[go: up one dir, main page]

WO2025052820A1 - Thermally conductive composition - Google Patents

Thermally conductive composition Download PDF

Info

Publication number
WO2025052820A1
WO2025052820A1 PCT/JP2024/027311 JP2024027311W WO2025052820A1 WO 2025052820 A1 WO2025052820 A1 WO 2025052820A1 JP 2024027311 W JP2024027311 W JP 2024027311W WO 2025052820 A1 WO2025052820 A1 WO 2025052820A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive composition
coupling agent
inorganic powder
titanate
Prior art date
Application number
PCT/JP2024/027311
Other languages
French (fr)
Japanese (ja)
Inventor
貴広 植田
龍夫 木部
智 柏谷
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2025052820A1 publication Critical patent/WO2025052820A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • heat-generating components that generate heat during use, such as computer CPUs, Peltier elements, LEDs, and power semiconductors for power control such as inverters.
  • heat-dissipating components such as heat spreaders and heat sinks.
  • Thermally conductive grease is applied between these heat-generating components and heat-dissipating components so that they come into close contact with each other, and is used to efficiently conduct the heat from the heat-generating components to the heat-dissipating components.
  • Thermally conductive grease is a grease-like composition in which a large amount of inorganic powder filler with high thermal conductivity (metal oxides such as zinc oxide and aluminum oxide, inorganic nitrides such as boron nitride, silicon nitride, and aluminum nitride, and metal powders such as aluminum and copper) is dispersed in a base oil such as liquid hydrocarbon, silicone oil, or fluorine oil.
  • inorganic powder filler with high thermal conductivity metal oxides such as zinc oxide and aluminum oxide, inorganic nitrides such as boron nitride, silicon nitride, and aluminum nitride, and metal powders such as aluminum and copper
  • thermally conductive grease is applied to the thermal contact interface between heat-generating parts, such as a computer CPU, and heat-dissipating parts, such as a heat sink, and between heat-generating parts, such as high-output inverters mounted on hybrid and electric vehicles, and heat-dissipating parts, such as a heat spreader.
  • heat-generating parts such as a computer CPU
  • heat-dissipating parts such as a heat sink
  • heat-generating parts such as high-output inverters mounted on hybrid and electric vehicles
  • heat-dissipating parts such as a heat spreader.
  • Patent Document 1 describes technology related to thermally conductive grease that contains a specific antioxidant in a specified ratio. Patent Document 1 describes that this thermally conductive grease has high thermal conductivity, consistency, and thermal stability at high temperatures.
  • Thermal conductivity of a thermally conductive composition containing an inorganic powder filler can be improved by increasing the content of the inorganic powder filler.
  • increasing the content of the inorganic powder filler increases the viscosity of the thermally conductive composition.
  • the desired properties of the thermally conductive composition may not be obtained, for example, when the thermally conductive composition is used as a thermally conductive grease, and the like. For this reason, a thermally conductive composition is required to have a viscosity that does not increase significantly even if the content of inorganic powder filler is increased.
  • the present invention aims to provide a thermally conductive composition that can suppress an increase in viscosity even when the content of inorganic powder filler is increased.
  • the inventors conducted extensive research to solve the above-mentioned problems. As a result, they discovered that a thermally conductive composition containing a specific coupling agent could solve the above problems, which led to the completion of the present invention.
  • the first aspect of the present invention is a thermally conductive composition that contains a base oil and an inorganic powder filler, and further contains at least one of a titanate-based coupling agent or an aluminate-based coupling agent.
  • the second aspect of the present invention is the thermally conductive composition according to the first invention, in which the total content of the titanate-based coupling agent and the aluminate-based coupling agent is 3% by volume or more and 30% by volume or less of the total amount of the thermally conductive composition.
  • the third aspect of the present invention is a thermally conductive composition according to the first or second invention, in which the inorganic powder filler is one or more selected from the group consisting of copper, aluminum, zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, and silicon carbide.
  • the fourth aspect of the present invention is a thermally conductive composition according to the first or second invention, in which the base oil is one or more selected from the group consisting of mineral oil, synthetic hydrocarbon oil, diester, polyol ester, and phenyl ether.
  • the thermally conductive composition of the present invention can effectively suppress an increase in viscosity even if the content of inorganic powder filler is increased.
  • the present embodiment a specific embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described in detail. Note that the present invention is not limited to the following embodiment, and can be implemented with appropriate modifications within the scope of the object of the present invention.
  • the expression "X to Y" (X and Y are arbitrary numbers) means "X or more and Y or less.”
  • Thermally conductive composition contains a base oil and an inorganic powder filler, and further contains at least one of a titanate-based coupling agent and an aluminate-based coupling agent.
  • the thermally conductive composition according to this embodiment can be used as a thermally conductive composition for forming a thermally conductive layer that is disposed between a heat-generating component, such as a computer CPU, a Peltier element, an LED, or a power semiconductor for power control, such as an inverter, and a heat-dissipating component, such as a heat spreader or a heat sink, and that conducts heat from the heat-generating component to the heat-dissipating component, thereby dissipating the heat from the heat-generating component.
  • a heat-generating component such as a computer CPU, a Peltier element, an LED, or a power semiconductor for power control, such as an inverter
  • a heat-dissipating component such as a heat spreader or a heat sink
  • the thermally conductive composition according to this embodiment can be used as a semi-solid or semi-liquid thermally conductive grease at room temperature. Furthermore, the thermally conductive composition according to this embodiment can also be used as a liquid thermally conductive paste at room temperature by, for example, adding a diluent.
  • the thermally conductive layer formed by the thermally conductive composition according to this embodiment may be solid, semi-solid, or semi-liquid.
  • the thermally conductive composition according to this embodiment may be a phase-change type thermally conductive sheet that has increased fluidity at high temperatures, for example, by containing a thermoplastic resin.
  • thermally conductive composition The components contained in the thermally conductive composition are explained below.
  • the inorganic powder filler imparts high thermal conductivity to the thermally conductive composition.
  • the inorganic powder filler used in this embodiment is not particularly limited as long as it has a higher thermal conductivity than the base oil, but powders such as metal oxides, inorganic sulfides, inorganic nitrides, metals (including alloys), silicon compounds (silica), and carbon materials (including carbon materials, diamonds, fullerenes, etc.) are preferably used.
  • the type of inorganic powder filler may be one type, or two or more types may be used in combination.
  • powders of non-conductive materials such as semiconductors or ceramics, such as zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, silicon carbide, silicon compounds (silica), and diamond, can be suitably used.
  • powders of copper, silver, aluminum, and alloys containing these can be used.
  • a combination of metal powder and powder of a non-conductive material may be used.
  • inorganic powder fillers it is preferable to use one or more selected from the group consisting of copper, aluminum, zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, and silicon carbide.
  • the inorganic powder filler used in the thermally conductive composition according to this embodiment may be an inorganic powder filler with one type of average particle size, or multiple inorganic powder fillers with different average particle sizes may be used.
  • inorganic powder fillers with different average particle sizes depending on the expected thickness of the thermally conductive layer, it is preferable to use, for example, three or more types of powders with different average particle sizes, including at least a first inorganic powder filler with an average particle size in the range of 30 ⁇ m to 200 ⁇ m, a second inorganic powder filler with an average particle size in the range of 1 ⁇ m to 30 ⁇ m, and a third inorganic powder filler with an average particle size in the range of 0.1 ⁇ m to 1 ⁇ m.
  • the average particle size of the inorganic powder filler can be calculated as the volume average diameter of the particle size distribution measured by the laser diffraction scattering method (in accordance with JIS R 1629:1997).
  • an inorganic powder filler having an average particle size smaller than that of the third inorganic powder filler may be further added as long as it does not impair the flowability of the thermally conductive composition.
  • the content of the inorganic powder filler is preferably 50% by volume or more and 90% by volume or less, more preferably 55% by volume or more and 85% by volume or less, and even more preferably 60% by volume or more and 80% by volume or less, relative to 100% by volume of the thermally conductive composition.
  • Base oil provides high lubricity to the thermally conductive composition.
  • various base oils can be used, for example, mineral oil, hydrocarbon-based base oils such as synthetic hydrocarbon oils, ester-based base oils such as diesters and polyol esters, ether-based base oils such as (poly)phenyl ethers, phosphate esters, silicone oils, and fluorine oils.
  • the base oils may be used alone or in combination of two or more.
  • Synthetic hydrocarbon oils include, for example, alpha-olefins produced from raw materials such as ethylene, propylene, butene, and derivatives thereof, polymerized either alone or in combination of two or more kinds.
  • alpha-olefins are those with 6 to 14 carbon atoms.
  • synthetic hydrocarbon oils include polyalphaolefins (PAOs), which are oligomers of 1-decene and 1-dodecene, polybutenes, which are oligomers of 1-butene and isobutylene, and co-oligomers of ethylene or propylene with alpha-olefins.
  • PAOs polyalphaolefins
  • polybutenes which are oligomers of 1-butene and isobutylene
  • co-oligomers of ethylene or propylene with alpha-olefins alkylbenzenes and alkylnaphthalenes can also be used.
  • polyol esters examples include esters of neopentyl polyols that do not have a hydrogen atom on the ⁇ -position carbon, specifically carboxylic acid esters such as neopentyl glycol, trimethylolpropane, and pentaerythritol.
  • carboxylic acid residue constituting the ester moiety is preferably a monocarboxylic acid residue having 4 to 26 carbon atoms.
  • esters of aliphatic dihydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, 2-butyl-2-ethylpropanediol, and 2,4-diethyl-pentanediol with linear or branched saturated fatty acids can also be used as ester-based base oils.
  • linear or branched saturated fatty acids monovalent linear or branched saturated fatty acids having 4 to 30 carbon atoms are preferred.
  • Ether-based base oils include polyglycols and (poly)phenyl ethers.
  • Polyglycols include polyethylene glycol, polypropylene glycol, and derivatives thereof.
  • (Poly)phenyl ethers include alkylated diphenyl ethers such as monoalkylated diphenyl ether and dialkylated diphenyl ether, alkylated tetraphenyl ethers such as monoalkylated tetraphenyl ether and dialkylated tetraphenyl ether, and alkylated pentaphenyl ethers such as pentaphenyl ether, monoalkylated pentaphenyl ether, and dialkylated pentaphenyl ether.
  • Phosphate esters include triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, and trixylenyl phosphate.
  • the thermally conductive layer formed by the thermally conductive composition according to this embodiment will be exposed to high temperatures for a long period of time, mainly due to heat-generating components. For this reason, it is desirable for the base oil contained in the thermally conductive composition to have excellent thermal oxidation stability.
  • synthetic base oils are preferred, and synthetic hydrocarbon oils, ester-based base oils, and ether-based base oils are preferred.
  • polyalphaolefins are preferred as synthetic hydrocarbon oils
  • polyol esters are preferred as ester-based base oils
  • (poly)phenyl ethers are preferred as ether-based base oils, as they are particularly excellent in thermal oxidation stability.
  • polyalphaolefins, (poly)phenyl ethers and polyol esters may be used alone, but it is preferable to use two or more of them in combination. In the case of using them in combination, it is preferable to use a base oil group consisting of polyalphaolefin or (poly)phenyl ether in combination with a polyol ester, since this allows the preparation of a thermally conductive composition having a relatively high viscosity index, high consistency, and excellent coatability.
  • the content ratio of the base oil group consisting of polyalphaolefin or (poly)phenyl ether to the polyol ester is preferably 95:5 to 30:70, more preferably 90:10 to 50:50, and even more preferably 85:15 to 65:35, by mass.
  • the kinetic viscosity of the base oil is preferably 10 mm 2 /s or more and 1200 mm 2 /s or less at 40° C.
  • the kinetic viscosity at 40° C. 10 mm 2 /s or more By making the kinetic viscosity at 40° C. 10 mm 2 /s or more, evaporation of the base oil and oil separation at high temperatures tend to be suppressed, which is preferable.
  • high consistency can be easily obtained, which is preferable.
  • the content of the base oil is preferably 5% by volume or more and 30% by volume or less, more preferably 7% by volume or more and 27% by volume or less, and even more preferably 8% by volume or more and 25% by volume or less, based on 100% by volume of the thermally conductive composition.
  • the coupling agent is adsorbed to the surface of the inorganic powder filler and reduces the viscosity of the thermally conductive composition.
  • the coupling agent is a compound that acts to chemically bond organic materials and inorganic materials.
  • the coupling agent is adsorbed to the surface of the inorganic powder filler, thereby increasing the affinity with the base oil.
  • the thermally conductive composition according to this embodiment is characterized by containing at least one of these coupling agents, a titanate-based coupling agent or an aluminate-based coupling agent.
  • Titanate-based coupling agents are coupling agents that contain titanium (Ti) as a constituent element
  • aluminate-based coupling agents are coupling agents that contain aluminum (Al) as a constituent element.
  • the inclusion of such a specific coupling agent can suppress an increase in the viscosity of the thermally conductive composition.
  • the specific coupling agent is more likely to be densely adsorbed to the surface of the inorganic powder filler in the thermally conductive composition, and by increasing the hydrophobicity of the surface of the inorganic powder filler, it is possible to increase the affinity with the base oil compared to other dispersants.
  • the titanate-based coupling agent and the aluminate-based coupling agent may be used alone or in combination.
  • the inventors' research has revealed that increasing the content of titanate-based coupling agent or aluminate-based coupling agent not only further reduces the viscosity of the thermally conductive composition, but also increases the thermal conductivity of the thermally conductive layer formed by the thermally conductive composition.
  • titanate coupling agent Any known titanate coupling agent can be used, and although there is no particular limitation, for example, a titanate coupling agent having a hydrocarbon group such as an alkyl titanate can be used.
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri(dioctyl pyrophosphate) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, isopropyl tri-n-dodecylbenzenesulfonyl titanate, bis(dioctyl pyrophosphate) oxyacetate titanate, and tetraisopropyl bis(dioctyl phosphite) titanate.
  • titanate coupling agents include the PLENACT series manufactured by Ajinomoto Fine-Techno Co., Ltd. and the ORGATIXX series manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Aluminate-based coupling agents that can be used are not particularly limited and include, for example, aluminum alkyl acetoacetates, dialkylates such as acetoalkoxy aluminum dialkylates and aluminum ethyl acetoacetate-diisopropylate; aluminum alkenyl acetoacetates, dialkylates; aluminum trisethyl acetoacetate, aluminum bisethyl acetoacetate-monoacetylacetonate, aluminum trisacetylacetonate, and other aluminate-based coupling agents.
  • the total content of the titanate-based coupling agent and the aluminate-based coupling agent contained in the thermally conductive composition is not particularly limited, but the total content of the titanate-based coupling agent and the aluminate-based coupling agent is preferably 3 vol% or more and 30 vol% or less, more preferably 7 vol% or more and 25 vol% or less, and even more preferably 12 vol% or more and 20 vol% or less, relative to 100 vol% of the thermally conductive composition.
  • the total content of the titanate-based coupling agent and the aluminate-based coupling agent be 3 vol% or more, relative to 100 vol% of the thermally conductive composition, the viscosity of the thermally conductive composition can be more effectively reduced.
  • the total content of the titanate-based coupling agent and the aluminate-based coupling agent be 30 vol% or less, relative to 100 vol% of the thermally conductive composition, it is possible to relatively increase the content of the inorganic powder filler and the base oil, and therefore it is possible to impart high thermal conductivity and lubricity to the thermally conductive composition.
  • the total content of the titanate-based coupling agent and the aluminate-based coupling agent relative to 100 parts by volume of the inorganic powder filler contained in the thermally conductive composition is preferably 5 parts by volume or more and 35 parts by volume or less, more preferably 10 parts by volume or more and 30 parts by volume or less, and even more preferably 15 parts by volume or more and 25 parts by volume or less.
  • the thermally conductive composition according to this embodiment contains a titanate-based coupling agent and an aluminate-based coupling agent, so that it is possible to effectively suppress an increase in viscosity even if the content of the inorganic powder filler is increased.
  • additives may be added depending on the application.
  • examples of other additives that may be added include a thickener, an antioxidant, a bleed-out inhibitor, a resin, a diluent, a viscosity index improver, etc.
  • the thermally conductive composition according to this embodiment may contain a thickener as necessary.
  • a thickener is not an essential component of the thermally conductive composition according to this embodiment, but for example, when the thermally conductive composition is to be a thermally conductive grease, the consistency of the thermally conductive grease can be controlled by including a thickener, thereby improving the applicability of the thermally conductive composition.
  • Thickeners include, for example, lithium soap, lithium complex soap, calcium soap, calcium complex soap, aluminum soap, aluminum complex soap, urea compounds, sodium terephthalamate, polytetrafluoroethylene, organo-bentonite, silica gel, petroleum wax, fluororesin, polyethylene wax, etc.
  • the thermally conductive composition according to this embodiment may contain an antioxidant as necessary.
  • an antioxidant is not an essential component of the thermally conductive composition according to this embodiment, the inclusion of an antioxidant can suppress oxidation of the base oil contained in the thermally conductive composition.
  • antioxidants examples include amine-based antioxidants and phosphorus-based antioxidants.
  • the amine-based antioxidant is not particularly limited, and examples of the aromatic amine-based antioxidants that can be used include alkylated diphenylamines, alkylated phenylnaphthylamines, and phenylenediamines.
  • alkylated diphenylamines examples include diphenylamine, p,p'-dibutyldiphenylamine, p,p'-dipentyldiphenylamine, p,p'-dihexyldiphenylamine, p,p'-diheptyldiphenylamine, p,p'-dioctyldiphenylamine, and p,p'-dinonyldiphenylamine, as well as mixed alkyldiphenylamines having 4 to 9 carbon atoms.
  • alkylated phenylnaphthylamines examples include N-phenyl- ⁇ -naphthylamine, N-butylphenyl- ⁇ -naphthylamine, N-pentylphenyl- ⁇ -naphthylamine, N-hexylphenyl- ⁇ -naphthylamine, N-heptylphenyl- ⁇ -naphthylamine, N-octylphenyl- ⁇ -naphthylamine, and N-nonylphenyl- ⁇ -naphthylamine.
  • phenylenediamines examples include p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, and N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine.
  • the phosphorus-based antioxidant it is preferable to use a phosphite-based antioxidant, and it is more preferable to use an alkylated phenyl phosphite.
  • the alkylated phenyl phosphite examples include tris(2,4-di-tert-butylphenyl)phosphite, 4,4'-butylidenebis(3-methyl-6-tert-butylphenyl-di-tridecyl phosphite), alkanol(C12-16)-4,4'-isopropylidenediphenol-triphenyl phosphite polycondensate, [hexaalkyl(C8-18)tris(alkyl(C8-9)phenyl)]1,1,3-tris(3-tert-butyl-6-methyl-4-oxyphenyl)-3-methylpropane triphosphite, and [trialkyl(C8
  • the thermally conductive composition according to this embodiment may contain a bleed-out inhibitor as necessary.
  • the bleed-out inhibitor is not an essential component of the thermally conductive composition according to this embodiment, the inclusion of the bleed-out inhibitor can suppress the bleed-out of the thermally conductive composition.
  • the content of the bleed-out inhibitor is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.1% by mass or more and 0.5% by mass or less, and even more preferably 0.1% by mass or more and 0.2% by mass or less, relative to 100% by mass of the thermally conductive composition.
  • a bleed-out inhibitor content of 0.001% by mass or more is preferable because it effectively suppresses the diffusion of the base oil and suppresses bleed-out.
  • the properties of the base oil diffusion inhibitor do not change significantly.
  • a content of the base oil diffusion inhibitor of 1% by mass or less relative to 100% by mass of the thermally conductive composition is preferable because it reduces costs.
  • the thermally conductive composition according to this embodiment may contain a resin as necessary. If it is desired that the thermally conductive composition according to this embodiment be an elastic body at room temperature and a viscous body by heating, it is preferable that it contain a resin such as ethylene-propylene rubber, ethylene-butylene copolymer, ethylene-butylene-styrene copolymer, or ethylene-propylene-styrene copolymer.
  • a resin such as ethylene-propylene rubber, ethylene-butylene copolymer, ethylene-butylene-styrene copolymer, or ethylene-propylene-styrene copolymer.
  • the thermally conductive composition according to this embodiment is viscous at room temperature and is to be cured by heating, it preferably contains a thermosetting resin such as an epoxy resin and a curing agent.
  • the thermally conductive composition according to this embodiment into a phase-change type thermally conductive sheet in which the fluidity increases at high temperatures
  • the thermally conductive composition it is preferable for the thermally conductive composition to contain a thermoplastic resin.
  • the thermoplastic resin include ester-based resins, acrylic-based resins, rosin-based resins, and cellulose-based resins.
  • the resin may also be a wax-based resin.
  • Thermoplastic resin contained in the thermally conductive composition according to this embodiment is preferably a wax-based resin in combination with a rosin-based resin, which improves the shape retention of the thermally conductive composition and enhances adhesion to a heating element such as a module, even when the composition is softened by the application of heat.
  • a wax-based resin is an organic or silicone compound that is solid at room temperature or below and liquefies when heated. The penetration and melting point may be adjusted as appropriate to impart desired properties to the thermally conductive composition. Different types of wax may also be added.
  • rosin-based resin refers to a resin that has structural units derived from rosin acid (e.g., abietic acid, neoabietic acid, palustric acid, pimaric acid, isopimaric acid, dehydroabietic acid) as the main component.
  • rosin acid e.g., abietic acid, neoabietic acid, palustric acid, pimaric acid, isopimaric acid, dehydroabietic acid
  • physical properties such as the softening point, acid value, and glass transition point may be appropriately adjusted.
  • different types of rosin-based resins may be added.
  • the content ratio of the wax-based resin to the rosin-based resin may be appropriately adjusted to impart desired properties to the thermally conductive composition.
  • the thermally conductive composition according to this embodiment may contain a diluent as necessary.
  • the diluent can reduce the viscosity of the thermally conductive composition.
  • the diluent is not an essential component of the thermally conductive composition according to this embodiment, but by using a thermally conductive composition that contains a diluent, for example, a thermally conductive sheet can be formed by a conventionally known coating method such as screen printing.
  • diluents include hydrocarbon solvents, aromatic solvents, ketone solvents, and ester solvents.
  • the flash point and boiling point of the diluent may be appropriately adjusted to impart desired properties to the thermally conductive composition.
  • the thermally conductive composition according to this embodiment may contain a viscosity index improver as necessary.
  • the viscosity index improver increases the viscosity of the thermally conductive composition.
  • the viscosity index improver is not an essential component of the thermally conductive composition according to this embodiment, but by including the viscosity index improver, for example, the viscosity of the thermally conductive composition can be adjusted to a preferred range.
  • a viscosity index improver is an oleophilic polymer with a molecular weight of 10,000 to 1,500,000.
  • the cohesive energy of the viscosity index improver is greater than the affinity between the polymer and the solvent.
  • the viscosity index improver is contained in a thermally conductive composition, the viscosity index improver is dissolved in the base oil in a contracted state.
  • the kinetic energy increased by the high temperature of the thermally conductive composition becomes greater than the cohesive energy, and the viscosity index improver swells, involving the base oil, and the flow resistance of the lubricant increases, making it possible to prevent the viscosity from decreasing at high temperatures.
  • Viscosity index improvers include polymethacrylate compounds, olefin copolymer compounds, and mixtures of these. Note that the larger the molecular weight, the more likely it is that the main chain will be cut by shear force, resulting in a lower molecular weight, making it difficult to achieve the desired effect. For this reason, it is preferable to adjust the molecular weight of the viscosity index improver according to the desired viscosity.
  • Method for producing thermally conductive composition is not particularly limited as long as the components can be mixed uniformly.
  • a typical production method is to mix the components using a planetary mixer, a rotation/revolution mixer, or the like, and then knead the components uniformly using a three-roll mill.
  • the thermally conductive paste described below can also be produced using a similar method.
  • the thermal conductivity of the obtained thermally conductive composition at room temperature is preferably 3.0 W/mK or more, more preferably 3.5 W/mK or more, and even more preferably 3.8 W/mK or more.
  • the thermal conductivity of the thermally conductive composition can be measured, for example, using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • the shear viscosity (shear rate: 0.01-10/s) of the obtained thermally conductive composition at room temperature depends on the types of components contained, but is preferably 450 Pa ⁇ s or less, more preferably 430 Pa ⁇ s or less, and even more preferably 425 Pa ⁇ s or less.
  • the shear viscosity of the thermally conductive composition can be measured using a rheometer (Anton Paar MC302e).
  • Thermally Conductive Compositions having the compositions shown in Table 1 below were produced using the materials (A) to (D) below.
  • Zinc oxide 1 average particle size 5 ⁇ m
  • Zinc oxide 2 average particle size 2 ⁇ m
  • Zinc oxide 3 average particle size 0.6 ⁇ m
  • Aluminum oxide 1 average particle size 5 ⁇ m
  • Aluminum 1 average particle size 5 ⁇ m
  • SALD-7000 particle size distribution measuring device
  • C Coupling Agent
  • C-1 Titanate Coupling Agent (Isopropyltri(dioctylpyrophosphate)titanate)
  • C-2) Aluminate coupling agent acetoalkoxyaluminum dialkylate
  • Thermal conductivity and viscosity of the thermally conductive compositions manufactured in Examples 1 to 9 and Comparative Examples 1 to 9 were evaluated using the following method.
  • thermal conductivity of the obtained thermally conductive composition was measured. Specifically, the thermal conductivity of the thermally conductive compositions of Examples 1 to 9 and Comparative Examples 1 to 9 was measured at room temperature using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • thermoly conductive composition The shear viscosity of the obtained thermally conductive composition was measured. Specifically, the thermally conductive compositions of Examples 1 to 9 and Comparative Examples 1 to 9 were measured at 0.01 to 10/s using a rheometer (MC302e manufactured by Anton Paar) capable of controlling the measurement environment temperature, and evaluated at room temperature. The viscosity at 6/s was used for comparison as the viscosity value during printing.
  • a rheometer MC302e manufactured by Anton Paar
  • the thermally conductive composition of the embodiment containing at least one of a titanate-based coupling agent or an aluminate-based coupling agent can effectively suppress the increase in viscosity.
  • the thermally conductive compositions of Examples 2, 3, 5, 6, 8, 9, 11, and 12 in which the content of the titanate-based coupling agent or the aluminate-based coupling agent is 7 volume % or more of the total amount of the thermally conductive composition (or the content ratio of the titanate-based coupling agent or the aluminate-based coupling agent to 100 volume parts of the inorganic powder filler is 10 volume parts or more), had a reduced viscosity compared to the thermally conductive compositions of Examples 1, 4, 7, and 10. Furthermore, the thermally conductive compositions of Examples 2, 3, 5, 6, 8, 9, 11, and 12 had an increased thermal conductivity compared to the thermally conductive compositions of Examples 1, 4, 7, and 10.
  • thermoly conductive compositions of Comparative Examples 1 to 9 which contain a dispersant instead of a coupling agent, are unable to effectively suppress the increase in viscosity.
  • thermal conductivity there is no increase in thermal conductivity between the thermally conductive compositions of Comparative Examples 1, 4, and 7, in which the dispersant content is 5 volume % of the total amount of the thermally conductive composition, and the thermally conductive compositions of Comparative Examples 2, 3, 5, 6, 8, and 9, in which the dispersant content is 7 volume % or more of the total amount of the thermally conductive composition. From this, it can be seen that the effect of the thermally conductive compositions of Examples 2, 3, 5, 6, 8, 9, 11, and 12 having increased thermal conductivity compared to the thermally conductive compositions of Examples 1, 4, 7, and 10 is an effect caused by the use of a titanate-based coupling agent or an aluminate-based coupling agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a thermally conductive composition in which an increase in viscosity can be suppressed even if the content of an inorganic powdered filler is increased. This thermally conductive composition contains a base oil and an inorganic powdered filler, wherein the composition further containing a titanate-based coupling agent and/or an aluminate-based coupling agent.

Description

熱伝導性組成物Thermally conductive composition

 本発明は、熱伝導性組成物に関する。 The present invention relates to a thermally conductive composition.

 電子機器に使用されている半導体部品の中には、コンピューターのCPU、ペルチェ素子、LED、インバーター等の電源制御用パワー半導体など使用中に発熱をともなう発熱部品がある。 Among the semiconductor components used in electronic devices, there are heat-generating components that generate heat during use, such as computer CPUs, Peltier elements, LEDs, and power semiconductors for power control such as inverters.

 これらの発熱部品を熱から保護し、正常に機能させるために、発生した熱をヒートスプレッダーやヒートシンク等の放熱部品(冷却装置)へ伝導させ放熱させる方法がある。熱伝導性グリースは、これら発熱部品と放熱部品を密着させるように両者の間に塗布され発熱部品の熱を放熱部品に効率よく伝導させるために用いられる。熱伝導性グリースとは、液状炭化水素やシリコーン油、フッ素油等の基油に、熱伝導率の高い無機粉末充填剤(酸化亜鉛、酸化アルミニウム等の金属酸化物や、窒化ホウ素、窒化ケイ素、窒化アルミニウム等の無機窒化物や、アルミニウムや銅等の金属粉末等)を多量に分散させたグリース状の組成物である。 In order to protect these heat-generating components from heat and allow them to function normally, there is a method of dissipating the generated heat by conducting it to heat-dissipating components (cooling devices) such as heat spreaders and heat sinks. Thermally conductive grease is applied between these heat-generating components and heat-dissipating components so that they come into close contact with each other, and is used to efficiently conduct the heat from the heat-generating components to the heat-dissipating components. Thermally conductive grease is a grease-like composition in which a large amount of inorganic powder filler with high thermal conductivity (metal oxides such as zinc oxide and aluminum oxide, inorganic nitrides such as boron nitride, silicon nitride, and aluminum nitride, and metal powders such as aluminum and copper) is dispersed in a base oil such as liquid hydrocarbon, silicone oil, or fluorine oil.

 より具体的には、熱伝導性グリースは、コンピューターのCPU等の発熱部品と、ヒートシンク等の放熱部品との熱接触界面、ハイブリッド自動車や電気自動車等に搭載される高出力のインバーター等の発熱部品と、ヒートスプレッダー等の放熱部品との熱接触界面に塗布され使用される。近年、これらのエレクトロニクス機器における半導体素子は、小型化・高性能化に伴い、発熱密度及び発熱量が増大し、さらに、他の半導体部品である発熱部品に近接され組み込まれることが多くなっている。 More specifically, thermally conductive grease is applied to the thermal contact interface between heat-generating parts, such as a computer CPU, and heat-dissipating parts, such as a heat sink, and between heat-generating parts, such as high-output inverters mounted on hybrid and electric vehicles, and heat-dissipating parts, such as a heat spreader. In recent years, the semiconductor elements in these electronic devices have become smaller and more powerful, resulting in increased heat density and amount of heat generated, and they are often installed in close proximity to other heat-generating semiconductor parts.

 例えば、特許文献1では、特定の酸化防止剤を所定割合なるように含有させた熱伝導性グリースに関する技術が記載されている。特許文献1によれば、この熱伝導性グリースは熱伝導性、ちょう度及び高温における熱安定性が高いことが記載されている。 For example, Patent Document 1 describes technology related to thermally conductive grease that contains a specific antioxidant in a specified ratio. Patent Document 1 describes that this thermally conductive grease has high thermal conductivity, consistency, and thermal stability at high temperatures.

特開2019-081841号公報JP 2019-081841 A

 さて、無機粉末充填剤を含有する熱伝導性組成物は、無機粉末充填剤の含有量を増やすことで熱伝導性を向上させることができる。その一方で、無機粉末充填剤の含有量を増やすことで熱伝導性組成物の粘度が上昇してしまう。 Thermal conductivity of a thermally conductive composition containing an inorganic powder filler can be improved by increasing the content of the inorganic powder filler. On the other hand, increasing the content of the inorganic powder filler increases the viscosity of the thermally conductive composition.

 熱伝導性組成物の粘度が上昇すると、例えば、熱伝導性組成物を熱伝導性グリースとして使用した場合に十分な塗布性が得られなくなることがある等の熱伝導性組成物として所望する特性が得られなくなることがある。このように熱伝導性組成物においては、無機粉末充填剤の含有量を増やしたとしても、粘度が大きく上昇しない熱伝導性組成物であることが求められる。 If the viscosity of the thermally conductive composition increases, the desired properties of the thermally conductive composition may not be obtained, for example, when the thermally conductive composition is used as a thermally conductive grease, and the like. For this reason, a thermally conductive composition is required to have a viscosity that does not increase significantly even if the content of inorganic powder filler is increased.

 本発明は、無機粉末充填剤の含有量を増加させたとしても粘度の上昇を抑制することのできる熱伝導性組成物を提供することを目的とする。 The present invention aims to provide a thermally conductive composition that can suppress an increase in viscosity even when the content of inorganic powder filler is increased.

 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、特定のカップリング剤を含有する熱伝導性組成物であれば、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors conducted extensive research to solve the above-mentioned problems. As a result, they discovered that a thermally conductive composition containing a specific coupling agent could solve the above problems, which led to the completion of the present invention.

 本発明の第1は、基油と、無機粉末充填剤とを含有する熱伝導性組成物であって、前記熱伝導性組成物は、さらにチタネート系カップリング剤又はアルミネート系カップリング剤の少なくとも1つを含有する熱伝導性組成物である。 The first aspect of the present invention is a thermally conductive composition that contains a base oil and an inorganic powder filler, and further contains at least one of a titanate-based coupling agent or an aluminate-based coupling agent.

 本発明の第2は、第1の発明において、前記チタネート系カップリング剤と前記アルミネート系カップリング剤の合計含有量は、熱伝導性組成物全量中3体積%以上30体積%以下である熱伝導性組成物である。 The second aspect of the present invention is the thermally conductive composition according to the first invention, in which the total content of the titanate-based coupling agent and the aluminate-based coupling agent is 3% by volume or more and 30% by volume or less of the total amount of the thermally conductive composition.

 本発明の第3は、第1又は第2の発明において、前記無機粉末充填剤は、銅、アルミニウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム及び炭化ケイ素からなる群から選択される1種以上である熱伝導性組成物である。 The third aspect of the present invention is a thermally conductive composition according to the first or second invention, in which the inorganic powder filler is one or more selected from the group consisting of copper, aluminum, zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, and silicon carbide.

 本発明の第4は、第1又は第2の発明において、前記基油は、鉱油、合成炭化水素油、ジエステル、ポリオールエステル及びフェニルエーテルからなる群から選択される1種以上である熱伝導性組成物である。 The fourth aspect of the present invention is a thermally conductive composition according to the first or second invention, in which the base oil is one or more selected from the group consisting of mineral oil, synthetic hydrocarbon oil, diester, polyol ester, and phenyl ether.

 本発明の熱伝導性組成物は、無機粉末充填剤の含有量を増加させたとしても粘度の上昇を効果的に抑制することができる。 The thermally conductive composition of the present invention can effectively suppress an increase in viscosity even if the content of inorganic powder filler is increased.

 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。また、本明細書において、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Below, a specific embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described in detail. Note that the present invention is not limited to the following embodiment, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, in this specification, the expression "X to Y" (X and Y are arbitrary numbers) means "X or more and Y or less."

 ≪1.熱伝導性組成物≫
 本実施の形態に係る熱伝導性組成物は、基油と、無機粉末充填剤と、を含有する。そして、この熱伝導性組成物は、さらにチタネート系カップリング剤又はアルミネート系カップリング剤の少なくとも1つを含有することを特徴とする。
≪1. Thermally conductive composition≫
The thermally conductive composition according to the present embodiment contains a base oil and an inorganic powder filler, and further contains at least one of a titanate-based coupling agent and an aluminate-based coupling agent.

 このように特定のカップリング剤を含有することで、無機粉末充填剤の含有量を増加させたとしても粘度の上昇を効果的に抑制することができる。 By including this specific coupling agent, it is possible to effectively suppress an increase in viscosity even if the content of inorganic powder filler is increased.

 本実施の形態に係る熱伝導性組成物は、例えば、コンピューターのCPU、ペルチェ素子、LED、インバーター等の電源制御用パワー半導体などの発熱部品と、ヒートスプレッダーやヒートシンク等の放熱部品と、の間に配置され、発熱部品からの熱を放熱部品に伝導させて発熱部品を放熱させる熱伝導性の層を形成するための熱伝導性組成物として使用することができる。 The thermally conductive composition according to this embodiment can be used as a thermally conductive composition for forming a thermally conductive layer that is disposed between a heat-generating component, such as a computer CPU, a Peltier element, an LED, or a power semiconductor for power control, such as an inverter, and a heat-dissipating component, such as a heat spreader or a heat sink, and that conducts heat from the heat-generating component to the heat-dissipating component, thereby dissipating the heat from the heat-generating component.

 また、本実施の形態に係る熱伝導性組成物は、常温では半固体または半流動体状の熱伝導性グリースとして使用することができる。さらに、また、本実施の形態に係る熱伝導性組成物は、例えば希釈剤を含有することで、常温で流動体状の熱伝導性ペーストとして使用することもできる。 The thermally conductive composition according to this embodiment can be used as a semi-solid or semi-liquid thermally conductive grease at room temperature. Furthermore, the thermally conductive composition according to this embodiment can also be used as a liquid thermally conductive paste at room temperature by, for example, adding a diluent.

 また、本実施の形態に係る熱伝導性組成物により形成される熱伝導性の層は、固体であっても半固体または半流動体状であってもよい。また、本実施の形態に係る熱伝導性組成物は、例えば熱可塑性樹脂を含有することで、高温時に流動性が高まるフェイズチェンジ型の熱伝導性シートであってもよい。 The thermally conductive layer formed by the thermally conductive composition according to this embodiment may be solid, semi-solid, or semi-liquid. The thermally conductive composition according to this embodiment may be a phase-change type thermally conductive sheet that has increased fluidity at high temperatures, for example, by containing a thermoplastic resin.

 以下、熱伝導性組成物に含まれる各成分について説明する。 The components contained in the thermally conductive composition are explained below.

 (1)無機粉末充填剤
 無機粉末充填剤は、熱伝導性組成物に高い熱伝導性を付与する。本実施に用いられる無機粉末充填剤は、基油より高い熱伝導性を有するものであれば特に限定されないが、金属酸化物、無機硫化物、無機窒化物、金属(合金も含む。)、ケイ素化合物(シリカ)、炭素材料(カーボン材料、ダイヤモンド、フラーレン等も含む。)などの粉末が好適に用いられる。無機粉末充填剤の種類は1種類であってもよいし、また2種以上を組み合わせて用いることもできる。
(1) Inorganic powder filler The inorganic powder filler imparts high thermal conductivity to the thermally conductive composition. The inorganic powder filler used in this embodiment is not particularly limited as long as it has a higher thermal conductivity than the base oil, but powders such as metal oxides, inorganic sulfides, inorganic nitrides, metals (including alloys), silicon compounds (silica), and carbon materials (including carbon materials, diamonds, fullerenes, etc.) are preferably used. The type of inorganic powder filler may be one type, or two or more types may be used in combination.

 例えば、熱伝導性組成物に電気絶縁性を求める場合には、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ケイ素化合物(シリカ)、ダイヤモンドなどの、半導体又はセラミックなどの非導電性物質の粉末が好適に使用できる。熱伝導性組成物に電気絶縁性を求めず、より高い熱伝導性を求める場合には、銅、銀、アルミニウム、及びこれらを含む合金等の粉末を用いることができる。また、金属粉末と非導電性物質の粉末とを組み合わせて用いてもよい。 For example, when electrical insulation is required for the thermally conductive composition, powders of non-conductive materials such as semiconductors or ceramics, such as zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, silicon carbide, silicon compounds (silica), and diamond, can be suitably used. When higher thermal conductivity is required without electrical insulation, powders of copper, silver, aluminum, and alloys containing these can be used. Also, a combination of metal powder and powder of a non-conductive material may be used.

 これらの無機粉末充填剤のなかでも、銅、アルミニウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム及び炭化ケイ素からなる群から選択される1種以上であることが好ましい。 Among these inorganic powder fillers, it is preferable to use one or more selected from the group consisting of copper, aluminum, zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, and silicon carbide.

 また、本実施の形態に係る熱伝導性組成物に用いられる無機粉末充填剤は、1種類の平均粒径の無機粉末充填剤を用いてもよいし、平均粒径の異なる無機粉末充填剤を複数用いてもよい。 The inorganic powder filler used in the thermally conductive composition according to this embodiment may be an inorganic powder filler with one type of average particle size, or multiple inorganic powder fillers with different average particle sizes may be used.

 平均粒径の異なる無機粉末充填剤を複数用いる場合、想定される熱伝導性の層の厚さにもよるが、例えば、平均粒径の異なる3種類以上の粉末を含んで構成され、少なくとも、平均粒子径が30μm以上200μm以下の範囲にある第1無機粉末充填剤と、平均粒子径が1μm以上30μm以下の範囲にある第2無機粉末充填剤と、平均粒子径が0.1μm以上1μm以下の範囲にある第3無機粉末充填剤と、を含む3種類の平均粒径の異なる無機粉末充填剤を用いることが好ましい。 When using multiple inorganic powder fillers with different average particle sizes, depending on the expected thickness of the thermally conductive layer, it is preferable to use, for example, three or more types of powders with different average particle sizes, including at least a first inorganic powder filler with an average particle size in the range of 30 μm to 200 μm, a second inorganic powder filler with an average particle size in the range of 1 μm to 30 μm, and a third inorganic powder filler with an average particle size in the range of 0.1 μm to 1 μm.

 このような範囲の平均粒子径を有する無機粉末充填剤を含有することで、熱伝導性組成物中での無機粉末充填剤の乱流を抑制して流動性を向上させることが可能となり、結果として熱伝導性組成物が均一に拡がるようにすることが可能となる。なお、無機粉末充填剤の平均粒子径はレーザー回折散乱法(JIS R 1629:1997に準拠)により測定した粒度分布の体積平均径として算出できる。 By including an inorganic powder filler having an average particle size in this range, it is possible to suppress turbulence of the inorganic powder filler in the thermally conductive composition and improve the fluidity, which results in the thermally conductive composition spreading uniformly. The average particle size of the inorganic powder filler can be calculated as the volume average diameter of the particle size distribution measured by the laser diffraction scattering method (in accordance with JIS R 1629:1997).

 なお、熱伝導性組成物の流動性を阻害しない範囲で、第3無機粉末充填剤よりも小さい平均粒子径を有する無機粉末充填剤をさらに加えてもよい。 In addition, an inorganic powder filler having an average particle size smaller than that of the third inorganic powder filler may be further added as long as it does not impair the flowability of the thermally conductive composition.

 無機粉末充填剤の含有量は、熱伝導性組成物100体積%に対して、50体積%以上90体積%以下であることが好ましく、55体積%以上85体積%以下であることがより好ましく、60体積%以上80体積%以下であることがさらに好ましい。 The content of the inorganic powder filler is preferably 50% by volume or more and 90% by volume or less, more preferably 55% by volume or more and 85% by volume or less, and even more preferably 60% by volume or more and 80% by volume or less, relative to 100% by volume of the thermally conductive composition.

 (2)基油
 基油は、熱伝導性組成物に高い潤滑性を付与する。基油としては、種々の基油が使用でき、例えば、鉱油、合成炭化水素油等の炭化水素系基油、ジエステルやポリオールエステルなどのエステル系基油、(ポリ)フェニルエーテルなどのエーテル系基油、リン酸エステル、シリコーン油及びフッ素油等が挙げられる。基油は1種単独で使用しても、2種以上を組み合わせて使用してもよい。
(2) Base oil The base oil provides high lubricity to the thermally conductive composition. As the base oil, various base oils can be used, for example, mineral oil, hydrocarbon-based base oils such as synthetic hydrocarbon oils, ester-based base oils such as diesters and polyol esters, ether-based base oils such as (poly)phenyl ethers, phosphate esters, silicone oils, and fluorine oils. The base oils may be used alone or in combination of two or more.

 中でも、炭化水素系基油(鉱油、合成炭化水素油)、エステル系基油、及びエーテル系基油からなる群より選択される少なくとも1種以上を含有する基油を用いるのが好ましい。これらの基油は、シロキサンを含まないものであり、このような基油を含有することで、接点障害が生じることがなく、電子機器の長期信頼性にも優れるものとすることができる。 Among these, it is preferable to use a base oil containing at least one selected from the group consisting of hydrocarbon-based base oils (mineral oils, synthetic hydrocarbon oils), ester-based base oils, and ether-based base oils. These base oils do not contain siloxane, and the inclusion of such a base oil prevents contact failure and provides excellent long-term reliability for electronic devices.

 鉱油としては、例えば、鉱油系潤滑油留分を溶剤抽出、溶剤脱ロウ、水素化精製、水素化分解、ワックス異性化などの精製手法を適宜組み合わせて精製したもので、150ニュートラル油、500ニュートラル油、ブライトストック、高粘度指数基油などを用いることができる。基油に用いられる鉱油は、高度に水素化精製された高粘度指数基油が好ましい。 Mineral oils that can be used include those that are obtained by refining mineral oil lubricating oil fractions through an appropriate combination of refining techniques such as solvent extraction, solvent dewaxing, hydrorefining, hydrocracking, and wax isomerization, and include 150 neutral oil, 500 neutral oil, bright stock, and high viscosity index base oils. Highly hydrorefined high viscosity index base oils are preferred as the mineral oils used as base oils.

 合成炭化水素油としては、例えば、エチレンやプロピレン、ブテン、及びこれらの誘導体などを原料として製造されたアルファオレフィンを、単独又は2種以上混合して重合したものが挙げられる。アルファオレフィンとしては、炭素数6以上14以下のものが好ましく挙げられる。 Synthetic hydrocarbon oils include, for example, alpha-olefins produced from raw materials such as ethylene, propylene, butene, and derivatives thereof, polymerized either alone or in combination of two or more kinds. Preferred alpha-olefins are those with 6 to 14 carbon atoms.

 合成炭化水素油の具体例としては、1-デセンや1-ドデセンのオリゴマーであるポリアルファオレフィン(PAO)や、1-ブテンやイソブチレンのオリゴマーであるポリブテン、エチレンやプロピレンとアルファオレフィンのコオリゴマー等が挙げられる。また、アルキルベンゼンやアルキルナフタレン等を用いることもできる。 Specific examples of synthetic hydrocarbon oils include polyalphaolefins (PAOs), which are oligomers of 1-decene and 1-dodecene, polybutenes, which are oligomers of 1-butene and isobutylene, and co-oligomers of ethylene or propylene with alpha-olefins. Alkylbenzenes and alkylnaphthalenes can also be used.

 エステル系基油としては、ジエステルやポリオールエステルが挙げられる。ジエステルとしては、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の二塩基酸のエステルが挙げられる。二塩基酸としては、炭素数4以上36以下の脂肪族二塩基酸が好ましい。エステル部を構成するアルコール残基は、炭素数4以上26以下の一価アルコール残基が好ましい。ポリオールエステルとしては、β位の炭素上に水素原子が存在していないネオペンチルポリオールのエステルで、具体的にはネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のカルボン酸エステルが挙げられる。エステル部を構成するカルボン酸残基は、炭素数4以上26以下のモノカルボン酸残基が好ましい。 Examples of ester-based base oils include diesters and polyol esters. Examples of diesters include esters of dibasic acids such as adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. The dibasic acids are preferably aliphatic dibasic acids having 4 to 36 carbon atoms. The alcohol residue constituting the ester moiety is preferably a monohydric alcohol residue having 4 to 26 carbon atoms. Examples of polyol esters include esters of neopentyl polyols that do not have a hydrogen atom on the β-position carbon, specifically carboxylic acid esters such as neopentyl glycol, trimethylolpropane, and pentaerythritol. The carboxylic acid residue constituting the ester moiety is preferably a monocarboxylic acid residue having 4 to 26 carbon atoms.

 また、エステル系基油としては、上記以外にも、エチレングリコール、プロピレングリコール、ブチレングリコール、2-ブチル-2-エチルプロパンジオール、2,4-ジエチル-ペンタンジオール等の脂肪族二価アルコールと、直鎖又は分岐鎖の飽和脂肪酸とのエステルも用いることができる。直鎖又は分岐鎖の飽和脂肪酸としては、炭素数4以上30以下の一価の直鎖又は分岐鎖の飽和脂肪酸が好ましい。 In addition to the above, esters of aliphatic dihydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, 2-butyl-2-ethylpropanediol, and 2,4-diethyl-pentanediol with linear or branched saturated fatty acids can also be used as ester-based base oils. As linear or branched saturated fatty acids, monovalent linear or branched saturated fatty acids having 4 to 30 carbon atoms are preferred.

 エーテル系基油としては、ポリグリコールや(ポリ)フェニルエーテルなどが挙げられる。ポリグリコールとしては、ポリエチレングリコールやポリプロピレングリコール、及びこれらの誘導体などが挙げられる。(ポリ)フェニルエーテルとしては、モノアルキル化ジフェニルエーテル、ジアルキル化ジフェニルエーテルなどのアルキル化ジフェニルエーテルや、モノアルキル化テトラフェニルエーテル、ジアルキル化テトラフェニルエーテルなどのアルキル化テトラフェニルエーテル、ペンタフェニルエーテル、モノアルキル化ペンタフェニルエーテル、ジアルキル化ペンタフェニルエーテルなどのアルキル化ペンタフェニルエーテルなどが挙げられる。リン酸エステルとしては、トリエチルホスフェート、トリブチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート等が挙げられる。 Ether-based base oils include polyglycols and (poly)phenyl ethers. Polyglycols include polyethylene glycol, polypropylene glycol, and derivatives thereof. (Poly)phenyl ethers include alkylated diphenyl ethers such as monoalkylated diphenyl ether and dialkylated diphenyl ether, alkylated tetraphenyl ethers such as monoalkylated tetraphenyl ether and dialkylated tetraphenyl ether, and alkylated pentaphenyl ethers such as pentaphenyl ether, monoalkylated pentaphenyl ether, and dialkylated pentaphenyl ether. Phosphate esters include triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, and trixylenyl phosphate.

 ここで、本実施の形態に係る熱伝導性組成物により形成される熱伝導性の層は、主に発熱部品によって長時間高温に曝されることとなる。このため、熱伝導性組成物に含有される基油としては、熱酸化安定性に優れることが望ましい。上記基油の中では、合成系基油が好ましく、合成炭化水素油、エステル系基油及びエーテル系基油が好ましい。これらの基油のうち、特に熱酸化安定性に優れるものとして、合成炭化水素油では、ポリアルファオレフィン、エステル系基油では、ポリオールエステル、エーテル系基油では(ポリ)フェニルエーテルが好ましい基油として用いられる。 Here, the thermally conductive layer formed by the thermally conductive composition according to this embodiment will be exposed to high temperatures for a long period of time, mainly due to heat-generating components. For this reason, it is desirable for the base oil contained in the thermally conductive composition to have excellent thermal oxidation stability. Among the above base oils, synthetic base oils are preferred, and synthetic hydrocarbon oils, ester-based base oils, and ether-based base oils are preferred. Of these base oils, polyalphaolefins are preferred as synthetic hydrocarbon oils, polyol esters are preferred as ester-based base oils, and (poly)phenyl ethers are preferred as ether-based base oils, as they are particularly excellent in thermal oxidation stability.

これらのポリアルファオレフィン、(ポリ)フェニルエーテル、ポリオールエステルについて、単独で使用してもよいが、2種以上を組み合わせて使用することが好ましい。
組み合わせて使用する場合には、特にポリアルファオレフィンあるいは(ポリ)フェニルエーテルからなる基油群と、ポリオールエステルとを併用することにより、比較的粘度指数が高く、熱伝導性組成物を調製したときにちょう度が高く、塗布性に優れる熱伝導性組成物を調製することができ、好ましい。この場合、ポリアルファオレフィンあるいは(ポリ)フェニルエーテルからなる基油群と、ポリオールエステルとの含有比率は、質量比で、好ましくは95:5~30:70であり、より好ましくは90:10~50:50であり、さらに好ましくは85:15~65:35である。
These polyalphaolefins, (poly)phenyl ethers and polyol esters may be used alone, but it is preferable to use two or more of them in combination.
In the case of using them in combination, it is preferable to use a base oil group consisting of polyalphaolefin or (poly)phenyl ether in combination with a polyol ester, since this allows the preparation of a thermally conductive composition having a relatively high viscosity index, high consistency, and excellent coatability. In this case, the content ratio of the base oil group consisting of polyalphaolefin or (poly)phenyl ether to the polyol ester is preferably 95:5 to 30:70, more preferably 90:10 to 50:50, and even more preferably 85:15 to 65:35, by mass.

 基油の動粘度は、40℃で10mm/s以上1200mm/s以下であることが好ましい。40℃における動粘度を10mm/s以上とすることで、高温下での基油の蒸発や離油などが抑制される傾向にあるため好ましい。また、40℃における動粘度を1200mm/s以下とすることで高いちょう度を得やすくなるため好ましい。 The kinetic viscosity of the base oil is preferably 10 mm 2 /s or more and 1200 mm 2 /s or less at 40° C. By making the kinetic viscosity at 40° C. 10 mm 2 /s or more, evaporation of the base oil and oil separation at high temperatures tend to be suppressed, which is preferable. In addition, by making the kinetic viscosity at 40° C. 1200 mm 2 /s or less, high consistency can be easily obtained, which is preferable.

 基油の含有割合は、熱伝導性組成物100体積%に対して、5体積%以上30体積%以下であることが好ましく、7体積%以上27体積%以下であることがより好ましく、8体積%以上25体積%以下であることがさらに好ましい。 The content of the base oil is preferably 5% by volume or more and 30% by volume or less, more preferably 7% by volume or more and 27% by volume or less, and even more preferably 8% by volume or more and 25% by volume or less, based on 100% by volume of the thermally conductive composition.

 (3)カップリング剤
 カップリング剤は、無機粉末充填剤の表面に吸着し、熱伝導性組成物の粘度を低下させる。カップリング剤とは、有機系材料と無機系材料とを化学的に結び付ける作用を有する化合物である。カップリング剤が無機粉末充填剤の表面に吸着することで基油との親和性を高めることができる。
(3) Coupling Agent The coupling agent is adsorbed to the surface of the inorganic powder filler and reduces the viscosity of the thermally conductive composition. The coupling agent is a compound that acts to chemically bond organic materials and inorganic materials. The coupling agent is adsorbed to the surface of the inorganic powder filler, thereby increasing the affinity with the base oil.

 ここで、本実施の形態に係る熱伝導性組成物は、このようなカップリング剤の中でもチタネート系カップリング剤又はアルミネート系カップリング剤の少なくとも1つを含有することを特徴とする。 The thermally conductive composition according to this embodiment is characterized by containing at least one of these coupling agents, a titanate-based coupling agent or an aluminate-based coupling agent.

 チタネート系カップリング剤とは、構成元素としてチタン元素(Ti)を含むカップリング剤であり、アルミネート系カップリング剤とは構成元素としてアルミニウム元素(Al)を含むカップリング剤である。 Titanate-based coupling agents are coupling agents that contain titanium (Ti) as a constituent element, and aluminate-based coupling agents are coupling agents that contain aluminum (Al) as a constituent element.

 このような特定のカップリング剤を含有することで熱伝導性組成物の粘度の上昇を抑制することができる。その理由は必ずしも明らかではないが特定のカップリング剤が熱伝導性組成物中で無機粉末充填剤の表面により緻密に吸着しやすく、無機粉末充填剤の表面の疎水性を高めることで、他の分散剤等と比較しても、基油との親和性を高めることができるためと考えられる。なお、チタネート系カップリング剤とアルミネート系カップリング剤は、それぞれ単独で使用しても良いし、併用してもよい。 The inclusion of such a specific coupling agent can suppress an increase in the viscosity of the thermally conductive composition. Although the reason for this is not entirely clear, it is believed that the specific coupling agent is more likely to be densely adsorbed to the surface of the inorganic powder filler in the thermally conductive composition, and by increasing the hydrophobicity of the surface of the inorganic powder filler, it is possible to increase the affinity with the base oil compared to other dispersants. The titanate-based coupling agent and the aluminate-based coupling agent may be used alone or in combination.

 さらに驚くべきことに、チタネート系カップリング剤やアルミネート系カップリング剤の含有量を増やすと、熱伝導性組成物の粘度がさらに低下することに加え、熱伝導性組成物により形成される熱伝導性の層の熱伝導率が上昇することが本発明者らの研究により明らかとなった。 More surprisingly, the inventors' research has revealed that increasing the content of titanate-based coupling agent or aluminate-based coupling agent not only further reduces the viscosity of the thermally conductive composition, but also increases the thermal conductivity of the thermally conductive layer formed by the thermally conductive composition.

 チタネート系カップリング剤としては公知のものが使用でき、特に限定されるものではないが、例えば、アルキルチタネートのような炭化水素基を有するチタネート系カップリング剤を使用することができる。具体的には、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、イソプロピルトリ-n-ドデシルベンゼンスルホニルチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤を挙げることができる。  Any known titanate coupling agent can be used, and although there is no particular limitation, for example, a titanate coupling agent having a hydrocarbon group such as an alkyl titanate can be used. Specific examples of titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri(dioctyl pyrophosphate) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, isopropyl tri-n-dodecylbenzenesulfonyl titanate, bis(dioctyl pyrophosphate) oxyacetate titanate, and tetraisopropyl bis(dioctyl phosphite) titanate.

 市販されているチタネート系カップリング剤としては味の素ファインテクノ(株)製のプレンアクトシリーズやマツモトファインケミカル(株)製のオルガチックスシリーズが挙げられる。 Commercially available titanate coupling agents include the PLENACT series manufactured by Ajinomoto Fine-Techno Co., Ltd. and the ORGATIXX series manufactured by Matsumoto Fine Chemical Co., Ltd.

 アルミネート系カップリング剤としては公知のものが使用でき、特に限定されるものではないが、例えば、アセトアルコキシアルミニウムジアルキレート、アルミニウムエチルアセトアセテート・ジイソプロピレート等のアルミニウムアルキルアセトアセテート、ジアルキレート;アルミニウムアルケニルアセトアセテート、ジアルキレート;アルミニウムトリスエチルアセトアセテート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート、アルミニウムトリスアセチルアセトネート等のアルミネート系カップリング剤を挙げることができる。  Aluminate-based coupling agents that can be used are not particularly limited and include, for example, aluminum alkyl acetoacetates, dialkylates such as acetoalkoxy aluminum dialkylates and aluminum ethyl acetoacetate-diisopropylate; aluminum alkenyl acetoacetates, dialkylates; aluminum trisethyl acetoacetate, aluminum bisethyl acetoacetate-monoacetylacetonate, aluminum trisacetylacetonate, and other aluminate-based coupling agents.

 熱伝導性組成物に含有されるチタネート系カップリング剤とアルミネート系カップリング剤の合計含有量は特に限定されるものではないが、チタネート系カップリング剤とアルミネート系カップリング剤の合計含有量は熱伝導性組成物100体積%に対して、3体積%以上30体積%以下であることが好ましく、7体積%以上25体積%以下であることがより好ましく、12体積%以上20体積%以下であることがさらに好ましい。チタネート系カップリング剤とアルミネート系カップリング剤の合計含有量は熱伝導性組成物100体積%に対して、3体積%以上であることで、熱伝導性組成物の粘度をより効果的に低減することができる。チタネート系カップリング剤とアルミネート系カップリング剤の合計含有量は熱伝導性組成物100体積%に対して、30体積%以下であることで相対的に無機粉末充填剤や基油の含有量を増加させることが可能となるので、熱伝導性組成物に高い熱伝導性や潤滑性を付与することが可能となる。 The total content of the titanate-based coupling agent and the aluminate-based coupling agent contained in the thermally conductive composition is not particularly limited, but the total content of the titanate-based coupling agent and the aluminate-based coupling agent is preferably 3 vol% or more and 30 vol% or less, more preferably 7 vol% or more and 25 vol% or less, and even more preferably 12 vol% or more and 20 vol% or less, relative to 100 vol% of the thermally conductive composition. By having the total content of the titanate-based coupling agent and the aluminate-based coupling agent be 3 vol% or more, relative to 100 vol% of the thermally conductive composition, the viscosity of the thermally conductive composition can be more effectively reduced. By having the total content of the titanate-based coupling agent and the aluminate-based coupling agent be 30 vol% or less, relative to 100 vol% of the thermally conductive composition, it is possible to relatively increase the content of the inorganic powder filler and the base oil, and therefore it is possible to impart high thermal conductivity and lubricity to the thermally conductive composition.

 また、熱伝導性組成物に含まれる無機粉末充填剤100体積部に対するチタネート系カップリング剤とアルミネート系カップリング剤の合計含有量の含有割合は、5体積部以上35体積部以下であることが好ましく、10体積部以上30体積部以下であることがより好ましく、15体積部以上25体積部以下であることがさらに好ましい。 Furthermore, the total content of the titanate-based coupling agent and the aluminate-based coupling agent relative to 100 parts by volume of the inorganic powder filler contained in the thermally conductive composition is preferably 5 parts by volume or more and 35 parts by volume or less, more preferably 10 parts by volume or more and 30 parts by volume or less, and even more preferably 15 parts by volume or more and 25 parts by volume or less.

 このようなチタネート系カップリング剤とアルミネート系カップリング剤の合計含有量を増やすことで熱伝導性組成物の粘度をより低減できるという効果は、例えば、これらのカップリング剤とは異なるカップリング剤や分散剤を使用した場合にはその効果が得られない。チタネート系カップリング剤とアルミネート系カップリング剤を含有する本実施の形態に係る熱伝導性組成物であることで、無機粉末充填剤の含有量を増加させたとしても粘度の上昇を効果的に抑制することが可能となる。 The effect of further reducing the viscosity of the thermally conductive composition by increasing the total content of the titanate-based coupling agent and the aluminate-based coupling agent cannot be obtained, for example, when a coupling agent or dispersant other than these coupling agents is used. The thermally conductive composition according to this embodiment contains a titanate-based coupling agent and an aluminate-based coupling agent, so that it is possible to effectively suppress an increase in viscosity even if the content of the inorganic powder filler is increased.

 (4)その他の添加剤
 熱伝導性組成物の各種特性を高めるために、用途に応じて、その他の添加剤を含有してもよい。その他の添加剤としては、例えば、増ちょう剤、酸化防止剤、ブリードアウト抑制剤、樹脂、希釈剤、粘度指数向上剤等を更に含有させることができる。
(4) Other Additives In order to enhance various properties of the thermally conductive composition, other additives may be added depending on the application. Examples of other additives that may be added include a thickener, an antioxidant, a bleed-out inhibitor, a resin, a diluent, a viscosity index improver, etc.

 本実施の形態に係る熱伝導性組成物は必要に応じて増ちょう剤を含有させてよい。増ちょう剤は、本実施の形態に係る熱伝導性組成物において必須の成分ではないが、例えば、熱伝導性組成物を熱伝導性グリースとする場合、増ちょう剤を含有させることにより、熱伝導性グリースのちょう度を制御して、熱伝導性組成物の塗布性を向上させることができる。 The thermally conductive composition according to this embodiment may contain a thickener as necessary. A thickener is not an essential component of the thermally conductive composition according to this embodiment, but for example, when the thermally conductive composition is to be a thermally conductive grease, the consistency of the thermally conductive grease can be controlled by including a thickener, thereby improving the applicability of the thermally conductive composition.

 増ちょう剤としては、例えば、リチウム石鹸、リチウム複合石鹸、カルシウム石鹸、カルシウム複合石鹸、アルミニウム石鹸、アルミニウム複合石鹸、ウレア化合物、ナトリウムテレフタラメート、ポリテトラフルオロエチレン、有機化ベントナイト、シリカゲル、石油ワックス、フッ素樹脂、ポリエチレンワックス等を挙げることができる。 Thickeners include, for example, lithium soap, lithium complex soap, calcium soap, calcium complex soap, aluminum soap, aluminum complex soap, urea compounds, sodium terephthalamate, polytetrafluoroethylene, organo-bentonite, silica gel, petroleum wax, fluororesin, polyethylene wax, etc.

 本実施の形態に係る熱伝導性組成物は必要に応じて酸化防止剤を含有させてよい。酸化防止剤は、本実施の形態に係る熱伝導性組成物において必須の成分ではないが、酸化防止剤を含有させることにより、熱伝導性組成物に含まれる基油の酸化を抑制することができる。 The thermally conductive composition according to this embodiment may contain an antioxidant as necessary. Although an antioxidant is not an essential component of the thermally conductive composition according to this embodiment, the inclusion of an antioxidant can suppress oxidation of the base oil contained in the thermally conductive composition.

 酸化防止剤としては、例えば、アミン系酸化防止剤又はリン系酸化防止剤を挙げることができる。アミン系酸化防止剤としては、特に限定されず、例えばアルキル化ジフェニルアミン類、アルキル化フェニルナフチルアミン類及びフェニレンジアミン類等の芳香族アミン系酸化防止剤を用いることができる。アルキル化ジフェニルアミン類としては、例えばジフェニルアミン、p,p’-ジブチルジフェニルアミン、p,p’-ジペンチルジフェニルアミン、p,p’-ジヘキシルジフェニルアミン、p,p’-ジヘプシルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、p,p’-ジノニルジフェニルアミンの他、炭素数4~9の混合アルキルジフェニルアミン等を用いることができる。アルキル化フェニルナフチルアミン類としては、N-フェニル-α-ナフチルアミン、N-ブチルフェニル-α-ナフチルアミン、N-ペンチルフェニル-α-ナフチルアミン、N-ヘキシルフェニル-α-ナフチルアミン、N-ヘプチルフェニル-α-ナフチルアミン、N-オクチルフェニル-α-ナフチルアミン、N-ノニルフェニル-α-ナフチルアミン等を用いることができる。また、フェニレンジアミン類としては、p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン等を用いることができる。 Examples of the antioxidant include amine-based antioxidants and phosphorus-based antioxidants. The amine-based antioxidant is not particularly limited, and examples of the aromatic amine-based antioxidants that can be used include alkylated diphenylamines, alkylated phenylnaphthylamines, and phenylenediamines. Examples of the alkylated diphenylamines that can be used include diphenylamine, p,p'-dibutyldiphenylamine, p,p'-dipentyldiphenylamine, p,p'-dihexyldiphenylamine, p,p'-diheptyldiphenylamine, p,p'-dioctyldiphenylamine, and p,p'-dinonyldiphenylamine, as well as mixed alkyldiphenylamines having 4 to 9 carbon atoms. Examples of alkylated phenylnaphthylamines that can be used include N-phenyl-α-naphthylamine, N-butylphenyl-α-naphthylamine, N-pentylphenyl-α-naphthylamine, N-hexylphenyl-α-naphthylamine, N-heptylphenyl-α-naphthylamine, N-octylphenyl-α-naphthylamine, and N-nonylphenyl-α-naphthylamine. Examples of phenylenediamines that can be used include p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, and N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine.

 リン系酸化防止剤としては、ホスファイト系酸化防止剤を用いることが好ましく、アルキル化フェニルホスファイトを用いることがより好ましい。具体的に、アルキル化フェニルホスファイトとしては、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシルホスファイト)、アルカノール(炭素数12~16)-4,4’-イソプロピリデンジフェノール・トリフェニルホスファイト重縮合物、[ヘキサアルキル(炭素数8~18)トリス(アルキル(炭素数8~9)フェニル)]1,1,3-トリス(3-tert-ブチル-6-メチル-4-オキシフェニル)-3-メチルプロパントリホスファイト、[トリアルキル(炭素数8~18)トリス(アルキル(炭素数8~9)フェニル)]1,1,3-トリス(3-tert-ブチル-6-メチル-4-オキシフェニル)-3-メチルプロパントリホスファイト等を用いることができる。これらの中でも、[ヘキサアルキル(炭素数8~18)トリス(アルキル(炭素数8~9)フェニル)]1,1,3-トリス(3-tert-ブチル-6-メチル-4-オキシフェニル)-3-メチルプロパントリホスファイト、又は[トリアルキル(炭素数8~18)トリス(アルキル(炭素数8~9)フェニル)]1,1,3-トリス(3-tert-ブチル-6-メチル-4-オキシフェニル)-3-メチルプロパントリホスファイトを用いることができる。 As the phosphorus-based antioxidant, it is preferable to use a phosphite-based antioxidant, and it is more preferable to use an alkylated phenyl phosphite. Specifically, examples of the alkylated phenyl phosphite that can be used include tris(2,4-di-tert-butylphenyl)phosphite, 4,4'-butylidenebis(3-methyl-6-tert-butylphenyl-di-tridecyl phosphite), alkanol(C12-16)-4,4'-isopropylidenediphenol-triphenyl phosphite polycondensate, [hexaalkyl(C8-18)tris(alkyl(C8-9)phenyl)]1,1,3-tris(3-tert-butyl-6-methyl-4-oxyphenyl)-3-methylpropane triphosphite, and [trialkyl(C8-18)tris(alkyl(C8-9)phenyl)]1,1,3-tris(3-tert-butyl-6-methyl-4-oxyphenyl)-3-methylpropane triphosphite. Among these, [hexaalkyl(carbon number 8-18)tris(alkyl(carbon number 8-9)phenyl)]1,1,3-tris(3-tert-butyl-6-methyl-4-oxyphenyl)-3-methylpropane triphosphite or [trialkyl(carbon number 8-18)tris(alkyl(carbon number 8-9)phenyl)]1,1,3-tris(3-tert-butyl-6-methyl-4-oxyphenyl)-3-methylpropane triphosphite can be used.

 本実施の形態に係る熱伝導性組成物は必要に応じてブリードアウト抑制剤を含有させてよい。ブリードアウト抑制剤は、本実施の形態に係る熱伝導性組成物において必須の成分ではないが、ブリードアウト抑制剤を含有させることにより、熱伝導性組成物のブリードアウトを抑制することができる。 The thermally conductive composition according to this embodiment may contain a bleed-out inhibitor as necessary. Although the bleed-out inhibitor is not an essential component of the thermally conductive composition according to this embodiment, the inclusion of the bleed-out inhibitor can suppress the bleed-out of the thermally conductive composition.

 ブリードアウト抑制剤としては、フッ素基含有界面活性剤を使用することができる。ここで、フッ素基含有界面活性剤とは、フッ素基を有する界面活性剤を意味する。フッ素基の構造は、特に限定されないが、パーフルオロアルキル構造やパーフルオロエーテル構造であることが好ましく、このような構造を有する化合物系の界面活性剤であることが好ましい。また、フッ素基含有界面活性剤としては、含フッ素基と親油基とを有するノニオン性の界面活性剤であることが好ましい。 As the bleed-out inhibitor, a fluorine group-containing surfactant can be used. Here, a fluorine group-containing surfactant means a surfactant having a fluorine group. The structure of the fluorine group is not particularly limited, but is preferably a perfluoroalkyl structure or a perfluoroether structure, and a compound-based surfactant having such a structure is preferable. In addition, the fluorine group-containing surfactant is preferably a nonionic surfactant having a fluorine-containing group and a lipophilic group.

 本実施の形態に係る熱伝導性組成物にブリードアウト抑制剤を含有する場合、ブリードアウト抑制剤の含有量は、熱伝導性組成物100質量%に対して0.001質量%以上1質量%以下の割合であることが好ましく、0.1質量%以上0.5質量%以下の割合であることがより好ましく、0.1質量%以上0.2質量%以下の割合であることがさらに好ましい。ブリードアウト抑制剤の含有量が0.001質量%以上であることにより、基油の拡散を効果的に抑制してブリードアウトを抑制ができるため好ましい。一方、基油拡散防止剤の含有量が1質量%を超えても、基油拡散防止剤の特性は大きく変化しない。基油拡散防止剤の含有量が熱伝導性組成物100質量%に対して1質量%以下にすることによりコストを軽減することができるため好ましい。 When the thermally conductive composition according to this embodiment contains a bleed-out inhibitor, the content of the bleed-out inhibitor is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.1% by mass or more and 0.5% by mass or less, and even more preferably 0.1% by mass or more and 0.2% by mass or less, relative to 100% by mass of the thermally conductive composition. A bleed-out inhibitor content of 0.001% by mass or more is preferable because it effectively suppresses the diffusion of the base oil and suppresses bleed-out. On the other hand, even if the content of the base oil diffusion inhibitor exceeds 1% by mass, the properties of the base oil diffusion inhibitor do not change significantly. A content of the base oil diffusion inhibitor of 1% by mass or less relative to 100% by mass of the thermally conductive composition is preferable because it reduces costs.

 本実施の形態に係る熱伝導性組成物は必要に応じて樹脂を含有させてよい。本実施の形態に係る熱伝導性組成物を室温で弾性体とし、加温することで粘性体としたい場合には、エチレン-プロピレンゴム、エチレン-ブチレン共重合体、エチレン-ブチレン-スチレン共重合体、エチレン-プロピレン-スチレン共重合体などの樹脂を含有することが好ましい。 The thermally conductive composition according to this embodiment may contain a resin as necessary. If it is desired that the thermally conductive composition according to this embodiment be an elastic body at room temperature and a viscous body by heating, it is preferable that it contain a resin such as ethylene-propylene rubber, ethylene-butylene copolymer, ethylene-butylene-styrene copolymer, or ethylene-propylene-styrene copolymer.

 また、本実施の形態に係る熱伝導性組成物を室温では粘性を有し、加温することで硬化させたい場合には、エポキシ樹脂等の熱硬化性樹脂と硬化剤を含有することが好ましい。 In addition, if the thermally conductive composition according to this embodiment is viscous at room temperature and is to be cured by heating, it preferably contains a thermosetting resin such as an epoxy resin and a curing agent.

 さらに、本実施の形態に係る熱伝導性組成物を高温時に流動性が高まるフェイズチェンジ型の熱伝導性シートとしたい場合には、熱可塑性樹脂を含有することが好ましい。熱可塑性樹脂しては、特に限定されず、例えば、エステル系樹脂、アクリル系樹脂、ロジン系樹脂及びセルロース系樹脂が挙げられる。また、樹脂としては、ワックス系樹脂であってもよい。 Furthermore, if it is desired to make the thermally conductive composition according to this embodiment into a phase-change type thermally conductive sheet in which the fluidity increases at high temperatures, it is preferable for the thermally conductive composition to contain a thermoplastic resin. There are no particular limitations on the thermoplastic resin, and examples of the thermoplastic resin include ester-based resins, acrylic-based resins, rosin-based resins, and cellulose-based resins. The resin may also be a wax-based resin.

 本実施の形態に係る熱伝導性組成物に含有する熱可塑性樹脂として、特に好ましくは、ワックス系樹脂とロジン系樹脂とを併用することで、熱伝導性組成物の形状の保持力を向上させ、熱が加わり軟化したときでも、モジュールなどの発熱体との密着性を高めることができる。 Thermoplastic resin contained in the thermally conductive composition according to this embodiment is preferably a wax-based resin in combination with a rosin-based resin, which improves the shape retention of the thermally conductive composition and enhances adhesion to a heating element such as a module, even when the composition is softened by the application of heat.

 ワックス系樹脂とは、常温またはそれ以下の温度で固体であって、加熱すると液化する有機物又はシリコーン化合物である。熱伝導性組成物に所望の特性を付与するために針入度や融点を適宜調整してもよい。また、異なる種類のワックスを添加してもよい。 A wax-based resin is an organic or silicone compound that is solid at room temperature or below and liquefies when heated. The penetration and melting point may be adjusted as appropriate to impart desired properties to the thermally conductive composition. Different types of wax may also be added.

 ロジン系樹脂とは、ロジン酸(例えば、アビエチン酸、ネオアビエチン酸、パラストリン酸、ピマール酸、イソピマール酸、デヒドロアビエチン酸)由来の構造単位を主成分として有するものをいう。熱伝導性組成物に所望の特性を付与するために軟化点や酸価、ガラス転移点などの物性値を適宜調整してもよい。また、異なる種類のロジン系樹脂を添加してもよい。 The term "rosin-based resin" refers to a resin that has structural units derived from rosin acid (e.g., abietic acid, neoabietic acid, palustric acid, pimaric acid, isopimaric acid, dehydroabietic acid) as the main component. In order to impart desired properties to the thermally conductive composition, physical properties such as the softening point, acid value, and glass transition point may be appropriately adjusted. Also, different types of rosin-based resins may be added.

 また、ワックス系樹脂とロジン系樹脂とを併用して使用する場合、熱伝導性組成物に所望の特性を付与するためにワックス系樹脂とロジン系樹脂の含有量比を適宜調整してもよい。 In addition, when using a combination of wax-based resin and rosin-based resin, the content ratio of the wax-based resin to the rosin-based resin may be appropriately adjusted to impart desired properties to the thermally conductive composition.

 本実施の形態に係る熱伝導性組成物は必要に応じて希釈剤を含有させてよい。希釈剤は、熱伝導性組成物の粘度を低下させることができる。希釈剤は、本実施の形態に係る熱伝導性組成物において必須の成分ではないが、例えば、希釈剤を含有する熱伝導性組成物であることで、スクリーン印刷等の従来公知の塗布法によって熱伝導性シートを形成することができる。 The thermally conductive composition according to this embodiment may contain a diluent as necessary. The diluent can reduce the viscosity of the thermally conductive composition. The diluent is not an essential component of the thermally conductive composition according to this embodiment, but by using a thermally conductive composition that contains a diluent, for example, a thermally conductive sheet can be formed by a conventionally known coating method such as screen printing.

 希釈剤としては、炭化水素系溶剤、芳香族溶剤、ケトン系溶剤、エステル系溶剤を挙げることができる。本実施の形態に係る熱伝導性組成物に希釈剤を含有する場合、熱伝導性組成物に所望の特性を付与するために、希釈剤の引火点や沸点を適宜調整してもよい。 Examples of diluents include hydrocarbon solvents, aromatic solvents, ketone solvents, and ester solvents. When the thermally conductive composition according to this embodiment contains a diluent, the flash point and boiling point of the diluent may be appropriately adjusted to impart desired properties to the thermally conductive composition.

 本実施の形態に係る熱伝導性組成物は必要に応じて粘度指数向上剤を含有させてよい。粘度指数向上剤は熱伝導性組成物の粘度を上昇させる。粘度指数向上剤は、本実施の形態に係る熱伝導性組成物において必須の成分ではないが、例えば、粘度指数向上剤を含有することで熱伝導性組成物の粘度を好ましい範囲に調製することができる。 The thermally conductive composition according to this embodiment may contain a viscosity index improver as necessary. The viscosity index improver increases the viscosity of the thermally conductive composition. The viscosity index improver is not an essential component of the thermally conductive composition according to this embodiment, but by including the viscosity index improver, for example, the viscosity of the thermally conductive composition can be adjusted to a preferred range.

 粘度指数向上剤としては、分子量が10000~1500000の親油性ポリマーを挙げることができる。粘度指数向上剤は、低温ではポリマーの凝集エネルギーが、ポリマーと溶媒との親和力よりも大きい。このため粘度指数向上剤が熱伝導性組成物に含有する場合、粘度指数向上剤が収縮した状態で基油に溶存することとなる。これにより、熱伝導性組成物が高温になることで増大した運動エネルギーが、凝集エネルギーよりも大きくなり、粘度指数向上は基油を巻き込んで膨潤し、潤滑剤の流動抵抗が増すことで、高温時の低粘度化を防ぐことが可能となる。 An example of a viscosity index improver is an oleophilic polymer with a molecular weight of 10,000 to 1,500,000. At low temperatures, the cohesive energy of the viscosity index improver is greater than the affinity between the polymer and the solvent. For this reason, when the viscosity index improver is contained in a thermally conductive composition, the viscosity index improver is dissolved in the base oil in a contracted state. As a result, the kinetic energy increased by the high temperature of the thermally conductive composition becomes greater than the cohesive energy, and the viscosity index improver swells, involving the base oil, and the flow resistance of the lubricant increases, making it possible to prevent the viscosity from decreasing at high temperatures.

 粘度指数向上剤としては、ポリメタクリレート系化合物やオレフィンコポリマー系化合物、および、これら混合物が挙げられる。なお、分子量が大きいほど、剪断力により主鎖が切断されて低分子量化しやすいため、効果が得られにくい場合がある。このため、所望する粘度に応じて粘度指数向上剤の分子量を調整することが好ましい。 Viscosity index improvers include polymethacrylate compounds, olefin copolymer compounds, and mixtures of these. Note that the larger the molecular weight, the more likely it is that the main chain will be cut by shear force, resulting in a lower molecular weight, making it difficult to achieve the desired effect. For this reason, it is preferable to adjust the molecular weight of the viscosity index improver according to the desired viscosity.

 ≪2.熱伝導性組成物の製造方法≫
 本実施の形態に係る熱伝導性組成物の製造に関しては、均一に成分を混合できればその方法は特に限定されない。一般的な製造方法としては、プラネタリーミキサー、自転公転ミキサーなどにより混練りを行い、さらに三本ロールにて均一に混練りする方法がある。なお、後述する熱伝導性ペーストについても同様の方法で製造することができる。
2. Method for producing thermally conductive composition
The method for producing the thermally conductive composition according to the present embodiment is not particularly limited as long as the components can be mixed uniformly. A typical production method is to mix the components using a planetary mixer, a rotation/revolution mixer, or the like, and then knead the components uniformly using a three-roll mill. The thermally conductive paste described below can also be produced using a similar method.

 得られた熱伝導性組成物の室温での熱伝導率は、3.0W/mK以上であることが好ましく、3.5W/mK以上であることが好ましく、3.8W/mK以上であることがさらに好ましい。このような熱伝導率となるように含有成分を制御することで、発熱部品からの熱を放熱部品へとより効果的に伝えることが可能となる。なお、熱伝導性組成物の熱伝導率は、例えば、京都電子工業(株)製迅速熱伝導率計QTM-500を用いて測定することができる。 The thermal conductivity of the obtained thermally conductive composition at room temperature is preferably 3.0 W/mK or more, more preferably 3.5 W/mK or more, and even more preferably 3.8 W/mK or more. By controlling the components contained so as to obtain such a thermal conductivity, it becomes possible to more effectively transfer heat from heat-generating components to heat-dissipating components. The thermal conductivity of the thermally conductive composition can be measured, for example, using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Manufacturing Co., Ltd.

 得られた熱伝導性組成物の室温での剪断粘度(剪断速度:0.01~10/s)は、含有される含有成分の種類にもよるが、450Pa・s以下であることが好ましく、430Pa・s以下であることがより好ましく、425Pa・s以下であることがさらに好ましい。熱伝導性組成物の剪断粘度は、レオメータ(アントンパール社製 MC302e)を用いて測定することができる。 The shear viscosity (shear rate: 0.01-10/s) of the obtained thermally conductive composition at room temperature depends on the types of components contained, but is preferably 450 Pa·s or less, more preferably 430 Pa·s or less, and even more preferably 425 Pa·s or less. The shear viscosity of the thermally conductive composition can be measured using a rheometer (Anton Paar MC302e).

 以下、本発明の実施例及び比較例に基づいて、本発明を詳細に説明するが、本発明は以下の実施例によって何ら限定されるものではない。 The present invention will be described in detail below based on examples and comparative examples, but the present invention is not limited in any way to the following examples.

 1.熱伝導性組成物の製造
 下記(A)~(D)に示す各材料を用い、下記表1に示す組成の熱伝導性組成物を製造した。
1. Production of Thermally Conductive Compositions Thermally conductive compositions having the compositions shown in Table 1 below were produced using the materials (A) to (D) below.

 (A)無機粉末充填剤
酸化亜鉛1:平均粒径5μm
酸化亜鉛2:平均粒径2μm
酸化亜鉛3:平均粒径0.6μm
酸化アルミニウム1:平均粒径5μm
アルミニウム1:平均粒径5μm
 なお、各無機粉末充填剤の平均粒径は、粒子径分布測定装置(島津製作所製SALD-7000)を用いてレーザー回折散乱法にて測定した。
(A) Inorganic powder filler Zinc oxide 1: average particle size 5 μm
Zinc oxide 2: average particle size 2 μm
Zinc oxide 3: average particle size 0.6 μm
Aluminum oxide 1: average particle size 5 μm
Aluminum 1: average particle size 5 μm
The average particle size of each inorganic powder filler was measured by a laser diffraction scattering method using a particle size distribution measuring device (SALD-7000 manufactured by Shimadzu Corporation).

 (B)基油
ポリオールエステル油
(B) Base oil polyol ester oil

 (C)カップリング剤
 (C-1)チタネートカップリング剤(イソプロピルトリ(ジオクチルパイロホスフェート)チタネート)
 (C-2)アルミネートカップリング剤(アセトアルコキシアルミニウムジアルキレート)
(C) Coupling Agent (C-1) Titanate Coupling Agent (Isopropyltri(dioctylpyrophosphate)titanate)
(C-2) Aluminate coupling agent (acetoalkoxyaluminum dialkylate)

 (D)分散剤
 ポリエーテルカルボン酸
(D) Dispersant Polyether carboxylic acid

 下記表1に示すように上記化合物のうち(A)~(D)を配合し、混合して実施例1~9及び比較例1~9の熱伝導性組成物を製造した。すなわち、表1に示す含有量になるようにプラネタリーミキサーに入れた。その後、三本ロールによる混練を3回実施して熱伝導性組成物を作製した。 The above compounds (A) to (D) were blended and mixed as shown in Table 1 below to produce the thermally conductive compositions of Examples 1 to 9 and Comparative Examples 1 to 9. That is, they were placed in a planetary mixer so as to have the contents shown in Table 1. After that, the thermally conductive compositions were produced by kneading three times using a three-roll mill.

 製造した実施例1~9及び比較例1~9の熱伝導性組成物を用いて、以下の方法により熱伝導性と粘度を評価した。 Thermal conductivity and viscosity of the thermally conductive compositions manufactured in Examples 1 to 9 and Comparative Examples 1 to 9 were evaluated using the following method.

 (1)熱伝導率の測定
 得られた熱伝導性組成物について熱伝導率を測定した。具体的には、京都電子工業(株)製迅速熱伝導率計QTM-500を用いて室温にて実施例1~9及び比較例1~9の熱伝導性組成物の熱伝導率を測定した。
(1) Measurement of Thermal Conductivity The thermal conductivity of the obtained thermally conductive composition was measured. Specifically, the thermal conductivity of the thermally conductive compositions of Examples 1 to 9 and Comparative Examples 1 to 9 was measured at room temperature using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Manufacturing Co., Ltd.

 (2)粘度の測定
 得られた熱伝導性組成物について剪断粘度を測定した。具体的には、実施例1~9及び比較例1~9の熱伝導性組成物について、測定環境温度が制御できるレオメータ(アントンパール社製 MC302e)を用いて0.01~10/sで測定し室温にて評価を行った。印刷時の粘度値として、6/sでの粘度で比較をした。
(2) Viscosity Measurement The shear viscosity of the obtained thermally conductive composition was measured. Specifically, the thermally conductive compositions of Examples 1 to 9 and Comparative Examples 1 to 9 were measured at 0.01 to 10/s using a rheometer (MC302e manufactured by Anton Paar) capable of controlling the measurement environment temperature, and evaluated at room temperature. The viscosity at 6/s was used for comparison as the viscosity value during printing.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 上記表からわかるように、チタネート系カップリング剤又はアルミネート系カップリング剤の少なくとも1つを含有する実施例の熱伝導性組成物であれば、粘度の上昇を効果的に抑制することができることがわかる。 As can be seen from the above table, the thermally conductive composition of the embodiment containing at least one of a titanate-based coupling agent or an aluminate-based coupling agent can effectively suppress the increase in viscosity.

 特に、チタネート系カップリング剤又はアルミネート系カップリング剤の含有量は熱伝導性組成物全量中7体積%以上(あるいは、無機粉末充填剤100体積部に対するチタネート系カップリング剤又はアルミネート系カップリング剤の含有割合が10体積部以上)である実施例2、3、5、6、8、9、11、12の熱伝導性組成物は、実施例、1、4,7、10の熱伝導性組成物と比較しても粘度が低下した。さらに、実施例2、3、5,6、8、9、11、12の熱伝導性組成物は、実施例1、4、7、10の熱伝導性組成物と比較しても熱伝導率が上昇した。 In particular, the thermally conductive compositions of Examples 2, 3, 5, 6, 8, 9, 11, and 12, in which the content of the titanate-based coupling agent or the aluminate-based coupling agent is 7 volume % or more of the total amount of the thermally conductive composition (or the content ratio of the titanate-based coupling agent or the aluminate-based coupling agent to 100 volume parts of the inorganic powder filler is 10 volume parts or more), had a reduced viscosity compared to the thermally conductive compositions of Examples 1, 4, 7, and 10. Furthermore, the thermally conductive compositions of Examples 2, 3, 5, 6, 8, 9, 11, and 12 had an increased thermal conductivity compared to the thermally conductive compositions of Examples 1, 4, 7, and 10.

 一方、カップリング剤の代わりに分散剤を含有する比較例1~9の熱伝導性組成物は、粘度の上昇を効果的に抑制することができていない。 On the other hand, the thermally conductive compositions of Comparative Examples 1 to 9, which contain a dispersant instead of a coupling agent, are unable to effectively suppress the increase in viscosity.

 さらに、分散剤の含有量が熱伝導性組成物全量中5体積%の比較例1、4、7の熱伝導性組成物と分散剤の含有量が熱伝導性組成物全量中7体積%以上である比較例2、3、5、6、8、9の熱伝導性組成物と、の間で熱伝導率の上昇は見られない。このことから、実施例2、3、5、6、8、9、11、12の熱伝導性組成物が実施例1、4、7、10の熱伝導性組成物と比較しても熱伝導率が上昇したという効果は、チタネート系カップリング剤又はアルミネート系カップリング剤であるために発生した効果であることが分かる。
 

 
Furthermore, there is no increase in thermal conductivity between the thermally conductive compositions of Comparative Examples 1, 4, and 7, in which the dispersant content is 5 volume % of the total amount of the thermally conductive composition, and the thermally conductive compositions of Comparative Examples 2, 3, 5, 6, 8, and 9, in which the dispersant content is 7 volume % or more of the total amount of the thermally conductive composition. From this, it can be seen that the effect of the thermally conductive compositions of Examples 2, 3, 5, 6, 8, 9, 11, and 12 having increased thermal conductivity compared to the thermally conductive compositions of Examples 1, 4, 7, and 10 is an effect caused by the use of a titanate-based coupling agent or an aluminate-based coupling agent.


Claims (4)

 基油と、無機粉末充填剤とを含有する熱伝導性組成物であって、
 前記熱伝導性組成物は、さらにチタネート系カップリング剤又はアルミネート系カップリング剤の少なくとも1つを含有する
 熱伝導性組成物。
A thermally conductive composition comprising a base oil and an inorganic powder filler,
The thermally conductive composition further comprises at least one of a titanate-based coupling agent or an aluminate-based coupling agent.
 前記チタネート系カップリング剤と前記アルミネート系カップリング剤の合計含有量は、熱伝導性組成物100体積%に対して、3体積%以上30体積%以下である
 請求項1に記載の熱伝導性組成物。
The thermally conductive composition according to claim 1 , wherein a total content of the titanate-based coupling agent and the aluminate-based coupling agent is 3 vol % or more and 30 vol % or less with respect to 100 vol % of the thermally conductive composition.
 前記無機粉末充填剤は、銅、アルミニウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム及び炭化ケイ素からなる群から選択される1種以上である
 請求項1又は2に記載の熱伝導性組成物。
The thermally conductive composition according to claim 1 or 2, wherein the inorganic powder filler is at least one selected from the group consisting of copper, aluminum, zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, and silicon carbide.
 前記基油は、鉱油、合成炭化水素油、ジエステル、ポリオールエステル及びフェニルエーテルからなる群から選択される1種以上である
 請求項1又は2に記載の熱伝導性組成物。
The thermally conductive composition according to claim 1 or 2, wherein the base oil is at least one selected from the group consisting of mineral oils, synthetic hydrocarbon oils, diesters, polyol esters, and phenyl ethers.
PCT/JP2024/027311 2023-09-05 2024-07-31 Thermally conductive composition WO2025052820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023143977 2023-09-05
JP2023-143977 2023-09-05

Publications (1)

Publication Number Publication Date
WO2025052820A1 true WO2025052820A1 (en) 2025-03-13

Family

ID=94923567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/027311 WO2025052820A1 (en) 2023-09-05 2024-07-31 Thermally conductive composition

Country Status (1)

Country Link
WO (1) WO2025052820A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218953A (en) * 1988-05-13 1990-01-23 Internatl Business Mach Corp <Ibm> Heat conducting compound
JP2009102577A (en) * 2007-10-25 2009-05-14 Polymatech Co Ltd Thermal conductive composition
JP2010278115A (en) * 2009-05-27 2010-12-09 Kyodo Yushi Co Ltd Heat dissipation compound composition
JP2022183767A (en) * 2021-05-31 2022-12-13 協同油脂株式会社 Thermally conductive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218953A (en) * 1988-05-13 1990-01-23 Internatl Business Mach Corp <Ibm> Heat conducting compound
JP2009102577A (en) * 2007-10-25 2009-05-14 Polymatech Co Ltd Thermal conductive composition
JP2010278115A (en) * 2009-05-27 2010-12-09 Kyodo Yushi Co Ltd Heat dissipation compound composition
JP2022183767A (en) * 2021-05-31 2022-12-13 協同油脂株式会社 Thermally conductive composition

Similar Documents

Publication Publication Date Title
JP5944306B2 (en) High thermal conductive grease
JP5489409B2 (en) High thermal conductivity compound
JP6263042B2 (en) Thermally conductive grease with base oil diffusion prevention performance
JP5687167B2 (en) Heat-resistant thermal grease
JP5269366B2 (en) Heat-resistant thermal grease
JP5577553B2 (en) Heat dissipation compound composition
JP7155661B2 (en) thermal grease
JP7379940B2 (en) thermally conductive composition
JP2021080316A (en) Thermally conductive composition
JP4841341B2 (en) High thermal conductivity compound
JP5781407B2 (en) Thermally conductive compound
JP4652085B2 (en) High thermal conductivity compound
JP7073939B2 (en) Thermally conductive grease
JP4667882B2 (en) High thermal conductivity compound
JP2022030766A (en) Thermally conductive grease
JP2021130772A (en) Thermally conductive grease
WO2025052820A1 (en) Thermally conductive composition
JP7379939B2 (en) thermally conductive composition
TW202511449A (en) Thermally conductive composition
JP2019081842A (en) Thermally conductive grease
JP7110759B2 (en) thermal grease
JP7275797B2 (en) Thermally conductive base oil-containing composition
JP7556302B2 (en) Thermally conductive grease
JP7596634B2 (en) Thermally conductive composition
JP2023166735A (en) Heat-conductive grease, and production method of heat-conductive grease