WO2025052983A1 - Imide group-containing epoxy resin and curable epoxy resin composition containing same - Google Patents
Imide group-containing epoxy resin and curable epoxy resin composition containing same Download PDFInfo
- Publication number
- WO2025052983A1 WO2025052983A1 PCT/JP2024/030211 JP2024030211W WO2025052983A1 WO 2025052983 A1 WO2025052983 A1 WO 2025052983A1 JP 2024030211 W JP2024030211 W JP 2024030211W WO 2025052983 A1 WO2025052983 A1 WO 2025052983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- imide group
- group
- containing epoxy
- equivalent
- Prior art date
Links
Definitions
- the present invention relates to an imide group-containing epoxy resin having an imide skeleton and a curable epoxy resin containing the same.
- Hardenable resins such as epoxy resins have excellent heat resistance, mechanical properties, and electrical properties, and are widely used industrially, primarily as electrical and electronic materials such as insulating materials for printed wiring boards and semiconductor encapsulation materials.
- SiC silicon carbide
- Patent Document 1 discloses a cured product made from an epoxy resin that contains a compound having an imide structure.
- Patent Document 1 the cured product in Patent Document 1 was produced using a solvent, and the curing conditions were high, at 300°C. If Patent Document 1 was cured at 200°C without using a solvent, there were problems with poor fluidity, reduced uniformity, and insufficient heat resistance.
- the present invention aims to provide an imide group-containing epoxy resin with excellent fluidity, which can give a cured product with excellent uniformity and heat resistance even under moderate curing conditions (e.g., curing temperature conditions of 200°C or less), and a curable epoxy resin composition using the same.
- moderate curing conditions e.g., curing temperature conditions of 200°C or less
- the gist of the present invention is as follows. ⁇ 1> A diimide dicarboxylic acid compound represented by general formula (1) and a bifunctional epoxy resin, the diimide dicarboxylic acid compound and the bifunctional epoxy resin are bonded by an ester bond, An imide group-containing epoxy resin having an epoxy equivalent of 1,000 or less.
- X1 and X2 each independently represent a structure derived from an aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, or an aliphatic tricarboxylic anhydride component; R1 represents a structure derived from an aromatic diamine component, or an alicyclic diamine component.
- the bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of bisphenol A type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, and anthracene type epoxy resins.
- the bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene-type epoxy resins and biphenyl-type epoxy resins, The imide group-containing epoxy resin according to ⁇ 1> or ⁇ 2>, wherein the epoxy equivalent is 500 or less.
- the bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene-type epoxy resins and biphenyl-type epoxy resins, The imide group-containing epoxy resin according to any one of ⁇ 1> to ⁇ 3>, wherein the epoxy equivalent is 250 to 350.
- ⁇ 5> The imide group-containing epoxy resin according to any one of ⁇ 1> to ⁇ 4>, wherein the imide group-containing epoxy resin has a structure in which one molecule of the diimidedicarboxylic acid compound is bonded to each end of the difunctional epoxy resin via an ester bond.
- ⁇ 6> A method for producing an imide group-containing epoxy resin, comprising reacting a diimidedicarboxylic acid compound with a bifunctional epoxy resin in the presence of a phosphorus compound.
- ⁇ 7> The method for producing an imide group-containing epoxy resin according to ⁇ 6>, wherein the diimide dicarboxylic acid compound is blended in an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is in an equivalent ratio of 0.01 to 0.6 relative to the epoxy equivalent of the bifunctional epoxy resin.
- the bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene epoxy resins and biphenyl epoxy resins, The method for producing an imide group-containing epoxy resin according to ⁇ 6> or ⁇ 7>, wherein the amount of the diimide dicarboxylic acid compound is such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.05 to 0.35 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin.
- the bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene epoxy resins and biphenyl epoxy resins,
- a curable epoxy resin composition comprising the imide group-containing epoxy resin according to any one of ⁇ 1> to ⁇ 5> and a curing agent.
- ⁇ 12> A cured product of the curable epoxy resin composition according to ⁇ 11>.
- ⁇ 13> An electrical insulating material comprising the cured product according to ⁇ 12>.
- ⁇ 14> An encapsulant comprising the cured product according to ⁇ 12>.
- a printed wiring board comprising the cured product according to ⁇ 12>.
- the present invention it is possible to provide a highly fluid imide group-containing epoxy resin having an imide skeleton, which can give a cured product having excellent uniformity and heat resistance even when the curing conditions are relaxed, and a curable epoxy resin composition using the same.
- the cured product obtained by curing the curable epoxy resin composition of the present invention can be suitably used for electrical insulating materials, sealing materials, and printed wiring boards.
- the imide group-containing epoxy resin of the present invention is a reaction product of a diimide dicarboxylic acid compound and a bifunctional epoxy resin.
- the imide group-containing epoxy resin of the present invention contains a diimide dicarboxylic acid compound and a bifunctional epoxy resin, and the diimide dicarboxylic acid compound and the bifunctional epoxy resin are ester-bonded.
- the structure of the imide group-containing epoxy resin of the present invention is not particularly limited as long as it has an epoxy equivalent weight as described below, and may be, for example, one structure selected from the group consisting of the following structures (A), (B) and (C), or the imide group-containing epoxy resin of the present invention may be a mixture of two or more structures selected from the group.
- Structure (A) A structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- one of the two carboxyl groups in the diimidedicarboxylic acid compound forms an ester bond by reacting with one of the two epoxy groups in the bifunctional epoxy resin.
- the other carboxyl group forms an ester bond by reacting with one of the two epoxy groups in another bifunctional epoxy resin.
- Structure (B) A structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of one molecule of a bifunctional epoxy resin via an ester bond
- one of the two epoxy groups in the bifunctional epoxy resin forms an ester bond by reacting with one of the two carboxyl groups in the diimidedicarboxylic acid compound
- the other epoxy group forms an ester bond by reacting with one of the two carboxyl groups in the other diimidedicarboxylic acid compound.
- the lower limit of the number of repeating units is not particularly limited, and may be, for example, 2.
- a hydroxyl group is generated by opening the epoxy ring.
- Each of these hydroxyl groups may independently react with a carboxyl group of another diimidedicarboxylic acid compound to form an ester bond, or may react with an epoxy group of another bifunctional epoxy resin to form an ether bond, or may not react with any group at all.
- the imide group-containing epoxy resin of the present invention preferably has structure (A) from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product.
- the imide group-containing epoxy resin of the present invention preferably contains an imide group-containing epoxy resin having structure (A).
- the term "fluidity” refers to the fluidity of the imide group-containing epoxy resin, and is a property relating to a lower viscosity at 140° C.
- the imide group-containing epoxy resin needs to flow during molding, and a lower viscosity is preferable.
- the uniformity refers to the uniformity of the cured product of the imide group-containing epoxy resin and the curing agent, and is a characteristic related to the fact that the cured product contains less insoluble components.
- the insoluble components are foreign matter that inhibit the transparency of the cured product, and may be generated during the manufacturing process of the cured product due to a decrease in the compatibility between the imide group-containing epoxy resin and the curing agent and/or the presence of unreacted imide dicarboxylic acid compounds.
- the presence of insoluble components leads to poor curing and/or a decrease in physical properties, so it is desirable to cure uniformly.
- the heat resistance refers to the heat resistance of the cured product of the imide group-containing epoxy resin and the curing agent, and is a property related to the higher glass transition temperature of the cured product. Since the cured product needs to operate under high temperature conditions, it is better for the glass transition temperature to be higher.
- the epoxy equivalent of the imide group-containing epoxy resin of the present invention must be 1000 or less (particularly 100 to 1000), and from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 800 or less (particularly 150 to 800), more preferably 500 or less (particularly 200 to 500), and more preferably 250 to 350. If the epoxy equivalent exceeds 1000, the fluidity and uniformity will decrease.
- the epoxy equivalent is the molecular weight of the epoxy resin per epoxy group, and is the value measured by nuclear magnetic resonance spectroscopy.
- the viscosity (140°C) of the imide group-containing epoxy resin of the present invention is usually 1000 Pa ⁇ s or less, and from the viewpoint of further improving the fluidity, it is preferably 500 Pa ⁇ s or less, more preferably 200 Pa ⁇ s or less, even more preferably 100 Pa ⁇ s or less, sufficiently preferably 10 Pa ⁇ s or less, and even more preferably 5 Pa ⁇ s or less.
- the viscosity is usually 0.01 Pa ⁇ s or more, particularly 0.05 Pa ⁇ s or more, and from the viewpoint of further improving the fluidity and heat resistance of the cured product, it is preferably 0.5 Pa ⁇ s or more, more preferably 1 Pa ⁇ s or more.
- the viscosity is the value at 140°C determined by dynamic viscoelasticity measurement.
- the diimidedicarboxylic acid compound is a compound having two imide groups and two carboxyl groups in one molecule.
- the diimidedicarboxylic acid compound does not have an amide group.
- a tricarboxylic anhydride component and a diamine component are used as raw material compounds, and a reaction between functional groups is carried out to produce an amide acid compound, and an imidization reaction is carried out to produce a diimidedicarboxylic acid compound.
- the reaction between functional groups may be carried out in a solution or in a solid phase, and the production method is not particularly limited.
- a diimidedicarboxylic acid compound using a tricarboxylic anhydride component and a diamine component is a compound in which two molecules of the tricarboxylic anhydride component react with one molecule of the diamine component to form two imide groups, and more specifically, is a diimidedicarboxylic acid compound having the structure of general formula (1).
- X1 and X2 each independently represent a structure derived from a tricarboxylic acid anhydride component (e.g., an aromatic tricarboxylic acid anhydride component, an alicyclic tricarboxylic acid anhydride component, or an aliphatic tricarboxylic acid anhydride component) described below.
- X1 and X2 each independently may be a residue derived from the above components.
- R1 represents a structure derived from a diamine component (for example, an aromatic diamine component or an alicyclic diamine component) described below. Specifically, R1 may be a residue derived from the above components.
- the diamine component is usually used in a molar amount of about 0.5 times, for example 0.1 to 0.7 times, preferably 0.3 to 0.7 times, more preferably 0.4 to 0.6 times, and even more preferably 0.45 to 0.55 times, relative to the tricarboxylic anhydride component.
- the tricarboxylic anhydride components that can constitute the diimide dicarboxylic acid-based compound include aromatic tricarboxylic anhydride components that contain an aromatic ring, alicyclic tricarboxylic anhydride components that contain an aliphatic ring but no aromatic ring, and aliphatic tricarboxylic anhydride components that contain neither an aromatic ring nor an alicyclic ring.
- the tricarboxylic anhydride components may contain ether groups and/or thioether groups, and/or one or more of the hydrogen atoms may be substituted with halogen atoms (e.g., fluorine atoms, chlorine atoms, bromine atoms).
- the tricarboxylic anhydride components may be acid halide components.
- An acid halide component is a compound in which the OH group of the carboxyl group in the tricarboxylic anhydride component is substituted with a halogen atom.
- aromatic tricarboxylic anhydride components include trimellitic anhydride and 1,2,4-naphthalene tricarboxylic anhydride. These may be used alone or in a mixture of two or more.
- the number of aromatic rings contained in one molecule of the aromatic tricarboxylic anhydride component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2. In particular, naphthalene rings are counted as containing two aromatic rings in one molecule.
- alicyclic tricarboxylic anhydride components include 1,2,3-cyclohexane tricarboxylic anhydride and 1,2,4-cyclohexane tricarboxylic anhydride. These may be used alone or in a mixture of two or more.
- the number of alicyclic rings contained in one molecule of the alicyclic tricarboxylic anhydride component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2.
- aliphatic tricarboxylic anhydride component examples include 3-carboxymethylglutaric anhydride, 1,2,4-butanetricarboxylic acid-1,2-anhydride, and cis-propene-1,2,3-tricarboxylic acid-1,2-anhydride. These may be used alone or in a mixture of two or more.
- the tricarboxylic anhydride component of the diimidedicarboxylic acid compound preferably contains an aromatic tricarboxylic anhydride component and/or an alicyclic tricarboxylic anhydride component, and more preferably contains an aromatic tricarboxylic anhydride component, from the viewpoint of the heat resistance of the diimidedicarboxylic acid compound, the imide group-containing epoxy resin obtained using the same, and the cured product obtained using the same.
- the diimidedicarboxylic acid compound From the viewpoint of the solubility of the diimidedicarboxylic acid compound, it is preferable to use, among the above-mentioned tricarboxylic acid anhydride components, an alicyclic tricarboxylic acid anhydride component and/or an aliphatic tricarboxylic acid anhydride component as the tricarboxylic acid anhydride component of the diimidedicarboxylic acid compound.
- Diamine components that can form diimide dicarboxylic acid compounds include aromatic diamine components that contain aromatic rings, and alicyclic diamine components that contain aliphatic rings but no aromatic rings.
- the diamine components may contain ether groups and/or thioether groups, and/or one or more of the hydrogen atoms may be substituted with halogen atoms (e.g., fluorine atoms, chlorine atoms, bromine atoms).
- the diamine components may have side chains.
- Aromatic diamine components include, for example, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminobenzanilide, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, bis(4-aminophenyl)sulfone, 9,9-bis(4-aminophenyl)fluorene, metaxylenediamine, 4,4'-bis(3-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)biphenylbis[4-(4-aminophenoxy)phenyl]sulfone, and analogs of the above diamines.
- the number of aromatic rings contained in one molecule of the aromatic diamine component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2.
- a fluorene ring is counted as containing two aromatic rings in one molecule.
- alicyclic diamine components include trans-1,4-cyclohexanediamine, 4,4'-methylenebis(cyclohexylamine), and 1,4-bis(aminomethyl)cyclohexane. These may be used alone or in a mixture of two or more.
- the number of alicyclic rings contained in one molecule of the alicyclic diamine component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2.
- the diamine component of the diimidedicarboxylic acid compound preferably contains an aromatic diamine component and/or an alicyclic diamine component, and more preferably contains an aromatic diamine component, from the viewpoint of the heat resistance of the diimidedicarboxylic acid compound, the imide group-containing epoxy resin obtained using the same, and the cured product obtained using the same.
- a diamine component having an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond as the diamine component of the diimidedicarboxylic acid compound.
- diimidedicarboxylic acid compound From the viewpoint of further improving the solubility of the diimidedicarboxylic acid compound, it is preferable to use only diamine components having an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond among the above diamine components.
- diamine components having an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or
- the diimidedicarboxylic acid compound can be produced in a solvent or without a solvent, but the production method is not particularly limited.
- predetermined raw materials e.g., tricarboxylic anhydride components, diamine components, tetracarboxylic dianhydride components, monoaminodicarboxylic acid components
- an aprotic solvent such as N-methyl 2-pyrrolidone
- the method of imidization is not particularly limited, and may be, for example, a thermal imidization method performed by heating at 250°C to 350°C (particularly 280°C to 320°C) for 1 to 10 hours (particularly 1 to 3 hours) in a nitrogen atmosphere, or a chemical imidization method performed by treating with a dehydration/cyclization reagent such as a mixture of a carboxylic anhydride and a tertiary amine.
- One example of a method for producing organic compounds without using a solvent is a method that utilizes the mechanochemical effect. This method utilizes the mechanical energy generated when the raw compound used in the reaction is pulverized to produce a mechanochemical effect, thereby obtaining an organic compound.
- the mechanochemical effect is an effect (or phenomenon) in which mechanical energy (compressive force, shear force, impact force, grinding force, etc.) is applied to a raw material compound in a solid state in a reaction environment, thereby pulverizing the raw material compound and activating the pulverized interface that is formed.
- This causes a reaction between functional groups.
- a reaction between functional groups usually occurs between two or more raw material compound molecules.
- a reaction between functional groups may occur between two raw material compound molecules with different chemical structures, or between two raw material compound molecules with the same chemical structure.
- a reaction between functional groups does not occur only between a limited set of two raw material compound molecules, but usually occurs between two raw material compound molecules of other sets.
- a new reaction between functional groups may occur between a compound molecule generated by a reaction between functional groups and a raw material compound molecule.
- a reaction between functional groups is usually a chemical reaction, in which a bond group (particularly a covalent bond) is formed between two raw material compound molecules by the functional groups of each raw material compound molecule, generating another compound molecule.
- the reaction environment means the environment in which the raw material compound is placed for the reaction, i.e., the environment in which mechanical energy is applied, and may be, for example, the environment inside the apparatus.
- Being in a solid state in the reaction environment means being in a solid state in the environment in which mechanical energy is applied (for example, under the temperature and pressure inside the apparatus).
- the raw material compound in a solid state in the reaction environment may usually be in a solid state at room temperature (25°C) and normal pressure (101.325 kPa).
- the raw material compound in a solid state in the reaction environment may be in a solid state at the start of the application of mechanical energy.
- the present invention does not prevent the raw material compound in a solid state in the reaction environment from changing to a liquid state (for example, a molten state) during the reaction (or processing) due to an increase in temperature and/or pressure, etc., accompanying the continued application of mechanical energy, but it is preferable for the raw material compound to be in a solid state continuously during the reaction (or processing) from the viewpoint of improving the reaction rate.
- a liquid state for example, a molten state
- the raw material compound to be in a solid state continuously during the reaction (or processing) from the viewpoint of improving the reaction rate.
- the grinding interface When mechanical energy is applied to one or more solid raw material compounds to cause grinding, the grinding interface is activated by absorbing the mechanical energy. It is thought that a chemical reaction occurs between the two raw material compound molecules due to the surface activation energy of the grinding interface. Grinding refers to the application of mechanical energy to raw material compound particles, which causes the particles to absorb the mechanical energy, resulting in cracks in the particles and renewal of the surface.
- the renewal of the surface means the formation of a grinding interface as a new surface.
- the state of the new surface formed by surface renewal is not particularly limited as long as the activation of the grinding interface occurs due to grinding, and it may be in a dry state or a wet state.
- the wet state of the new surface due to surface renewal is due to the raw material compounds in a liquid state separate from the solid raw material compounds.
- the state of the raw material mixture is not particularly limited as long as the application of mechanical energy causes the raw material compounds in a solid state to be pulverized.
- the raw material mixture may be in a dry state because all raw material compounds contained in the raw material mixture are in a solid state.
- the raw material mixture may be in a wet state because at least one raw material compound contained in the raw material mixture is in a solid state and the remaining raw material compounds are in a liquid state.
- the raw material mixture contains only one raw material compound, the one raw material compound is in a solid state.
- the two raw material compounds may both be in a solid state, or one raw material compound may be in a solid state and the other raw material compound may be in a liquid state.
- the mechanochemical effect of this mechanical energy is used to cause a reaction between functional groups. More specifically, a reaction occurs between the acid anhydride group of the tricarboxylic acid anhydride component and the amino group of the diamine component, producing an imide group.
- imidization may be carried out by a method similar to the imidization method in the method of manufacturing in a solvent (particularly the thermal imidization method).
- a bifunctional epoxy resin has a structure having two epoxy groups in one molecule. If a multifunctional epoxy resin having three or more epoxy groups in one molecule is used, the reaction between the epoxy resin and the diimide dicarboxylic acid compound does not proceed sufficiently, leaving unreacted material, making it impossible to produce an imide group-containing epoxy resin. As a result, the uniformity of the epoxy resin cured product using a curing agent decreases, and sufficient heat resistance cannot be obtained.
- bifunctional epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, bisphenyl type epoxy resins, and anthracene type epoxy resins.
- bisphenol A type epoxy resins, naphthalene type epoxy resins, bisphenyl type epoxy resins, and anthracene type epoxy resins are preferred, bisphenol A type epoxy resins, naphthalene type epoxy resins, and bisphenyl type epoxy resins are more preferred, naphthalene type epoxy resins and bisphenyl type epoxy resins are even more preferred, and naphthalene type epoxy resins are sufficiently preferred.
- the epoxy resins may be used alone or in combination of two or more types.
- the bisphenol A type epoxy resin is a compound having a bisphenol A skeleton and two epoxy groups in one molecule, and may be, for example, an epoxy resin represented by the general formula (E1).
- E1 an epoxy resin represented by the general formula (E1).
- n is an integer of 0 to 3.
- the hydrogen atoms bonded to the carbon atoms constituting the benzene ring may each be independently substituted with a methyl group.
- the naphthalene type epoxy resin is, for example, a compound having a naphthalene skeleton and two epoxy groups in one molecule, and may be an epoxy resin represented by general formula (E2).
- E2 an epoxy resin represented by general formula (E2).
- n is an integer of 0 to 3.
- the hydrogen atoms bonded to the carbon atoms constituting the naphthalene ring may each be independently substituted with a methyl group.
- the anthracene type epoxy resin is a compound having an anthracene skeleton and two epoxy groups in one molecule, and may be, for example, an epoxy resin represented by general formula (E3).
- E3 an epoxy resin represented by general formula (E3).
- n is an integer of 0 to 3.
- Each hydrogen atom bonded to a carbon atom constituting the anthracene ring may be independently substituted with a methyl group.
- the biphenyl type epoxy resin is, for example, a compound having a biphenyl skeleton and two epoxy groups in one molecule, and may be an epoxy resin represented by general formula (E4).
- E4 an epoxy resin represented by general formula (E4).
- n is an integer of 0 to 3.
- the hydrogen atoms bonded to the carbon atoms constituting the benzene ring may each be independently substituted with a methyl group.
- Bifunctional epoxy resins are commercially available or can be produced by known methods.
- the epoxy equivalent of the bifunctional epoxy resin is not particularly limited and may be, for example, 100 to 1000 g/eq. From the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 100 to 500 g/eq, more preferably 100 to 300 g/eq, and even more preferably 150 to 250 g/eq.
- the method for producing the imide group-containing epoxy resin of the present invention is not particularly limited, and may be, for example, a method of heating and mixing under a nitrogen atmosphere.
- a diimide dicarboxylic acid compound is heated and mixed with a bifunctional epoxy resin in the presence of a phosphorus compound to react with each other.
- Such a treatment for producing an imide group-containing epoxy resin may be considered as a pretreatment of the epoxy resin, which is carried out before the epoxy resin is reacted with a cured product.
- the heating temperature during mixing is not particularly limited and may be, for example, 100 to 250°C. From the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 130 to 200°C, and more preferably 150 to 200°C.
- the reaction time is not particularly limited and may be 0.1 to 10 hours, but from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 0.5 to 5 hours, and more preferably 0.5 to 2 hours.
- the amount of the diimide dicarboxylic acid compound is not particularly limited, and may be, for example, an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.01 to 0.6 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin.
- the amount of the diimide dicarboxylic acid compound is preferably an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.05 to 0.5 equivalent ratio, preferably 0.05 to 0.35 equivalent ratio, more preferably 0.15 to 0.25 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin.
- the functional group equivalent of the diimide dicarboxylic acid compound corresponds to the equivalent calculated from the content of carboxyl groups.
- the functional group equivalent of the diimide dicarboxylic acid compound corresponds to the molar amount of the diimide dicarboxylic acid compound relative to 1 mole of the bifunctional epoxy resin.
- the total amount of them should be the above blend amount.
- the amount of the compound is preferably 0.1 to 1 part by mass, more preferably 0.1 to 0.5 parts by mass, and more preferably 0.2 to 0.5 parts by mass, per 100 parts by mass of the total amount of the diimidedicarboxylic acid compound and the bifunctional functional group.
- the total amount of the compounds should be the above amount. If a catalyst other than a phosphorus-based compound is used as a catalyst, gelation occurs during the synthesis of the imide group-containing epoxy resin, and the viscosity increases. As a result, the compatibility of the imide group-containing epoxy resin and the curing agent decreases during the production of the cured product, and these components behave as insoluble components, resulting in a decrease in the uniformity (transparency) of the cured product.
- the phosphorus-based compound is not particularly limited, and examples thereof include organic phosphines such as aromatic organic phosphines (e.g., triphenylphosphine, tri(o-tolyl)phosphine, tri(m-tolyl)phosphine, tri(p-tolyl)phosphine, tris(4-methoxyphenyl)phosphine, diphenylcyclohexylphosphine), alicyclic organic phosphines (e.g., tricyclohexylphosphine), aliphatic organic phosphines (e.g., tributylphosphine (especially tri-tert-butylphosphine), tri-n-octylphosphine); aromatic phosphonium salts (e.g., tetraphenylphosphonium bromide, n-butyltriphenylphosphonium bromide, Examples of phosphorus-based
- the phosphorus-based compound is preferably an organic phosphine, more preferably an aromatic organic phosphine, and even more preferably triphenylphosphine.
- the curable epoxy resin composition of the present invention comprises a mixture of at least an imide group-containing epoxy resin and a curing agent.
- the curing agent examples include imidazoles, dicyandiamides, phenol-based curing agents, thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, and active ester-based curing agents.
- imidazoles, acid anhydride-based curing agents, and amine-based curing agents are preferred.
- the curing agent may be used alone or in combination of two or more of the above.
- Imidazoles include, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-heptadecylimidazole, 2-undecylimidazole, 1,2-dimethylimidazole, 4-methyl-2-phenylimidazole, N-benzyl-2-methylimidazole, 2-phenyl-1-benzyl-1H-imidazole, and 1-(2-cyanoethyl)-2-undecylimidazole.
- acid anhydride curing agents examples include 4-methylcyclohexane-1,2-dicarboxylic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, hydrogenated methylnadic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexenetetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, ethylene glycol bisanhydrotrimellitate, glycerin bis(anhydrotrimellitate) monoacetate, and dodecenyl succinic anhydride.
- Amine-based hardeners include, for example, aliphatic polyamines (e.g., diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine), alicyclic polyamines (e.g., isophoronediamine, 1,3-bisaminomethylcyclohexane, bis(4-aminocyclohexyl)methane, norbornenediamine, 1,2-diaminocyclohexane), aromatic polyamines (e.g., 4,4-diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone), etc.
- aliphatic polyamines e.g., diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine
- hardeners used vary depending on the type of hardener. If hardeners are classified as Class A hardeners and Class B hardeners, the amounts to be used are as follows:
- Class A hardeners are hardeners belonging to the dicyandiamide and imidazole classes.
- the amount of Class A hardener blended is preferably 1 to 10 parts by mass, more preferably 1 to 3 parts by mass, per 100 parts by mass of the imide group-containing epoxy resin.
- Class A hardeners may be used alone or in combination of two or more types. When two or more types are used in combination, it is preferable that the total amount blended is within the above range.
- Class B curing agents are curing agents that belong to the following categories: phenol-based curing agents, thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, and active ester-based curing agents.
- the amount of Class B to be blended is preferably an equivalent ratio of 0.1 to 1.0, more preferably 0.1 to 0.5, relative to the epoxy equivalent of the imide group-containing epoxy resin.
- Class B curing agents may be used alone or in combination of two or more of the above. When two or more types are used in combination, it is preferable that the total amount is within the above range.
- Class A curing agent and Class B curing agent may be used in combination. When used in combination, it is sufficient to use one or more types of Class A curing agent and Class B curing agent. For example, one Class A curing agent and one Class B curing agent may be used, one Class A curing agent and two Class B curing agents may be used, or two Class A curing agents and one Class B curing agent may be used. When used in combination, for example, the amount of Class A curing agent is 0.1 parts by mass or more relative to 100 parts by mass of the imide group-containing epoxy resin, and the amount of Class B curing agent is 0.5 equivalent ratio or more relative to the epoxy equivalent of the imide group-containing epoxy resin.
- the Class A curing agent is preferably in an amount of 0.1 to 1.0 parts by mass, more preferably 0.1 to 0.5 parts by mass, relative to 100 parts by mass of the imide group-containing epoxy resin. In this case, when two or more Class A curing agents are used, it is preferable that the total amount of them is in the above range.
- the amount of the B-type curing agent is preferably 0.5 to 1.5 equivalent ratio, more preferably 0.7 to 1.3 equivalent ratio, relative to the epoxy equivalent of the imide group-containing epoxy resin. In this case, when two or more types of B-type curing agents are used, it is preferable that the total amount of them is in the above range.
- additives such as curing accelerators, inorganic fillers, antioxidants, flame retardants, organic solvents, etc. may be added to the curable epoxy resin composition of the present invention as long as they do not impair the effects of the present invention.
- the curing accelerator examples include tertiary amines such as 4-dimethylaminopyridine, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, and 2,4,6-tris(dimethylaminomethyl)phenol; and organic phosphines such as triphenylphosphine and tributylphosphine.
- the curing accelerator may be used alone or in combination of two or more.
- the amount of the curing accelerator is preferably 0.01 to 2.0% by mass relative to the curable epoxy resin composition. Since the heat resistance and dielectric properties of the resulting cured product are improved, the amount is preferably 0.01 to 1% by mass, and more preferably 0.05 to 0.5% by mass.
- inorganic fillers examples include silica, barium sulfate, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchangers.
- the inorganic fillers may be used alone or in combination of two or more.
- the average particle size of the inorganic filler is preferably 50 nm to 4 ⁇ m, and more preferably 100 nm to 3 ⁇ m, as this provides better coatability and processability.
- antioxidants examples include hindered phenol-based antioxidants, phosphorus-based antioxidants, and thioether-based antioxidants.
- the antioxidants may be used alone or in combination of two or more.
- Flame retardants include non-halogen flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, and silicone-based flame retardants. Among these, non-halogen flame retardants are preferred from the viewpoint of environmental impact.
- the flame retardants may be used alone or in combination of two or more of the above.
- the organic solvent is an organic solvent capable of dissolving the imide group-containing epoxy resin and the curing agent.
- organic solvents include cyclohexanone, ⁇ -butyrolactone, dimethylacetamide, dimethylformamide, and N-methyl-2-pyrrolidone.
- the curable epoxy resin composition of the present invention preferably does not contain a solvent (particularly an organic solvent). This is because the curable epoxy resin composition of the present invention can have excellent fluidity even without containing a solvent, based on the excellent fluidity of the imide group-containing epoxy resin.
- the content of the solvent (particularly an organic solvent) is not particularly limited, and is, for example, 10 mass % or less, preferably 5 mass % or less, more preferably 1 mass % or less, even more preferably 0.1 mass % or less, and particularly preferably 0 mass % or less, based on the total amount of the curable epoxy resin composition.
- the content of the solvent (particularly the organic solvent) can be calculated from the mass before and after the curable epoxy resin composition is subjected to a heat treatment (i.e., drying treatment) at 80 to 250°C for 1 minute to 20 hours.
- a heat treatment i.e., drying treatment
- the content of the solvent (particularly the organic solvent) can be calculated based on the formula: ⁇ (X-Y)/X ⁇ x 100 (%), where Xg is the mass before the drying treatment and Yg is the mass after the drying treatment.
- the method for producing the curable epoxy resin composition of the present invention is not particularly limited, but examples include a method in which an imide group-containing epoxy resin, a curing agent, and other additives that are added as necessary are mixed using a mixer such as a homodisper, a universal mixer, a Banbury mixer, or a kneader.
- a mixer such as a homodisper, a universal mixer, a Banbury mixer, or a kneader.
- the present invention also provides a cured product.
- the cured product of the present invention is a cured product of the above-mentioned curable epoxy resin composition of the present invention.
- the heating temperature is preferably 80 to 350°C, more preferably 130 to 220°C, and more preferably 130 to 200°C.
- the heating time is preferably 1 minute to 24 hours, more preferably 5 minutes to 10 hours, and more preferably 1 to 5 hours.
- the cured product of the present invention is excellent in heat resistance, uniformity, and mechanical properties, and therefore can be suitably used as an electrical insulating material.
- the cured product of the present invention can be suitably used as an electrical insulating material for sealing materials (e.g., sealing materials for power semiconductor modules), printed wiring boards, molding materials (e.g., molding materials for bushing transformers, molding materials for solid insulating switch gears), electrical penetration for nuclear power plants, build-up laminates, powder coatings, and the like.
- the cured product of the present invention can be suitably used for sealing materials and printed wiring boards.
- the cured product of the present invention when used as an insulating material for sealing materials, it can be used, for example, by producing a power semiconductor module, filling the mold in which the module is set with the curable epoxy resin composition of the present invention, and curing it.
- the solution of the curable epoxy resin composition of the present invention can be used by impregnating or coating a glass cloth with the solution and then curing it.
- the solution of the curable epoxy resin composition of the present invention is the same as the solution of the curable epoxy resin composition when the cured product of the present invention is used as an insulating material for sealing materials.
- An insulating material for printed wiring boards refers to an insulating material that constitutes a printed wiring board.
- the curable epoxy resin composition of the present invention can also be used for purposes other than electrical insulation materials. Specifically, the curable epoxy resin composition of the present invention can be used for adhesives and CFRP.
- Diimidedicarboxylic acid X A mechanochemical treatment was carried out by mixing and grinding 52.3 parts by mass of 4,4'-diaminodiphenyl ether and 100 parts by mass of trimellitic anhydride at a rotation speed of 9000 rpm for 1 minute three times using a Wonder Crusher WC-3C manufactured by Osaka Chemical Co., Ltd. The treated sample was transferred to a glass container and subjected to an imidization reaction at 300°C for 2 hours in a nitrogen atmosphere using an inert oven DN411I manufactured by Yamato Scientific Co., Ltd., to obtain diimidedicarboxylic acid X.
- Diimidedicarboxylic acid X was confirmed by 1 H-NMR to be a trimer composed of trimellitic acid-4,4′-diaminodiphenyl ether-trimellitic acid. Mass spectrometry revealed that diimidedicarboxylic acid X had a number average molecular weight of 549 and was a solid at room temperature.
- Diimide dicarboxylic acid Y was obtained in the same manner as diimidedicarboxylic acid X, except that 52.3 parts by mass of 4,4'-diaminodiphenyl ether was used in place of 107.2 parts by mass of 2,2-bis[4-(4-aminophenoxy)phenyl]propane.
- Diimidedicarboxylic acid Y was confirmed by 1H -NMR to be a trimer composed of trimellitic acid-2,2-bis[4-(4-aminophenoxy)phenyl]propane-trimellitic acid. Mass spectrometry revealed that the number average molecular weight of diimidedicarboxylic acid Y was 759 and that it was a solid at room temperature.
- Diimidedicarboxylic acid Z was obtained in the same manner as diimidedicarboxylic acid X, except that 52.3 parts by mass of 4,4'-diaminodiphenyl ether was used instead of 29.8 parts by mass of trans-1,4-cyclohexanediamine. Diimidedicarboxylic acid Z was confirmed by 1 H-NMR to be a trimer composed of trimellitic acid-trans-1,4-cyclohexanediamine-trimellitic acid. Mass spectrometry revealed that diimidedicarboxylic acid Z had a number average molecular weight of 462 and was a solid at room temperature.
- Epoxy Equivalent Weight The imide group-containing epoxy resins obtained in the Examples and Comparative Examples were measured by nuclear magnetic resonance (NMR) under the following conditions, and the epoxy equivalent weight was calculated.
- the imide group-containing epoxy resins obtained in the examples and comparative examples were subjected to 1H -NMR analysis using a high-resolution nuclear magnetic resonance apparatus (JNM-ECA500 NMR manufactured by JEOL Ltd.) to determine the resin composition from the peak intensity of each copolymerization component (resolution: 500 MHz, solvent: deuterated dimethyl sulfoxide, temperature: 25°C).
- Example 1 (Imide Group-Containing Epoxy Resin A) 100 parts by mass of naphthalene-type epoxy resin, 19 parts by mass of diimidedicarboxylic acid X, and 0.3 parts by mass of triphenylphosphine were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. The mixture was then heated to 150° C. with stirring and reacted for 1 hour under normal pressure in a nitrogen stream to obtain an imide group-containing epoxy resin A. The imide group-containing epoxy resin A was confirmed by IR to have undergone a sufficient esterification reaction, and the imide group-containing epoxy resin A had an epoxy equivalent of 216 according to 1 H-NMR, and was a viscous solid at room temperature. From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin A has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- Example 2 (Imide group-containing epoxy resin B) An imide group-containing epoxy resin B was obtained in the same manner as in Example 1, except that 19 parts by mass of diimidedicarboxylic acid X was used in place of 39 parts by mass. Incidentally, IR analysis of imide group-containing epoxy resin B confirmed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin B had an epoxy equivalent of 309 and was solid at room temperature. From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin B has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- the obtained imide group-containing epoxy resin B was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
- Examples 3 to 5 (Imide group-containing epoxy resin C) An imide group-containing epoxy resin C was obtained in the same manner as in Example 1, except that 58 parts by mass of diimidedicarboxylic acid X was used instead of 19 parts by mass. Incidentally, IR analysis of imide group-containing epoxy resin C confirmed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin C had an epoxy equivalent of 400 and was solid at room temperature. From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin C has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- the obtained imide group-containing epoxy resin C was used to prepare a cured product in the same manner as in Example 1, except that the amounts were changed to obtain the composition shown in Table 1.
- Example 6 (Imide group-containing epoxy resin D) An imide group-containing epoxy resin D was obtained in the same manner as in Example 1, except that 78 parts by mass of diimidedicarboxylic acid X and 0.4 parts by mass of triphenylphosphine were used instead of 19 parts by mass and 0.3 parts by mass, respectively. Incidentally, IR analysis of imide group-containing epoxy resin D revealed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin D had an epoxy equivalent of 543 and was solid at room temperature. From these results and the charged amounts, it was confirmed that imide group-containing epoxy resin D has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- the obtained imide group-containing epoxy resin D was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
- Example 7 (Imide group-containing epoxy resin E) An imide group-containing epoxy resin E was obtained in the same manner as in Example 1, except that the naphthalene type epoxy resin was replaced with the bisphenol A type epoxy resin and the 19 parts by mass of diimidedicarboxylic acid X was replaced with 48 parts by mass.
- the esterification reaction of the imide group-containing epoxy resin E was confirmed by IR spectroscopy, and it was found to have progressed sufficiently.
- the epoxy equivalent of the imide group-containing epoxy resin E was found to be 441 by 1 H-NMR spectroscopy, and the resin was a solid at room temperature. From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin E has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- the obtained imide group-containing epoxy resin E was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
- Example 8 (Imide group-containing epoxy resin F) An imide group-containing epoxy resin F was obtained in the same manner as in Example 1, except that the naphthalene type epoxy resin was replaced with an anthracene type epoxy resin and 19 parts by mass of diimidedicarboxylic acid X was replaced with 46 parts by mass. It should be noted that IR analysis confirmed that the esterification reaction had progressed sufficiently for the imide group-containing epoxy resin F. Furthermore, 1 H-NMR analysis revealed that the epoxy equivalent of the imide group-containing epoxy resin E was 375, and the resin was solid at room temperature. From these results and the charged amounts, it was confirmed that imide group-containing epoxy resin F has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- the obtained imide group-containing epoxy resin F was used to prepare a cured product in the same manner as in Example 1, except that the compounding amounts were changed to obtain the composition shown in Table 1.
- Example 9 (Imide group-containing epoxy resin G) An imide group-containing epoxy resin G was obtained in the same manner as in Example 1, except that the naphthalene type epoxy resin was replaced with a biphenyl type epoxy resin and 19 parts by mass of diimidedicarboxylic acid X was replaced with 43 parts by mass. Incidentally, IR analysis of imide group-containing epoxy resin G revealed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin G had an epoxy equivalent of 412 and was solid at room temperature.
- the imide group-containing epoxy resin G has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond to one molecule of a bifunctional epoxy resin.
- the obtained imide group-containing epoxy resin G was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
- Example 10 (Imide group-containing epoxy resin H) An imide group-containing epoxy resin H was obtained in the same manner as in Example 1, except that 81 parts by mass of diimidedicarboxylic acid Y was used in place of 19 parts by mass of diimidedicarboxylic acid X, and 0.4 parts by mass of triphenylphosphine was used in place of 0.3 parts by mass.
- IR analysis of imide group-containing epoxy resin H confirmed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin H had an epoxy equivalent of 450 and was solid at room temperature. From these results and the charged amounts, it was confirmed that imide group-containing epoxy resin H has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- the obtained imide group-containing epoxy resin H was used to prepare a cured product in the same manner as in Example 1, except that the compounding amounts were changed to obtain the composition shown in Table 1.
- Example 11 (Imide group-containing epoxy resin I) An imide group-containing epoxy resin I was obtained in the same manner as in Example 1, except that 19 parts by mass of diimidedicarboxylic acid X was used in place of 49 parts by mass of diimidedicarboxylic acid Z. Incidentally, IR analysis confirmed that the esterification reaction had progressed sufficiently for the imide group-containing epoxy resin I. Furthermore, 1 H-NMR analysis revealed that the imide group-containing epoxy resin I had an epoxy equivalent of 380 and was solid at room temperature. From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin I has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
- the obtained imide group-containing epoxy resin I was used to prepare a cured product in the same manner as in Example 1, except that the amounts were changed to obtain the composition shown in Table 1.
- the obtained imide group-containing epoxy resin J was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
- the obtained imide group-containing epoxy resin K was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
- Comparative Example 3 100 parts by mass of bisphenol A type epoxy resin and 163 parts by mass of diimidedicarboxylic acid X were mixed at room temperature to obtain a mixture. When the mixture was examined by IR, it was found that the esterification reaction had not progressed sufficiently. From these results, it was confirmed that the mixture was simply a mixture of a diimidedicarboxylic acid compound and a bifunctional epoxy resin.
- the obtained mixture was used to prepare a cured product in the same manner as in Example 1, except that the compounding amounts were changed to obtain the composition shown in Table 1.
- Examples 1 to 11 all of the compounds contained a bifunctional epoxy resin and a diimidedicarboxylic acid compound, which were bonded by ester bonds and had an epoxy equivalent of 1000 or less, so imide group-containing epoxy resins with excellent fluidity could be obtained.
- the use of a bifunctional epoxy resin and a phosphorus-based compound as a catalyst allowed for control of fluidity.
- all of the cured products were homogenized, and because an imidedicarboxylic acid compound was used, they had excellent heat resistance.
- Comparative Example 1 the catalyst was changed from a phosphorus-based compound to a tertiary amine, and synthesis was performed. As a result, gelation occurred during synthesis of the imide group-containing epoxy resin, and the viscosity increased. This reduced the compatibility of the imide group-containing epoxy resin with the curing agent, and these components behaved as insoluble components, resulting in a decrease in the uniformity (transparency) of the cured product.
- Comparative Example 3 the raw materials were simply mixed and cured, so the product did not become an imide group-containing epoxy resin, had high viscosity, and had poor uniformity in the cured product. It did not exhibit sufficient heat resistance.
- the imide group-containing epoxy resin of the present invention and the cured product using the same are useful as electrical insulating materials such as sealing materials, printed wiring boards, molding materials, electrical penetration for nuclear power plants, and build-up laminates.
Landscapes
- Epoxy Resins (AREA)
Abstract
Description
本発明は、イミド骨格を有するイミド基含有エポキシ樹脂及びこれを含有する硬化性エポキシ樹脂に関する。 The present invention relates to an imide group-containing epoxy resin having an imide skeleton and a curable epoxy resin containing the same.
エポキシ樹脂等の硬化性樹脂は、耐熱性、機械的特性および電気的特性に優れており、プリント配線板用絶縁材料や半導体封止材料等の電気・電子材料を中心に工業的に広く利用されている。 Hardenable resins such as epoxy resins have excellent heat resistance, mechanical properties, and electrical properties, and are widely used industrially, primarily as electrical and electronic materials such as insulating materials for printed wiring boards and semiconductor encapsulation materials.
近年、エレクトロニクス部品は大容量・高速通信に対応すべく、構成材料の開発が盛んに行われている。例えば、半導体素子の高性能化によるジャンクション温度の上昇や効率性向上による発熱量の増加が、エポキシ樹脂材料の高性能化に対するニーズを高めており、これまで以上の高い耐熱性が要求されている。 In recent years, there has been active development of materials for electronics components to accommodate the large capacity and high speed communication demands. For example, rising junction temperatures due to the high performance of semiconductor elements and increased heat generation due to improved efficiency have increased the need for high performance epoxy resin materials, requiring higher heat resistance than ever before.
また、車載用パワーモジュールに代表されるパワー半導体の分野では、更なる大電流化、小型化、高効率化が求められており、炭化ケイ素(SiC)半導体への移行が進みつつある。SiC半導体は、従来のシリコン(Si)半導体よりも高温条件下での動作が可能であることから、SiC半導体に用いる半導体封止材料にはこれまで以上に高い耐熱性が要求されている。 In addition, in the field of power semiconductors, as typified by automotive power modules, there is a demand for even higher current, smaller size, and higher efficiency, and the transition to silicon carbide (SiC) semiconductors is progressing. Because SiC semiconductors can operate under higher temperature conditions than conventional silicon (Si) semiconductors, the semiconductor encapsulation materials used for SiC semiconductors are required to have higher heat resistance than ever before.
一方、パワー半導体や半導体素子の封止には、注型成型やトランスファーモールド成型等が挙げられるが、これらは溶媒不使用であり、これらの成形温度(200℃以下)で流動・硬化し、充分な性能を発現する必要がある。 On the other hand, methods such as cast molding and transfer molding are used to seal power semiconductors and semiconductor elements, but these do not use solvents and must flow and harden at the molding temperature (200°C or less) to achieve sufficient performance.
例えば、特許文献1に、エポキシ樹脂にイミド構造を有する化合物を用いた硬化物が開示されている。 For example, Patent Document 1 discloses a cured product made from an epoxy resin that contains a compound having an imide structure.
しかしながら、特許文献1の硬化物は溶媒を使用して製造されおり、硬化条件も300℃と高温で行われていた。特許文献1を溶媒使用せず200℃で硬化すると、流動性が悪く、均一性が低下し、充分な耐熱性が発揮されない問題があった。 However, the cured product in Patent Document 1 was produced using a solvent, and the curing conditions were high, at 300°C. If Patent Document 1 was cured at 200°C without using a solvent, there were problems with poor fluidity, reduced uniformity, and insufficient heat resistance.
本発明は、緩和された硬化条件(例えば、200℃以下の硬化温度条件)下であっても、均一性および耐熱性に優れた硬化物を得ることができる、流動性に優れたイミド基含有エポキシ樹脂およびそれを用いた硬化性エポキシ樹脂組成物を提供することを目的とする。 The present invention aims to provide an imide group-containing epoxy resin with excellent fluidity, which can give a cured product with excellent uniformity and heat resistance even under moderate curing conditions (e.g., curing temperature conditions of 200°C or less), and a curable epoxy resin composition using the same.
本発明者らは、上記課題について鋭意検討をおこなった結果、二官能型エポキシ樹脂を、特定のジイミドジカルボン酸系化合物と予め反応させることにより、上記目的が達成されることを見出し、本発明に至った。 As a result of extensive research into the above-mentioned problems, the inventors discovered that the above-mentioned objectives could be achieved by reacting a bifunctional epoxy resin with a specific diimidedicarboxylic acid compound in advance, leading to the invention.
すなわち、本発明の要旨は以下の通りである。
<1> 一般式(1)で示されるジイミドジカルボン酸系化合物および二官能型エポキシ樹脂を含み、
前記ジイミドジカルボン酸系化合物と前記二官能型エポキシ樹脂がエステル結合しており、
エポキシ当量が1000以下である、イミド基含有エポキシ樹脂。
<2> 前記二官能型エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、およびアントラセン型エポキシ樹脂からなる群から選択される1種以上のエポキシ樹脂である、<1>に記載のイミド基含有エポキシ樹脂。
<3> 前記二官能型エポキシ樹脂は、ナフタレン型エポキシ樹脂、およびビフェニル型エポキシ樹脂からなる群から選択される1種以上のエポキシ樹脂であり、
前記エポキシ当量が500以下である、<1>または<2>に記載のイミド基含有エポキシ樹脂。
<4> 前記二官能型エポキシ樹脂は、ナフタレン型エポキシ樹脂、およびビフェニル型エポキシ樹脂からなる群から選択される1種以上のエポキシ樹脂であり、
前記エポキシ当量は250~350である、<1>~<3>のいずれかに記載のイミド基含有エポキシ樹脂。
<5> 前記イミド基含有エポキシ樹脂は、前記ジイミドジカルボン酸系化合物1分子の両端の各々に前記二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有する、<1>~<4>のいずれかに記載のイミド基含有エポキシ樹脂。
<6> ジイミドジカルボン酸系化合物を二官能型エポキシ樹脂と、リン系化合物の存在下、反応させる、イミド基含有エポキシ樹脂の製造方法。
<7> 前記ジイミドジカルボン酸系化合物の配合量は、該ジイミドジカルボン酸系化合物の官能基当量が二官能型エポキシ樹脂のエポキシ当量に対して、0.01~0.6当量比となるような量である、<6>に記載のイミド基含有エポキシ樹脂の製造方法。
<8> 前記二官能型エポキシ樹脂は、ナフタレン型エポキシ樹脂、およびビフェニル型エポキシ樹脂からなる群から選択される1種以上のエポキシ樹脂であり、
前記ジイミドジカルボン酸系化合物の配合量は、該ジイミドジカルボン酸系化合物の官能基当量が二官能型エポキシ樹脂のエポキシ当量に対して、0.05~0.35当量比となるような量である、<6>または<7>に記載のイミド基含有エポキシ樹脂の製造方法。
<9> 前記二官能型エポキシ樹脂は、ナフタレン型エポキシ樹脂、およびビフェニル型エポキシ樹脂からなる群から選択される1種以上のエポキシ樹脂であり、
前記ジイミドジカルボン酸系化合物の配合量は、該ジイミドジカルボン酸系化合物の官能基当量が二官能型エポキシ樹脂のエポキシ当量に対して、0.15~0.25当量比となるような量である、<6>~<8>のいずれかに記載のイミド基含有エポキシ樹脂の製造方法。
<10> <1>~<5>のいずれかに記載のイミド基含有エポキシ樹脂を製造する、<6>~<9>のいずれかに記載のイミド基含有エポキシ樹脂の製造方法。
<11> <1>~<5>のいずれかに記載のイミド基含有エポキシ樹脂と硬化剤とを含む硬化性エポキシ樹脂組成物。
<12> <11>に記載の硬化性エポキシ樹脂組成物の硬化物。
<13> <12>に記載の硬化物を含む電気絶縁材料。
<14> <12>に記載の硬化物を含む封止材。
<15> パワー半導体モジュールに用いる<14>に記載の封止材。
<16> <12>に記載の硬化物を含むプリント配線基板。
That is, the gist of the present invention is as follows.
<1> A diimide dicarboxylic acid compound represented by general formula (1) and a bifunctional epoxy resin,
the diimide dicarboxylic acid compound and the bifunctional epoxy resin are bonded by an ester bond,
An imide group-containing epoxy resin having an epoxy equivalent of 1,000 or less.
<2> The imide group-containing epoxy resin according to <1>, wherein the bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of bisphenol A type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, and anthracene type epoxy resins.
<3> The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene-type epoxy resins and biphenyl-type epoxy resins,
The imide group-containing epoxy resin according to <1> or <2>, wherein the epoxy equivalent is 500 or less.
<4> The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene-type epoxy resins and biphenyl-type epoxy resins,
The imide group-containing epoxy resin according to any one of <1> to <3>, wherein the epoxy equivalent is 250 to 350.
<5> The imide group-containing epoxy resin according to any one of <1> to <4>, wherein the imide group-containing epoxy resin has a structure in which one molecule of the diimidedicarboxylic acid compound is bonded to each end of the difunctional epoxy resin via an ester bond.
<6> A method for producing an imide group-containing epoxy resin, comprising reacting a diimidedicarboxylic acid compound with a bifunctional epoxy resin in the presence of a phosphorus compound.
<7> The method for producing an imide group-containing epoxy resin according to <6>, wherein the diimide dicarboxylic acid compound is blended in an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is in an equivalent ratio of 0.01 to 0.6 relative to the epoxy equivalent of the bifunctional epoxy resin.
<8> The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene epoxy resins and biphenyl epoxy resins,
The method for producing an imide group-containing epoxy resin according to <6> or <7>, wherein the amount of the diimide dicarboxylic acid compound is such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.05 to 0.35 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin.
<9> The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene epoxy resins and biphenyl epoxy resins,
The method for producing an imide group-containing epoxy resin according to any one of <6> to <8>, wherein the amount of the diimide dicarboxylic acid compound is such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.15 to 0.25 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin.
<10> A method for producing an imide group-containing epoxy resin according to any one of <6> to <9>, comprising producing the imide group-containing epoxy resin according to any one of <1> to <5>.
<11> A curable epoxy resin composition comprising the imide group-containing epoxy resin according to any one of <1> to <5> and a curing agent.
<12> A cured product of the curable epoxy resin composition according to <11>.
<13> An electrical insulating material comprising the cured product according to <12>.
<14> An encapsulant comprising the cured product according to <12>.
<15> The encapsulating material according to <14>, which is used for a power semiconductor module.
<16> A printed wiring board comprising the cured product according to <12>.
本発明によれば、硬化条件を緩和させても、均一性および耐熱性に優れた硬化物を得ることができる、高流動性の、イミド骨格を有するイミド基含有エポキシ樹脂およびそれを用いた硬化性エポキシ樹脂組成物を提供することができる。
本発明の硬化性エポキシ樹脂組成物を硬化してなる硬化物は、電気絶縁性材料、封止材、プリント配線基板に好適に用いることができる。
According to the present invention, it is possible to provide a highly fluid imide group-containing epoxy resin having an imide skeleton, which can give a cured product having excellent uniformity and heat resistance even when the curing conditions are relaxed, and a curable epoxy resin composition using the same.
The cured product obtained by curing the curable epoxy resin composition of the present invention can be suitably used for electrical insulating materials, sealing materials, and printed wiring boards.
<イミド基含有エポキシ樹脂>
本発明のイミド基含有エポキシ樹脂は、ジイミドジカルボン酸系化合物および二官能型エポキシ樹脂の反応物である。詳しくは、本発明のイミド基含有エポキシ樹脂は、ジイミドジカルボン酸系化合物および二官能型エポキシ樹脂を含有し、ジイミドジカルボン酸系化合物と二官能型エポキシ樹脂とがエステル結合している。より詳しくは、本発明のイミド基含有エポキシ樹脂の構造は、後述のエポキシ当量を有する限り特に限定されず、例えば、以下の構造(A)、(B)および(C)からなる群から選択される1種の構造であってもよいし、または本発明のイミド基含有エポキシ樹脂は当該群から選択される2種以上の構造の混合物であってもよい。
<Imide Group-Containing Epoxy Resin>
The imide group-containing epoxy resin of the present invention is a reaction product of a diimide dicarboxylic acid compound and a bifunctional epoxy resin. In detail, the imide group-containing epoxy resin of the present invention contains a diimide dicarboxylic acid compound and a bifunctional epoxy resin, and the diimide dicarboxylic acid compound and the bifunctional epoxy resin are ester-bonded. More specifically, the structure of the imide group-containing epoxy resin of the present invention is not particularly limited as long as it has an epoxy equivalent weight as described below, and may be, for example, one structure selected from the group consisting of the following structures (A), (B) and (C), or the imide group-containing epoxy resin of the present invention may be a mixture of two or more structures selected from the group.
構造(A):ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造
構造(A)において、詳しくは、ジイミドジカルボン酸系化合物が有する2つのカルボキシル基のうち、一方のカルボキシル基は二官能型エポキシ樹脂が有する2つのエポキシ基のうちの1つのエポキシ基との反応によりエステル結合を形成している。他方のカルボキシル基は別の二官能型エポキシ樹脂が有する2つのエポキシ基のうちの1つのエポキシ基との反応によりエステル結合を形成している。
Structure (A): A structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond. In Structure (A), more specifically, one of the two carboxyl groups in the diimidedicarboxylic acid compound forms an ester bond by reacting with one of the two epoxy groups in the bifunctional epoxy resin. The other carboxyl group forms an ester bond by reacting with one of the two epoxy groups in another bifunctional epoxy resin.
構造(B):二官能型エポキシ樹脂1分子の両端の各々にジイミドジカルボン酸系化合物1分子がエステル結合を介して結合された構造
構造(B)において、詳しくは、二官能型エポキシ樹脂が有する2つのエポキシ基のうち、一方のエポキシ基はジイミドジカルボン酸系化合物が有する2つのカルボキシル基のうちの1つのカルボキシル基との反応によりエステル結合を形成している。他方のエポキシ基は別のジイミドジカルボン酸系化合物が有する2つのカルボキシル基のうちの1つのカルボキシル基との反応によりエステル結合を形成している。
Structure (B): A structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of one molecule of a bifunctional epoxy resin via an ester bond In Structure (B), more specifically, one of the two epoxy groups in the bifunctional epoxy resin forms an ester bond by reacting with one of the two carboxyl groups in the diimidedicarboxylic acid compound, and the other epoxy group forms an ester bond by reacting with one of the two carboxyl groups in the other diimidedicarboxylic acid compound.
構造(C):オリゴマーの構造
構造(C)において、詳しくは、ジイミドジカルボン酸系化合物と二官能型エポキシ樹脂とがエステル結合を介して繰り返して結合しており、その繰り返し単位の数は通常、10以下、特に5以下であり、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、好ましくは3以下、より好ましくは2である。当該繰り返し単位の数の下限値は特に限定されず、例えば、2であってもよい。
Structure (C): Oligomer Structure In Structure (C), specifically, a diimidedicarboxylic acid compound and a bifunctional epoxy resin are repeatedly bonded via ester bonds, and the number of repeating units is usually 10 or less, particularly 5 or less, and from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the obtained cured product, is preferably 3 or less, more preferably 2. The lower limit of the number of repeating units is not particularly limited, and may be, for example, 2.
構造(A)~(C)においては、エステル結合の形成に際して、エポキシ環の開環により水酸基が生成する。このような水酸基の各々は、それぞれ独立して、別のジイミドジカルボン酸系化合物のカルボキシル基と反応してエステル結合がさらに形成されていてもよいし、別の二官能型エポキシ樹脂のエポキシ基と反応してエーテル結合が形成されていてもよいし、またはいかなる基とも何ら反応していなくてもよい。 In structures (A) to (C), when an ester bond is formed, a hydroxyl group is generated by opening the epoxy ring. Each of these hydroxyl groups may independently react with a carboxyl group of another diimidedicarboxylic acid compound to form an ester bond, or may react with an epoxy group of another bifunctional epoxy resin to form an ether bond, or may not react with any group at all.
本発明のイミド基含有エポキシ樹脂は、当該イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、構造(A)を有することが好ましい。詳しくは、本発明のイミド基含有エポキシ樹脂は、上記と同様の観点から、構造(A)を有するイミド基含有エポキシ樹脂を含むことが好ましい。 The imide group-containing epoxy resin of the present invention preferably has structure (A) from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product. In particular, from the same viewpoint as above, the imide group-containing epoxy resin of the present invention preferably contains an imide group-containing epoxy resin having structure (A).
本明細書中、流動性は、イミド基含有エポキシ樹脂の流動性のことであり、140℃において粘度がより低いことに関する特性である。成型時にイミド基含有エポキシ樹脂が流動する必要があり、粘度が低い方が良い。
均一性は、イミド基含有エポキシ樹脂と硬化剤との硬化物の均一性のことであり、硬化物中に含有される不溶成分がより少ないことに関する特性である。不溶成分は、硬化物の透明性を阻害する異物であり、硬化物の製造過程において、イミド基含有エポキシ樹脂と硬化剤との相溶性が低下すること、および/または未反応のイミドジカルボン酸化合物が残存することにより生じ得る。不溶成分の残存は、硬化不良、および/または物性の低下などにつながるため、均一に硬化することが望ましい。
耐熱性は、イミド基含有エポキシ樹脂と硬化剤との硬化物の耐熱性のことであり、硬化物のガラス転移温度がより高いことに関する特性である。硬化物は高温条件下での動作が必要であることから、ガラス転移温度が高い方が良い。
In this specification, the term "fluidity" refers to the fluidity of the imide group-containing epoxy resin, and is a property relating to a lower viscosity at 140° C. The imide group-containing epoxy resin needs to flow during molding, and a lower viscosity is preferable.
The uniformity refers to the uniformity of the cured product of the imide group-containing epoxy resin and the curing agent, and is a characteristic related to the fact that the cured product contains less insoluble components. The insoluble components are foreign matter that inhibit the transparency of the cured product, and may be generated during the manufacturing process of the cured product due to a decrease in the compatibility between the imide group-containing epoxy resin and the curing agent and/or the presence of unreacted imide dicarboxylic acid compounds. The presence of insoluble components leads to poor curing and/or a decrease in physical properties, so it is desirable to cure uniformly.
The heat resistance refers to the heat resistance of the cured product of the imide group-containing epoxy resin and the curing agent, and is a property related to the higher glass transition temperature of the cured product. Since the cured product needs to operate under high temperature conditions, it is better for the glass transition temperature to be higher.
本発明のイミド基含有エポキシ樹脂のエポキシ当量は、1000以下(特に100~1000)であることが必要であり、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、好ましくは800以下(特に150~800)であり、より好ましくは500以下(特に200~500)であり、より好ましくは250~350である。当該エポキシ当量が1000を超えると、流動性および均一性が低下する。 The epoxy equivalent of the imide group-containing epoxy resin of the present invention must be 1000 or less (particularly 100 to 1000), and from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 800 or less (particularly 150 to 800), more preferably 500 or less (particularly 200 to 500), and more preferably 250 to 350. If the epoxy equivalent exceeds 1000, the fluidity and uniformity will decrease.
本明細書中、エポキシ当量は、エポキシ基1個あたりのエポキシ樹脂の分子量であり、核磁気共鳴法により測定された値を用いている。 In this specification, the epoxy equivalent is the molecular weight of the epoxy resin per epoxy group, and is the value measured by nuclear magnetic resonance spectroscopy.
本発明のイミド基含有エポキシ樹脂の粘度(140℃)は通常、1000Pa・s以下であり、流動性のさらなる向上の観点から、好ましくは500Pa・s以下、より好ましくは200Pa・s以下、さらに好ましくは100Pa・s以下、十分に好ましくは10Pa・s以下、より十分に好ましくは5Pa・s以下である。当該粘度の下限値は特に限定されず、当該粘度は通常、0.01Pa・s以上、特に0.05Pa・s以上であり、硬化物の流動性および耐熱性のさらなる向上の観点から、好ましくは0.5Pa・s以上、より好ましくは1Pa・s以上である。 The viscosity (140°C) of the imide group-containing epoxy resin of the present invention is usually 1000 Pa·s or less, and from the viewpoint of further improving the fluidity, it is preferably 500 Pa·s or less, more preferably 200 Pa·s or less, even more preferably 100 Pa·s or less, sufficiently preferably 10 Pa·s or less, and even more preferably 5 Pa·s or less. There is no particular lower limit to the viscosity, and the viscosity is usually 0.01 Pa·s or more, particularly 0.05 Pa·s or more, and from the viewpoint of further improving the fluidity and heat resistance of the cured product, it is preferably 0.5 Pa·s or more, more preferably 1 Pa·s or more.
本明細書中、粘度は、動的粘弾性測定により求められた140℃での値を用いている。 In this specification, the viscosity is the value at 140°C determined by dynamic viscoelasticity measurement.
[ジイミドジカルボン酸系化合物]
ジイミドジカルボン酸系化合物は、1分子中に、2つのイミド基および2つのカルボキシル基を有する化合物である。ジイミドジカルボン酸化合物はアミド基を有さない。原料化合物として、無水トリカルボン酸成分とジアミン成分とを用い、官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドジカルボン酸化合物を製造することができる。ここで官能基同士の反応は、溶液中でも良いし、固相状態で反応を行ってもよく、製造方法は特に限定されない。
[Diimidedicarboxylic acid compounds]
The diimidedicarboxylic acid compound is a compound having two imide groups and two carboxyl groups in one molecule. The diimidedicarboxylic acid compound does not have an amide group. A tricarboxylic anhydride component and a diamine component are used as raw material compounds, and a reaction between functional groups is carried out to produce an amide acid compound, and an imidization reaction is carried out to produce a diimidedicarboxylic acid compound. The reaction between functional groups may be carried out in a solution or in a solid phase, and the production method is not particularly limited.
無水トリカルボン酸成分とジアミン成分とを用いたジイミドジカルボン酸系化合物は、1分子のジアミン成分に対して、2分子の無水トリカルボン酸成分が反応し、2つのイミド基が形成されてなる化合物であり、詳しくは一般式(1)の構造を有するジイミドジカルボン酸化合物である。 A diimidedicarboxylic acid compound using a tricarboxylic anhydride component and a diamine component is a compound in which two molecules of the tricarboxylic anhydride component react with one molecule of the diamine component to form two imide groups, and more specifically, is a diimidedicarboxylic acid compound having the structure of general formula (1).
一般式(1)中、X1およびX2は、それぞれ独立して、後述する無水トリカルボン酸成分(例えば、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、または脂肪族無水トリカルボン酸成分)に由来する構造を表す。詳しくは、X1およびX2は、それぞれ独立して、上記成分に由来する残基であってもよい。
R1は、後述するジアミン成分(例えば、芳香族ジアミン成分、または脂環族ジアミン成分)に由来する構造を表す。詳しくは、R1は、上記成分に由来する残基であってもよい。
In the general formula (1), X1 and X2 each independently represent a structure derived from a tricarboxylic acid anhydride component (e.g., an aromatic tricarboxylic acid anhydride component, an alicyclic tricarboxylic acid anhydride component, or an aliphatic tricarboxylic acid anhydride component) described below. In more detail, X1 and X2 each independently may be a residue derived from the above components.
R1 represents a structure derived from a diamine component (for example, an aromatic diamine component or an alicyclic diamine component) described below. Specifically, R1 may be a residue derived from the above components.
無水トリカルボン酸成分とジアミン成分とを用いたジイミドジカルボン酸系化合物の製造に際し、ジアミン成分は、無水トリカルボン酸成分に対して通常は約0.5倍モル量、例えば0.1~0.7倍モル量、好ましくは0.3~0.7倍モル量、より好ましくは0.4~0.6倍モル量、さらに好ましくは0.45~0.55倍モル量で使用される。 When producing a diimidedicarboxylic acid compound using a tricarboxylic anhydride component and a diamine component, the diamine component is usually used in a molar amount of about 0.5 times, for example 0.1 to 0.7 times, preferably 0.3 to 0.7 times, more preferably 0.4 to 0.6 times, and even more preferably 0.45 to 0.55 times, relative to the tricarboxylic anhydride component.
ジイミドジカルボン酸系化合物を構成し得る無水トリカルボン酸成分は、芳香族環を含有する芳香族無水トリカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族無水トリカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族無水トリカルボン酸成分を包含する。無水トリカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。なお、無水トリカルボン酸成分は酸ハロゲン化物成分であってもよい。酸ハロゲン化物成分とは、無水トリカルボン酸成分において、カルボキシル基のOH基がハロゲン原子で置換された化合物のことである。 The tricarboxylic anhydride components that can constitute the diimide dicarboxylic acid-based compound include aromatic tricarboxylic anhydride components that contain an aromatic ring, alicyclic tricarboxylic anhydride components that contain an aliphatic ring but no aromatic ring, and aliphatic tricarboxylic anhydride components that contain neither an aromatic ring nor an alicyclic ring. The tricarboxylic anhydride components may contain ether groups and/or thioether groups, and/or one or more of the hydrogen atoms may be substituted with halogen atoms (e.g., fluorine atoms, chlorine atoms, bromine atoms). The tricarboxylic anhydride components may be acid halide components. An acid halide component is a compound in which the OH group of the carboxyl group in the tricarboxylic anhydride component is substituted with a halogen atom.
芳香族無水トリカルボン酸成分としては、例えば、無水トリメリット酸、1,2,4-ナフタレントリカルボン酸無水物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。芳香族無水トリカルボン酸成分が1分子中に含有する芳香族環の数は、特に限定されず、例えば、1~4個、特に1~2個であってもよい。特にナフタレン環は1分子中、2個の芳香族環を含有するものとしてカウントする。 Examples of aromatic tricarboxylic anhydride components include trimellitic anhydride and 1,2,4-naphthalene tricarboxylic anhydride. These may be used alone or in a mixture of two or more. The number of aromatic rings contained in one molecule of the aromatic tricarboxylic anhydride component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2. In particular, naphthalene rings are counted as containing two aromatic rings in one molecule.
脂環族無水トリカルボン酸成分としては、例えば、1,2,3-シクロヘキサントリカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸無水物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。脂環族無水トリカルボン酸成分が1分子中に含有する脂環族環の数は、特に限定されず、例えば、1~4個、特に1~2個であってもよい。 Examples of alicyclic tricarboxylic anhydride components include 1,2,3-cyclohexane tricarboxylic anhydride and 1,2,4-cyclohexane tricarboxylic anhydride. These may be used alone or in a mixture of two or more. The number of alicyclic rings contained in one molecule of the alicyclic tricarboxylic anhydride component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2.
脂肪族無水トリカルボン酸成分としては、例えば、3-カルボキシメチルグルタル酸無水物、1,2,4-ブタントリカルボン酸-1,2-無水物、cis-プロペン-1,2,3-トリカルボン酸-1,2-無水物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。 Examples of the aliphatic tricarboxylic anhydride component include 3-carboxymethylglutaric anhydride, 1,2,4-butanetricarboxylic acid-1,2-anhydride, and cis-propene-1,2,3-tricarboxylic acid-1,2-anhydride. These may be used alone or in a mixture of two or more.
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物、これを用いて得られるイミド基含有エポキシ樹脂およびこれを用いて得られる硬化物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。 The tricarboxylic anhydride component of the diimidedicarboxylic acid compound preferably contains an aromatic tricarboxylic anhydride component and/or an alicyclic tricarboxylic anhydride component, and more preferably contains an aromatic tricarboxylic anhydride component, from the viewpoint of the heat resistance of the diimidedicarboxylic acid compound, the imide group-containing epoxy resin obtained using the same, and the cured product obtained using the same.
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物の溶解性の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分を用いることが好ましい。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
From the viewpoint of the solubility of the diimidedicarboxylic acid compound, it is preferable to use, among the above-mentioned tricarboxylic acid anhydride components, an alicyclic tricarboxylic acid anhydride component and/or an aliphatic tricarboxylic acid anhydride component as the tricarboxylic acid anhydride component of the diimidedicarboxylic acid compound.
From the viewpoint of further improving the solubility of the diimidedicarboxylic acid-based compound, it is preferable to use only an alicyclic tricarboxylic acid anhydride component and/or an aliphatic tricarboxylic acid anhydride component among the above-mentioned tricarboxylic acid anhydride components as the tricarboxylic acid anhydride component of the diimidedicarboxylic acid-based compound.
ジイミドジカルボン酸系化合物を構成し得るジアミン成分は、芳香族環を含有する芳香族ジアミン成分、および脂肪族環を含有するが芳香族環は含有しない脂環族ジアミン成分を包含する。ジアミン成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。ジアミン成分は側鎖を有していてもよい。 Diamine components that can form diimide dicarboxylic acid compounds include aromatic diamine components that contain aromatic rings, and alicyclic diamine components that contain aliphatic rings but no aromatic rings. The diamine components may contain ether groups and/or thioether groups, and/or one or more of the hydrogen atoms may be substituted with halogen atoms (e.g., fluorine atoms, chlorine atoms, bromine atoms). The diamine components may have side chains.
芳香族ジアミン成分としては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンズアニリド、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)スルホン、9,9-ビス(4-アミノフェニル)フルオレン、メタキシレンジアミン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニルビス[4-(4-アミノフェノキシ)フェニル]スルホン、および上記ジアミンの類似物が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。芳香族ジアミン成分が1分子中に含有する芳香族環の数は、特に限定されず、例えば、1~4個、特に1~2個であってもよい。特にフルオレン環は1分子中、2個の芳香族環を含有するものとしてカウントする。 Aromatic diamine components include, for example, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminobenzanilide, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, bis(4-aminophenyl)sulfone, 9,9-bis(4-aminophenyl)fluorene, metaxylenediamine, 4,4'-bis(3-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)biphenylbis[4-(4-aminophenoxy)phenyl]sulfone, and analogs of the above diamines. These may be used alone or in a mixture of two or more. The number of aromatic rings contained in one molecule of the aromatic diamine component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2. In particular, a fluorene ring is counted as containing two aromatic rings in one molecule.
脂環族ジアミン成分としては、例えば、trans-1,4-シクロヘキサンジアミン4,4’-メチレンビス(シクロヘキシルアミン)、1,4-ビス(アミノメチル)シクロヘキサンが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。脂環族ジアミン成分が1分子中に含有する脂環族環の数は、特に限定されず、例えば、1~4個、特に1~2個であってもよい。 Examples of alicyclic diamine components include trans-1,4-cyclohexanediamine, 4,4'-methylenebis(cyclohexylamine), and 1,4-bis(aminomethyl)cyclohexane. These may be used alone or in a mixture of two or more. The number of alicyclic rings contained in one molecule of the alicyclic diamine component is not particularly limited, and may be, for example, 1 to 4, and particularly 1 to 2.
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物、これを用いて得られるイミド基含有エポキシ樹脂およびこれを用いて得られる硬化物の耐熱性の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分を含むことが好ましく、より好ましくは芳香族ジアミン成分を含む。 The diamine component of the diimidedicarboxylic acid compound preferably contains an aromatic diamine component and/or an alicyclic diamine component, and more preferably contains an aromatic diamine component, from the viewpoint of the heat resistance of the diimidedicarboxylic acid compound, the imide group-containing epoxy resin obtained using the same, and the cured product obtained using the same.
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物の溶解性の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分を用いることが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
From the viewpoint of the solubility of the diimidedicarboxylic acid compound, it is preferable to use, among the above diamine components, a diamine component having an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond as the diamine component of the diimidedicarboxylic acid compound.
From the viewpoint of further improving the solubility of the diimidedicarboxylic acid compound, it is preferable to use only diamine components having an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond among the above diamine components.
ジイミドジカルボン酸系化合物は、溶媒中または無溶媒下で製造することができるが、製造方法は特に限定されない。 The diimidedicarboxylic acid compound can be produced in a solvent or without a solvent, but the production method is not particularly limited.
溶媒中で製造する方法としては、例えば、N-メチル2-ピロリドンなどの非プロトン性溶媒に、所定の原料(例えば、無水トリカルボン酸成分、ジアミン成分、テトラカルボン酸二無水物成分、モノアミノジカルボン酸成分)を入れて80℃で攪拌した後、イミド化して得る方法がある。 As a method for producing in a solvent, for example, predetermined raw materials (e.g., tricarboxylic anhydride components, diamine components, tetracarboxylic dianhydride components, monoaminodicarboxylic acid components) are added to an aprotic solvent such as N-methyl 2-pyrrolidone, stirred at 80°C, and then imidized to obtain the product.
イミド化の方法としては、特に限定されず、例えば窒素雰囲気下で250℃~350℃(特に280~320℃)で1~10時間(特に1~3時間)加熱することによって行われる加熱イミド化法、カルボン酸無水物と3級アミンの混合物などの脱水環化試薬で処理することにより行われる化学的イミド化法であってもよい。 The method of imidization is not particularly limited, and may be, for example, a thermal imidization method performed by heating at 250°C to 350°C (particularly 280°C to 320°C) for 1 to 10 hours (particularly 1 to 3 hours) in a nitrogen atmosphere, or a chemical imidization method performed by treating with a dehydration/cyclization reagent such as a mixture of a carboxylic anhydride and a tertiary amine.
無溶媒下で製造する方法としては、例えば、メカノケミカル効果を利用した方法が挙げられる。メカノケミカル効果を利用した方法とは、反応に用いる原料化合物を粉砕する際に生じる機械的エネルギーを利用することによりメカノケミカル効果を発現させることで有機化合物を得る方法である。 One example of a method for producing organic compounds without using a solvent is a method that utilizes the mechanochemical effect. This method utilizes the mechanical energy generated when the raw compound used in the reaction is pulverized to produce a mechanochemical effect, thereby obtaining an organic compound.
メカノケミカル効果とは、反応環境下において固体状態にある原料化合物に機械的エネルギー(圧縮力、せん断力、衝撃力、摩砕力等)を付与することにより、当該原料化合物を粉砕し、形成される粉砕界面を活性化させる効果(または現象)のことである。これにより、官能基同士の反応が起こる。官能基同士の反応は通常、2つ以上の原料化合物分子間で起こる。例えば、官能基同士の反応は化学構造の異なる2つの原料化合物分子間で起こってもよいし、または化学構造の同じ2つの原料化合物分子間で起こってもよい。官能基同士の反応は限定的な1組の2つの原料化合物分子間のみで起こるわけではなく、通常は他の組の2つの原料化合物分子間でも起こる。官能基同士の反応により生成した化合物分子と、原料化合物分子との間で、新たに官能基同士の反応が起こってもよい。官能基同士の反応は通常、化学反応であり、これにより、2つの原料化合物分子間で、各原料化合物分子が有する官能基により、結合基(特に共有結合)が形成されて、別の1つの化合物分子が生成する。 The mechanochemical effect is an effect (or phenomenon) in which mechanical energy (compressive force, shear force, impact force, grinding force, etc.) is applied to a raw material compound in a solid state in a reaction environment, thereby pulverizing the raw material compound and activating the pulverized interface that is formed. This causes a reaction between functional groups. A reaction between functional groups usually occurs between two or more raw material compound molecules. For example, a reaction between functional groups may occur between two raw material compound molecules with different chemical structures, or between two raw material compound molecules with the same chemical structure. A reaction between functional groups does not occur only between a limited set of two raw material compound molecules, but usually occurs between two raw material compound molecules of other sets. A new reaction between functional groups may occur between a compound molecule generated by a reaction between functional groups and a raw material compound molecule. A reaction between functional groups is usually a chemical reaction, in which a bond group (particularly a covalent bond) is formed between two raw material compound molecules by the functional groups of each raw material compound molecule, generating another compound molecule.
反応環境とは反応のために原料化合物が置かれる環境、すなわち機械的エネルギーが付与される環境という意味であり、例えば、装置内の環境であってもよい。反応環境下において固体状態にあるとは、機械的エネルギーが付与される環境下(例えば、装置内の温度および圧力下)において固体状態にあるという意味である。反応環境下において固体状態にある原料化合物は通常、常温(25℃)および常圧(101.325kPa)下で固体状態であればよい。反応環境下において固体状態にある原料化合物は、機械的エネルギーの付与の開始時において、固体状態にあればよい。本発明は、反応環境下において固体状態にある原料化合物が、機械的エネルギーの付与の継続に伴う温度および/または圧力等の上昇により、反応中(または処理中)に液体状態(例えば、溶融状態)に変化することを妨げるものではないが、反応率の向上の観点から、反応中(または処理中)、継続的に固体状態にあることが好ましい。 The reaction environment means the environment in which the raw material compound is placed for the reaction, i.e., the environment in which mechanical energy is applied, and may be, for example, the environment inside the apparatus. Being in a solid state in the reaction environment means being in a solid state in the environment in which mechanical energy is applied (for example, under the temperature and pressure inside the apparatus). The raw material compound in a solid state in the reaction environment may usually be in a solid state at room temperature (25°C) and normal pressure (101.325 kPa). The raw material compound in a solid state in the reaction environment may be in a solid state at the start of the application of mechanical energy. The present invention does not prevent the raw material compound in a solid state in the reaction environment from changing to a liquid state (for example, a molten state) during the reaction (or processing) due to an increase in temperature and/or pressure, etc., accompanying the continued application of mechanical energy, but it is preferable for the raw material compound to be in a solid state continuously during the reaction (or processing) from the viewpoint of improving the reaction rate.
メカノケミカル効果の詳細は明らかではないが、以下の原理に従うものと考えられる。1種以上の固体状態の原料化合物に機械的エネルギーを付与して粉砕が起こると、当該機械的エネルギーの吸収により粉砕界面が活性化される。このような粉砕界面の表面活性エネルギーにより、2つの原料化合物分子間で化学反応が起こるものと考えられる。粉砕とは、原料化合物粒子への機械的エネルギーの付与により、当該粒子が当該機械的エネルギーを吸収して、当該粒子に亀裂が生じ、表面が更新されることをいう。表面が更新されるとは、新たな表面として粉砕界面が形成されることである。メカノケミカル効果において、表面の更新により形成される新たな表面の状態は、粉砕による粉砕界面の活性化が起こる限り、特に限定されず、乾燥状態にあってもよいし、または湿潤状態にあってもよい。表面の更新による新たな表面の湿潤状態は、固体状態の原料化合物とは別の液体状態にある原料化合物に起因する。 The details of the mechanochemical effect are not clear, but it is thought to follow the following principle. When mechanical energy is applied to one or more solid raw material compounds to cause grinding, the grinding interface is activated by absorbing the mechanical energy. It is thought that a chemical reaction occurs between the two raw material compound molecules due to the surface activation energy of the grinding interface. Grinding refers to the application of mechanical energy to raw material compound particles, which causes the particles to absorb the mechanical energy, resulting in cracks in the particles and renewal of the surface. The renewal of the surface means the formation of a grinding interface as a new surface. In the mechanochemical effect, the state of the new surface formed by surface renewal is not particularly limited as long as the activation of the grinding interface occurs due to grinding, and it may be in a dry state or a wet state. The wet state of the new surface due to surface renewal is due to the raw material compounds in a liquid state separate from the solid raw material compounds.
機械的エネルギーは、反応環境下において固体状態にある1種以上の原料化合物を含む原料混合物に対して付与される。原料混合物の状態は、機械的エネルギーの付与により、固体状態の原料化合物の粉砕が起こる限り、特に限定されない。例えば、原料混合物に含まれる全ての原料化合物が固体状態にあることに起因して、原料混合物は乾燥状態にあってもよい。また例えば、原料混合物に含まれる少なくとも1種の原料化合物が固体状態であり、かつ残りの原料化合物が液体状態であることに起因して、原料混合物は湿潤状態であってもよい。具体的には、例えば、原料混合物が1種のみの原料化合物を含む場合、当該1種の原料化合物は固体状態である。また例えば、原料混合物が2種の原料化合物を含む場合、当該2種の原料化合物はともに固体状態であってもよいし、または一方の原料化合物が固体状態にあり、かつ他方の原料化合物が液体状態にあってもよい。 Mechanical energy is applied to a raw material mixture containing one or more raw material compounds that are in a solid state in a reaction environment. The state of the raw material mixture is not particularly limited as long as the application of mechanical energy causes the raw material compounds in a solid state to be pulverized. For example, the raw material mixture may be in a dry state because all raw material compounds contained in the raw material mixture are in a solid state. Also, for example, the raw material mixture may be in a wet state because at least one raw material compound contained in the raw material mixture is in a solid state and the remaining raw material compounds are in a liquid state. Specifically, for example, when the raw material mixture contains only one raw material compound, the one raw material compound is in a solid state. Also, for example, when the raw material mixture contains two raw material compounds, the two raw material compounds may both be in a solid state, or one raw material compound may be in a solid state and the other raw material compound may be in a liquid state.
このような機械的エネルギーを用いたメカノケミカル効果を利用して官能基同士の反応を行う。詳しくは、無水トリカルボン酸成分の酸無水物基と、ジアミン成分のアミノ基との間で反応が起こり、イミド基が生成する。 The mechanochemical effect of this mechanical energy is used to cause a reaction between functional groups. More specifically, a reaction occurs between the acid anhydride group of the tricarboxylic acid anhydride component and the amino group of the diamine component, producing an imide group.
無溶媒下で製造する方法においては、メカノケミカル効果を利用した方法を実施した後、溶媒中で製造する方法におけるイミド化の方法と同様の方法(特に加熱イミド化法)により、イミド化をおこなってもよい。 In the method of manufacturing without a solvent, after carrying out the method utilizing the mechanochemical effect, imidization may be carried out by a method similar to the imidization method in the method of manufacturing in a solvent (particularly the thermal imidization method).
[二官能型エポキシ樹脂]
二官能型エポキシ樹脂は、1分子中、2個のエポキシ基を有する構造を有する。1分子中、3個以上のエポキシ基を有する多官能型エポキシ樹脂を用いると、当該エポキシ樹脂とジイミドジカルボン酸系化合物との反応が十分に進行せず未反応なものが残るため、イミド基含有エポキシ樹脂を製造することができない。このため、硬化剤を用いたエポキシ樹脂硬化物の均一性が低下し、十分な耐熱性は得られない。
[Bifunctional epoxy resin]
A bifunctional epoxy resin has a structure having two epoxy groups in one molecule. If a multifunctional epoxy resin having three or more epoxy groups in one molecule is used, the reaction between the epoxy resin and the diimide dicarboxylic acid compound does not proceed sufficiently, leaving unreacted material, making it impossible to produce an imide group-containing epoxy resin. As a result, the uniformity of the epoxy resin cured product using a curing agent decreases, and sufficient heat resistance cannot be obtained.
二官能型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェニル型エポキシ樹脂、アントラセン型エポキシ樹脂が挙げられる。中でも、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェニル型エポキシ樹脂、アントラセン型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェニル型エポキシ樹脂がより好ましく、ナフタレン型エポキシ樹脂、ビスフェニル型エポキシ樹脂がさらに好ましく、ナフタレン型エポキシ樹脂が十分に好ましい。エポキシ樹脂は単独でも良いし、2種類以上を併用してもよい。 Examples of bifunctional epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, bisphenyl type epoxy resins, and anthracene type epoxy resins. Among them, from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, bisphenol A type epoxy resins, naphthalene type epoxy resins, bisphenyl type epoxy resins, and anthracene type epoxy resins are preferred, bisphenol A type epoxy resins, naphthalene type epoxy resins, and bisphenyl type epoxy resins are more preferred, naphthalene type epoxy resins and bisphenyl type epoxy resins are even more preferred, and naphthalene type epoxy resins are sufficiently preferred. The epoxy resins may be used alone or in combination of two or more types.
ビスフェノールA型エポキシ樹脂は、ビスフェノールA骨格を有し、かつ1分子中、2つのエポキシ基を有する化合物であり、例えば、一般式(E1)で表されるエポキシ樹脂であってもよい。
ナフタレン型エポキシ樹脂は、例えば、ナフタレン骨格を有し、かつ1分子中、2つのエポキシ基を有する化合物であり、一般式(E2)で表されるエポキシ樹脂であってもよい。
アントラセン型エポキシ樹脂は、アントラセン骨格を有し、かつ1分子中、2つのエポキシ基を有する化合物であり、例えば、一般式(E3)で表されるエポキシ樹脂であってもよい。
(式(E3)中、nは0~3の整数である。アントラセン環を構成する炭素原子に結合している水素原子は、それぞれ独立して、メチル基によって置換されていてもよい。)
The anthracene type epoxy resin is a compound having an anthracene skeleton and two epoxy groups in one molecule, and may be, for example, an epoxy resin represented by general formula (E3).
(In formula (E3), n is an integer of 0 to 3. Each hydrogen atom bonded to a carbon atom constituting the anthracene ring may be independently substituted with a methyl group.)
ビフェニル型エポキシ樹脂は、例えば、ビフェニル骨格を有し、かつ1分子中、2つのエポキシ基を有する化合物であり、一般式(E4)で表されるエポキシ樹脂であってもよい。
二官能型エポキシ樹脂は市販品として入手可能であるし、または公知の方法により製造することも可能である。 Bifunctional epoxy resins are commercially available or can be produced by known methods.
二官能型エポキシ樹脂のエポキシ当量は、特に限定されず、例えば、100~1000g/eqであってもよく、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、好ましくは100~500g/eq、より好ましくは100~300g/eq、さらに好ましく150~250g/eqである。 The epoxy equivalent of the bifunctional epoxy resin is not particularly limited and may be, for example, 100 to 1000 g/eq. From the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 100 to 500 g/eq, more preferably 100 to 300 g/eq, and even more preferably 150 to 250 g/eq.
<イミド基含有エポキシ樹脂の製造方法>
本発明のイミド基含有エポキシ樹脂の製造方法は、特に限定されず、例えば、窒素雰囲気下で加熱混合する方法が挙げられる。詳しくは、ジイミドジカルボン酸系化合物を二官能型エポキシ樹脂と、リン系化合物の存在下、加熱混合して反応させる。イミド基含有エポキシ樹脂を製造する、このような処理は、エポキシ樹脂を硬化物と反応させる前に行われる、エポキシ樹脂の前処理に位置付けることもできる。
<Method of producing imide group-containing epoxy resin>
The method for producing the imide group-containing epoxy resin of the present invention is not particularly limited, and may be, for example, a method of heating and mixing under a nitrogen atmosphere. In detail, a diimide dicarboxylic acid compound is heated and mixed with a bifunctional epoxy resin in the presence of a phosphorus compound to react with each other. Such a treatment for producing an imide group-containing epoxy resin may be considered as a pretreatment of the epoxy resin, which is carried out before the epoxy resin is reacted with a cured product.
混合時の加熱温度は特に限定されず、例えば100~250℃であってよく、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、好ましくは130~200℃であり、特に150~200℃が好ましい。 The heating temperature during mixing is not particularly limited and may be, for example, 100 to 250°C. From the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 130 to 200°C, and more preferably 150 to 200°C.
反応時間(混合時間)は特に限定されず、0.1~10時間であってもよく、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、好ましくは0.5~5時間、より好ましくは0.5~2時間である。 The reaction time (mixing time) is not particularly limited and may be 0.1 to 10 hours, but from the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, it is preferably 0.5 to 5 hours, and more preferably 0.5 to 2 hours.
イミド基含有エポキシ樹脂において、ジイミドジカルボン酸系化合物の配合量は、特に限定されず、ジイミドジカルボン酸系化合物の官能基当量が二官能型エポキシ樹脂のエポキシ当量に対して、例えば、0.01~0.6当量比となるような量であってもよい。ジイミドジカルボン酸系化合物の配合量は、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、ジイミドジカルボン酸系化合物の官能基当量が二官能型エポキシ樹脂のエポキシ当量に対して、好ましくは0.05~0.5当量比、好ましくは0.05~0.35当量比、より好ましくは0.15~0.25当量比となるような量である。ジイミドジカルボン酸系化合物の官能基当量は、カルボキシル基の含有量から算出される当量に相当する。詳しくは、本発明において、ジイミドジカルボン酸系化合物および二官能型エポキシ樹脂はいずれも二官能性であるため、ジイミドジカルボン酸系化合物の官能基当量は、二官能型エポキシ樹脂1モルに対するジイミドジカルボン酸系化合物のモル量に相当する。2種以上のジイミドジカルボン酸系化合物を用いる場合、それらの合計量が上記配合量となればよい。 In the imide group-containing epoxy resin, the amount of the diimide dicarboxylic acid compound is not particularly limited, and may be, for example, an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.01 to 0.6 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin. From the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, the amount of the diimide dicarboxylic acid compound is preferably an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.05 to 0.5 equivalent ratio, preferably 0.05 to 0.35 equivalent ratio, more preferably 0.15 to 0.25 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin. The functional group equivalent of the diimide dicarboxylic acid compound corresponds to the equivalent calculated from the content of carboxyl groups. In detail, in the present invention, since both the diimide dicarboxylic acid compound and the bifunctional epoxy resin are bifunctional, the functional group equivalent of the diimide dicarboxylic acid compound corresponds to the molar amount of the diimide dicarboxylic acid compound relative to 1 mole of the bifunctional epoxy resin. When two or more diimidedicarboxylic acid compounds are used, the total amount of them should be the above blend amount.
リン系化合物は触媒として作用しているため、その配合量はジイミドジカルボン酸系化合物および二官能型官能基の合計配合量100質量部に対し、好ましくは0.1~1質量部、より好ましくは0.1~0.5質量部、より好ましくは0.2~0.5質量部となるような量であることが好ましい。2種以上のリン系化合物を用いる場合、それらの合計量が上記配合量となればよい。触媒として、リン系化合物以外の触媒を用いると、イミド基含有エポキシ樹脂の合成時にゲル化して、粘度が上昇する。これにより、硬化物の製造時において、イミド基含有エポキシ樹脂と硬化剤との相溶性が低下し、これらの成分が不溶成分として挙動するため、硬化物の均一性(透明性)が低下する。 Since the phosphorus-based compound acts as a catalyst, the amount of the compound is preferably 0.1 to 1 part by mass, more preferably 0.1 to 0.5 parts by mass, and more preferably 0.2 to 0.5 parts by mass, per 100 parts by mass of the total amount of the diimidedicarboxylic acid compound and the bifunctional functional group. When two or more phosphorus-based compounds are used, the total amount of the compounds should be the above amount. If a catalyst other than a phosphorus-based compound is used as a catalyst, gelation occurs during the synthesis of the imide group-containing epoxy resin, and the viscosity increases. As a result, the compatibility of the imide group-containing epoxy resin and the curing agent decreases during the production of the cured product, and these components behave as insoluble components, resulting in a decrease in the uniformity (transparency) of the cured product.
リン系化合物は、特に限定されず、例えば、芳香族有機ホスフィン類(例えば、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(m-トリル)ホスフィン、トリ(p-トリル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、ジフェニルシクロヘキシルホスフィン)、脂環族有機ホスフィン類(例えば、トリシクロヘキシルホスフィン)、脂肪族有機ホスフィン類(例えば、トリブチルホスフィン(特にトリ-tert-ブチルホスフィン)、トリ-n-オクチルホスフィン)等の有機ホスフィン類;芳香族ホスホニウム塩(例えば、テトラフェニルホスホニウムブロミド、n-ブチルトリフェニルフォスフォニウムブロミド、メチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムブロミド、(メトキシメチル)トリフェニルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド、テトラフェニルホスホニウムテトラフェニルボラート、テトラフェニルホスホニウムテトラ-p-トリルボラート、トリフェニルボラン-トリフェニルホスフィン、トリ-tert-ブチルホスホニウムテトラフェニルボラート、脂肪族ホスホニウム塩(例えば、テトラブチルホスホニウムブロミド)等のホスホニウム塩類が挙げられる。リン系化合物は単独でも良いし、2種類以上を併用してもよい。リン系化合物は市販品として入手可能である。 The phosphorus-based compound is not particularly limited, and examples thereof include organic phosphines such as aromatic organic phosphines (e.g., triphenylphosphine, tri(o-tolyl)phosphine, tri(m-tolyl)phosphine, tri(p-tolyl)phosphine, tris(4-methoxyphenyl)phosphine, diphenylcyclohexylphosphine), alicyclic organic phosphines (e.g., tricyclohexylphosphine), aliphatic organic phosphines (e.g., tributylphosphine (especially tri-tert-butylphosphine), tri-n-octylphosphine); aromatic phosphonium salts (e.g., tetraphenylphosphonium bromide, n-butyltriphenylphosphonium bromide, Examples of phosphorus-based compounds include phosphonium salts such as methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, (methoxymethyl)triphenylphosphonium chloride, benzyltriphenylphosphonium chloride, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, triphenylborane-triphenylphosphine, tri-tert-butylphosphonium tetraphenylborate, and aliphatic phosphonium salts (e.g., tetrabutylphosphonium bromide). Phosphorus-based compounds may be used alone or in combination of two or more. Phosphorus-based compounds are commercially available.
リン系化合物は、イミド基含有エポキシ樹脂の流動性ならびに得られる硬化物の均一性および耐熱性の更なる向上の観点から、好ましくは有機ホスフィン類、より好ましくは芳香族有機ホスフィン類、さらに好ましくはトリフェニルホスフィンである。 From the viewpoint of further improving the fluidity of the imide group-containing epoxy resin and the uniformity and heat resistance of the resulting cured product, the phosphorus-based compound is preferably an organic phosphine, more preferably an aromatic organic phosphine, and even more preferably triphenylphosphine.
<硬化性エポキシ樹脂組成物>
本発明の硬化性エポキシ樹脂組成物は、少なくともイミド基含有エポキシ樹脂および硬化剤を混合してなる。
<Curable Epoxy Resin Composition>
The curable epoxy resin composition of the present invention comprises a mixture of at least an imide group-containing epoxy resin and a curing agent.
硬化剤としては、例えば、イミダゾール類、ジシアンジアミド類、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤が挙げられる。中でも、イミダゾール類、酸無水物系硬化剤およびアミン系硬化剤が好ましい。硬化剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the curing agent include imidazoles, dicyandiamides, phenol-based curing agents, thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, and active ester-based curing agents. Among these, imidazoles, acid anhydride-based curing agents, and amine-based curing agents are preferred. The curing agent may be used alone or in combination of two or more of the above.
イミダゾール類としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ヘプタデシルイミダゾール、2-ウンデシルイミダゾール、1,2-ジメチルイミダゾール、4-メチル-2-フェニルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-フェニル-1-ベンジル-1H-イミダゾール、1-(2-シアノエチル)-2-ウンデシルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、1-(2-シアノエチル)-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]エチル-s-トリアジン、4,5-ジ(ヒドロキシメチル)-2-フェニル-1H-イミダゾール、4-メチル-2-フェニル-5-ヒドロキシメチル-1H-イミダゾール等が挙げられる。 Imidazoles include, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-heptadecylimidazole, 2-undecylimidazole, 1,2-dimethylimidazole, 4-methyl-2-phenylimidazole, N-benzyl-2-methylimidazole, 2-phenyl-1-benzyl-1H-imidazole, and 1-(2-cyanoethyl)-2-undecylimidazole. , 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole, 1-(2-cyanoethyl)-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 2,4-diamino-6-[2-methylimidazolyl-(1)]ethyl-s-triazine, 4,5-di(hydroxymethyl)-2-phenyl-1H-imidazole, 4-methyl-2-phenyl-5-hydroxymethyl-1H-imidazole, etc.
酸無水物系硬化剤としては、例えば、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、ドデセニル無水コハク酸等が挙げられる。 Examples of acid anhydride curing agents include 4-methylcyclohexane-1,2-dicarboxylic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, hydrogenated methylnadic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexenetetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, ethylene glycol bisanhydrotrimellitate, glycerin bis(anhydrotrimellitate) monoacetate, and dodecenyl succinic anhydride.
アミン系硬化剤としては、例えば、脂肪族ポリアミン(例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン)、脂環式ポリアミン(例えば、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン)、芳香族ポリアミン(例えば、4,4-ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルフォン)等が挙げられる。 Amine-based hardeners include, for example, aliphatic polyamines (e.g., diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine), alicyclic polyamines (e.g., isophoronediamine, 1,3-bisaminomethylcyclohexane, bis(4-aminocyclohexyl)methane, norbornenediamine, 1,2-diaminocyclohexane), aromatic polyamines (e.g., 4,4-diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone), etc.
これら硬化剤の配合量は硬化剤の種類によっても異なる。硬化剤をA類硬化剤とB類硬化剤とに区別して、その配合量を示すと、以下の配合量となる。 The amounts of these hardeners used vary depending on the type of hardener. If hardeners are classified as Class A hardeners and Class B hardeners, the amounts to be used are as follows:
A類硬化剤は、ジシアンジアミド類、イミダゾール類に属する硬化剤である。A類の配合量は上記イミド基含有エポキシ樹脂100質量部に対し、好ましくは1~10質量部、より好ましくは1~3質量部となるような量であることが好ましい。A類硬化剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合、それらの配合量は、合計量を上記範囲とすることが好ましい。 Class A hardeners are hardeners belonging to the dicyandiamide and imidazole classes. The amount of Class A hardener blended is preferably 1 to 10 parts by mass, more preferably 1 to 3 parts by mass, per 100 parts by mass of the imide group-containing epoxy resin. Class A hardeners may be used alone or in combination of two or more types. When two or more types are used in combination, it is preferable that the total amount blended is within the above range.
B類硬化剤は、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤に属する硬化剤である。B類の配合量は上記イミド基含有エポキシ樹脂のエポキシ当量に対し、好ましくは0.1~1.0当量比、より好ましくは0.1~0.5当量比となるような量であることが好ましい。B類硬化剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合、それらの配合量は、合計量を上記範囲とすることが好ましい。 Class B curing agents are curing agents that belong to the following categories: phenol-based curing agents, thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, and active ester-based curing agents. The amount of Class B to be blended is preferably an equivalent ratio of 0.1 to 1.0, more preferably 0.1 to 0.5, relative to the epoxy equivalent of the imide group-containing epoxy resin. Class B curing agents may be used alone or in combination of two or more of the above. When two or more types are used in combination, it is preferable that the total amount is within the above range.
A類硬化剤とB類硬化剤は併用してもよい。併用する場合、A類硬化剤とB類硬化剤はそれぞれ1種以上を用いればよく、例えば、A類硬化剤1種とB類硬化剤1種を用いてもよいし、A類硬化剤1種とB類硬化剤2種を用いてもよいし、A類硬化剤2種とB類硬化剤1種を用いてもよい。併用する場合とは、例えば、A類硬化剤の配合量が、上記イミド基含有エポキシ樹脂100質量部に対し、0.1質量部以上であり、かつB類硬化剤の配合量が、上記イミド基含有エポキシ樹脂のエポキシ当量に対し、0.5当量比以上である場合のことである。併用する場合のA類硬化剤は、上記イミド基含有エポキシ樹脂100質量部に対し、好ましくは0.1~1.0質量部、より好ましくは0.1~0.5質量部となるような量であることが好ましい。この場合、A類硬化剤を2種以上用いるとき、それらの合計配合量が上記範囲とすることが好ましい。併用する場合のB類硬化剤は、上記イミド基含有エポキシ樹脂のエポキシ当量に対し、好ましくは0.5~1.5当量比、より好ましくは0.7~1.3当量比となるような量であることが好ましい。この場合、B類硬化剤を2種以上用いるとき、それらの合計配合量が上記範囲とすることが好ましい。 Class A curing agent and Class B curing agent may be used in combination. When used in combination, it is sufficient to use one or more types of Class A curing agent and Class B curing agent. For example, one Class A curing agent and one Class B curing agent may be used, one Class A curing agent and two Class B curing agents may be used, or two Class A curing agents and one Class B curing agent may be used. When used in combination, for example, the amount of Class A curing agent is 0.1 parts by mass or more relative to 100 parts by mass of the imide group-containing epoxy resin, and the amount of Class B curing agent is 0.5 equivalent ratio or more relative to the epoxy equivalent of the imide group-containing epoxy resin. When used in combination, the Class A curing agent is preferably in an amount of 0.1 to 1.0 parts by mass, more preferably 0.1 to 0.5 parts by mass, relative to 100 parts by mass of the imide group-containing epoxy resin. In this case, when two or more Class A curing agents are used, it is preferable that the total amount of them is in the above range. When used in combination, the amount of the B-type curing agent is preferably 0.5 to 1.5 equivalent ratio, more preferably 0.7 to 1.3 equivalent ratio, relative to the epoxy equivalent of the imide group-containing epoxy resin. In this case, when two or more types of B-type curing agents are used, it is preferable that the total amount of them is in the above range.
本発明の硬化性エポキシ樹脂組成物には、本発明の効果を損なわない範囲において、硬化促進剤、無機充填剤、酸化防止剤、難燃剤、有機溶媒等の他の添加剤を加えてもよい。 Other additives such as curing accelerators, inorganic fillers, antioxidants, flame retardants, organic solvents, etc. may be added to the curable epoxy resin composition of the present invention as long as they do not impair the effects of the present invention.
硬化促進剤としては、例えば、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の3級アミン類;トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類が挙げられる。硬化促進剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。硬化促進剤を用いる場合、その配合量は、硬化性エポキシ樹脂組成物に対して、0.01~2.0質量%とすることが好ましく、得られる硬化物の耐熱性と誘電特性が向上することから、0.01~1質量%とすることが好ましく、0.05~0.5質量%とすることがより好ましい。 Examples of the curing accelerator include tertiary amines such as 4-dimethylaminopyridine, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, and 2,4,6-tris(dimethylaminomethyl)phenol; and organic phosphines such as triphenylphosphine and tributylphosphine. The curing accelerator may be used alone or in combination of two or more. When a curing accelerator is used, the amount of the curing accelerator is preferably 0.01 to 2.0% by mass relative to the curable epoxy resin composition. Since the heat resistance and dielectric properties of the resulting cured product are improved, the amount is preferably 0.01 to 1% by mass, and more preferably 0.05 to 0.5% by mass.
無機充填剤としては、例えば、シリカ、硫酸バリウム、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体が挙げられる。無機充填剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。無機充填剤を用いる場合、無機充填材の平均粒子径は、50nm~4μmとすることが好ましく、塗布性や加工性により優れることから、100nm~3μmとすることがより好ましい。 Examples of inorganic fillers include silica, barium sulfate, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchangers. The inorganic fillers may be used alone or in combination of two or more. When using inorganic fillers, the average particle size of the inorganic filler is preferably 50 nm to 4 μm, and more preferably 100 nm to 3 μm, as this provides better coatability and processability.
酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤が挙げられる。酸化防止剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of antioxidants include hindered phenol-based antioxidants, phosphorus-based antioxidants, and thioether-based antioxidants. The antioxidants may be used alone or in combination of two or more.
難燃剤としては、非ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤が挙げられる。中でも、環境への影響の観点から非ハロゲン系難燃剤が好ましい。難燃剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Flame retardants include non-halogen flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, and silicone-based flame retardants. Among these, non-halogen flame retardants are preferred from the viewpoint of environmental impact. The flame retardants may be used alone or in combination of two or more of the above.
有機溶媒は、イミド基含有エポキシ樹脂および硬化剤を溶解可能な有機溶媒である。そのような有機溶媒として、例えば、シクロヘキサノン、γ-ブチロラクトン、ジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン等が挙げられる。 The organic solvent is an organic solvent capable of dissolving the imide group-containing epoxy resin and the curing agent. Examples of such organic solvents include cyclohexanone, γ-butyrolactone, dimethylacetamide, dimethylformamide, and N-methyl-2-pyrrolidone.
本発明の硬化性エポキシ樹脂組成物は、溶媒(特に有機溶媒)を含有しないことが好ましい。本発明の硬化性エポキシ樹脂組成物は、イミド基含有エポキシ樹脂の優れた流動性に基づいて、溶媒を含有しなくても、優れた流動性を有し得るためである。溶媒(特に有機溶媒)の含有量は特に限定されず、例えば、硬化性エポキシ樹脂組成物の全量に対して、10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下、さらに好ましくは0.1質量%以下、特に好ましくは0質量%以下である。 The curable epoxy resin composition of the present invention preferably does not contain a solvent (particularly an organic solvent). This is because the curable epoxy resin composition of the present invention can have excellent fluidity even without containing a solvent, based on the excellent fluidity of the imide group-containing epoxy resin. The content of the solvent (particularly an organic solvent) is not particularly limited, and is, for example, 10 mass % or less, preferably 5 mass % or less, more preferably 1 mass % or less, even more preferably 0.1 mass % or less, and particularly preferably 0 mass % or less, based on the total amount of the curable epoxy resin composition.
溶媒(特に有機溶媒)の含有量は、硬化性エポキシ樹脂組成物を80~250℃で1分~20時間の加熱処理(すなわち乾燥処理)に供した前後の質量から算出することができる。詳しくは、溶媒(特に有機溶媒)の含有量は、乾燥処理前の質量をXgとし、乾燥処理後の質量をYgとしたとき、式:「{(X-Y)/X}×100」(%)に基づいて算出することができる。 The content of the solvent (particularly the organic solvent) can be calculated from the mass before and after the curable epoxy resin composition is subjected to a heat treatment (i.e., drying treatment) at 80 to 250°C for 1 minute to 20 hours. In detail, the content of the solvent (particularly the organic solvent) can be calculated based on the formula: {(X-Y)/X} x 100 (%), where Xg is the mass before the drying treatment and Yg is the mass after the drying treatment.
本発明の硬化性エポキシ樹脂組成物の製造方法は特に限定されないが、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等の混合機を用いて、イミド基含有エポキシ樹脂と硬化剤と、必要に応じて添加する他の添加剤とを混合する方法が挙げられる。 The method for producing the curable epoxy resin composition of the present invention is not particularly limited, but examples include a method in which an imide group-containing epoxy resin, a curing agent, and other additives that are added as necessary are mixed using a mixer such as a homodisper, a universal mixer, a Banbury mixer, or a kneader.
<硬化物>
本発明は硬化物も提供する。本発明の硬化物は、上記した本発明の硬化性エポキシ樹脂組成物の硬化物である。本発明の硬化性エポキシ樹脂組成物を加熱することにより、イミド基含有エポキシ樹脂と硬化剤とを反応させ、硬化物を得ることができる。加熱温度(硬化温度)は、80~350℃とすることが好ましく、130~220℃とすることがより好ましく、130~200℃とすることがより好ましい。加熱時間(硬化時間)は、1分~24時間とすることが好ましく、5分~10時間とすることがより好ましく、1~5時間とすることがより好ましい。
<Cured Product>
The present invention also provides a cured product. The cured product of the present invention is a cured product of the above-mentioned curable epoxy resin composition of the present invention. By heating the curable epoxy resin composition of the present invention, the imide group-containing epoxy resin and the curing agent are reacted to obtain a cured product. The heating temperature (curing temperature) is preferably 80 to 350°C, more preferably 130 to 220°C, and more preferably 130 to 200°C. The heating time (curing time) is preferably 1 minute to 24 hours, more preferably 5 minutes to 10 hours, and more preferably 1 to 5 hours.
<硬化物の用途>
本発明の硬化物は、耐熱性、均一性、機械的特性に優れているため、電気絶縁材料として好適に用いることができる。具体的には、本発明の硬化物は、電気絶縁材料として、封止材(例えば、パワー半導体モジュール用封止材)、プリント配線基板、モールド材(例えば、ブッシング変圧器用モールド材、固体絶縁スイッチギア用モールド材)、原子力発電所用電気ペネトレーション、ビルドアップ積層板、粉体塗料等に好適に用いることができる。中でも、本発明の硬化物は、封止材、プリント配線基板により好適に用いることができる。
<Applications of the cured product>
The cured product of the present invention is excellent in heat resistance, uniformity, and mechanical properties, and therefore can be suitably used as an electrical insulating material. Specifically, the cured product of the present invention can be suitably used as an electrical insulating material for sealing materials (e.g., sealing materials for power semiconductor modules), printed wiring boards, molding materials (e.g., molding materials for bushing transformers, molding materials for solid insulating switch gears), electrical penetration for nuclear power plants, build-up laminates, powder coatings, and the like. Among these, the cured product of the present invention can be suitably used for sealing materials and printed wiring boards.
本発明の硬化物を封止材用絶縁材料として用いる場合、例えば、パワー半導体モジュールを作製した後、モジュールがセットされた金型内に、本発明の硬化性エポキシ樹脂組成物を充填し、硬化することにより用いることができる。 When the cured product of the present invention is used as an insulating material for sealing materials, it can be used, for example, by producing a power semiconductor module, filling the mold in which the module is set with the curable epoxy resin composition of the present invention, and curing it.
また例えば、本発明の硬化物をプリント配線基板用絶縁材料として用いる場合は溶媒を用いることが多いが、その場合、本発明の硬化性エポキシ樹脂組成物の溶液をガラスクロスに含浸または塗布させた後、硬化することより用いることができる。本発明の硬化性エポキシ樹脂組成物の溶液は、本発明の硬化物を封止材用絶縁材料として用いる場合における硬化性エポキシ樹脂組成物の溶液と同様である。プリント配線基板用絶縁材料とは、プリント配線基板を構成する絶縁材料のことである。 For example, when the cured product of the present invention is used as an insulating material for printed wiring boards, a solvent is often used. In this case, the solution of the curable epoxy resin composition of the present invention can be used by impregnating or coating a glass cloth with the solution and then curing it. The solution of the curable epoxy resin composition of the present invention is the same as the solution of the curable epoxy resin composition when the cured product of the present invention is used as an insulating material for sealing materials. An insulating material for printed wiring boards refers to an insulating material that constitutes a printed wiring board.
本発明の硬化性エポキシ樹脂組成物は、その他用途として、電気絶縁材料以外の用途にも使用することができる。具体的には、本発明の硬化性エポキシ樹脂組成物は、接着剤用途やCFRP用途に用いることができる。 The curable epoxy resin composition of the present invention can also be used for purposes other than electrical insulation materials. Specifically, the curable epoxy resin composition of the present invention can be used for adhesives and CFRP.
以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to these.
A.原料
実施例、比較例で用いた原料を以下に示す。
(A)二官能型エポキシ樹脂
・ビスフェノールA型エポキシ樹脂:東京化成工業社製、エポキシ当量170g/eq
・ナフタレン型エポキシ樹脂:DIC社製「HP-4032D」、エポキシ当量141g/eq
・アントラセン型エポキシ樹脂 三菱ケミカル社製「YX8800」、エポキシ当量 180 g/eq
・ビフェニル型エポキシ樹脂:三菱ケミカル社製「YX4000H」、エポキシ当量191g/eq
A. Raw Materials The raw materials used in the examples and comparative examples are shown below.
(A) Bifunctional epoxy resin/bisphenol A type epoxy resin: manufactured by Tokyo Chemical Industry Co., Ltd., epoxy equivalent 170 g/eq
Naphthalene type epoxy resin: "HP-4032D" manufactured by DIC Corporation, epoxy equivalent 141 g/eq
Anthracene type epoxy resin "YX8800" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 180 g/eq
Biphenyl type epoxy resin: "YX4000H" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 191 g/eq.
(B)多官能型エポキシ樹脂
・クレゾールノボラック型エポキシ樹脂:DIC社製「N-660」、エポキシ当量209g/eq
(B) Multifunctional epoxy resin/cresol novolac type epoxy resin: "N-660" manufactured by DIC Corporation, epoxy equivalent 209 g/eq
(C)ジイミドジカルボン酸系化合物
・ジイミドジカルボン酸X
4,4’-ジアミノジフェニルエーテル52.3質量部と無水トリメリット酸100質量部を、大阪ケミカル社製ワンダークラッシャーWC-3Cを用いて、9000rpmの回転速度で1分間混合粉砕することを3回繰り返して、メカノケミカル処理をおこなった。処理した試料をガラス容器に移し、ヤマト科学社製イナートオーブンDN411Iにて、窒素雰囲気下で300℃2時間イミド化反応をおこない、ジイミドジカルボン酸Xを得た。
なお、ジイミドジカルボン酸Xは、1H-NMRで確認したところ、トリメリット酸-4,4’-ジアミノジフェニルエーテル-トリメリット酸から構成される三量体であった。また、質量分析によると、該ジイミドジカルボン酸Xの数平均分子量は549であり、常温で固体であった。
(C) Diimidedicarboxylic acid compounds: Diimidedicarboxylic acid X
A mechanochemical treatment was carried out by mixing and grinding 52.3 parts by mass of 4,4'-diaminodiphenyl ether and 100 parts by mass of trimellitic anhydride at a rotation speed of 9000 rpm for 1 minute three times using a Wonder Crusher WC-3C manufactured by Osaka Chemical Co., Ltd. The treated sample was transferred to a glass container and subjected to an imidization reaction at 300°C for 2 hours in a nitrogen atmosphere using an inert oven DN411I manufactured by Yamato Scientific Co., Ltd., to obtain diimidedicarboxylic acid X.
Diimidedicarboxylic acid X was confirmed by 1 H-NMR to be a trimer composed of trimellitic acid-4,4′-diaminodiphenyl ether-trimellitic acid. Mass spectrometry revealed that diimidedicarboxylic acid X had a number average molecular weight of 549 and was a solid at room temperature.
・ジイミドジカルボン酸Y
4,4’-ジアミノジフェニルエーテル52.3質量部を2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン107.2質量部に代えて用いた以外はジイミドジカルボン酸Xと同様にして、ジイミドジカルボン酸Yを得た。
なお、ジイミドジカルボン酸Yは、1H-NMRで確認したところ、トリメリット酸-2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン-トリメリット酸から構成される三量体であった。また、質量分析によると、該ジイミドジカルボン酸Yの数平均分子量は759であり、常温で固体であった。
Diimide dicarboxylic acid Y
Diimidedicarboxylic acid Y was obtained in the same manner as diimidedicarboxylic acid X, except that 52.3 parts by mass of 4,4'-diaminodiphenyl ether was used in place of 107.2 parts by mass of 2,2-bis[4-(4-aminophenoxy)phenyl]propane.
Diimidedicarboxylic acid Y was confirmed by 1H -NMR to be a trimer composed of trimellitic acid-2,2-bis[4-(4-aminophenoxy)phenyl]propane-trimellitic acid. Mass spectrometry revealed that the number average molecular weight of diimidedicarboxylic acid Y was 759 and that it was a solid at room temperature.
・ジイミドジカルボン酸Z
4,4’-ジアミノジフェニルエーテル52.3質量部をtrans-1,4-シクロヘキサンジアミン29.8質量部に代えて用いた以外はジイミドジカルボン酸Xと同様にして、ジイミドジカルボン酸Zを得た。
なお、ジイミドジカルボン酸Zは、1H-NMRで確認したところ、トリメリット酸-trans-1,4-シクロヘキサンジアミン-トリメリット酸から構成される三量体であった。また、質量分析によると、該ジイミドジカルボン酸Zの数平均分子量は462であり、常温で固体であった。
Diimidedicarboxylic acid Z
Diimidedicarboxylic acid Z was obtained in the same manner as diimidedicarboxylic acid X, except that 52.3 parts by mass of 4,4'-diaminodiphenyl ether was used instead of 29.8 parts by mass of trans-1,4-cyclohexanediamine.
Diimidedicarboxylic acid Z was confirmed by 1 H-NMR to be a trimer composed of trimellitic acid-trans-1,4-cyclohexanediamine-trimellitic acid. Mass spectrometry revealed that diimidedicarboxylic acid Z had a number average molecular weight of 462 and was a solid at room temperature.
(D)リン系化合物
・トリフェニルホスフィン:東京化成工業社製
(E)その他の触媒
・N,N-ジメチルベンジルアミン:東京化成工業社製
(D) Phosphorus compounds, triphenylphosphine: manufactured by Tokyo Chemical Industry Co., Ltd. (E) Other catalysts, N,N-dimethylbenzylamine: manufactured by Tokyo Chemical Industry Co., Ltd.
(F)硬化剤
・2-エチル-4-メチルイミダゾール:東京化成工業社製
・4-メチルシクロヘキサン-1,2-ジカルボン酸無水物:東京化成工業社製
・4,4-ジアミノジフェニルメタン:東京化成工業社製
(F) Hardener 2-ethyl-4-methylimidazole: manufactured by Tokyo Chemical Industry Co., Ltd. 4-methylcyclohexane-1,2-dicarboxylic anhydride: manufactured by Tokyo Chemical Industry Co., Ltd. 4,4-diaminodiphenylmethane: manufactured by Tokyo Chemical Industry Co., Ltd.
B.評価方法
実施例、比較例で得られた、化合物(イミド基含有エポキシ樹脂)、硬化物について以下の評価をおこなった。
B. Evaluation Methods The compounds (imide group-containing epoxy resins) and cured products obtained in the examples and comparative examples were evaluated as follows.
[イミド基含有エポキシ樹脂の評価方法]
(1)エステル化反応の確認
実施例および比較例で得られたイミド基含有エポキシ樹脂を、赤外分光法(IR)により、以下の条件で測定し、同定を行った。
[Evaluation method of imide group-containing epoxy resin]
(1) Confirmation of Esterification Reaction The imide group-containing epoxy resins obtained in the Examples and Comparative Examples were measured and identified by infrared spectroscopy (IR) under the following conditions.
<測定条件>
装置:サーモフィッシャーサイエンティフィック社製Nicolet iS5 FT-IR、iD7 ATRアクセサリ
方法:ATR法
積算回数:64スキャン(分解能4cm-1)
ジイミドジカルボン酸系化合物のカルボキシル基に由来する1680cm-1付近の吸収の有無を確認した。
<評価基準>
◎:エステル化反応が十分に進行した;カルボキシル基由来ピークの消失;
×:エステル化反応が十分に進行していなかった;カルボキシル基由来のピークの残存
<Measurement conditions>
Apparatus: Nicolet iS5 FT-IR, iD7 ATR accessory, manufactured by Thermo Fisher Scientific Method: ATR method Number of scans: 64 (resolution 4 cm-1)
The presence or absence of absorption near 1680 cm −1 due to the carboxyl group of the diimidedicarboxylic acid compound was confirmed.
<Evaluation criteria>
⊚: The esterification reaction proceeded sufficiently; the peak derived from the carboxyl group disappeared;
×: Esterification reaction did not proceed sufficiently; peaks derived from carboxyl groups remained
(2)エポキシ当量
実施例および比較例で得られたイミド基含有エポキシ樹脂を、核磁気共鳴法(NMR)により、以下の条件で測定し、エポキシ当量を算出した。
実施例、比較例で得られたイミド基含有エポキシ樹脂を、高分解能核磁気共鳴装置(日本電子社製JNM-ECA500 NMR)を用いて、1H-NMR分析することにより、それぞれの共重合成分のピーク強度から樹脂組成を求めた(分解能:500MHz、溶媒:重水素化ジメチルスルホキシド、温度:25℃)。
(2) Epoxy Equivalent Weight The imide group-containing epoxy resins obtained in the Examples and Comparative Examples were measured by nuclear magnetic resonance (NMR) under the following conditions, and the epoxy equivalent weight was calculated.
The imide group-containing epoxy resins obtained in the examples and comparative examples were subjected to 1H -NMR analysis using a high-resolution nuclear magnetic resonance apparatus (JNM-ECA500 NMR manufactured by JEOL Ltd.) to determine the resin composition from the peak intensity of each copolymerization component (resolution: 500 MHz, solvent: deuterated dimethyl sulfoxide, temperature: 25°C).
<測定条件>
装置:日本電子社製JNM-ECA500 NMR
分解能:500MHz
溶媒:重水素化ジメチルスルホキシド
温度:25℃
方法:内部標準法(3-(トリメチルシリル)プロピオン酸ナトリウム-2,2,3,3-d4(TSP-d4);純度99.8%)
内部標準と各成分のピーク強度から、エポキシ当量を算出した。
<評価基準>
◎:250≦エポキシ当量≦350(最良);
○:200≦エポキシ当量<250または350<エポキシ当量≦500(良);
△:エポキシ当量<200または500<エポキシ当量≦1000(実用上問題なし);
×:エポキシ当量>1000(実用上問題あり)。
<Measurement conditions>
Equipment: JNM-ECA500 NMR manufactured by JEOL Ltd.
Resolution: 500MHz
Solvent: Deuterated dimethyl sulfoxide Temperature: 25°C
Method: Internal standard method (sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TSP-d4); purity 99.8%)
The epoxy equivalent was calculated from the peak intensity of the internal standard and each component.
<Evaluation criteria>
◎: 250≦epoxy equivalent≦350 (best);
○: 200≦epoxy equivalent<250 or 350<epoxy equivalent≦500 (good);
Δ: Epoxy equivalent < 200 or 500 < epoxy equivalent ≦ 1000 (no problem in practical use);
×: Epoxy equivalent > 1000 (problems in practical use).
(3)流動性の評価(粘度測定)
実施例および比較例で得られたイミド基含有エポキシ樹脂を、動的粘弾性測定により、以下の条件で測定し、粘度を算出した。
(3) Evaluation of fluidity (viscosity measurement)
The imide group-containing epoxy resins obtained in the examples and comparative examples were subjected to dynamic viscoelasticity measurement under the following conditions, and the viscosity was calculated.
<測定条件>
装置:TAインスツルメント社製ARESG2 レオメータ
測定温度範囲:25~200℃
昇温速度:5℃/分
角周波数:10rad/s
140℃時の粘度を算出した。
<評価基準>
◎:粘度≦10Pa・s(最良);
○:10Pa・s<粘度≦100Pa・s(良);
△:100Pa・s<粘度≦1000Pa・s(実用上問題なし);
×:1000Pa・s<粘度(実用上問題あり)。
<Measurement conditions>
Apparatus: TA Instruments ARESG2 Rheometer Measurement temperature range: 25 to 200°C
Temperature rise rate: 5° C./min Angular frequency: 10 rad/s
The viscosity at 140°C was calculated.
<Evaluation criteria>
◎: Viscosity ≦10 Pa·s (best);
○: 10 Pa·s<viscosity≦100 Pa·s (good);
△: 100 Pa·s<viscosity≦1000 Pa·s (no problem in practical use);
×: Viscosity < 1000 Pa·s (problems in practical use).
[硬化物の評価方法]
(1)均一性(透明性)の評価
実施例および比較例で得られた硬化物中の不溶成分の有無を目視により確認し、均一性を判断した。不溶成分は、硬化物の均一性および透明性を阻害する。
[Evaluation method of the cured product]
(1) Evaluation of Uniformity (Transparency) The presence or absence of insoluble components in the cured products obtained in the Examples and Comparative Examples was visually confirmed to judge the uniformity. Insoluble components impair the uniformity and transparency of the cured product.
<評価基準>
◎(均一):不溶成分なし。完全に透明な状態。
△(ほぼ均一):不溶成分が一部存在するが、透明な状態。
×(不均一):不溶成分あり、かつ不透明な状態。
<Evaluation criteria>
◎ (Uniform): No insoluble matter. Completely transparent.
△ (almost uniform): some insoluble components present, but transparent.
× (uneven): Contains insoluble components and is opaque.
(2)硬化物のガラス転移温度(耐熱性)
実施例および比較例で得られた硬化物を、示差走査熱量測定装置(DSC)を用いて、以下の条件で測定した。
<測定条件>
装置:Perkin Elmer社製 DSC 6000
昇温速度:10℃/分
25℃から300℃まで昇温し、得られた昇温曲線中の転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
(2) Glass transition temperature of the cured product (heat resistance)
The cured products obtained in the examples and comparative examples were measured using a differential scanning calorimeter (DSC) under the following conditions.
<Measurement conditions>
Apparatus: Perkin Elmer DSC 6000
Temperature rise rate: 10° C./min. The temperature was raised from 25° C. to 300° C., and the starting temperature of the discontinuous change resulting from the transition temperature in the obtained temperature rise curve was determined as the glass transition temperature.
<評価基準>
◎:Tg≧200℃(最良);
○:200℃>Tg≧180℃(良);
△:180℃>Tg≧150℃(実用上問題なし);
×:150℃>Tg(不良)(実用上問題あり)。
<Evaluation criteria>
◎: Tg≧200° C. (best);
○: 200° C.>Tg≧180° C. (good);
Δ: 180° C.>Tg≧150° C. (no problem in practical use);
×: 150° C.>Tg (bad) (problematic in practical use).
[総合評価]
イミド基含有エポキシ樹脂の流動性ならびに硬化物の均一性および耐熱性の評価結果に基づいて、総合的に評価した。
<評価基準>
◎:全ての評価結果が◎であった。
○:全ての評価結果うち、最も低い評価結果が○であった。
△:全ての評価結果うち、最も低い評価結果が△であった。
×:全ての評価結果うち、最も低い評価結果が×であった。
[comprehensive evaluation]
A comprehensive evaluation was made based on the evaluation results of the fluidity of the imide group-containing epoxy resin, as well as the uniformity and heat resistance of the cured product.
<Evaluation criteria>
: All evaluation results were rated as .
◯: Of all the evaluation results, the lowest evaluation result was ◯.
Δ: Of all the evaluation results, Δ was the lowest evaluation result.
×: Of all the evaluation results, the lowest evaluation result was ×.
実施例1
(イミド基含有エポキシ樹脂A)
加熱機構、撹拌機構を備えた反応容器にナフタレン型エポキシ樹脂100質量部、ジイミドジカルボン酸X19質量部およびトリフェニルホスフィン0.3質量部を投入した。その後、撹拌下、150℃で加熱し、窒素気流下常圧で1時間反応をおこない、イミド基含有エポキシ樹脂Aを得た。
なお、イミド基含有エポキシ樹脂Aは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Aのエポキシ当量は216であり、常温で粘調固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Aは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 1
(Imide Group-Containing Epoxy Resin A)
100 parts by mass of naphthalene-type epoxy resin, 19 parts by mass of diimidedicarboxylic acid X, and 0.3 parts by mass of triphenylphosphine were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. The mixture was then heated to 150° C. with stirring and reacted for 1 hour under normal pressure in a nitrogen stream to obtain an imide group-containing epoxy resin A.
The imide group-containing epoxy resin A was confirmed by IR to have undergone a sufficient esterification reaction, and the imide group-containing epoxy resin A had an epoxy equivalent of 216 according to 1 H-NMR, and was a viscous solid at room temperature.
From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin A has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
(硬化物)
得られたイミド基含有エポキシ樹脂Aと、硬化剤とを表1に記載の組成になるように混合し、窒素雰囲気下、200℃で加熱し、3時間硬化反応をおこない、硬化物を得た。
(Cured product)
The obtained imide group-containing epoxy resin A and a curing agent were mixed to obtain the composition shown in Table 1, and the mixture was heated at 200° C. in a nitrogen atmosphere to carry out a curing reaction for 3 hours to obtain a cured product.
実施例2
(イミド基含有エポキシ樹脂B)
ジイミドジカルボン酸X19質量部を39質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Bを得た。
なお、イミド基含有エポキシ樹脂Bは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Bのエポキシ当量は309であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Bは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 2
(Imide group-containing epoxy resin B)
An imide group-containing epoxy resin B was obtained in the same manner as in Example 1, except that 19 parts by mass of diimidedicarboxylic acid X was used in place of 39 parts by mass.
Incidentally, IR analysis of imide group-containing epoxy resin B confirmed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin B had an epoxy equivalent of 309 and was solid at room temperature.
From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin B has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
得られたイミド基含有エポキシ樹脂Bを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin B was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
実施例3~5
(イミド基含有エポキシ樹脂C)
ジイミドジカルボン酸X19質量部を58質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Cを得た。
なお、イミド基含有エポキシ樹脂Cは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Cのエポキシ当量は400であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Cは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Examples 3 to 5
(Imide group-containing epoxy resin C)
An imide group-containing epoxy resin C was obtained in the same manner as in Example 1, except that 58 parts by mass of diimidedicarboxylic acid X was used instead of 19 parts by mass.
Incidentally, IR analysis of imide group-containing epoxy resin C confirmed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin C had an epoxy equivalent of 400 and was solid at room temperature.
From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin C has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
得られたイミド基含有エポキシ樹脂Cを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin C was used to prepare a cured product in the same manner as in Example 1, except that the amounts were changed to obtain the composition shown in Table 1.
実施例6
(イミド基含有エポキシ樹脂D)
ジイミドジカルボン酸X19質量部を78質量部、トリフェニルホスフィン0.3質量部を0.4質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Dを得た。
なお、イミド基含有エポキシ樹脂Dは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Dのエポキシ当量は543であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Dは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 6
(Imide group-containing epoxy resin D)
An imide group-containing epoxy resin D was obtained in the same manner as in Example 1, except that 78 parts by mass of diimidedicarboxylic acid X and 0.4 parts by mass of triphenylphosphine were used instead of 19 parts by mass and 0.3 parts by mass, respectively.
Incidentally, IR analysis of imide group-containing epoxy resin D revealed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin D had an epoxy equivalent of 543 and was solid at room temperature.
From these results and the charged amounts, it was confirmed that imide group-containing epoxy resin D has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
得られたイミド基含有エポキシ樹脂Dを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin D was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
実施例7
(イミド基含有エポキシ樹脂E)
ナフタレン型エポキシ樹脂をビスフェノールA型エポキシ樹脂、ジイミドジカルボン酸X19質量部を48質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Eを得た。
なお、イミド基含有エポキシ樹脂Eは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Eのエポキシ当量は441であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Eは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 7
(Imide group-containing epoxy resin E)
An imide group-containing epoxy resin E was obtained in the same manner as in Example 1, except that the naphthalene type epoxy resin was replaced with the bisphenol A type epoxy resin and the 19 parts by mass of diimidedicarboxylic acid X was replaced with 48 parts by mass.
The esterification reaction of the imide group-containing epoxy resin E was confirmed by IR spectroscopy, and it was found to have progressed sufficiently. Furthermore, the epoxy equivalent of the imide group-containing epoxy resin E was found to be 441 by 1 H-NMR spectroscopy, and the resin was a solid at room temperature.
From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin E has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
得られたイミド基含有エポキシ樹脂Eを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin E was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
実施例8
(イミド基含有エポキシ樹脂F)
ナフタレン型エポキシ樹脂をアントラセン型エポキシ樹脂、ジイミドジカルボン酸X19質量部を46質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Fを得た。
なお、イミド基含有エポキシ樹脂Fは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Eのエポキシ当量は375であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Fは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 8
(Imide group-containing epoxy resin F)
An imide group-containing epoxy resin F was obtained in the same manner as in Example 1, except that the naphthalene type epoxy resin was replaced with an anthracene type epoxy resin and 19 parts by mass of diimidedicarboxylic acid X was replaced with 46 parts by mass.
It should be noted that IR analysis confirmed that the esterification reaction had progressed sufficiently for the imide group-containing epoxy resin F. Furthermore, 1 H-NMR analysis revealed that the epoxy equivalent of the imide group-containing epoxy resin E was 375, and the resin was solid at room temperature.
From these results and the charged amounts, it was confirmed that imide group-containing epoxy resin F has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
得られたイミド基含有エポキシ樹脂Fを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin F was used to prepare a cured product in the same manner as in Example 1, except that the compounding amounts were changed to obtain the composition shown in Table 1.
実施例9
(イミド基含有エポキシ樹脂G)
ナフタレン型エポキシ樹脂をビフェニル型エポキシ樹脂、ジイミドジカルボン酸X19質量部を43質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Gを得た。
なお、イミド基含有エポキシ樹脂Gは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Gのエポキシ当量は412であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Gは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 9
(Imide group-containing epoxy resin G)
An imide group-containing epoxy resin G was obtained in the same manner as in Example 1, except that the naphthalene type epoxy resin was replaced with a biphenyl type epoxy resin and 19 parts by mass of diimidedicarboxylic acid X was replaced with 43 parts by mass.
Incidentally, IR analysis of imide group-containing epoxy resin G revealed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin G had an epoxy equivalent of 412 and was solid at room temperature.
From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin G has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond to one molecule of a bifunctional epoxy resin.
得られたイミド基含有エポキシ樹脂Gを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin G was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
実施例10
(イミド基含有エポキシ樹脂H)
ジイミドジカルボン酸X19質量部をジイミドジカルボン酸Y81質量部、トリフェニルホスフィン0.3質量部を0.4質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Hを得た。
なお、イミド基含有エポキシ樹脂Hは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Hのエポキシ当量は450であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Hは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 10
(Imide group-containing epoxy resin H)
An imide group-containing epoxy resin H was obtained in the same manner as in Example 1, except that 81 parts by mass of diimidedicarboxylic acid Y was used in place of 19 parts by mass of diimidedicarboxylic acid X, and 0.4 parts by mass of triphenylphosphine was used in place of 0.3 parts by mass.
Incidentally, IR analysis of imide group-containing epoxy resin H confirmed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin H had an epoxy equivalent of 450 and was solid at room temperature.
From these results and the charged amounts, it was confirmed that imide group-containing epoxy resin H has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
得られたイミド基含有エポキシ樹脂Hを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin H was used to prepare a cured product in the same manner as in Example 1, except that the compounding amounts were changed to obtain the composition shown in Table 1.
実施例11
(イミド基含有エポキシ樹脂I)
ジイミドジカルボン酸X19質量部をジイミドジカルボン酸Z49質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Iを得た。
なお、イミド基含有エポキシ樹脂Iは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Iのエポキシ当量は380であり、常温で固体であった。
これらの結果および仕込み量より、イミド基含有エポキシ樹脂Iは、ジイミドジカルボン酸系化合物1分子の両端の各々に二官能型エポキシ樹脂1分子がエステル結合を介して結合された構造を有することが確認された。
Example 11
(Imide group-containing epoxy resin I)
An imide group-containing epoxy resin I was obtained in the same manner as in Example 1, except that 19 parts by mass of diimidedicarboxylic acid X was used in place of 49 parts by mass of diimidedicarboxylic acid Z.
Incidentally, IR analysis confirmed that the esterification reaction had progressed sufficiently for the imide group-containing epoxy resin I. Furthermore, 1 H-NMR analysis revealed that the imide group-containing epoxy resin I had an epoxy equivalent of 380 and was solid at room temperature.
From these results and the charged amounts, it was confirmed that the imide group-containing epoxy resin I has a structure in which one molecule of a diimidedicarboxylic acid compound is bonded to each end of the molecule via an ester bond.
得られたイミド基含有エポキシ樹脂Iを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin I was used to prepare a cured product in the same manner as in Example 1, except that the amounts were changed to obtain the composition shown in Table 1.
比較例1
(イミド基含有エポキシ樹脂J)
ジイミドジカルボン酸X19質量部を58質量部、トリフェニルホスフィンをN,N-ジメチルベンジルアミンに代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Jを得た。
なお、イミド基含有エポキシ樹脂Jは、IRで確認ところ、エステル化反応が十分に進行していた。また、1H-NMRよりイミド基含有エポキシ樹脂Jのエポキシ当量は1500であり、常温で固体であった。
これらの結果より、イミド基含有エポキシ樹脂Jは、ジイミドジカルボン酸系化合物と二官能型エポキシ樹脂とがエステル結合を介して繰り返し結合されたポリマー構造を有することが確認された。
Comparative Example 1
(Imide group-containing epoxy resin J)
An imide group-containing epoxy resin J was obtained in the same manner as in Example 1, except that 19 parts by mass of diimidedicarboxylic acid X was replaced with 58 parts by mass, and triphenylphosphine was used in place of N,N-dimethylbenzylamine.
Incidentally, IR analysis of imide group-containing epoxy resin J confirmed that the esterification reaction had progressed sufficiently, and 1 H-NMR analysis revealed that imide group-containing epoxy resin J had an epoxy equivalent of 1,500 and was a solid at room temperature.
From these results, it was confirmed that the imide group-containing epoxy resin J has a polymer structure in which a diimidedicarboxylic acid compound and a bifunctional epoxy resin are repeatedly bonded via ester bonds.
得られたイミド基含有エポキシ樹脂Jを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin J was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
比較例2
(イミド基含有エポキシ樹脂K)
ナフタレン型エポキシ樹脂をクレゾールノボラック型エポキシ樹脂、ジイミドジカルボン酸X19質量部を39質量部に代えて用いた以外は実施例1と同様にして、イミド基含有エポキシ樹脂Kを得た。
なお、イミド基含有エポキシ樹脂Kは、IRで確認したところ、エステル化反応が十分に進行しておらず、未反応なものが残っていた。
これらの結果より、イミド基含有エポキシ樹脂Kは、ジイミドジカルボン酸系化合物と多官能エポキシ樹脂との単なる混合物であることが確認された。
Comparative Example 2
(Imide group-containing epoxy resin K)
An imide group-containing epoxy resin K was obtained in the same manner as in Example 1, except that the naphthalene type epoxy resin was replaced with a cresol novolac type epoxy resin and 19 parts by mass of diimide dicarboxylic acid X was replaced with 39 parts by mass.
When the imide group-containing epoxy resin K was examined by IR, it was found that the esterification reaction had not progressed sufficiently and some unreacted material remained.
From these results, it was confirmed that the imide group-containing epoxy resin K was simply a mixture of a diimidedicarboxylic acid compound and a polyfunctional epoxy resin.
得られたイミド基含有エポキシ樹脂Kを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained imide group-containing epoxy resin K was used to prepare a cured product in the same manner as in Example 1, except that the blending amounts were changed to obtain the composition shown in Table 1.
比較例3
ビスフェノールA型エポキシ樹脂100質量部、ジイミドジカルボン酸X163質量部を室温で混合し、混合物を得た。
なお、当該混合物を、IRで確認ところ、エステル化反応は十分に進行していなかった。
これらの結果より、当該混合物は、やはり、ジイミドジカルボン酸系化合物と二官能型エポキシ樹脂との単なる混合物であることが確認された。
Comparative Example 3
100 parts by mass of bisphenol A type epoxy resin and 163 parts by mass of diimidedicarboxylic acid X were mixed at room temperature to obtain a mixture.
When the mixture was examined by IR, it was found that the esterification reaction had not progressed sufficiently.
From these results, it was confirmed that the mixture was simply a mixture of a diimidedicarboxylic acid compound and a bifunctional epoxy resin.
得られた混合物を用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化物の作製をおこなった。 The obtained mixture was used to prepare a cured product in the same manner as in Example 1, except that the compounding amounts were changed to obtain the composition shown in Table 1.
イミド基含有エポキシ樹脂の組成と得られた硬化物の評価結果を表1に示す。 The composition of the imide group-containing epoxy resin and the evaluation results of the resulting cured product are shown in Table 1.
表中の記号は以下の通りである。
-:配合せず。
*:二官能型エポキシ樹脂のエポキシ当量に対する値。
**:測定せず。
***:酸無水物およびアミン硬化剤は、イミド基含有エポキシ樹脂に対する当量比1/0.25で仕込んでいる。一方、イミダゾールは当量比とは無関係に、質量部で仕込んでいる。
The symbols in the table are as follows.
-: Not blended.
*: Value relative to the epoxy equivalent of difunctional epoxy resin.
**: Not measured.
***: The acid anhydride and amine curing agent are charged at an equivalent ratio of 1/0.25 to the imide group-containing epoxy resin, while the imidazole is charged by parts by mass regardless of the equivalent ratio.
実施例1~11では、いずれも二官能型エポキシ樹脂およびジイミドジカルボン酸系化合物を含み、それらがエステル結合で結合され、エポキシ当量が1000以下であったため、流動性に優れたイミド基含有エポキシ樹脂を得ることができた。特に二官能エポキシ樹脂と触媒としてリン系化合物を使用したため、流動性をコントロールすることができた。また、それらの硬化物は、いずれも均一化されており、イミドジカルボン酸系化合物を使用したため、耐熱性に優れていた。 In Examples 1 to 11, all of the compounds contained a bifunctional epoxy resin and a diimidedicarboxylic acid compound, which were bonded by ester bonds and had an epoxy equivalent of 1000 or less, so imide group-containing epoxy resins with excellent fluidity could be obtained. In particular, the use of a bifunctional epoxy resin and a phosphorus-based compound as a catalyst allowed for control of fluidity. In addition, all of the cured products were homogenized, and because an imidedicarboxylic acid compound was used, they had excellent heat resistance.
比較例1では触媒をリン系化合物ではなく、第三級アミンに変更し、合成した。その結果、イミド基含有エポキシ樹脂の合成時にゲル化してしまい、粘度が上昇した。これにより、イミド基含有エポキシ樹脂と硬化剤との相溶性が低下し、これらの成分が不溶成分として挙動したため、硬化物の均一性(透明性)が低下した。 In Comparative Example 1, the catalyst was changed from a phosphorus-based compound to a tertiary amine, and synthesis was performed. As a result, gelation occurred during synthesis of the imide group-containing epoxy resin, and the viscosity increased. This reduced the compatibility of the imide group-containing epoxy resin with the curing agent, and these components behaved as insoluble components, resulting in a decrease in the uniformity (transparency) of the cured product.
比較例2では、二官能型エポキシ樹脂を多官能型エポキシ樹脂に変更し、イミド基含有エポキシ樹脂を合成した。その結果、エポキシ樹脂とジイミドジカルボン酸の反応が十分に進行せず、未反応なものが残っていた。そのため、硬化物の均一性が不良だった。 In Comparative Example 2, the bifunctional epoxy resin was changed to a multifunctional epoxy resin, and an imide group-containing epoxy resin was synthesized. As a result, the reaction between the epoxy resin and diimidedicarboxylic acid did not proceed sufficiently, and some unreacted material remained. As a result, the uniformity of the cured product was poor.
比較例3では、原料を混合したのみで硬化したため、イミド基含有エポキシ樹脂にはなっておらず、粘度も高く、硬化物の均一性が不良だった。十分な耐熱性は発現しなかった。 In Comparative Example 3, the raw materials were simply mixed and cured, so the product did not become an imide group-containing epoxy resin, had high viscosity, and had poor uniformity in the cured product. It did not exhibit sufficient heat resistance.
本発明のイミド基含有エポキシ樹脂およびこれを用いた硬化物は、封止材、プリント配線基板、モールド材、原子力発電所用電気ペネトレーション、ビルドアップ積層板などの電気絶縁材料として有用である。 The imide group-containing epoxy resin of the present invention and the cured product using the same are useful as electrical insulating materials such as sealing materials, printed wiring boards, molding materials, electrical penetration for nuclear power plants, and build-up laminates.
Claims (16)
前記ジイミドジカルボン酸系化合物と前記二官能型エポキシ樹脂がエステル結合しており、
エポキシ当量が1000以下である、イミド基含有エポキシ樹脂。
the diimide dicarboxylic acid compound and the bifunctional epoxy resin are bonded by an ester bond,
An imide group-containing epoxy resin having an epoxy equivalent of 1,000 or less.
前記エポキシ当量が500以下である、請求項1に記載のイミド基含有エポキシ樹脂。 The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene type epoxy resins and biphenyl type epoxy resins,
2. The imide group-containing epoxy resin according to claim 1, wherein the epoxy equivalent is 500 or less.
前記エポキシ当量は250~350である、請求項1に記載のイミド基含有エポキシ樹脂。 The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene type epoxy resins and biphenyl type epoxy resins,
The imide group-containing epoxy resin according to claim 1, wherein the epoxy equivalent is 250 to 350.
前記ジイミドジカルボン酸系化合物の配合量は、該ジイミドジカルボン酸系化合物の官能基当量が二官能型エポキシ樹脂のエポキシ当量に対して、0.05~0.35当量比となるような量である、請求項6に記載のイミド基含有エポキシ樹脂の製造方法。 The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene type epoxy resins and biphenyl type epoxy resins,
The method for producing an imide group-containing epoxy resin according to claim 6, wherein the diimide dicarboxylic acid compound is blended in an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.05 to 0.35 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin.
前記ジイミドジカルボン酸系化合物の配合量は、該ジイミドジカルボン酸系化合物の官能基当量が二官能型エポキシ樹脂のエポキシ当量に対して、0.15~0.25当量比となるような量である、請求項6に記載のイミド基含有エポキシ樹脂の製造方法。 The bifunctional epoxy resin is one or more epoxy resins selected from the group consisting of naphthalene type epoxy resins and biphenyl type epoxy resins,
The method for producing an imide group-containing epoxy resin according to claim 6, wherein the diimide dicarboxylic acid compound is blended in an amount such that the functional group equivalent of the diimide dicarboxylic acid compound is 0.15 to 0.25 equivalent ratio relative to the epoxy equivalent of the bifunctional epoxy resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023145116 | 2023-09-07 | ||
JP2023-145116 | 2023-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025052983A1 true WO2025052983A1 (en) | 2025-03-13 |
Family
ID=94923755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/030211 WO2025052983A1 (en) | 2023-09-07 | 2024-08-26 | Imide group-containing epoxy resin and curable epoxy resin composition containing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025052983A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55104345A (en) * | 1979-02-05 | 1980-08-09 | Mitsubishi Electric Corp | Thermosetting resin composition |
JPS59131673A (en) * | 1983-01-18 | 1984-07-28 | Mitsubishi Electric Corp | Production of electrodeposition paint |
JPS6077652A (en) * | 1983-10-03 | 1985-05-02 | Mitsubishi Electric Corp | Insulating method of rotary electric machine |
JPS6112721A (en) * | 1984-06-29 | 1986-01-21 | Mitsubishi Electric Corp | Thermosetting resin composition |
JPH04103657A (en) * | 1990-08-22 | 1992-04-06 | Toyobo Co Ltd | Viscoelastic resin composition for vibration damping materials |
CN102627932A (en) * | 2012-03-21 | 2012-08-08 | 东华大学 | High temperature resistant epoxy-imine resin adhesive and preparation method thereof |
JP2013040253A (en) * | 2011-08-12 | 2013-02-28 | Dic Corp | Thermosetting resin composition, white prepreg, white laminated plate, and printed wiring board |
JP2019035078A (en) * | 2017-08-15 | 2019-03-07 | 長春人造樹脂廠股▲ふん▼有限公司 | Reactive epoxy compound and method for producing the same, core-shell type epoxy resin particle, aqueous epoxy resin composition and coating composition containing the same |
WO2020166580A1 (en) * | 2019-02-14 | 2020-08-20 | 日産化学株式会社 | Method for producing polymer |
JP2023059232A (en) * | 2021-10-14 | 2023-04-26 | 財團法人工業技術研究院 | Oligomer, composition, and packaging structure |
-
2024
- 2024-08-26 WO PCT/JP2024/030211 patent/WO2025052983A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55104345A (en) * | 1979-02-05 | 1980-08-09 | Mitsubishi Electric Corp | Thermosetting resin composition |
JPS59131673A (en) * | 1983-01-18 | 1984-07-28 | Mitsubishi Electric Corp | Production of electrodeposition paint |
JPS6077652A (en) * | 1983-10-03 | 1985-05-02 | Mitsubishi Electric Corp | Insulating method of rotary electric machine |
JPS6112721A (en) * | 1984-06-29 | 1986-01-21 | Mitsubishi Electric Corp | Thermosetting resin composition |
JPH04103657A (en) * | 1990-08-22 | 1992-04-06 | Toyobo Co Ltd | Viscoelastic resin composition for vibration damping materials |
JP2013040253A (en) * | 2011-08-12 | 2013-02-28 | Dic Corp | Thermosetting resin composition, white prepreg, white laminated plate, and printed wiring board |
CN102627932A (en) * | 2012-03-21 | 2012-08-08 | 东华大学 | High temperature resistant epoxy-imine resin adhesive and preparation method thereof |
JP2019035078A (en) * | 2017-08-15 | 2019-03-07 | 長春人造樹脂廠股▲ふん▼有限公司 | Reactive epoxy compound and method for producing the same, core-shell type epoxy resin particle, aqueous epoxy resin composition and coating composition containing the same |
WO2020166580A1 (en) * | 2019-02-14 | 2020-08-20 | 日産化学株式会社 | Method for producing polymer |
JP2023059232A (en) * | 2021-10-14 | 2023-04-26 | 財團法人工業技術研究院 | Oligomer, composition, and packaging structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101984450B1 (en) | Filler composition for space between layers of three-dimensional integrated circuit, coating fluid, and process for producing three-dimensional integrated circuit | |
KR101664948B1 (en) | New novolac curing agent having alkoxysilyl group, preparing method thereof, composition comprising thereof, cured product thereof, and uses thereof | |
JP2012524828A (en) | New epoxy resin and epoxy resin composition containing the same | |
JP6852039B2 (en) | A method for producing an epoxy compound having an alkoxysilyl group, an epoxy compound having an alkoxysilyl group, a composition containing the same, and its use. | |
JP2019035087A (en) | Epoxy resin, epoxy resin composition and cured product | |
JP5737129B2 (en) | Epoxy resin, epoxy resin composition and cured product | |
TWI494341B (en) | Epoxy resin compositions and shaped articles | |
JP2017115164A (en) | Thermosetting resin composition and epoxy resin cured product | |
WO2008020594A1 (en) | Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof | |
JP2013221120A (en) | Epoxy resin composition and cured product obtained by curing the same | |
JP2012131992A (en) | Epoxy resin, epoxy resin composition, and cured material | |
JP7253300B1 (en) | Amide compound and curable resin composition containing the same | |
KR101202028B1 (en) | Novel Epoxy Resin and Epoxy Resin Composite for Semiconductor Encapsulant | |
JP2006008747A (en) | Epoxy compound and thermosetting resin composition | |
WO2025052983A1 (en) | Imide group-containing epoxy resin and curable epoxy resin composition containing same | |
JP2025038882A (en) | Imide group-containing epoxy resin and curable epoxy resin composition containing the same | |
JP5768529B2 (en) | Interlayer filler composition for three-dimensional stacked semiconductor device and coating solution thereof | |
JP7502916B2 (en) | Epoxy resin, epoxy resin composition and cured product | |
JP2013006972A (en) | Epoxy resin composition, and cured material obtained by curing the same | |
JP5716512B2 (en) | Epoxy resin and method for producing the same | |
WO2023074481A1 (en) | Amide compound and curable resin composition containing same | |
JP6146999B2 (en) | Epoxy resin, epoxy resin composition and cured product | |
TWI837297B (en) | Ester compounds, resin compositions, hardeners, and build-up films | |
JP2017155127A (en) | Curable epoxy resin composition and cured product of the same, and electric/electronic component | |
WO2015105379A1 (en) | Novel novolac hardener having alkoxysilyl group, method for preparing same, composition containing same, hardened product, and use thereof |