WO2025051309A1 - ANTICUERPOS BIESPECÍFICOS QUE UNEN CD3 Y EL GANGLIÓSIDO NGcGM3 - Google Patents
ANTICUERPOS BIESPECÍFICOS QUE UNEN CD3 Y EL GANGLIÓSIDO NGcGM3 Download PDFInfo
- Publication number
- WO2025051309A1 WO2025051309A1 PCT/CU2024/050006 CU2024050006W WO2025051309A1 WO 2025051309 A1 WO2025051309 A1 WO 2025051309A1 CU 2024050006 W CU2024050006 W CU 2024050006W WO 2025051309 A1 WO2025051309 A1 WO 2025051309A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- ngcgm3
- cells
- 14f7ht
- scfv
- Prior art date
Links
- 150000002270 gangliosides Chemical class 0.000 title claims abstract description 33
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 53
- 210000004881 tumor cell Anatomy 0.000 claims abstract description 28
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims abstract description 16
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims abstract description 16
- 239000012634 fragment Substances 0.000 claims abstract description 8
- 208000030289 Lymphoproliferative disease Diseases 0.000 claims abstract description 4
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 3
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 3
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 3
- 238000011282 treatment Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims description 7
- 239000004480 active ingredient Substances 0.000 claims description 5
- 238000001415 gene therapy Methods 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 108020004999 messenger RNA Proteins 0.000 claims description 3
- 230000002463 transducing effect Effects 0.000 claims description 3
- 238000000375 direct analysis in real time Methods 0.000 claims 1
- 238000012063 dual-affinity re-targeting Methods 0.000 claims 1
- 108090000765 processed proteins & peptides Proteins 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 77
- 210000001744 T-lymphocyte Anatomy 0.000 abstract description 37
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 abstract description 31
- 230000003013 cytotoxicity Effects 0.000 abstract description 19
- 231100000135 cytotoxicity Toxicity 0.000 abstract description 19
- 239000000427 antigen Substances 0.000 abstract description 13
- 108091007433 antigens Proteins 0.000 abstract description 13
- 102000036639 antigens Human genes 0.000 abstract description 13
- 210000000581 natural killer T-cell Anatomy 0.000 abstract description 12
- 230000007115 recruitment Effects 0.000 abstract description 5
- 229940121354 immunomodulator Drugs 0.000 abstract description 4
- 239000012642 immune effector Substances 0.000 abstract description 3
- 238000002619 cancer immunotherapy Methods 0.000 abstract description 2
- 229940127174 UCHT1 Drugs 0.000 description 69
- 241000699666 Mus <mouse, genus> Species 0.000 description 22
- 239000012636 effector Substances 0.000 description 19
- 230000001472 cytotoxic effect Effects 0.000 description 16
- 210000004698 lymphocyte Anatomy 0.000 description 13
- 239000013642 negative control Substances 0.000 description 12
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000000684 flow cytometry Methods 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 9
- 230000035755 proliferation Effects 0.000 description 9
- 101150109199 CC-1 gene Proteins 0.000 description 8
- 101100094860 Mus musculus Slc22a6 gene Proteins 0.000 description 8
- 230000004913 activation Effects 0.000 description 8
- 231100000433 cytotoxic Toxicity 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 7
- 230000006044 T cell activation Effects 0.000 description 7
- 230000000259 anti-tumor effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 230000009089 cytolysis Effects 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 238000011740 C57BL/6 mouse Methods 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 108700031361 Brachyury Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000012830 cancer therapeutic Substances 0.000 description 4
- 230000006037 cell lysis Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 230000037396 body weight Effects 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 206010052015 cytokine release syndrome Diseases 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 230000002601 intratumoral effect Effects 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 238000010162 Tukey test Methods 0.000 description 2
- 230000007059 acute toxicity Effects 0.000 description 2
- 231100000403 acute toxicity Toxicity 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 101150084750 1 gene Proteins 0.000 description 1
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 1
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 108010092574 CD69 antigen Proteins 0.000 description 1
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 238000011537 Coomassie blue staining Methods 0.000 description 1
- -1 GM3 ganglioside Chemical class 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- 229940127593 SEQ-9 Drugs 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000006420 basal activation Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 231100000276 dose-dependent cytotoxicity Toxicity 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000008995 epigenetic change Effects 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 102000048776 human CD274 Human genes 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 210000000428 immunological synapse Anatomy 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000005917 in vivo anti-tumor Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 208000025402 neoplasm of esophagus Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000009922 oncosis-like cell death Effects 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3076—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
- C07K16/3084—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated gangliosides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates to the fields of biotechnology and immuno-oncology. Specifically, it describes bispecific antibodies that recognize the NGcGM3 antigen, expressed in tumors, and the CD3 molecule, and have the capacity to recruit effector functions of T, NKT, and Tjo cells.
- T-Abs Bispecific T-cell recruiting antibodies
- Tumor-specific antigens resulting from genetic and epigenetic changes, are the most selectively directed towards tumors (Apavaloaei, A., et al. (2020) Cancers 12 (9):2607). Unfortunately, many of them are intracellular and not accessible to standard T-Abs. Tumor-selective antigens include those overexpressed by the tumor or differentially localized with respect to normal tissues, and are also exploited in T-Ab-based therapy, but they do not exclude the appearance of potential adverse effects.
- T-Abs against solid tumors often present safety concerns associated with cytokine release syndrome (CRS) and damage to normal tissues expressing the antigen.
- CRS cytokine release syndrome
- Preliminary results with T-Abs in solid tumors have reported generally higher CRS rates (19-91%) than those intended for the treatment of hematologic tumors such as blinatumumab (7%—15%) (Bendell, JC, et al. (2020); J Clin Oncol 38: 55-52; Borghaei, H., et al. (2020); Middleton, M.R., et al. (2020); Clinical Cancer Research 26 (22): 5869-5878; Tran, B dislike et al. (2020). Annals of Oncology 31: S507).
- the 14F7 antibody is capable of inducing a type of oncosis-like cell death in L1210 mouse tumor cells (lymphoid origin), but not in normal mouse lymphocytes (B and TCD4+). These differences in cytotoxicity could be attributed to the differential distribution of the NGcGM3 ganglioside in the lipid rafts of the plasma membrane, between normal and tumor cells (Roque-Navarro, L, et al. (2008) Molecular Cancer Therapeutics 7(7): 2033-2041 ). However, these differences between tumor and normal cells in terms of ganglioside distribution do not necessarily determine a similar selectivity for other types of death induced by the 14F7 binding domain and involving the participation of ras effect cells.
- the format chosen may influence the functionality of these antibodies, the key role of the target molecule in the potency and safety of T-Abs is recognized (Li, H., et al. (2020) Cellular molecular immunology 17(5): 451 -461 ). This is influenced by the location of the recognized epitope and the dimensions of the target molecule, which play a fundamental role in the efficiency of the formation of the immunological synapse and subsequent activation of T lymphocytes, which is why they are decisive in the cytotoxic capacity of this type of antibodies (Li, J., et al. (2017). Cancer cell_31 (3): 383-395).
- the nature of the target is critical to ensure the effectiveness of an AbB-T, while not any epitope is capable of successfully recruiting the action of a T lymphocyte through an AbB-T directed against it.
- CD3-specific AbB-T can theoretically recruit the cytotoxic activity of not only T lymphocytes but also NKT and TyS, there are practically no documented examples demonstrating this ability.
- a AbB-T specific for the human PDL1 molecule demonstrated its ability to mediate cytotoxicity on PDL1 + tumor cells by NKT cells from peripheral blood of a healthy human donor (Horn, L. A., et al. (2017) Oncotarget 8(35): 57964). This property has not been described to date for any AbB-T against any other molecular target.
- the inventors of the present application generated AcBs-T for cancer therapy, which recognize the ganglioside NGcGM3, the first AcBs-T described with this antigenic specificity.
- the anti-NGcGM3 AbBs-T of the present embodiment surprisingly achieve potent in vitro activity, using human lymphocytes, without the need to previously activate them, which especially demonstrates their potent cytotoxic effect.
- T-Abs are characterized by their ability to mediate selective cytotoxicity on NGcGM3-positive tumor cells, and not on normal cells, even though they may express this ganglioside, which provides a safety margin and minimizes the "on target-off tumor 1 " effect. As a result, molecules with antitumor properties with great specificity for malignant cells are obtained.
- these T-Abs against NGcGM3 allow the recruitment of not only T lymphocytes, but also NKT cells, and the induction of tumor cell lysis, and are the first T-Abs with such specificity to demonstrate this property.
- the present invention relates to AbBs-T comprising an antibody, antibody fragment or single chain variable fragment (scFv) that recognizes the NGcGM3 ganglioside in tumor cells and an antibody, antibody fragment or scFv that recognizes the human CD3 molecule.
- the antibody that recognizes NGcGM3 is a human IgG whose sequence is selected from the group comprising SEQ ID NO. 1-4 or variants thereof with more than 90% identity to these sequences.
- These AcBs-T may have a format selected from the group comprising: TandAb, DART, DART-Fc, DuoBody, CrossMab, KiH, BiTE, Triomab, IgG-scFv.
- the heavy chain of the antibody that recognizes NGcGM3 is fused directly or through a linker to antibodies, antibody fragments or scFv specific for human CD3.
- the antibodies, antibody fragments or scFv that recognize the human CD3 molecule have the sequences selected from the group comprising SEQ ID NO. 5-7, or variants thereof with more than 90% identity with respect to said sequences.
- the antibodies, antibody fragments or scFv that recognize NGcGM3 have a heavy chain variable region selected from the group comprising SEQ ID NO. 10 and SEQ ID NO. 15, or variants thereof with more than 90% identity with respect to these sequences, and the antibodies, antibody fragments or scFv that recognize NGcGM3 have a light chain variable region selected from the group comprising SEQ ID NO. 11-14 or variants thereof with more than 90% identity with respect to these sequences.
- the present invention relates to pharmaceutical compositions comprising as active ingredient the AcBs-T described herein and a pharmaceutically acceptable carrier.
- the present invention relates to the use of AbBs-T in the treatment of lymphoproliferative disorders and solid tumors that express NGcGM3.
- the use of the nucleic acid encoding AbBs-T in the gene therapy of tumors that express NGcGM3 is based on the injection of mRNA or transducing particles encoding AbBs-T.
- the present invention relates to a method of treatment for a subject in need thereof, comprising the subcutaneous, intravenous, intradermal, intramuscular, intratumoral or intraperitoneal administration of the AcBs-T disclosed herein in a dose range between 20ug-10mg.
- the present invention relates to bispecific antibodies or multifunctional fusion proteins comprising an antibody, antibody fragment or scFv that recognizes the NGcGM3 ganglioside on tumor cells, and an antibody, antibody fragment, or scFv that recognizes the human CD3 molecule.
- T cell recruiting bispecific antibody used in the present invention refers to a category of bispecific antibodies that are capable of engaging and recruiting the cytotoxic action of T and NKT cells to a tumor cell that expresses a specific antigen.
- fusion protein and AcB-T are used interchangeably herein.
- AcB-T can have different formats that are well known to a person skilled in the art, who can use the variable domains and/or CDR sets described herein and obtain the different formats by routine techniques (Godar, M. et al. (2016). Expert Opinion on Therapeutic patents 28(3):251-276).
- the formats of the fusion proteins of the present invention guarantee the recruitment, activation and cytotoxic capacity of T lymphocytes and NKT cells towards tumor cells.
- the AcBs-T described here adopt a complete IgG-based structure.
- the IgG backbone is based on a human IgG1 that contains a set of modifications that abolish or reduce binding to the FcvR and complement fixation, and decrease its potential to recruit effector functions associated with its Fc region.
- This modified Fc prevents cross-linking of the Fcy-CD3 receptors, given by the binding of the antibodies to a site other than the tumor target and, consequently, prevents the unwanted action on other cells of the immune system mediated by T cells, which has limited the efficacy of AbB-T (Labrijn, A. F., et al. (2019) Nature reviews Drug discovery 18(8): 585-608).
- human IgG1 of these T-Abs has modifications in the CH2 domain (SEQ ID NO. 1) that abrogate or decrease FcvR binding and complement fixation (Wines, B. D., et al. (2000) The Journal of Immunology 164(10): 5313- 5318; Armour, K. L., et al. (2003) Molecular immunology 40(9):585-593; Sazinsky, S. L., et al. (2008) Proceedings of the National Academy of Sciences 105(51): 20167- 20172; Schlothauer, Herter et al. (2016). Protein Engineering, Design 29(10): 457- 466) ).
- the modified human IgG1 backbone has the N297X mutation (SEQ ID NO. 2), where X is selected from the group of amino acids comprising: alanine, glycine, and glutamine).
- SEQ ID NO. 2 the N297X mutation
- This mutation eliminates the classic glycosylation site of the Fe region of human IgG1 (Chao, DT, et al. (2009)_immunological investigations 38(1): 76-92), which results in the production of an immunoglobulin aglycosylated in this region, which does not have the capacity to bind to Fcy receptors (Wang, L.-X., et al. (2019). Annual review of biochemistry 88: 433-459).
- the IgG backbone contains those variants with more than 90% identity with SEQ ID NO. 1 and 2.
- the design of the AcBs-T object of the present invention is that of a tetravalent molecule based on complete IgG with minimized or null effector functions, with two domains for binding to the NGcGM3 ganglioside, and two for binding to human CD3.
- the AcBs-T against NGcGM3 obtained in the present invention are characterized by having an anti-CD3 scFv linked directly or by means of a linker of 10-27 amino acid residues, to the carboxyl terminus of the heavy chains of the anti-NGcGM3 antibody (IgG-scFv format).
- the scFvs of the anti-CD3 antibodies humanized UCHT1 (Zekri, L, et al. (2021) EMBO molecular medicine 13(2):e1 1902, SEQ ID NO. 5), the humanized OKT3 (Adair, J. R., et al. (1994) Human Antibodies 5(1 -2):41 -47; SEQ ID NO. 6) or the L2K (US961 1325B2, SEQ NO. ID 7), or variants thereof with more than 90% identity with respect to these sequences, bind.
- the T-Abs of the present invention can adopt formats already described in the prior art such as BiTE (WQ2005061547, Frankel and Baeuerle, 2013), Thomab (WO1995033844, Lindhofer, H., et al. (1995) Journal of immunology 155(1 ):219-225; Tandem diAbody (TandAb) (Reusch, U., et al. (2015). MAbs 7(3): 584-604; Dual Affinity Retargeting (DART)/Dual affinity Retargeting-Fc (DART-Fc) (Chichili G. R. et al.
- the AcBs-T described in the present invention recognize the NGcGM3 ganglioside with an affinity in the range (KD between 10 -7 and 10 -10 M), and bind to the human CD3 molecule with affinities with KD in the range 10 -7 and 10 -10 M), which allow the activation of T cells or others that express the CD3 cluster.
- the T-Abs described here recruit T cells through their CD3-specific scFv domain. Furthermore, these antibodies exhibit the ability to recruit and activate NKT cells, which mediate the lysis of NGcGM3-expressing tumor cells.
- the constant region of the light chain of the AcBs-T is characterized by belonging to the kappa isotype (Uniprot P01834) or human lambda (Uniprot P0CG04) and has the sequence that corresponds to SEQ ID 8 and SEQ 9, respectively, and variants that have more than 90% identity with said sequences.
- variable regions of the antibody heavy chain can be mouse, humanized or completely human and come from immunoglobulins with the capacity to recognize the NGcGM3 ganglioside.
- Said variable regions are identified, but are not limited to, SEQ ID NO 10, which includes variants that contain any of the following mutations: Position 5: Q for V Position 9: N for A Position 11: L for V Position 12: A for V Position 18: M for V Position 19: K for R Position 120: M for V Position 40: R for A Position 42: D for G Position 48: I for V
- variable regions of the antibody light chain can be mouse, humanized, or fully human. Such variable regions are identified, but not limited to, SEQ ID NO: 11, which includes variants containing any of the following mutations:
- compositions of the present invention include, but are not limited to, saline, pH-neutral phosphate-buffered saline, and the like.
- Other buffering agents, dispersing agents, and nontoxic inert substances suitable for delivery to a patient may be included in the compositions of the present invention.
- the compositions may be solutions suitable for administration and are typically sterile and free of undesirable particles.
- the present invention relates to a method of treating a subject in need thereof, comprising the subcutaneous, intravenous, intradermal, intramuscular, intratumoral, or intraperitoneal administration of pharmaceutical compositions containing, as an active ingredient, any of the AcBs-T described herein in a dose range of 20 ug-10 mg.
- said pharmaceutical compositions are administered in one to 13 cycles, with 1 to 7 infusions per cycle, in cycles of 21 or 28 days.
- Figure 1 Representation of the format of the anti-NGcGM3 AcBs-T.
- Figure 3 Recognition of NGcGM3 on the surface of the tumor lines P3X63 and L1210, by the AcBs-T 14F7hT-UCHT1 and 3Fm-UCHT1 (A), and 14F7hT-2c11 (B), and recognition of CD3 on the surface of the Jurkat cell line by the AcBs-T 14F7hT-UCHT1 and 3Fm-UCHT1 (C).
- FIG. 1 Cytotoxic activity of mouse NKT cells on the P3X63 tumor line, mediated by the 14F7hT-2c11 antibody.
- Purified NKT cells (A) and the NKT hybridoma (B) were used as effectors.
- FIG. 1 T cell activation by 14F7hT-UCHT1 antibodies, in the presence of the P3X63 tumor line, CD8+ (A) and CD4+ (B).
- Figure 8. Induction of T lymphocyte proliferation mediated by the AcBs-T 14F7hT-UCHT1 (A and B) and 14F7hT-2c11 (C), in the presence of the P3X63 tumor line.
- Figure 9 Specificity of the cytotoxic effect on tumor cells mediated by human effector cells and 14F7hT-UCHT1.
- Figure 12 In v/vo toxicity assessment of AcBs-T 14F7hT-UCHT1 according to body weight (A) and relative organ weight (B) measurements.
- Figure 13 In vivo toxicity assessment of AcB-T 14F7hT-2c11 based on body weight measurement.
- Example 1 Design and obtaining of the genetic constructs encoding the AcBs-T.
- T-Abs were designed as multifunctional molecules, with a full-length IgG-based format (IgG-scFv), with bivalent binding to NGcGM3 and human CD3.
- T-Abs 14F7-UCHT1 , 3FM-UCHT1 , and 8Bhl-UCHT1 correspond to a format as depicted in Figure 1 .
- the T-Ab 14F7-2c11 was designed, with identical specificity for the tumor antigen and the same format as human T-Abs. With bivalent binding to mouse NGcGM3 and CD3, its format is represented in Figure 1 .
- the antigen-binding domains of the 14F7hT-2c11 T-Abs contain the variable regions (VL and VH) of the 14F7hT AcM (Fernández-Marrero, Y., et al. (2011) Immunobiology 216(12):1239-1247, SEQ. ID NOs.14 and 15, respectively); that of 3Fm-UCHT1 retains the VH region of the 14F7hT AcM (SEQ. ID NO. 15) and shares the VL region of the scFv3Fm fragment (SEQ. ID NO. 12), while the 8Bhl-UCHT1 retains the VH region of AcM 14F7hT (SEQ. ID NO.
- the T-Abs 14F7hT-UCHT1 , 3Fm-UCHT1 , 8Bhl-UCHT1 have the scFv fragment of the humanized UCHT 1 AcM, specific for human CD3, fused to the C-terminus of the heavy chain (Zekri, L., et al. (2021) EMBO molecular medicine 13(2):e11902, SEQ. ID 5), while 14F7hT-2c11 has the scFv 2d 1 (SEQ. ID 16, Fernandes, RA, et al. (2012). Journal of Biological Chemistry 287 (16): 13324-13335), specific for the mouse CD3 molecule, fused to the same site. Additionally, the human IgG1 backbone used in the four T-Abs is identified with SEQ. ID NO. 1 .
- the light chain of the anti-NGcGM3 AcBs-T 14F7-UCHT1, 3FM-UCHT1, 8Bhl-UCHT1 and 14F7hT-2c11 has the human C kappa constant region (SEQ. ID NO. 8).
- the VL3Fm and VL14F7hT genes were cloned into the pGH1.2_VKPSMA_CKh vector.
- the genetic constructs pGH1 ,2_VL3Fm_CKh and pGH1.2_VL14F7hT_CKh were thus obtained. The first was used to obtain 3FM-UCHT1 , while the second was used to generate the AcBs-T 14F7-UCHT1 and 14F7hT-2c11.
- the VH gene of AcM 14F7hT was cloned into the vector pGH1.2-lgGscFv_PSMA_UCHT1 (modified lgG1 h-scFvUCHT 1).
- the scFv 2d 1 gene from the pGH1.2- IgGscFv l 0B3_2c11 construct was cloned into the previously obtained vector pGH1.2-lgGscFv_14F7hT_UCHT1.
- Transient expression of T-Abs was performed in ExpiCHO-S cells in suspension using the genetic constructs described above. Ten days after transfection, the recombinant molecules contained in the supernatants were purified using a sequential protocol consisting of a first step of protein A affinity chromatography, followed by gel-exclusion chromatography.
- T-Abs 14F7hT-UCHT1 and 3Fm- UCHT1 was stained with SDS-PAGE on 10% polyacrylamide gels using reducing and non-reducing conditions ( Figure 2A).
- SDS-PAGE was performed on 7.5% ( Figure 2B) and 12% ( Figure 2C) polyacrylamide gels under non-reducing and reducing conditions, respectively.
- the 14F7hT mAb was used as a monospecific antibody control. As shown in Figure 2, the non-reducing conditions showed that the purified sT-Abs produced a band that migrated at the expected size, approximately 204 kDa.
- the 14F7hT mAb had a higher electrophoretic mobility related to its molecular weight of around 150 kDa.
- the reducing conditions of the experiment revealed the presence of both chains of the recombinant bispecific molecules, with migration corresponding to the theoretical sizes: 77 kDa for the heavy chain and 25 kDa for the light chain.
- the control monospecific antibody, mAb 14F7hT also showed the presence of bands corresponding to both chains, at the expected sizes: a 50 kDa band for the heavy chain and a 25 kDa band for the light chain ( Figure 2).
- the evaluation of ganglioside recognition by the antibodies 14F7hT-UCHT1 and 3Fm-UCHT1 was determined by their binding to the mouse tumor lines L1210 and P3X63, which express high levels of NGcGM3 in their plasma membrane (Carr, A., et al. (2002) Hybridoma hybridomics 21 (6):463-468; Roque-Navarro, L., et al. (2008) Molecular Cancer Therapeutics 7 (7):2033-2041 ). This reactivity was determined by flow cytometry and the antibodies were used in equimolar amounts, at different concentrations.
- the 14F7-UCHT1 and 3Fm-UCHT1 AbBs-T demonstrated their ability to recognize both tumor lines in a concentration-dependent manner, as did the 14F7hT AbM antibody, used as a positive control.
- no recognition of these cells was observed by CC-1, used as an isotype control AbB-T.
- FIG. 3C shows the dose-dependent binding of the T-Abs 14F7hT-UCHT1 and 3Fm-UCHT1 to this cell line, similarly to CC-1, which has the same format and identical amino acid sequence with respect to the CD3 binding site (positive control).
- P3X63 were selected as target cells (B) for this measurement, and purified peripheral blood mononuclear cells (PBMCs) from a healthy, non-activated human donor were co-cultured at a 5:1 ratio (E:B) as effector cells (E).
- PBMCs peripheral blood mononuclear cells
- the antibodies 3Fm-UCHT1 and 14F7hT-UCHT1 were used in a concentration range of 0.15 to 50 nM and CC-1 was used at 50 nM as an irrelevant antibody (negative control) with respect to the target cell binding site (it recognizes the prostate-specific membrane antigen PSMA and the human CD3 molecule, Zekri, L., et al. (2021) EMBO molecular medicine 13(2):e11902).
- the 7-AAD reagent was used for staining dead cells. Cell lysis was measured at 72 hours by flow cytometry.
- specific lysis (%) 100-((number of viable target cells (+AcB-Ts)) / (number of viable target cells (-AcB-Ts)) x 100). The evaluations were made with two replicates for each experimental condition.
- 14F7hT-2c11 its ability to induce cytotoxicity on P3X63 mouse myeloma cells (target cells) was evaluated, and as effector cells, T lymphocytes purified from the spleen and lymph nodes of C57BL/6 mice, previously labeled with CFSE.
- target cells P3X63 mouse myeloma cells
- effector cells T lymphocytes purified from the spleen and lymph nodes of C57BL/6 mice, previously labeled with CFSE.
- antibodies were used at 15 nM, 5 nM and 0.5 nM.
- 14F7hT-UCHT1 which recognizes human CD3, was used as an irrelevant antibody (negative control) with respect to the effector cell binding site.
- the LIVE/DEAD FixableNear-IFl Deadcell reagent was used for staining dead cells. Cell lysis was measured at 72 hours by flow cytometry and counted using the formula mentioned above, based on the number of viable target cells (LIVE/DEAD Fixable
- the bispecific antibody 14F7hT-2c11 was able to lyse up to approximately 96% of target cells in the presence of mouse effector cells.
- the antibody irrelevant to mouse T cell binding 14F7hT-UCHT1 did not produce this biological effect, supporting the specificity of the cytotoxicity induced by mouse AbB-T.
- Example 5 AcB-T 14F7hT-2c11 induces cytotoxicity on NGcGM3 positive cell lines mediated by NKT cells.
- AbBs-T were used at 15 nM. Cell lysis was measured at 72 hours by flow cytometry. For each experimental condition, the percentage of viable target cells (LIVE/DEAD Fixable Near-IR Deadcell (iCFSE)) was calculated relative to the untreated tumor cell condition using the formula described above. Evaluations were made with two replicates for each experimental condition. 14F7hT-UCHT1, which does not recognize the mouse CD3 molecule, was used as a negative control.
- Figures 5A and B show that the 14F7hT-2c11 antibody induces cytotoxicity of P3X63 target cells in the presence of NKT cells, due to a decrease of more than 50% of viable target cells. This result supports another mechanism of action of AbB-T, little addressed in the state of the art so far, and not previously described against this target.
- Example 6 14F7hT-2c11 has an antitumor effect on NGcGM3-positive tumors implanted in immunocompetent mice.
- T-Abs for the clinic has been accompanied by the generation of similar molecules, but specific for tumor antigens and mouse CD3, in order to model the action of this type of biopharmaceuticals in immunocompetent animals (Labhjn, AF, et al. (2019) Nature reviews Drug discovery 18(8): 585-608; Benonisson, H., et al. (2019) Molecular cancer therapeutics 18(2): 312-322).
- the antitumor effect of the bispecific antibody 14F7hT-2c11 was measured in a P3X63 therapeutic model, in BALB/c mice (immunocompetent), to demonstrate the ability to eliminate malignant cells in an in vivo scenario, in addition to the in vitro one, tested previously.
- PBMC from a healthy human donor (source of effector cells) and target (P3X63) were co-incubated at a 5:1 ratio in the presence of the bispecific, at different concentrations and for 72h, and the activation marker CD69 was measured by flow cytometry.
- target P3X63
- the same measurement was performed by co-incubating PBMC with the anti-ganglioside AbB-T, in the absence of tumor cells.
- 14F7hT-UCHT1 exhibited a concentration-dependent effect on CD4+ ( Figure 7A) and CD8+ ( Figure 7B) T cell activation, based on the expression of the early activation antigen CD69.
- cells treated with the CC-1 AbB-T (negative control) showed basal activation percentage values similar to those of untreated cells, further supporting the specificity of this effect.
- T cell activation by T-cell Abs in the presence of target cells stimulates their proliferation and expansion, promoting improved antitumor effects.
- 14F7hT-UCHT1 was capable of promoting a proliferative effect on CD4+ and CD8+ T cell populations by co-incubating PBMCs (2.5x10 5 ) labeled with the CTV reagent with the NGcGM3 positive tumor line, P3X63, at a 5:1 (E:B) ratio, and the 14F7hT-UCHT1 antibody at different concentrations.
- the bispecific antibody, CC-1 (15 nM) was used as a negative control, while PHA (10 pg/mL) was used as a positive proliferation control.
- the dilution of the CTV signal for each T cell subpopulation, indicative of their proliferation was measured by flow cytometry.
- 14F7hT-UCHT1 induced the proliferation of human T lymphocytes, preferentially the CD8+ T subpopulation (Figure 8A), which was dependent on the AbB-T concentration.
- Figure 8A the maximum concentration of 15 nM of 14F7hT-UCHT1
- 25% of the total CD8+ T lymphocytes initially labeled with the dye managed to proliferate.
- Figure 8B the CD4+ T lymphocyte population
- the set of experiments indicates that anti-NGcGM3 AcBs-T are capable of inducing the proliferation of T lymphocytes, which contributes to the amplification of the biological effect of these antibodies.
- Example 8 Anti-NGcGM3 AbBs-T only induce cytotoxicity on tumor cells and not on NGcGM3-positive normal cells.
- total lymphocytes from C57BL/6 mouse lymph nodes were incubated with 14F7hT-UCHT1 (15 nM) for 72 hours in the presence of PBMC from a healthy human donor.
- the number of live target cells (mouse lymphocytes) (LIVE/DEAD FixableNear-IR Deadcell-/mouse CD45-) was counted for each experimental condition, and the percentage of live cells was calculated with respect to the reference maximum viability condition (mouse lymphocytes incubated with PBMC, without any treatment). Evaluations were made with three replicates for each experimental condition.
- 14F7hT-2c11 antibody 50 ⁇ g was administered intravenously, while another group received the 145.2c11 antibody (monospecific antibody, anti- Mouse CD3, parental of 14F7hT-2c11, which induces T cell activation, Leo, O., et al. (1987) Proceedings of the National Academy of Sciences_84(5):1374-1378), by the same route (positive control).
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
Abstract
La presente invención se relaciona con el campo de la Biotecnología y la Inmuno- oncología. Se describen anticuerpos biespecíficos que comprenden un anticuerpo, fragmento de anticuerpo o fragmento variable de cadena única que reconocen el gangliósido NGcGM3 en las células tumorales y un anticuerpo, fragmento de anticuerpo o fragmento variable de cadena única que reconocen al antígeno CD3 en células efectoras inmunes humanas. Estos anticuerpos biespecíficos se caracterizan por su capacidad de mediar citotoxicidad selectiva sobre células tumorales positivas al NGcGM3, y no a células normales que puedan expresar el gangliósido y permiten el reclutamiento no solo de linfocitos T, sino también de NKT. Los anticuerpos biespecíficos de la presente invención y los ácidos nucleicos que los codifican son útiles en el tratamiento de desórdenes linfoproliferativos y tumores sólidos que expresan el NGcGM3.
Description
ANTICUERPOS BIESPECÍFICOS QUE UNEN CD3 Y EL GANGLIÓSIDO NGcGM3
CAMPO DE LA TÉCNICA
La presente invención se relaciona con el campo de la Biotecnología y la Inmuno- oncología. Particularmente, describe anticuerpos biespecíficos que reconocen el antígeno NGcGM3, expresado en tumores, y la molécula CD3, y tienen capacidad de reclutar funciones efectoras de células T, NKT y Tyó.
ANTECEDENTES
Los anticuerpos biespecíficos reclutadores de células T (AcBs-T) se han ¡do progresivamente consolidando como una de las alternativas más prometedoras para la re-direccionalización de células efectoras del sistema inmune al tumor, donde reconocen un antígeno de la superficie de las células malignas (Wu, Z. y N. Cheung (2018) Pharmacology therapeutics 182:161-175). Así, el reclutamiento de linfocitos T hacia células tumorales, de manera independiente del reconocimiento específico de antígeno por el receptor de células T, resulta un enfoque muy atractivo y novedoso.
Uno de los retos de este tipo de terapia radica en la selección apropiada del antígeno tumoral contra el que va dirigida. Los antígenos tumor-específicos, resultantes de cambios genéticos y epigenéticos, son los que más direccionalizan selectivamente hacia los tumores (Apavaloaei, A., y cois. (2020) Cancers 12 (9):2607). Desafortunadamente, muchos de ellos son intracelulares y no accesibles a los AcBs-T estándar. Los antígenos tumor-selectivos incluyen los sobreexpresados por el tumor o localizados diferencialmente respecto a los tejidos normales, y también son explotados en la terapia basada en AcBs-T, pero no excluyen la aparición de potenciales efectos adversos.
Específicamente, los AcBs-T contra tumores sólidos presentan muchas veces problemas de seguridad asociados con el síndrome de liberación de citocinas (SLC) y daño a tejidos normales que expresan el antígeno. Resultados preliminares con AcBs- T en tumores sólidos han reportado tasas de SLC generalmente más altas (19-91%) que aquellos destinados al tratamiento de tumores hematológicos como el blinatumumab (7%— 15%) (Bendell, J. C., y cois. (2020); J Clin Oncol 38: 55-52; Borghaei, H., y cois. (2020); Middleton, M. R., y cois. (2020); Clinical Cancer Research 26 (22): 5869-5878; Tran, B„ y cois. (2020). Annals of Oncology 31 : S507). La toxicidad “en el blanco, fuera del tumor” (del inglés, on target off tumor) ha sido un factor limitante en el uso de AcBs-T contra estos tipos de tumores (Kobold, S., y cois. (2018) Frontiers in Oncology 8:285).
El gangliósido NGcGM3 constituye un blanco ampliamente estudiado, dada su expresión en tumores humanos de diferentes localizaciones y escasa presencia en tejidos normales (Bardor, M., y cois. (2005) Journal of Biological Chemistry 280(6): 4228-4237), en base a lo cual se han concebido vahas terapias (Blanco, R., y cois. (2011 ) International Scholarly Research Notices; Lahera, T., y cois. (2014) Oncol). Estas incluyen el desarrollo de vacunas, como Glycovax (Carr, A., y cois. (2003). Journal of Clinical Oncology 21 (6): 1015-1021 ), anticuerpos monoclonales (AcMs) como el 14F7, que se caracteriza por un fino reconocimiento del gangliósido GM3, capaz de distinguir su variante N-glicolilada (que reconoce) de la versión N-acetilada (que no reconoce) (Carr, A., y cois. (2002). Hybhdoma hybhdomics 21 (6): 463-468; Casadesús, A. V., y cois. (2013) Glycoconjugate 30: 687-699),. y fragmentos derivados de este como el 3FM y el 8Bhl (Rojas, G., y cois. (2004). Journal of immunological methods 293(1 -2): 71 -83). El anticuerpo 14F7 es capaz de inducir un tipo de muerte celular tipo oncosis en células tumorales L1210 (origen linfoide), de ratón, pero no en linfocitos normales de ratón (B y TCD4+). Estas diferencias en la citotoxicidad pudieran atribuirse a la distribución diferencial del gangliósido NGcGM3 en las balsas lipídicas de la membrana plasmática, entre células normales y tumorales (Roque- Navarro, L, y cois. (2008) Molecular Cancer Therapeutics 7(7): 2033-2041 ). No obstante, estas diferencias entre células tumorales y normales en cuanto a distribución del gangliósido, no tienen por qué determinar una selectividad similar para otros tipos de muerte inducidos por el dominio de unión del 14F7 y que involucren la participación de células efecto ras.
Dada la naturaleza no proteica del NGcGM3, aproximaciones terapéuticas como los AcMs y las vacunas, son ineficientes en el reclutamiento de la respuesta celular T y su capacidad citotóxica a los tumores que expresan este gangliósido. Esto plantea la necesidad de desarrollar terapias que medien la citotoxicidad de linfocitos T sobre células tumorales positivas al NGcGM3. Hasta la fecha, no se ha descrito ningún AcB- T específico por este gangliósido.
Desde la generación de los primeros AcBs-T se han descrito para estos disímiles formatos que abarcan desde los diseños más pequeños, hasta aquellos que se basan en estructuras de IgG completa (Godar, M. y cois. (2018). Expert Opinion on Therapeutic patents 28(3) :251 -276).
Aunque el formato de elección puede influir en la funcionalidad de estos anticuerpos, se reconoce el papel medular que tiene la molécula diana en la potencia y la seguridad de los AcBs-T (Li, H., y cois. (2020) Cellular molecular immunology 17(5): 451 -461 ). En esto influye la localización del epitopo reconocido y las dimensiones de la molécula blanco, que juegan un papel fundamental en la eficiencia de la formación de la
sinapsis inmunológica y subsecuente activación de los linfocitos T, por lo que son determinantes en la capacidad citotóxica de este tipo de anticuerpos (Li, J., y cois. (2017). Cancer cell_31 (3): 383-395). En resumen, la naturaleza del blanco es crítica para garantizar la eficacia de un AcB-T, al tiempo que no cualquier epitopo es capaz de reclutar exitosamente la acción de un linfocito T a través de un AcB-T dirigido contra él.
Aunque teóricamente los AcB-T específicos por CD3 pueden reclutar la actividad citotóxica no solo de linfocitos T, sino también de NKT y TyS, prácticamente no se documentan ejemplos que demuestren esta capacidad. Un AcB-T específico por la molécula PDL1 humana, demostró su capacidad de mediar la citotoxicidad sobre células tumorales PDL1 + por células NKT de sangre periférica de un donante humano sano (Horn, L. A., y cois. (2017) Oncotarget 8(35): 57964). Esta propiedad no se ha descrito hasta la fecha para ningún AcB-T contra cualquier otra diana molecular.
Teniendo en cuenta el conjunto de antecedentes anteriormente descritos, los inventores de la presente solicitud generaron AcBs-T para la terapia del cáncer, que reconocen el gangliósido NGcGM3, los primeros AcBs-T descritos con esta especificidad antigénica.
Los AcBs-T anti-NGcGM3 de la presente realización logran sorprendentemente una potente actividad in vitro, con el uso de linfocitos humanos, sin necesidad de activarlos previamente, lo que demuestra especialmente su potente efecto citotóxico.
Adicionalmente, estos AcBs-T se caracterizan por su capacidad de mediar citotoxicidad selectiva sobre células tumorales positivas al NGcGM3, y no a células normales, a pesar de que puedan expresar este gangliósido, lo que otorga un margen de seguridad y minimiza el efecto “on target-off tumor1’. Como resultado, se obtienen moléculas con propiedades antitumorales con gran especificidad por las células malignas.
Además, estos AcBs-T contra el NGcGM3 permiten el reclutamiento no solo de linfocitos T, sino también de NKT, y la inducción de la lisis de células tumorales, y son los primeros AcBs-T con dicha especificidad, en demostrar dicha propiedad.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
En una realización la presente invención se relaciona con AcBs-T que comprenden un anticuerpo, fragmento de anticuerpo o fragmento variable de cadena única (scFv) que reconoce el gangliósido NGcGM3 en las células tumorales y un anticuerpo, fragmento de anticuerpo o scFv que reconoce a la molécula CD3 humana. Particularmente, el anticuerpo que reconoce el NGcGM3 es una IgG humana cuya secuencia se
selecciona del grupo que comprenden las SEQ ID NO. 1 -4 o vahantes de estas con más de un 90% de identidad respecto a estas secuencias.
Estos AcBs-T pueden tener un formato que se selecciona del grupo que comprende: TandAb, DART, DART-Fc, DuoBody, CrossMab, KiH, BiTE, Triomab, IgG-scFv.
En una realización particular la cadena pesada del anticuerpo que reconoce el NGcGM3 está fusionada directamente o a través de un enlazador a los anticuerpos, fragmentos de anticuerpo o scFv específicos por el CD3 humano.
En otra realización los anticuerpos, fragmentos de anticuerpo o scFv que reconocen a la molécula CD3 humana tienen las secuencias que se seleccionan del grupo que comprende las SEQ ID NO. 5-7, o vahantes de estas con más de un 90% de identidad respecto a dichas secuencias.
En otra realización particular los anticuerpos, fragmentos de anticuerpos o scFv que reconocen el NGcGM3 tienen una región variable de cadena pesada que se selecciona del grupo que comprende la SEQ ID NO. 10 y SEQ ID NO. 15, o variantes de estas con más de un 90% de identidad respecto a estas secuencias y los anticuerpos, fragmentos de anticuerpo o scFv que reconocen el NGcGM3 tienen una región variable de cadena ligera que se selecciona del grupo que comprende la SEQ ID NO. 11-14 o variantes de estas con más de un 90% de identidad respecto a estas secuencias.
En otra realización la presente invención se relaciona con las composiciones farmacéuticas que comprenden como principio activo los AcBs-T que aquí se describen y un vehículo farmacéuticamente aceptable.
En una realización adicional la presente invención se relaciona con el uso de los AcBs- T en el tratamiento de desórdenes linfoprolif erativos y tumores sólidos que expresan el NGcGM3. Particularmente, con el uso del ácido nucleico codificante de los AcBs-T en la terapia génica de tumores que expresan el NGcGM3, dicha terapia génica se basa en la inyección de ARNm o partículas transductoras codificantes de los AcBs-T.
En otra realización la presente invención se relaciona con un método de tratamiento a un sujeto que lo necesite que comprende la administración por vía subcutánea, intravenosa, intradérmica, intramuscular, intratumoral o intraperitoneal de los AcBs-T que aquí se divulgan en un rango de dosis entre 20ug-10mg.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Descripción de los AcBs-T
La presente invención se relaciona con anticuerpos biespecíficos o proteínas de fusión multifuncionales que comprenden un anticuerpo, fragmento de anticuerpo o scFv que
reconoce el gangliósido NGcGM3 en las células tumorales, y un anticuerpo, fragmento de anticuerpo o scFv que reconoce a la molécula CD3 humana.
El término anticuerpo biespecífico reclutador de células T (AcB-T) empleado en la presente invención, se refiere a una categoría de anticuerpos biespecíficos que son capaces de comprometer y reclutar la acción citotóxica de células T y NKT, a una célula tumoral que expresa un antígeno específico.
Los términos proteína de fusión y AcB-T se utilizan intercambiablemente en la presente invención.
Estos AcB-T pueden tener diferentes formatos que son bien conocidos por un experto en la materia, el que puede usar los dominios variables y/o los juegos de CDRs aquí descritos y obtener los distintos formatos por técnicas rutinarias (Godar, M. y cois. (2018). Expert Opinion on Therapeutic patents 28(3):251 -276). Los formatos que tienen las proteínas de fusión de la presente invención, garantizan el reclutamiento, la activación y capacidad citotóxica de los linfocitos T y células NKT hacia células tumorales.
De acuerdo a una de las realizaciones de la invención, los AcBs-T aquí descritos adoptan una estructura basada en IgG completa.
En una realización particular, el esqueleto de IgG se basa en una lgG1 humana que contiene un conjunto de modificaciones que anulan o reducen la unión al FcvR y la fijación del complemento, y disminuyen sus potencialidades de reclutar funciones efectoras asociadas a su región Fe. Esta Fe modificada evita el entrecruzamiento de los receptores Fcy-CD3, dado por la unión de los anticuerpos a un sitio diferente del blanco tumoral y, por consiguiente, previene la acción no deseada sobre otras células del sistema inmune mediada por células T, lo que ha limitado la eficacia de los AcB-T (Labrijn, A. F., y cois. (2019) Nature reviews Drug discovery 18(8): 585-608).
Particularmente, la lgG1 humana de estos AcBs-T tiene modificaciones en el dominio CH2 (SEQ ID NO. 1) que abrogan o disminuyen la unión al FcvR y la fijación del complemento (Wines, B. D., y cois. (2000) The Journal of Immunology 164(10): 5313- 5318; Armour, K. L., y cois. (2003) Molecular immunology 40(9):585-593; Sazinsky, S. L., y cois. (2008) Proceedings of the National Academy of Sciences 105(51): 20167- 20172; Schlothauer, Herter y cols. (2016). Protein Engineering, Design 29(10): 457- 466) ).
Opcionalmente, el esqueleto de lgG1 humana modificada tiene la mutación N297X (SEQ ID NO. 2), donde X se selecciona del grupo de aminoácidos que comprenden: alanina, glicina y glutamina). Dicha mutación elimina el sitio de glicosilación clásico de la región Fe de la lgG1 humana (Chao, D. T., y cois. (2009)_lmmunological investigations 38(1): 76-92), lo cual resulta en la obtención de una inmunoglobulina
aglicosilada en dicha región, que no tiene la capacidad de unirse a los receptores Fcy (Wang, L.-X., y cois. (2019). Annual review of biochemistry 88: 433-459). Adicionalmente, el esqueleto de IgG contiene aquellas variantes con más de un 90 % de identidad con las SEQ ID NO. 1 y 2.
En una realización particular el esqueleto de IgG humana es una lgG2 (SEQ ID NO. 3, Uniprot P01859) o una lgG4 (SEQ ID NO. 4, Uniprot P01861 ) las que no tienen la capacidad de unirse a los receptores Fcy (Vafa, O., y cois. (2014) Methods 65(1 ): 1 14- 126; Gillies, S. D., y cois. (1999) Cancer research 59(9):2159-2166; Newman, R., y cois. (2001 ) Clinical Immunology 98(2):164-174), así como vahantes que tienen más de un 90% de identidad con dichas secuencias.
Opcionalmente, el diseño de los AcBs-T objeto de la presente invención, es el de una molécula tetravalente basada en IgG completa con funciones efectoras minimizadas o nulas, con dos dominios de unión al gangliósido NGcGM3, y dos de unión al CD3 humano.
En otra realización, los AcBs-T contra el NGcGM3 obtenidos en la presente invención, se caracterizan por tener un scFv anti-CD3 unido directamente o mediante un enlazador de 10-27 residuos aminoacídicos, al extremo carboxilo de las cadenas pesadas del anticuerpo anti-NGcGM3 (formato IgG-scFv). Particularmente, se unen los scFv de los anticuerpos anti-CD3 UCHT1 humanizado (Zekri, L, y cois. (2021 ) EMBO molecular medicine 13(2) :e1 1902, SEQ ID NO. 5), el OKT3 humanizado (Adair, J. R., y cois. (1994) Human Antibodies 5(1 -2):41 -47; SEQ ID NO. 6) o el L2K (US961 1325B2, SEQ NO. ID 7), o vahantes de estos con más de un 90% de identidad respecto a estas secuencias.
Adicionalmente, los AcBs-T de la presente invención pueden adoptar formatos ya descritos en el arte previo como los BiTE (WQ2005061547, Frankel and Baeuerle, 2013), Thomab (WO1995033844, Lindhofer, H., y cois. (1995) Journal of immunology 155(1 ):219-225; Tandem diAbody (TandAb) (Reusch, U., y cois. (2015). MAbs 7(3): 584-604; Dual Affinity Retargeting (DART)/Dual affinity Retargeting-Fc (DART-Fc) (Chichili G. R. y cois. (2015) Sci Transí Med 7(289): 289ra82), DuoBody (Gaudet, F., y cois. (2016) Blood 128(22):2824) y CrossMab and/or Knobs into holes (KiH) (WQ201326833; Bacac, M., y cols. (2016) Clinical Cancer Research 22(13):3286- 3297).
Los AcBs-T que se describen en la presente invención reconocen al gangliósido NGcGM3 con una afinidad, en el rango (KD entre 10-7 y 10-10M), y se unen a la molécula CD3 humana con afinidades con KD en el rango 10-7 y 10-10M), que permiten la activación de las células T u otras que expresen el cluster CD3.
Los AcBs-T aquí descritos reclutan células T a través de su dominio scFv específico por CD3. Además, estos anticuerpos exhiben la propiedad de reclutar y activar células NKT que median la lisis de células tumorales que expresan el NGcGM3.
En una realización particular, la región constante de la cadena ligera de los AcBs-T se caracteriza por pertenecer al ¡sotipo kappa (Uniprot P01834) o lambda humano (Uniprot P0CG04) y tiene la secuencia que se corresponde con la SEQ ID 8 y la SEQ 9, respectivamente, y vahantes que tienen más de un 90% de identidad con dichas secuencias.
Por su parte, las regiones variables de la cadena pesada del anticuerpo pueden ser de ratón, humanizadas o completamente humanas y provienen de inmunoglobulinas con capacidad de reconocer el gangliósido NGcGM3. Dichas regiones variables se identifican, pero no se limitan, a la SEQ ID NO 10, que comprende variantes que contienen cualesquiera de las siguientes mutaciones: Posición 5: Q por V Posición 9: N por A Posición 11 : L por V Posición 12: A por V Posición 18: M por V Posición 19: K por R Posición 120: M por V Posición 40: R por A Posición 42: D por G Posición 48: I por V
Por su parte, las regiones variables de la cadena ligera del anticuerpo pueden ser de ratón, humanizadas o completamente humanas. Dichas regiones variables se identifican, pero no se limitan, a la SEQ ID NO 1 1 que incluye vahantes que contienen cualquiera de las siguientes mutaciones:
Cadena ligera
Posición 39: R por K
Posición 40: T por P
Posición 41 : H por G
Posición 42: E por Q
Posición 58: I por V
Adicionalmente, estas regiones variables de cadena ligera incluyen las SEQ ID NO 12 y SEQ ID NO 13.
Composiciones farmacéuticas
Los AcBs-T objeto de la presente invención se pueden encontrar como ingrediente activo, formando parte de diferentes composiciones farmacéuticas apropiadas para los mismos, y un vehículo farmacéuticamente aceptable. Las concentraciones del ingrediente activo en dichas composiciones farmacéuticas se encuentran en el rango de 0.5 mg/ml a 20 mg/ml, preferiblemente de 1 mg/ml a 10 mg/ml, o liofilizado.
Entre los vehículos farmacéuticamente aceptables se incluyen, pero no se limitan a: solución salina, salina amortiguada con fosfato pH neutro, y otros parecidos. Otros agentes de amortiguación, agentes dispersos, y sustancias inertes no tóxicas apropiadas para entregar a un paciente podrán ser incluidas en las composiciones de la presente invención. Las composiciones podrán ser soluciones apropiadas para la administración, y son normalmente estériles y libres de partículas indeseables.
Aplicación terapéutica y métodos de tratamiento
La presente invención se relaciona con el uso de los AcBs-T aquí divulgados en el tratamiento de tumores NGcGM3 positivos. En particular, en el tratamiento de desórdenes linfoproliferativos como la leucemia linfocítica crónica (LLC), y el mieloma múltiple, así como tumores sólidos de estadio avanzado que expresen el NGcGM3, como los tumores de cabeza y cuello, tumores cerebrales, gliomas adulto y pediátrico, cáncer de páncreas, tumores de esófago, mama, cáncer de pulmón de células no pequeñas y tumores nasofaríngeos, de estómago, de vejiga, colorrectal, y melanoma. Adicionalmente, se relaciona con el uso de enfoques de terapia génica basados en la inyección de ARNm o partículas transductoras codificantes de los AcBs-T de la presente invención, por vías subcutánea, intramuscular o intratumoral, para el tratamiento de las malignidades arriba mencionadas.
En una realización adicional la presente invención se relaciona con un método de tratamiento a un sujeto que lo necesite que comprende la administración por vía subcutánea, intravenosa, intradérmica, intramuscular, intratumoral o intraperitoneal de composiciones farmacéuticas que contienen como ingrediente activo alguno de los AcBs-T que aquí se describen en un rango de dosis entre 20ug-10mg. Particularmente, la administración de dichas composiciones farmacéuticas se realiza de uno a 13 ciclos, entre 1 y 7 infusiones por ciclo, en ciclos de 21 o 28 días.
Dadas las propiedades inmunomoduladoras de estas moléculas, además de la acción citotóxica que median sobre células tumorales, se sustenta la posible combinación con
otras inmunoterapias en pacientes con diversos tipos de cáncer. De igual manera, es posible su combinación con otros inmunomoduladores y con oncoterapias clásicas como quimioterapia y radioterapia. De este modo, los AcBs-T mencionados pretenden constituir un frente terapéutico en el tratamiento del cáncer. Este efecto estaría asociado al reclutamiento selectivo de la acción citotóxica de células efectoras de la inmunidad como los linfocitos T y NKT sobre células tumorales que expresen el NGcGM3, lo cual conlleva a un retardo en el crecimiento tumoral y una mayor supervivencia de los individuos tratados. A esto se suman la capacidad de inducir un ambiente controlado de citocinas inflamatorias que puede contribuir a la activación de otros efectores de la inmunidad y con esto potenciar el efecto antitumoral. A su vez, es importante destacar los bajos niveles de toxicidad que muestran en modelos animales, sobre tejidos sanos que expresan el gangliósido NGcGM3, lo que avala un buen perfil de seguridad en su uso en pacientes.
Todo esto se traduce en una mayor esperanza y calidad de vida en los pacientes tratados.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Representación del formato de los AcBs-T anti-NGcGM3.
Figura 2. Electroforesis en gel de poliacrilamida con dodecilsulfato sódico (SDS- PAGE) de los anticuerpos 14F7hT-UCHT1 (A, carriles 1 y 2), 3Fm-UCHT1 (A, carriles 3 y 4), 14F7hT (A, carriles 5 y 6; B y C, carril 1 ) y 14F7hT-2c11 (B y C, carril 2). Condiciones no reductoras (A: carriles 1 , 3, 5; B: carriles 1 y 2). Condiciones reductoras (A: carriles 2, 4, 6; C: carriles 1 y 2).
Figura 3. Reconocimiento del NGcGM3 en la superficie de las líneas tumorales P3X63 y L1210, por los AcBs-T 14F7hT-UCHT1 y 3Fm-UCHT1 (A), y 14F7hT-2c11 (B), y reconocimiento del CD3 en la superficie de la línea celular Jurkat por los AcBs-T 14F7hT-UCHT1 y 3Fm-UCHT1 (C).
Figura 4. Actividad citotóxica sobre la línea tumoral P3X63, mediada por los AcBs-T 14F7hT-UCHT1 (A y B), 3Fm-UCHT1 (A) y 14F7hT-2c11 (C), en presencia de células efectoras.
Figura 5. Actividad citotóxica de células NKT de ratón sobre la línea tumoral P3X63, mediada por el anticuerpo 14F7hT-2c11. Se usaron como efectoras, células NKT purificadas (A) y el hibridoma NKT (B).
Figura 6. Efecto antitumoral del 14F7hT-2c11 en un modelo terapéutico BALB/C-X63, medido el día 7 después de prendidos los tumores.
Figura 7. Activación de células T por los anticuerpos 14F7hT-UCHT1 , en presencia de la línea tumoral P3X63, CD8+ (A) y CD4+ (B).
Figura 8. Inducción de la proliferación de linfocitos T mediada por los AcBs-T 14F7hT- UCHT1 (A y B) y 14F7hT-2c11 (C), en presencia do la línea tumoral P3X63.
Figura 9. Especificidad del efecto citotóxico sobre células tumorales mediado por células efectoras humanas y el 14F7hT-UCHT1 .
Figura 10. Ausencia de citotoxicidad de AcBs-T 14F7hT-2c11 (A) y 14F7hT-UCHT1 (B) sobre células normales (linfocitos de ratón).
Figura 11. Evaluación de la activación in vivo de células T mediada por los AcBs-T 14F7hT-UCHT1 (A) y 14F7hT-2c11 (B), en presencia de tejidos normales que expresan este gangliósido, según evaluación de IFNy en suero de animales tratados.
Figura 12: Evaluación de toxicidad in v/vo del AcBs-T 14F7hT-UCHT1 según medición de peso corporal (A) y peso relativo de órganos (B).
Figura 13: Evaluación de toxicidad in vivo del AcB-T 14F7hT-2c11 según medición de peso corporal.
La presente invención queda aún más elaborada con los siguientes ejemplos y dibujos. Sin embargo, estos ejemplos no deberían ser interpretados como una limitación del ámbito de la invención.
EJEMPLOS
Ejemplo 1. Diseño y obtención de las construcciones genéticas codificantes de los AcBs-T.
Se diseñaron los AcBs-T humanos que consisten en moléculas multifuncionales, con un formato basado en IgG completa (IgG-scFv), con unión bivalente al NGcGM3 y al CD3 humano. Específicamente, los AcBs-T 14F7-UCHT1 , 3FM-UCHT1 y 8Bhl-UCHT1 se corresponden con un formato como el que se representa en la Figura 1 .
Para la modelación de la actividad de los AcBs-T humanos en ratones inmunocompetentes se diseñó el AcB-T 14F7-2c11 , con idéntica especificidad por el antígeno tumoral e igual formato a los AcBs-T humanos. Con unión bivalente al NGcGM3 y al CD3 de ratón, su formato se representa en la Figura 1 .
Los dominios de unión al antígeno de los AcBs-T 14F7hT-UCHT1 y 14F7hT-2c11 , contienen las regiones variables (VL y VH) del AcM 14F7hT (Fernández-Marrero, Y., y cois. (2011) Immunobiology 216(12):1239-1247, SEQ. ID NOs.14 y 15, respectivamente); el del 3Fm-UCHT1 conserva la región VH del AcM 14F7hT (SEQ. ID NO 15) y comparte la región VL del fragmento scFv3Fm (SEQ. ID NO. 12), mientras el
del 8Bhl-UCHT1 conserva la región VH del AcM 14F7hT (SEQ. ID NO 15) y comparte la región VL del fragmento scFv8Bhl (SEQ. ID NO. 13). Los AcBs-T 14F7hT-UCHT1 , 3Fm-UCHT1 , 8Bhl-UCHT1 tienen fusionado al C-terminal de la cadena pesada, el fragmento scFv del AcM UCHT 1 humanizado, específico por el CD3 humano (Zekri, L., y cois. (2021) EMBO molecular medicine 13(2):e11902, SEQ. ID 5), mientras el 14F7hT-2c11 tiene fusionado al mismo sitio, el scFv 2d 1 (SEQ. ID 16, Fernandes, R. A., y cois. (2012). Journal of Biological Chemistry 287 (16): 13324-13335), específico por la molécula CD3 de ratón. Adicionalmente, el esqueleto de lgG1 humana utilizado en los cuatro AcBs-T se identifica con la SEQ. ID NO. 1 .
Por su parte, la cadena ligera de los AcBs-T anti-NGcGM3 14F7-UCHT1 , 3FM- UCHT1 , 8Bhl-UCHT1 y 14F7hT-2c11 tiene la región constante C kappa humana (SEQ. ID NO. 8).
Para la obtención de las construcciones genéticas que codifican las cadenas ligeras de los AcBs-T, los genes VL3Fm y VL14F7hT se clonaron en el vector pGH1.2_VKPSMA_CKh. Se obtuvieron así las construcciones genéticas pGH1 ,2_VL3Fm_CKh y pGH1.2_VL14F7hT_CKh. La primera se utilizó en la obtención del 3FM-UCHT1 , mientras la segunda se empleó en la generación de los AcBs-T 14F7-UCHT1 y 14F7hT-2c11. Para la obtención de la construcción genética que codifica la cadena pesada de los AcBs-T14F7-UCHT1 y 3FM-UCHT1 , el gen VH del AcM 14F7hT se clonó en el vector pGH1.2-lgGscFv_PSMA_UCHT1 (lgG1 h modificada-scFvUCHT 1 ).
Para la obtención de la construcción genética que codifica la cadena pesada del 14F7hT-2c11 , el gen scFv 2d 1 proveniente de la construcción pGH1.2- IgGscFv l 0B3_2c11 , se clonó en el vector pGH1 .2-lgGscFv_14F7hT_UCHT1 , previamente obtenido.
Ejemplo 2. Los AcBs-T anti-NGcGM3 se expresan como proteínas íntegras y funcionales.
La expresión transitoria de los AcBs-T se realizó en células ExpiCHO-S en suspensión, y utilizando las construcciones genéticas descritas anteriormente. A los 10 días de realizada la transfección, las moléculas recombinantes contenidas en los sobrenadantes, se purificaron por un protocolo secuencial, consistente en un primer paso de cromatografía de afinidad por proteína A, seguido de una cromatografía de exclusión molecular.
Seguidamente, se confirmó la talla e integridad de los AcBs-T mediante SDS-PAGEy posterior tinción con Azul de Coomassie. Para los AcBs-T 14F7hT-UCHT1 y 3Fm-
UCHT1 se realizó el SDS-PAGE en geles al 10% de poliacrilamida, usando condiciones reductoras y no reductoras (Figura 2A). Para el anticuerpo 14F7hT-2c11 se realizó la SDS-PAGE en geles de 7,5% (Figura 2B) y 12% (Figura 2C) de poliacrilamida, en condiciones no reductoras y reductoras, respectivamente. Como control de anticuerpo monoespecífico se empleó el AcM 14F7hT. Como se aprecia en la Figura 2, las condiciones no reductoras mostraron que los AcBs-T purificados rindieron una banda que migró a la talla esperada, equivalente a 204 kDa, aproximadamente. El AcM 14F7-hT, como se esperaba, tuvo mayor movilidad electroforética relacionada con su peso molecular cercano a 150 kDa. Las condiciones reductoras del experimento evidenciaron la presencia de ambas cadenas de las moléculas biespecíficas recombinantes, con una migración correspondiente a las tallas teóricas: 77 kDa para la cadena pesada, y 25 kDa para la cadena ligera. El anticuerpo monoespecífico control, el AcM 14F7hT, mostró igualmente la presencia de las bandas correspondientes a ambas cadenas, a las tallas esperadas: la banda de 50 kDa para la cadena pesada, y de 25 kDa, para la cadena ligera (Figura 2).
Ejemplo 3. Los AcBs-T reconocen el NGcGM3 y la molécula CD3.
Para determinar el reconocimiento dual de los anticuerpos generados se evaluó la reactividad frente al gangliósido NGcGM3 y la molécula CD3.
La evaluación del reconocimiento del gangliósido por los anticuerpos 14F7hT-UCHT1 y 3Fm-UCHT1 , se determinó por su unión a las líneas tumorales de ratón L1210 y P3X63, que expresan altos niveles de NGcGM3 en su membrana plasmática (Carr, A., y cois. (2002) Hybridoma hybridomics 21 (6):463-468; Roque-Navarro, L., y cois. (2008) Molecular Cancer Therapeutics 7(7):2033-2041 ). Esta reactividad se determinó por citometría de flujo y se usaron los anticuerpos en cantidades equimolares, a diferentes concentraciones. Como se observa en la Figura 3A, los AcBs-T 14F7-UCHT1 y 3Fm- UCHT1 demostraron su capacidad de reconocer ambas líneas tumorales, de una manera dependiente de la concentración, como también lo hace el anticuerpo AcM 14F7hT, usado como control positivo. Esto confirma que la propiedad de las moléculas recombinantes generadas de unirse al antígeno en el contexto de la membrana plasmática, no se ve comprometida por la presencia de los scFv acoplados al extremo carboxilo de la cadena pesada, al compararlo con una IgG clásica de igual especificidad. De acuerdo a lo esperado, no se observó reconocimiento de estas células por el CC-1 , utilizado como AcB-T control de ¡sotipo.
Para el caso del anticuerpo 14F7hT-2c11 (Figura 3B) también se evaluó su unión a las líneas tumorales de ratón P3X63 y L1210. Este reconocimiento se determinó por
citometría de flujo y se usaron los anticuerpos a 5nM. Se demostró su capacidad de unirse a ambas líneas tumorales, como también lo hizo el anticuerpo AcM14F7hT, usado como control positivo. Como era de esperar, no se observó unión del AcB-T MOPC-UCHT 1 , utilizado como control de ¡sotipo.
Tomando en consideración que 14F7hT-UCHT1 y 3Fm-UCHT1 son específicos por el gangliósido NGcGM3 y la molécula CD3 humana, también resultó importante determinar su habilidad de interactuar con esta última, como parte del estudio de reactividad. Para ello, se evaluó su reconocimiento de la línea de linfocitos T humanos Jurkat (CD3 positiva), por citometría de flujo. Los anticuerpos se utilizaron en cantidades equimolares, a diferentes concentraciones. La Figura 3C evidencia la unión, dependiente de la dosis, de los AcBs-T 14F7hT-UCHT1 y 3Fm-UCHT1 , a esta línea celular, de manera similar al CC-1 , de igual formato y secuencia aminoacídica idéntica respecto al sitio de unión al CD3 (control positivo).
Ejemplo 4. Los AcB-Ts anti-NGcGM3 inducen citotoxicidad sobre líneas tumorales positivas al gangliósido.
Considerando los resultados anteriores, que demuestran las propiedades de reconocimiento de los anticuerpos 3Fm-UCHT1 y 14F7hT-UCHT1 , se decidió evaluar la capacidad de estos de mediar citotoxicidad sobre líneas tumorales NGcGM3 positivas. Específicamente, se seleccionaron para esta medición como células diana (B), las P3X63, y como células efectoras (E), células mononucleares de sangre periférica (CMSP) purificadas de un donante humano sano, no activadas, las que se co-cultivaron a una razón 5:1 (E:B). Los anticuerpos 3Fm-UCHT1 y 14F7hT-UCHT1 se usaron en un rango de concentraciones de 0,15 a 50 nM y el CC-1 , se empleó a 50 nM, como anticuerpo irrelevante (control negativo) respecto al sitio de unión a la célula diana (reconoce el antígeno de membrana específico de próstata PSMA y la molécula CD3 humana, Zekri, L., y cois. (2021) EMBO molecular medicine 13(2):e11902). Se utilizó el reactivo 7-AAD para la tinción de las células muertas. La lisis celular se midió a las 72 horas, mediante citometría de flujo. Para cada condición experimental se contabilizó el número de células diana viables (7-AAD-/CD45-) tratadas con los AcBs- T, y se calculó el porcentaje de lisis específica mediante la fórmula: lisis específica (%)= 100-((número de células blanco viables (+AcB-Ts)) / (número de células blanco viables (-AcB-Ts))x100). Las evaluaciones se hicieron con dos réplicas por cada condición experimental.
En la Figura 4A se puede observar una alta citotoxicidad (más del 95%) inducida por los anticuerpos 14F7hT-UCHT1 y 3Fm-UCHT1 , en presencia de células efectoras,
incluso a concentraciones bajas como 0,15 nM. La especificidad de este efecto está avalada por la citotoxicidad marginal (20%) del anticuerpo irrelevante CC-1 (control negativo), evaluado a la máxima concentración ensayada para los AcBs-T anti- NGcGM3. Como medida cualitativa de este efecto, se visualizaron al microscopio óptico las células tumorales P3X63 (diana), caracterizadas por un mayor tamaño, como se muestra en la Figura 4B. El tratamiento con 14F7hT-UCHT1 (15nM) en presencia de células efectoras humanas, como se describió anteriormente, redujo sustancialmente el número de células diana (panel izquierdo), en comparación con el tratamiento con el anticuerpo biespecífico irrelevante (panel derecho).
Para el 14F7hT-2c11 , se evaluó su capacidad de inducir citotoxicidad sobre células mieloma de ratón P3X63 (células diana), y como células efectoras, linfocitos T purificados a partir bazo y ganglios de ratones C57BL/6, previamente marcados con CFSE. En el ensayo de citotoxicidad los anticuerpos se usaron a 15 nM, 5 nM y 0,5 nM. El 14F7hT-UCHT1 , que reconoce el CD3 humano, se empleó como anticuerpo irrelevante (control negativo) respecto al sitio de unión a la célula efectora. Se utilizó el reactivo LIVE/DEAD FixableNear-IFl Deadcell para la tinción de las células muertas. La lisis celular se midió a las 72 horas, mediante citometría de flujo y se contabilizó mediante la fórmula referida anteriormente, a partir del número de células diana viables (LIVE/DEAD Fixable Near- IR Deadcell-ICFSE-) tratadas o no con los AcBs-T.
Como se puede apreciar en la Figura 4C, el anticuerpo biespecífico 14F7hT-2c11 fue capaz de lisar hasta aproximadamente un 96% de las células blanco, en presencia de las células efectoras de ratón. Por su parte, el anticuerpo irrelevante respecto a la unión a los linfocitos T de ratón (14F7hT-UCHT1) no produjo este efecto biológico, lo que sustenta la especificidad de la citotoxicidad inducida por el AcB-T de ratón.
Ejemplo 5. El AcB-T 14F7hT-2c11 induce citotoxicidad sobre líneas celulares NGcGM3 positivas mediada por células NKT.
Aunque la unión de los AcB-Ts a la molécula CD3 puede teóricamente reclutar también NKT y Tvs, esto solo se ha documentado para un anticuerpo con formato BiTE, ampliamente reconocido por su alta potencia (Horn, L. A., y cois. (2017) Oncotarget 8(35):57964). Por tal motivo, se decidió evaluar si un anticuerpo con formato IgG completa, tetravalente, como el que portan los AcBs-T anti-NGcGM3 de la presente invención, puede reclutar la acción efectora de linfocitos NKT sobre células NGcGM3 positivas.
Para ello, en una primera aproximación, se estudió la capacidad del 14F7hT-2c11 de mediar la lisis de células tumorales NGcGM3 positivas inducida por células ¡NKT. En
este experimento se incubaron como células blanco (B), las P3X63 (0.5x105), y como células electoras (E), las ¡NKTpurificadas a partir de esplenocitos de ratones C57BL/6 (Figura 5A), o el hibridoma de células ¡NKT FF13 (Schümann, J., y cois. (2007). European journal of immunology 37 (6): 1431 -1441) (Figura 5B), previamente marcadas con CFSE, las que se co-cultivaron a una razón 10:1 (E:B). Los AcBs-T se usaron a 15 nM. La lisis celular se midió a las 72 horas, mediante citometría de flujo. Para cada condición experimental se calculó el porciento de células blanco viables (LIVE/DEAD Fixable Near- IR Deadcell-iCFSE-), respecto a la condición de células tumorales sin tratar, mediante la fórmula descrita anteriormente. Las evaluaciones se hicieron con dos réplicas por cada condición experimental. El 14F7hT-UCHT1 , que no reconoce la molécula CD3 de ratón, se usó como control negativo.
En las Figuras 5A y B se puede observar que el anticuerpo 14F7hT-2c11 induce citotoxicidad de las células diana P3X63 en presencia de células ¡NKT, dada por una disminución de más del 50% de células blanco viables. Este resultado apoya otro de los mecanismos de acción de los AcB-T, poco abordado en el estado del arte hasta el momento, y no descrito anteriormente contra este blanco.
Ejemplo 6. El 14F7hT-2c11 tiene efecto antitumoral sobre tumores NGcGM3 positivos implantados en ratones inmunocompetentes.
El desarrollo de los AcBs-T para la clínica ha venido acompañado de la generación de moléculas similares, pero específicas por antígenos tumorales y CD3 de ratón, para poder modelar la acción de este tipo de biofarmacéuticos en animales inmunocompetentes (Labhjn, A. F., y cois. (2019) Nature reviews Drug discovery 18(8): 585-608; Benonisson, H., y cols. (2019) Molecular cancer therapeutics 18(2): 312-322). Por tal motivo, se midió el efecto antitumoral del anticuerpo biespecífico 14F7hT-2c11 en un modelo terapéutico P3X63, en ratones BALB/c (inmunocompetentes), para demostrar la capacidad de eliminar las células malignas en un escenario in vivo, además del in vitro, probado anteriormente. Para ello, se inocularon 1 x 106 células P3X63, por vía subcutánea, en el flanco derecho de los animales. Una vez que los tumores fueron palpables (no medibles: 65 mm3 o 78 mm3), se comenzaron los tratamientos, considerando este como el día 1. Los tratamientos se realizaron los días 1 , 4 y 7 con 12.5 pg de 14F7-2c11 en 200 uL de PBS, por vía intraperitoneal.
Como se muestra en la Figura 6, a los 7 días posteriores al prendimiento de los tumores, el grupo tratado con el 14F7hT-2c11 , mostró menores volúmenes tumorales respecto al grupo control (tratado con PBS) (prueba de Tukey, p<0.05).
Este experimento constituye una evidencia del efecto antitumoral ¡n vivo del 14F7hT- 2c11 , lo que valida la potencialidad terapéutica de los AcBs-T con la región variable del 14F7hT y el formato antes descrito, en un contexto de individuos inmunocompetentes.
Ejemplo 7. Los AcBs-T anti-NGcGM3 promueven la activación de células T.
Adicionalmente, como parte de la actividad biológica de los AcBs-T anti-NGcGM3, se decidió evaluar el estado de activación de los linfocitos T. Para ello, se co-incubaron CMSP de un donante humano sano (fuente de células efectoras) y diana (P3X63), a una razón 5:1 , en presencia del biespecífico, a diferentes concentraciones y durante 72h, y se midió el marcador de activación CD69, por citometría de flujo. Como control negativo del experimento, se realizó la misma medición co-incubando CMSP con el AcB-T anti-gangliósido, en ausencia de células tumorales.
El 14F7hT-UCHT1 mostró un efecto sobre la activación de los linfocitos T CD4+ (Figura 7A) y CD8+ (Figura 7B), dependiente de la concentración, según la expresión del antígeno de activación temprana CD69. En cambio, las células tratadas con el AcB-T CC-1 (control negativo), mostraron valores de porcientos de activación basal, similares a los de las células sin tratamiento, lo que soporta también la especificidad de este efecto.
La activación de los linfocitos T por los AcBs-T, en presencia de células diana estimula su proliferación y expansión, lo que promueve mejores efectos antitumorales. Por esta razón, se evaluó si el 14F7hT-UCHT1 , era capaz de propiciar un efecto proliferativo sobre las poblaciones de células T CD4+ y CD8+, al co-incubar las CMSP (2.5x105) marcadas con el reactivo CTV, con la línea tumoral NGcGM3 positiva, P3X63, a una razón 5:1 (E:B), y el anticuerpo 14F7hT-UCHT1 , a diferentes concentraciones. El biespecífico, CC-1 (15 nM) se usó como control negativo, mientras la PHA (10 pg/mL), como control positivo de proliferación. Transcurridas 72 horas, se midió la dilución de la señal del CTV para cada subpoblación de células T, indicativa de su proliferación, mediante citometría de flujo.
El 14F7hT-UCHT1 indujo la proliferación de linfocitos T humanos, preferencialmente la subpoblación T CD8+ (Figura 8A), la cual fue dependiente de la concentración de AcB- T. A la concentración máxima de 15 nM de 14F7hT-UCHT1 , lograron proliferar un 25% del total de linfocitos T CD8+ inicialmente marcados con el colorante. Similar comportamiento, pero en menor magnitud, se observó en la población linfocitaria T CD4+ (Figura 8B), para la que se verificó un 6% de proliferación, a la misma concentración. Como era de esperar, la máxima proliferación se obtuvo en las células
tratadas con el mitógeno PHA, usado como control positivo. Por su parte, el AcB-T irrelevante CC-1 (control negativo), no produjo este efecto biológico sobre los linfocitos T, al obtenerse valores de porciento similares a los de las células no tratadas.
Igualmente, se procedió a evaluar si el 14F7hT-2c11 , subrogado del 14F7hT-UCHT1 , era capaz de propiciar un efecto proliferativo sobre las poblaciones de células T de ratón. Para ello, se co-incubaron linfocitos totales de ganglios linfáticos de ratón C57BL/6 marcados previamente con CFSE, con la línea tumoral NGcGM3 positiva, P3X63, a una razón 10:1 (E:B), y el anticuerpo 14F7hT-2c11 a 15 nM. El biespecífico 14F7hT-UCHT1 (15 nM) se usó como control negativo, por no reconocer los linfocitos T de ratón. Transcurridas 72 horas, se midió con el uso de la citometría de flujo la dilución de la señal de CFSE para las células T, indicativa de su proliferación. Para medir la viabilidad celular se usó LIVE/DEAD Fixable Near- IR Deadcell. Partiendo de las células LIVE/DEAD FixableNear-IFl Deadcell-/CFSE+, la proliferación de las células T se evaluó mediante la cuantificación de los porcientos de linfocitos T marcados con el reactivo CFSE que variaron su intensidad media de fluorescencia (IMF), bajo los diferentes tratamientos, en presencia de células P3X63. Las evaluaciones se hicieron con tres réplicas por cada condición experimental.
Como se exhibe en la Figura 8C, con 15 nM del anticuerpo 14F7hT-2c11 , lograron proliferar un 45% del total de linfocitos T inicialmente marcados con el colorante CFSE. Por su parte, el anticuerpo irrelevante 14F7hT-UCHT1 no produjo este efecto biológico sobre los linfocitos T, al obtenerse valores de porciento similares a los de las células no tratadas (prueba t de Student, p<0.05).
El conjunto de experimentos, apunta a que los AcBs-T anti-NGcGM3 son capaces de inducir la proliferación de linfocitos T, lo cual contribuye a la amplificación del efecto biológico de estos anticuerpos.
Ejemplo 8. Los AcBs-T anti-NGcGM3 solo inducen citotoxicidad sobre células tumorales y no sobre células normales NGcGM3 positivas.
Para confirmar la especificidad del efecto citotóxico sobre células tumorales, mediado por los AcBs-T anti-NGcGM3 en presencia de células efectoras, se realizó un estudio utilizando como células blanco (B), la línea tumoral L1210, y su vahante L1210 cmah- kd. En este experimento se procedió de manera similar a la descrita anteriormente y se usó una razón 2:1 (E:B), y como fuente de células efectoras, se utilizó CMSP de un donante humano sano. Como se puede apreciar en la Figura 9, el 14F7hT-UCHT1 fue capaz de inducir citotoxicidad dependiente de la dosis, sobre la línea L1210, mientras que la viabilidad de las células L1210 cmah-kd apenas se comprometió con este
tratamiento. Sobre estas células, los porcientos de citotoxicidad fueron similares a los de las células L1210 tratadas con el anticuerpo CC-1 (control negativo). Este resultado confirma la especificidad del efecto citotóxico inducido por este anticuerpo. Adicionalmente, aquí se confirma la alta potencia del AcB-T 14F7hT-UCHT1 , al lograrse una citotoxicidad superior al 50% con tan solo 10pM de este anticuerpo, y usando efectores sin previa activación.
Si bien la presencia del gangliósido es necesaria para la acción citotóxica del linfocito T mediada por los AcBs-T anti-NGcGM3, no es obvia la distinción de una célula normal de una tumoral para dicho efecto. Como una demostración de la acción citotóxica preferencial de los AcBs-T anti-NGcGM3 con este formato sobre células tumorales, respecto a células normales que puedan expresar este gangliósido, se evaluó el efecto lítico sobre linfocitos normales de ratón, de los que se conoce que una subpoblación, mayormente CD4+, expresa este gangliósido y es reconocida por el anticuerpo 14F7 (Roque-Navarro, L, y cois. (2008) Molecular Cancer Therapeutics 7(7): 2033-2041 ).
Para comprobar si el AcB-T 14F7hT-2c11 puede inducir citotoxicidad in vitro sobre estas células normales, se incubaron linfocitos totales de ganglios linfáticos de ratón C57BL/6 (0.5 x106) con dicho biespecífico, a diferentes concentraciones, durante 72 h. En este caso, los linfocitos T actúan como células efectoras y son también potenciales células blanco, por la presencia del gangliósido. Para cada condición experimental se calculó el porciento de células blanco viables (LIVE/DEAD Fixable Near- IR Deadcell-), por citometría de flujo. Como se aprecia en la Figura 10A, los linfocitos de ratón tratados con el anticuerpo 14F7-2c11 a diferentes concentraciones, no muestran diferencias en el porciento de células vivas con respecto a aquellos incubados con el 14F7-UCHT1 (control negativo, que no reconoce la molécula CD3 de ratón). Este resultado indica que el anticuerpo 14F7hT-2c11 solo media la lisis de células tumorales como las P3X63 (Ejemplo 4, Figura 4C), y no de células normales, como los linfocitos T de ratón.
En un segundo experimento, los linfocitos totales de ganglios linfáticos de ratón C57BL/6 (potenciales células blanco) se incubaron con 14F7hT-UCHT1 (15 nM), durante 72 horas, en presencia de CMSP de un donante humano sano. En este caso, para cada condición experimental se contabilizó el número de células blanco (linfocitos de ratón) vivas (LIVE/DEAD FixableNear-IR Deadcell-/CD45 de ratón-), y se calculó el porciento de células vivas respecto a la condición de viabilidad máxima de referencia (linfocitos de ratón incubados con CMSP, sin ningún tratamiento). Las evaluaciones se hicieron con tres réplicas por cada condición experimental.
Como muestra la Figura 1 OB, tampoco se observan diferencias estadísticamente significativas (post-prueba de Dunn, p<0.05) entre los porcientos de linfocitos vivos de ratón para aquellos que fueron tratados con el 14F7hT-UCHT1 , en comparación con los que se incubaron con el control negativo MOPC-UCHT1 (AcB-T irrelevante, no reconoce el gangliósido NGcGM3 y sí la molécula CD3 humana, Zekri, L, y cois. (2021 ) EMBO molecular medicine_13(2): e11902). Al igual que el 14F7hT-2c11 , este resultado indica que el AcB-T 14F7hT -UCHT 1 no induce la I ¡sis sobre células normales a pesar de la expresión de este gangliósido, a diferencia de las células tumorales, sobre las que sí media un efecto citotóxico.
Ejemplo 9. Los AcBs-T anti-NGcGM3 no tienen toxicidad aguda in vivo.
Una vez demostrado que los AcBs-T anti-NGcGM3 no lisan células normales que expresan dicho gangliósido, se procedió a evaluar su posible efecto tóxico ¡n vivo en un modelo animal relevante (ratones), que expresan naturalmente el gangliósido NGcGM3 (Ecsedy, J. A., y cois. (1999) Journal of neurochemistry 73(1): 254-259). Para ello, se diseñó un estudio en el que se inyectaron ratones BALB/c nu/nu el día 1 con 20 pg de 14F7hT-UCHT1 , por vía endovenosa, y 20x106 CMSP humanas, intrapehtonealmente. Esta es una dosis 10 veces superior a la administrada para AcBs-T de este formato en protocolos para evaluar efecto antitumoral (Zekri, L., y cois. (2021 ) EMBO molecular medicine 13(2):e11902; Mehta, N. K., y cois. (2022) Journal for immunotherapy of cancer 10(3):e003882). Además, se incluyó un grupo que solo recibió las CMSP y otro que no recibió tratamiento alguno. Después de 24 horas, se examinaron los niveles de IFN-y humano en suero (Figura 11 A), sin observarse diferencias estadísticamente significativas entre los grupos. Transcurridas 48 h, los ratones se pesaron y se sacrificaron para el posterior procesamiento de sus órganos. Como se aprecia en las Figura 12 A y B, el tratamiento con el AcB-T 14F7-UCHT1 y transferencia de CMSP humanas no indujo cambios en el peso corporal de los animales ni en el peso relativo de los órganos, lo que indica la poca toxicidad del anticuerpo, aún en animales que expresan el gangliósido en sus células normales. De conjunto, estos resultados sugieren que la aplicación del 14F7hT-UCHT1 junto a CMSP humanas no indujo una activación de células T no deseada, en ausencia de tumor, y que el anticuerpo es tolerable por el animal, sin evidencias de toxicidad aguda.
En un estudio paralelo, se evaluó el posible efecto tóxico del anticuerpo 14F7-2c11 in vivo. Para ello, el anticuerpo 14F7hT-2c11 (50ug) se administró por vía endovenosa, mientras otro grupo recibió el anticuerpo 145.2c11 (anticuerpo monoespecífico, anti-
CD3 de ratón, parental del 14F7hT-2c11 , que induce activación de células T, Leo, O., y cols. (1987) Proceedings of the National Academy of Sciences_84(5):1374-1378), por la misma via (control positivo).
Como se observa en la Figura 11 B, la determinación de los niveles séricos de IFN-y pasadas 24h de la aplicación del AcB-T reveló que el anticuerpo 14F7hT-2c11 no indujo una secreción de esta citocina en presencia de células normales que expresan el NGcGM3. Esta secreción solo ocurrió en los ratones tratados con el anticuerpo anti- CD3 de ratón (145.2c11). Adicionalmente, los ratones se pesaron diariamente durante el estudio. Como se muestra en la Figura 13, dos días posteriores a la administración, el grupo tratado con el anticuerpo 145.2c1 1 disminuyó de peso (g) con respecto al grupo control (prueba de Tukey, p<0.05), a diferencia del tratado con el AcB-T.
Estos hallazgos consolidan la evidencia de la activación de los AcBs-T anti-NGcGM3 solo en presencia del tumor, tanto in vitro como in vivo. Además, sugieren que la toxicidad “en el blanco, fuera del tumor” es mínima, debido a la no citotoxicidad sobre células normales.
Claims
1. Un anticuerpo biespecífico que comprende un anticuerpo, fragmento de anticuerpo o fragmento variable de cadena única (scFv) que reconoce el gangliósido NGcGM3 en las células tumorales y un anticuerpo, fragmento de anticuerpo o scFv que reconoce a la molécula CD3 humana.
2. El anticuerpo biespecífico según la reivindicación 1 donde el anticuerpo que reconoce el NGcGM3 es una IgG humana.
3. El anticuerpo biespecífico según la reivindicación 1 donde el anticuerpo tiene un formato que se selecciona del grupo que comprende: TandAb, DART, DART-Fc, DuoBody, CrossMab, KiH, BiTE, Triomab, IgG-scFv.
4. El anticuerpo biespecífico según la reivindicación 2 donde la cadena pesada está fusionada directamente o a través de un enlazador peptídico a un anticuerpo, fragmento de anticuerpo o scFv específico por el CD3 humano.
5. El anticuerpo biespecífico según la reivindicación 4 donde el anticuerpo, fragmento de anticuerpo o scFv que reconoce a la molécula CD3 humana tiene las secuencias que se seleccionan del grupo que comprende las SEQ ID NO. 5-7, o variantes de estas con más de un 90% de identidad respecto a dichas secuencias.
6. El anticuerpo biespecífico según la reivindicación 4 donde el anticuerpo, fragmento de anticuerpo o scFv que reconoce el NGcGM3 tiene una región variable de cadena pesada que se selecciona del grupo que comprende la SEQ ID NO. 10 y SEQ ID NO. 15, o variantes de estas con más de un 90% de identidad respecto a estas secuencias.
7. El anticuerpo biespecífico según la reivindicación 4 donde el anticuerpo, fragmento de anticuerpo o scFv que reconoce el NGcGM3 tiene una región variable de cadena ligera que se selecciona del grupo que comprende la SEQ ID NO. 11-14 o vahantes de estas con más de un 90% de identidad respecto a estas secuencias.
8. El anticuerpo biespecífico según la reivindicación 2 donde la secuencia de la IgG humana se selecciona del grupo que comprende las SEQ ID NO. 1-4 o variantes de estas con más de un 90% de identidad respecto a estas secuencias.
9. Una composición farmacéutica que comprende como principio activo el anticuerpo biespecífico de cualquiera de las reivindicaciones 1 -8 y un vehículo farmacéuticamente aceptable.
10. Uso del anticuerpo biespecífico de cualquiera de las reivindicaciones 1 -8 en el tratamiento de desórdenes lint oproliferativos y tumores sólidos que expresan el NGcGM3.
11. Uso del ácido nucleico codificante de los AcBs-T según cualquiera de las reivindicaciones 1 -8 en la terapia génica de tumores que expresan el NGcGM3.
12. El uso según la reivindicación 11 donde la terapia génica se basa en la inyección de ARNm o partículas transductoras codificantes de los AcBs-T.
13. Un método de tratamiento a un sujeto que lo necesite que comprende la administración por vía subcutánea, intravenosa, intradérmica, intramuscular, intratumoral o intraperitoneal del anticuerpo biespecífico de cualquiera de las reivindicaciones 1 -8 en un rango de dosis entre 20ug-10mg.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CUCU-2023-0043 | 2023-09-08 | ||
CU2023000043A CU20230043A7 (es) | 2023-09-08 | 2023-09-08 | Anticuerpos biespecíficos que unen cd3 y el gangliósido ngcgm3 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025051309A1 true WO2025051309A1 (es) | 2025-03-13 |
Family
ID=93335404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CU2024/050006 WO2025051309A1 (es) | 2023-09-08 | 2024-08-23 | ANTICUERPOS BIESPECÍFICOS QUE UNEN CD3 Y EL GANGLIÓSIDO NGcGM3 |
Country Status (2)
Country | Link |
---|---|
CU (1) | CU20230043A7 (es) |
WO (1) | WO2025051309A1 (es) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995033844A1 (de) | 1994-06-03 | 1995-12-14 | GSF - Forschungszentrum für Umwelt und Gesundheit GmbH | Verfahren zur herstellung von heterologen bispezifischen antikörpern |
WO2005061547A2 (en) | 2003-12-22 | 2005-07-07 | Micromet Ag | Bispecific antibodies |
WO2013026833A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
US9611325B2 (en) | 2014-07-21 | 2017-04-04 | Wuhan Yzy Biopharma Co., Ltd. | Construction and application of bispecific antibody HER2xCD3 |
US20180251503A1 (en) * | 2013-03-15 | 2018-09-06 | Memorial Sloan-Kettering Cancer Center | Multimerization technologies |
-
2023
- 2023-09-08 CU CU2023000043A patent/CU20230043A7/es unknown
-
2024
- 2024-08-23 WO PCT/CU2024/050006 patent/WO2025051309A1/es unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995033844A1 (de) | 1994-06-03 | 1995-12-14 | GSF - Forschungszentrum für Umwelt und Gesundheit GmbH | Verfahren zur herstellung von heterologen bispezifischen antikörpern |
WO2005061547A2 (en) | 2003-12-22 | 2005-07-07 | Micromet Ag | Bispecific antibodies |
WO2013026833A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
US20180251503A1 (en) * | 2013-03-15 | 2018-09-06 | Memorial Sloan-Kettering Cancer Center | Multimerization technologies |
US9611325B2 (en) | 2014-07-21 | 2017-04-04 | Wuhan Yzy Biopharma Co., Ltd. | Construction and application of bispecific antibody HER2xCD3 |
Non-Patent Citations (48)
Title |
---|
"Uniprot", Database accession no. P01861 |
ADAIR, J. R., HUMAN ANTIBODIES, vol. 5, no. 1-2, 1994, pages 41 - 47 |
APAVALOAEI, A., CANCERS, vol. 12, no. 9, 2020, pages 2607 |
ARMOUR, K. L., MOLECULAR IMMUNOLOGY, vol. 40, no. 9, 2003, pages 585 - 593 |
AYSHA PATEL: "Development of T cell based therapeutic strategies for childhood cancer neuroblastoma", 28 December 2017 (2017-12-28), XP055749964, Retrieved from the Internet <URL:https://discovery.ucl.ac.uk/id/eprint/10040429/1/Aysha%20Patel%20Thesis%202017.pdf> * |
BACAC, M., CLINICAL CANCER RESEARCH, vol. 22, no. 13, 2016, pages 3286 - 3297 |
BARDOR, M., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, no. 6, 2005, pages 4228 - 4237 |
BENDELL, J. C., J CLIN ONCOL, vol. 38, 2020, pages 55 - 52 |
BENONISSON, H., MOLECULAR CANCER THERAPEUTICS, vol. 18, no. 2, 2019, pages 312 - 322 |
BLANCO, R., INTERNATIONAL SCHOLARLY RESEARCH NOTICES, 2011 |
CARR, A., HYBRIDOMA HYBRIDOMICS, vol. 21, no. 6, 2002, pages 463 - 468 |
CARR, A., JOURNAL OF CLINICAL ONCOLOGY, vol. 21, no. 6, 2003, pages 1015 - 1021 |
CASADESÚS, A. V., GLYCOCONJUGATE, vol. 30, 2013, pages 687 - 699 |
CHAO, D. T., IMMUNOLOGICAL INVESTIGATIONS, vol. 38, no. 1, 2009, pages 76 - 92 |
CHICHILI G. R., SCI TRANSL MED, vol. 7, no. 289, 2015, pages 289 - 82 |
CRIBIOLI ELISABETTA ET AL: "CAR T cells targeting the ganglioside NGcGM3 control ovarian tumors in the absence of toxicity against healthy tissues", FRONTIERS IN IMMUNOLOGY, vol. 13, 5 August 2022 (2022-08-05), Lausanne, CH, XP093232059, ISSN: 1664-3224, DOI: 10.3389/fimmu.2022.951143 * |
ECSEDY, J. A., JOURNAL OF NEUROCHEMISTRY, vol. 73, no. 1, 1999, pages 254 - 259 |
FERNANDES, R. A., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 287, no. 16, 2012, pages 13324 - 13335 |
FERNÁNDEZ-MARRERO, Y., IMMUNOBIOLOGY, vol. 216, no. 12, 2011, pages 1239 - 1247 |
GAUDET, F., BLOOD, vol. 128, no. 22, 2016, pages 2824 |
GILLIES, S. D., CANCER RESEARCH, vol. 59, no. 9, 1999, pages 2159 - 2166 |
GODAR, M., EXPERT OPINION ON THERAPEUTIC PATENTS, vol. 28, no. 3, 2018, pages 251 - 276 |
HORN, L. A., ONCOTARGET, vol. 8, no. 35, 2017, pages 57964 |
KOBOLD, S., FRONTIERS IN ONCOLOGY, vol. 8, 2018, pages 285 |
LABRADA MAYREL ET AL: "Direct validation of NGcGM3 ganglioside as a new target for cancer immunotherapy", EXPERT OPINION ON BIOLOGICAL THERAPY, vol. 10, no. 2, 8 December 2009 (2009-12-08), pages 153 - 162, XP093232029, ISSN: 1471-2598, DOI: 10.1517/14712590903443084 * |
LABRIJN, A. F., NATURE REVIEWS DRUG DISCOVERY, vol. 18, no. 8, 2019, pages 585 - 608 |
LAHERA, T., ONCOL, 2014 |
LAMERIS ROELAND ET AL: "A bispecific T-cell engager recruits both type 1 NKT and V[gamma]9V[delta]2-T cells for the treatment of CD1d-expressing hematological malignancies", CELL REPORTS MEDICINE, vol. 4, no. 3, 1 March 2023 (2023-03-01), pages 100961, XP093232071, ISSN: 2666-3791, DOI: 10.1016/j.xcrm.2023.100961 * |
LI, H., CELLULAR MOLECULAR IMMUNOLOGY, vol. 17, no. 5, 2020, pages 451 - 461 |
LI, J., CANCER CELL, vol. 31, no. 3, 2017, pages 383 - 395 |
LINDHOFER, H., JOURNAL OF IMMUNOLOGY, vol. 155, no. 1, 1995, pages 219 - 225 |
MAXIM YANKELEVICH ET AL: "Anti-CD3*anti-GD2 bispecific antibody redirects T-cell cytolytic activity to neuroblastoma targets", PEDIATRIC BLOOD & CANCER, vol. 59, no. 7, 15 December 2012 (2012-12-15), pages 1198 - 1205, XP055045832, ISSN: 1545-5009, DOI: 10.1002/pbc.24237 * |
MEHTA, N. K., JOURNAL FOR IMMUNOTHERAPY OF CANCER, vol. 10, no. 3, 2022, pages 003882 |
NELY RODR?GUEZ-ZHURBENKO ET AL: "Human antibodies reactive to NeuGcGM3 ganglioside have cytotoxic antitumor properties", EUROPEAN JOURNAL OF IMMUNOLOGY, WILEY-VCH, HOBOKEN, USA, vol. 43, no. 3, 8 February 2013 (2013-02-08), pages 826 - 837, XP071225962, ISSN: 0014-2980, DOI: 10.1002/EJI.201242693 * |
NEWMAN, R., CLINICAL IMMUNOLOGY, vol. 98, no. 2, 2001, pages 164 - 174 |
REUSCH, U., MABS, vol. 7, no. 3, 2015, pages 584 - 604 |
ROJAS, G., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 293, no. 1-2, 2004, pages 71 - 83 |
ROQUE-NAVARRO, L., MOLECULAR CANCER THERAPEUTICS, vol. 7, no. 7, 2008, pages 2033 - 2041 |
SAZINSKY, S. L., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 105, no. 51, 2008, pages 20167 - 20172 |
SCHLOTHAUERHERTER, PROTEIN ENGINEERING, DESIGN, vol. 29, no. 10, 2016, pages 457 - 466 |
SCHÜMANN, J., EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 37, no. 6, 2007, pages 1431 - 1441 |
T, LEO, O., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 84, no. 5, 1987, pages 1374 - 1378 |
TRAN, B., ANNALS OF ONCOLOGY, vol. 31, 2020, pages 507 |
VAFA, O., METHODS, vol. 65, no. 1, 2014, pages 114 - 126 |
WANG, L.-X., ANNUAL REVIEW OF BIOCHEMISTRY, vol. 88, 2019, pages 433 - 459 |
WINES, B. D., THE JOURNAL OF IMMUNOLOGY, vol. 164, no. 10, 2000, pages 5313 - 5318 |
WU, Z.N. CHEUNG, PHARMACOLOGY THERAPEUTICS, vol. 182, 2018, pages 161 - 175 |
ZEKRI, L., EMBO MOLECULAR MEDICINE, vol. 13, no. 2, 2021, pages e11902 |
Also Published As
Publication number | Publication date |
---|---|
CU20230043A7 (es) | 2025-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES3001154T3 (es) | Anticuerpo monoclonal anti-PD1, composición farmacéutica del mismo y uso del mismo | |
US12103973B2 (en) | Anti-B7-H3 monoclonal antibody and use thereof in cell therapy | |
ES2812303T3 (es) | Anticuerpo que se une a CD3 humano | |
ES2349781T3 (es) | Composiciones polipeptídicas que se enlazan con el cd20. | |
ES2889906T3 (es) | Proteínas de unión triespecíficas y usos médicos | |
CN105189562B (zh) | Il-15异源二聚体蛋白及其用途 | |
ES2782834T3 (es) | Uso de moléculas inhibidoras de semaforina-4D en combinación con una terapia inmunomoduladora para inhibir el crecimiento tumoral y la metástasis | |
ES2784131T3 (es) | Polipéptidos de unión beta del receptor PDGF | |
US9045543B2 (en) | Humanized anti-CD20 monoclonal antibody | |
ES2718399T3 (es) | Moléculas que se acoplan a anticuerpos EGFRVIII biespecíficas humanas | |
US7318924B2 (en) | Antibodies against cancer | |
BR112017018941B1 (pt) | Molécula de ligação a cd20, seu uso, composição e método in vitro para direcionar a morte mediada por complemento de uma célula que expressa cd20 | |
CZ330694A3 (en) | Immuno-conjugates | |
TW201726175A (zh) | 新穎抗密連蛋白(claudin)抗體及使用方法 | |
CN107001454A (zh) | 新的抗mfi2抗体和使用方法 | |
ES3016535T3 (en) | Bi-specific conjugates | |
ES2800674T3 (es) | Polipéptidos biespecíficos de unión a antígeno | |
US20240218065A1 (en) | Multispecific antigen-binding protein and use thereof | |
Mohammadi et al. | Immunotherapy For Researchers | |
WO2023020537A1 (zh) | 一种双特异性抗体及其用途 | |
EP3394107A1 (en) | Novel anti-tnfsf9 antibodies and methods of use | |
Ren‐Heidenreich et al. | Redirected T‐cell cytotoxicity to epithelial cell adhesion molecule‐overexpressing adenocarcinomas by a novel recombinant antibody, E3Bi, in vitro and in an animal model | |
CA3023088A1 (en) | Novel anti-tnfrsf21 antibodies and methods of use | |
AU2013403112B2 (en) | Anti-CD20-Flex bifunctional fusion protein, and preparation method and use thereof | |
WO2025051309A1 (es) | ANTICUERPOS BIESPECÍFICOS QUE UNEN CD3 Y EL GANGLIÓSIDO NGcGM3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24799477 Country of ref document: EP Kind code of ref document: A1 |