅烷氧基的硅烷低聚物包括由选自含有饱和烷基的烷氧基硅烷、含有酯基的烷氧基硅烷、含有芳香烃基的烷氧基硅烷、含有不饱和烃基的烷氧基硅烷、或含有环氧基的烷氧基硅烷中的一种或多种单体聚合而成。
- 根据权利要求4所述的涂层组合物,其中:所述含有硅烷氧基的硅烷小分子选自甲基丙烯酰氧丙基三甲氧基硅烷、苯基三甲氧基硅烷、乙烯基三甲氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、甲基三甲氧基硅烷、二甲基二甲氧基硅烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基丙烯酰氧丙基三乙氧基硅烷、乙烯基三乙氧基硅烷、苯基三乙氧基硅烷、缩水甘油醚基丙基三乙氧基硅烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、二苯 基二乙氧基硅烷,或甲基苯基二乙氧基硅烷中的一种或多种。
- 根据权利要求4所述的涂层组合物,其中:所述含有硅烷氧基的硅烷小分子选自乙烯基三甲氧基硅烷、二甲基二甲氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、苯基三甲氧基硅烷中的一种或多种;和/或所述含有硅烷氧基的硅烷低聚物包括由选自乙烯基三甲氧基硅烷、二甲基二甲氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、苯基三甲氧基硅烷中的一种或多种的单体聚合而成。
- 根据权利要求2所述的涂层组合物,其中:所述含有异氰酸酯基的小分子选自芳香族异氰酸酯或脂肪族异氰酸酯;和/或所述单体含有至少一个异氰酸酯基的聚合物选自芳香族异氰酸酯聚合物或脂肪族异氰酸酯聚合物;和/或所述单体含有至少一个异氰酸酯基的聚合物在40℃下的粘度低于10,000厘泊;和/或,所述单体含有至少一个异氰酸酯基的聚合物的分子量选自150至5000克每摩尔。
- 根据权利要求1所述的涂层组合物,其中:所述含有异氰酸酯基的小分子选自芳香族异氰酸酯;和/或所述单体含有至少一个异氰酸酯基的聚合物选自芳香族异氰酸酯聚合物。
- 根据权利要求2所述的涂层组合物,其中:所述催化剂C选自聚氨酯催化剂或具备延迟功能的催化剂。
- 根据权利要求9所述的涂层组合物,其中:所述催化剂C选自金属盐类聚氨酯催化剂、叔胺类聚氨酯催化剂或金属盐类聚氨酯催化剂与其络合剂形成的组合物。
- 根据权利要求2所述的涂层组合物,其中:所述主剂A包括甲基丙烯酰氧丙基三甲氧基硅烷、苯基三甲氧基硅烷、乙烯基三甲氧基硅烷,或缩水甘油醚基丙基三甲氧基硅烷中的一种或多种,所述固化剂B包括二苯基甲烷二异氰酸酯或其聚合物,六亚甲基二异氰酸酯或其聚合物、或甲苯二异氰酸酯或其聚合物中的一种或多种,所述催化剂C包括二月桂酸二丁基锡、2,4,6-三(二甲氨基甲基)苯酚,或1,8-二氮杂环[5,4,0]十一烯-7中的一种或多种;所述催化剂C与所述涂层组合物的质量比为不超过5%。
- 根据权利要求2所述的涂层组合物,其中:所述涂层组合物还包括功能性组分D。
- 根据权利要求12所述的涂层组合物,其中:所述功能性组分D包括具备增韧、增塑,或增容功能的组分,其中所述具备增韧、增塑,或增容功能的组分选自羟基封端聚二甲基硅氧烷、羟基丙烯酸树脂或双酚A型环氧树脂。
- 一种具有涂层的材料制品,其特征在于,包括基材以及在所述基材表面涂覆的涂层,其中,所述涂层由权利要求1-13中任一所述的涂层组合物制备而成。
- 一种涂层套件,其特征在于,包括基于权利要求1-13任一所述的涂层组合物,其中所述涂层组合物的主剂A和固化剂B分别独立包装。
- 涂层组合物的使用方法,其特征在于,包括如下步骤:在有水环境下,将基于权利要求1-13任一所述的涂层组合物涂覆于基材的表面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410904143.9A CN118440582B (zh) | 2024-07-05 | 2024-07-05 | 涂层组合物、及其材料制品、套件和使用方法 |
CN202410904143.9 | 2024-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025055869A1 true WO2025055869A1 (zh) | 2025-03-20 |
Family
ID=92318140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/117833 WO2025055869A1 (zh) | 2024-07-05 | 2024-09-09 | 涂层组合物、及其材料制品、套件和使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118440582B (zh) |
WO (1) | WO2025055869A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118440582B (zh) * | 2024-07-05 | 2025-03-28 | 麦加芯彩新材料科技(上海)股份有限公司 | 涂层组合物、及其材料制品、套件和使用方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060225612A1 (en) * | 2005-04-07 | 2006-10-12 | Alain Lejeune | Epoxy silane oligomer and coating composition containing same |
CN105246935A (zh) * | 2013-03-15 | 2016-01-13 | 赫普有限公司 | 用于涂料的聚硅氧烷改性的多异氰酸酯 |
US20170183534A1 (en) * | 2014-10-22 | 2017-06-29 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Siloxane-based coatings containing polymers with urea linkages and terminal alkoxysilanes |
CN107001854A (zh) * | 2014-12-08 | 2017-08-01 | 巴斯夫涂料有限公司 | 涂料组合物和由其制备的涂层及其用途 |
CN109370400A (zh) * | 2018-09-20 | 2019-02-22 | 北京金汇利应用化工制品有限公司 | 一种水性双组分硅改性聚氨酯树脂及其制备方法 |
CN118440582A (zh) * | 2024-07-05 | 2024-08-06 | 麦加芯彩新材料科技(上海)股份有限公司 | 涂层组合物、及其材料制品、套件和使用方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103194143A (zh) * | 2013-04-11 | 2013-07-10 | 南车眉山车辆有限公司 | 一种铁路车辆用聚脲涂料组成、制备和喷涂工艺 |
CN114213885A (zh) * | 2021-12-27 | 2022-03-22 | 南京科工煤炭科学技术研究有限公司 | 一种安全型快凝巷道封闭涂料及其制备方法 |
CN114656867B (zh) * | 2022-03-16 | 2023-03-10 | 青岛爱尔家佳新材料股份有限公司 | 低温防覆冰易除冰的双组份脂肪族喷涂聚脲 |
CN116239942B (zh) * | 2023-01-17 | 2024-05-10 | 摩珈(上海)生物科技有限公司 | 一种聚天门冬氨酸酯聚脲涂料及其制备方法 |
CN118085692A (zh) * | 2023-12-19 | 2024-05-28 | 上海交通大学 | 双组份主链降解、侧链水解型海洋防污涂料及其制备方法 |
CN118271943A (zh) * | 2024-03-18 | 2024-07-02 | 杭州骏诚新材料科技有限公司 | 一种低温快干型丙烯酸聚氨脂及其制备工艺 |
-
2024
- 2024-07-05 CN CN202410904143.9A patent/CN118440582B/zh active Active
- 2024-09-09 WO PCT/CN2024/117833 patent/WO2025055869A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060225612A1 (en) * | 2005-04-07 | 2006-10-12 | Alain Lejeune | Epoxy silane oligomer and coating composition containing same |
CN105246935A (zh) * | 2013-03-15 | 2016-01-13 | 赫普有限公司 | 用于涂料的聚硅氧烷改性的多异氰酸酯 |
US20170183534A1 (en) * | 2014-10-22 | 2017-06-29 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Siloxane-based coatings containing polymers with urea linkages and terminal alkoxysilanes |
CN107001854A (zh) * | 2014-12-08 | 2017-08-01 | 巴斯夫涂料有限公司 | 涂料组合物和由其制备的涂层及其用途 |
CN109370400A (zh) * | 2018-09-20 | 2019-02-22 | 北京金汇利应用化工制品有限公司 | 一种水性双组分硅改性聚氨酯树脂及其制备方法 |
CN118440582A (zh) * | 2024-07-05 | 2024-08-06 | 麦加芯彩新材料科技(上海)股份有限公司 | 涂层组合物、及其材料制品、套件和使用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118440582B (zh) | 2025-03-28 |
CN118440582A (zh) | 2024-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5026668B2 (ja) | ナノ粒子、これらの表面を変性する方法、ナノ粒子の分散液、これらの製造方法および使用 | |
CN101583643B (zh) | 具有高耐刮性和气候稳定性的涂料组合物 | |
CN101942192B (zh) | 硅氧烷和纳米二氧化硅双重改性的紫外光固化水性聚氨酯分散体的制备方法 | |
JP6197334B2 (ja) | 水性樹脂組成物及びそれを塗布して得られる物品 | |
CN108410347B (zh) | 一种led光源水性uv涂料 | |
JPH0426622B2 (zh) | ||
WO2025055869A1 (zh) | 涂层组合物、及其材料制品、套件和使用方法 | |
JP5688523B1 (ja) | 二液混合型塗料組成物 | |
CN104628983A (zh) | 一种有机硅烷丙烯酸聚氨酯的制备方法及其用于耐水煮紫外光固化玻璃漆 | |
CN104371086B (zh) | 一种用于紫外光固化的有机硅烷丙烯酸聚氨酯的制备方法 | |
MXPA04012356A (es) | Proceso de recubrimiento paraobtener efectos especiales de superficies. | |
JP2004513197A (ja) | 基材を被覆する方法 | |
JP4985460B2 (ja) | 有機−無機ハイブリッド樹脂水性分散体、塗料および塗装物 | |
WO2010117687A1 (en) | Low temperature curable coating compositions, related methods and coated substrates | |
JP6427923B2 (ja) | 水性複合樹脂組成物及びそれを用いたコーティング剤 | |
JP5098947B2 (ja) | 硬化性樹脂組成物、塗料および塗装物 | |
CN114133851B (zh) | 有机硅改性羟基聚丙烯酸酯分散体及其制备方法和应用 | |
JP2009035711A (ja) | 有機−無機ハイブリッド樹脂水性分散体、硬化性樹脂組成物、塗料および塗装物 | |
CN114729096B (zh) | 包含硅烷基添加剂并且具有改善的粘合性的水性底色漆组合物以及多层涂层 | |
JP4985511B2 (ja) | 有機−無機ハイブリッド樹脂水性分散体、塗料および塗装物 | |
CN108499826A (zh) | 一种水性uv涂料喷涂固化工艺 | |
JP7528887B2 (ja) | 塗料組成物、被覆物品および硬化膜の形成方法 | |
CN116023854B (zh) | 一种高硬度耐摩擦防雾涂料及制备方法 | |
JP2024158860A (ja) | 被覆材 | |
JP2025008816A (ja) | 塗装方法 |