WO2025051267A1 - 一种lpar1拮抗剂及其用途 - Google Patents
一种lpar1拮抗剂及其用途 Download PDFInfo
- Publication number
- WO2025051267A1 WO2025051267A1 PCT/CN2024/117612 CN2024117612W WO2025051267A1 WO 2025051267 A1 WO2025051267 A1 WO 2025051267A1 CN 2024117612 W CN2024117612 W CN 2024117612W WO 2025051267 A1 WO2025051267 A1 WO 2025051267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- membered
- cycloalkyl
- alkenyl
- further substituted
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4192—1,2,3-Triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
Definitions
- the present invention belongs to the field of medicine, and in particular relates to a small molecule compound with LPAR1 antagonistic activity, its stereoisomers, deuterated substances or pharmaceutically acceptable salts, and use thereof in preparing medicines for treating related diseases.
- Lysophosphatidic acid is a small molecule glycerophosphodiester with a molecular weight of 430-480D. LPA is widely present in the human body. After binding to receptors, it can activate multiple cell signaling pathways and participate in regulating cell proliferation, differentiation, apoptosis, neurotransmitter release and other life activities. It plays an important role in diseases such as cancer, fibrosis, neuronal dysfunction, and bone metabolic disorders. LPA is mainly produced by the hydrolysis of lysophospholipids (mainly lysophosphatidylcholine) by autocrine motility factor.
- lysophospholipids mainly lysophosphatidylcholine
- LPA in the bleomycin-induced pulmonary fibrosis model, the LPA level in bronchoalveolar lavage fluid increased significantly, leading to increased vascular permeability and pulmonary fibrosis; LPA can also mediate the production of a variety of paracrine mediators by fibroblasts, acting on epithelial cells, leukocytes and endothelial cells, regulating tissue remodeling, angiogenesis, inflammation, wound healing and tumor progression; LPA can even induce the extracellular shedding of epidermal growth factor (EGF) family ligands of fibroblasts, activate the release of soluble factors, and stimulate lung epithelial cells and expand local fibroblast response partly through the action of EGFR.
- EGF epidermal growth factor
- LPA-LPA1 signaling pathway can promote apoptosis of lung tissue epithelial cells and inhibit apoptosis of fibroblasts in idiopathic pulmonary fibrosis (IPF), suggesting that this signaling pathway may regulate the development of fibrosis after lung injury.
- LPA is closely related to organ fibrosis, mainly mediated by lysophosphatidic acid receptor (LPAR) 1.
- LPAR lysophosphatidic acid receptor
- LPAR antagonists have a therapeutic effect on idiopathic pulmonary fibrosis; it has also been found that the LPAR1 antagonist BMS-986020 can effectively improve the lung function of patients with idiopathic pulmonary fibrosis.
- the present invention provides a small molecule compound having LPAR1 antagonist activity, and its stereoisomers, deuterated substances or pharmaceutically acceptable salts, which have good activity, excellent physicochemical properties, convenient preparation, excellent pharmacokinetic properties, high bioavailability and low toxic and side effects.
- the compound has the structures of formula (I), (I-1), (I-2), (I-2a), (I-2b), (I-2c), (I-3), (I-4), (I-5) and (I-6).
- Ring C is selected from The "*" end is connected to the left pyridine ring.
- the end is connected to L2 ; in some embodiments, ring C is selected from The "*" end is connected to the left pyridine ring.
- the end is connected to L2 ;
- Ring A is selected from a 3-12-membered carbocyclic group, a 4-12-membered heterocyclic group, or Ring A is absent, and the heterocyclic group contains 1-3 heteroatoms selected from N, O, and S; the carbocyclic group and the heterocyclic group are optionally further substituted by 1-4 RA ;
- L 1 is selected from C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl substituted with one COOH;
- L 1 is selected from -OC 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl substituted with one COOH;
- L 1-1 and L 1-1b are each independently selected from -OC 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl substituted with one COOH; in some embodiments, ring A1 is selected from not existing, and L 1-1 is selected from -OC 1-6 alkyl substituted with one COOH; in some embodiments, ring A, ring A1 or A1b are each independently selected from not existing, and L 1 , L 1-1 , L 1-1b are each independently selected from -OCH 2 C(CH 3 ) 2 CH 2 COOH, -OCH 2 CH 2 C(CH 3 ) 2 COOH;
- ring A is selected from 4-12 membered carbocyclic groups, 4-12 membered heterocyclic groups, wherein the heterocyclic groups contain 1-3 heteroatoms selected from N, O, and S; the carbocyclic groups and heterocyclic groups are optionally further substituted with 1-4 RA ;
- ring A is selected from 4-8 membered monocyclic carbocyclyl, 6-12 membered bicyclic carbocyclyl, 4-8 membered monocyclic heterocyclyl, 6-12 membered bicyclic heterocyclyl, 6-10 membered heterobridged cyclyl; the carbocyclyl, heterocyclyl, heterobridged cyclyl are optionally substituted by 1-4 RA ;
- ring A is selected from 4-8 membered monocyclic cycloalkyl, 6-12 membered cycloalkyl, 4-8 membered monocyclic heterocycloalkyl, 6-12 membered heterocycloalkyl, 6-10 membered heterospirocyclyl, 6-10 membered heterobridged cyclyl, wherein the heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl contains 1-3 heteroatoms selected from N, O, and S; the cycloalkyl, heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl is optionally further substituted with 1-4 RA ;
- Ring A is selected from one of the groups formed by the following structures optionally substituted with 1-4 RA : or ring A is absent;
- Ring A1, A1b, A1c are each independently selected from a 3-12-membered carbocyclic group, a 4-12-membered heterocyclic group, or are absent, wherein the heterocyclic group contains 1-3 heteroatoms selected from N, O, and S; the carbocyclic group and the heterocyclic group are optionally further substituted by 1-4 RA ;
- ring A1, A1b, A1c are each independently selected from 3-8 membered monocyclic cycloalkyl, 6-12 membered cycloalkyl, 4-8 membered monocyclic heterocycloalkyl, 6-12 membered heterocycloalkyl, 6-10 membered heterospirocyclyl, 6-10 membered heterobridged cyclyl, or are absent, the heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl contain 1-3 heteroatoms selected from N, O, S, and the cycloalkyl, heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl are optionally further substituted with 1-4 RA ;
- Ring A1 is selected from 4-12 membered carbocyclic groups and 4-12 membered heterocyclic groups, wherein the heterocyclic groups contain 1-3 heteroatoms selected from N, O, and S; the carbocyclic groups and heterocyclic groups are optionally further substituted with 1-4 RA ; and L 1-1 -A1 is not selected from
- Ring A1 is selected from 4-8 membered monocyclic cycloalkyl, 6-12 membered cycloalkyl, 4-8 membered monocyclic heterocycloalkyl, 6-12 membered heterocycloalkyl, 6-10 membered heterospirocyclyl, 6-10 membered heterobridged cyclyl, wherein the heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl contains 1-3 heteroatoms selected from N, O, and S, and the cycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl is optionally further substituted with 1-4 RA ; and L 1-1 -A1 is not selected from
- Ring A1 is selected from one of the groups formed by the following structures optionally substituted with 1-4 RA : And L 1-1 -A1 is not selected from
- Ring A1 is selected from one of the groups formed by the following structures optionally substituted with 1-4 RA : And L 1-1 -A1 is not selected from
- Ring A1b is selected from 3-12 membered carbocyclic group, 4-12 membered heterocyclic group or does not exist, the heterocyclic group contains 1-3 heteroatoms selected from N, O, S; the carbocyclic group and heterocyclic group are optionally further substituted by 1-4 RA ; and L 1-1b -A1b is not selected from
- ring A1b is selected from 4-12 membered carbocyclic groups, 4-12 membered heterocyclic groups, wherein the heterocyclic groups contain 1-3 heteroatoms selected from N, O, and S; the carbocyclic groups and heterocyclic groups are optionally further substituted with 1-4 RA ; and L 1-1b -A1b is not selected from
- ring A1b is selected from 4-8 membered monocyclic cycloalkyl, 6-12 membered cycloalkyl, 4-8 membered monocyclic heterocycloalkyl, 6-12 membered heterocycloalkyl, 6-10 membered heterospirocyclyl, 6-10 membered heterobridged cyclyl, wherein the heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl contains 1-3 heteroatoms selected from N, O, and S, and the cycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl is optionally further substituted with 1-4 RA ; and L 1-1b -A1b is not selected from
- Ring A1b is selected from one of the groups formed by the following structures optionally substituted with 1-4 RA : or ring A1b does not exist; and L 1-1b -A1b is not selected from
- ring A1c is selected from 3-12 membered carbocyclic group, 4-12 membered heterocyclic group or is absent, wherein the heterocyclic group contains 1-3 heteroatoms selected from N, O, S; the carbocyclic group and heterocyclic group are optionally further substituted with 1-4 RA ; and O-A1c is not selected from
- ring A1c is selected from 4-12 membered carbocyclic groups, 4-12 membered heterocyclic groups, wherein the heterocyclic groups contain 1-3 heteroatoms selected from N, O, and S; the carbocyclic groups and heterocyclic groups are optionally further substituted with 1-4 RA ; and O-A1c is not selected from
- Ring A1c is selected from 4-8 membered monocyclic cycloalkyl, 6-12 membered cycloalkyl, 4-8 membered monocyclic heterocycloalkyl, 6-12 membered heterocycloalkyl, 6-10 membered heterospirocyclyl, 6-10 membered heterobridged cyclyl, wherein the heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl contains 1-3 heteroatoms selected from N, O, and S, and the cycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl is optionally further substituted with 1-4 RA ; and O-A1c is not selected from
- Ring A1c is selected from one of the following groups optionally substituted with 1-4 RA : Or ring A1c is absent; and O-A1c is not selected from
- R a2 R a1, R a2, R a1, R a1 , R a2 , R a1 , R a1, R a1 , R a2, R a1 , R a1, R a1 , R a1, R a1 , R a1 , R a1, R a1, R a1 , R a1 , R a1, R a1, R a1 , R a1, R a1, R a1, R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1, R a1 , R a1, R a1 , R a1 , R a1, R a1 , R a1 , R a1, R a1 , R a1 , R a1, R a1 ,
- Ring A1, A1b, A1c are each independently selected from the following structures: Or selected from
- Ring A3 is selected from
- L1 is selected from a bond, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, -O-, -OC1-6 alkyl-, -S-, -SC1-6 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, -NR L1 -, -NR L1 -C 1-6 alkyl-, wherein the alkyl, alkenyl or alkynyl group is optionally further substituted with 1 to 4 R L1 ;
- L 1 is selected from a bond, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, -O-, -OC 1-6 alkyl-, -S-, -SC 1-6 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 R L1 ;
- L 1 is selected from a bond, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, -O-, -OC 1-4 alkyl-, -S-, -SC 1-4 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 R L1 ;
- L 1 is selected from a bond, C 1-2 alkyl, -OC 1-2 alkyl-, -S-, -O-, said alkyl optionally further substituted with 1-4 R L1 ;
- L1-1 is selected from a bond, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, -O-, -OC1-6 alkyl-, -S-, -SC1-6 alkyl-, -C(O)NR L1 -, -NR L1 -, -NR L1 -C 1-6 alkyl-, wherein the alkyl, alkenyl or alkynyl group is optionally further substituted with 1 to 4 R L1 ;
- L 1-1 is selected from a bond, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, -O-, -OC 1-6 alkyl-, -S-, -SC 1-6 alkyl-, -C(O)NR L1 -, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 R L1 ; in some embodiments, L 1-1 is selected from a bond, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, -O-, -OC 1-4 alkyl-, -S-, -SC 1-4 alkyl-, -C(O)NR L1 -, The alkyl, alkenyl, alkynyl groups are optionally further substituted with 1-4 R L1 ; in some embodiments, L 1-1 is selected from a bond, C 1-2 alkyl, -OC 1-2 alkyl-,
- L 1-1a is selected from a bond, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, -OC 1-4 alkyl-, -S-, -SC 1-4 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, -NR L1 -, -NR L1 -C 1-6 alkyl-, the alkyl, alkenyl, alkynyl are optionally further substituted by 1-4 R L1 ; in some embodiments, L 1-1a is selected from a bond, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl , -OC 1-4 alkyl-, -S-, -SC 1-4 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, the alkyl, alkenyl, alkynyl are optionally further substituted by 1-4 R L1 ; in
- L 1-1 is selected from a bond, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, -O-, -OC 1-6 alkyl-, -S-, -SC 1-6 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, -NR L1 -, -NR L1 -C 1-6 alkyl-, wherein the alkyl, alkenyl or alkynyl group is optionally further substituted with 1 to 4 R L1 ;
- L2 is selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) p N( RL24 )S(O) 2 N( RL25 ) 2 , -(CR L21 RL22 ) p N( RL26 )C(O)N( RL27 )(RL28 ) , -(CR L21 RL22 ) p N( RL29 )( RL30 ), -C( ⁇ O)N( RL31 ) 2 , -N( RL31 )-C( ⁇ O)OR L32 , -(CH 2 ) p RL33 , -(CR L21 RL22 ) p -C(O)-N( RL29 )-C(O) RL21 , -(CR L21 RL22 ) p -C(O)-N(R L29 )-
- L2 is selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) p N( RL24 )S(O) 2 N( RL25 ) 2 , -(CR L21 RL22 ) p N( RL26 )C(O)N( RL27 )(RL28 ) , -(CR L21 RL22 ) p N( RL29 )( RL30 ), -C( ⁇ O)N( RL31 ) 2 , -N( RL31 )-C( ⁇ O)OR L32 , -(CH 2 ) p RL33 , -(CR L21 RL22 ) p -C(O)-N( RL29 )-C(O) RL21 , -(CR L21 RL22 ) p -C(O)-N(R L29 )-
- Ra1 , Ra2 , RL1 , RL2, RL21 , RL22 , RL23 , RL24 , RL25 , RL26 , RL27 , RL28 , RL29 , RL30 , and RL31 are each independently selected from H, halogen, C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 alkoxy, 5-14 membered heterocyclyl, -( CH2 ) p- (4-7 membered heterocyclyl), -( CH2 ) p - C3-10 cycloalkyl, -( CH2 ) p - OC3-10 cycloalkyl, -OC 3-10 cycloalkyl, the heterocyclic group contains 1-3 heteroatoms selected from N, O, and S; the alkyl, alkenyl, alkynyl, cycloalkyl, and heterocyclic group are optionally further substituted by
- Ra1 , Ra2 , RL1 , RL2, RL21 , RL22 , RL23 , RL24 , RL25 , RL26 , RL27 , RL28 are each independently selected from H, halogen, C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 alkoxy, 5-10 membered heterocycloalkyl, -( CH2 ) p- (4-7 membered heterocyclyl), -( CH2 ) p - C3-10 cycloalkyl, wherein the heterocyclyl contains 1-3 heteroatoms selected from N, O, and S; and the alkyl,
- Ra1 and Ra2 are each independently selected from H, methyl, ethyl, propyl, isopropyl, cyclopropyl, and cyclobutyl;
- each RL21 and RL22 are independently selected from H, C1-2 alkyl, C3-6 cycloalkyl, and the alkyl and cycloalkyl are optionally further substituted with 1-4 groups selected from F, Cl, OH, NH2 , and CN;
- each L21 , RL22 is independently selected from H, methyl, ethyl, cyclopropyl;
- At least one RL23 is selected from -( CH2 ) p- (4-7 membered heterocycloalkyl), 6-12 membered bicyclic heterocycloalkyl, 5-6 membered heteroaryl, 1 to 4 selected from -OCF 3 , -OCHF 2 , -SCF 3 , NH 2 , CN, acetyl, -S(O) 2 CH 3 , Substituted C 1-4 alkyl, -OC 3-6 cycloalkyl, -(CH 2 ) p -OC 3-6 cycloalkyl, substituted by 1 to 4 groups selected from -OCF 3 , -OCHF 2 , -SCF 3 , NH 2 , CN, acetyl, -S(O) 2 CH 3 , Substituted C 3-6 cycloalkyl, the heterocycloalkyl, heteroaryl is optionally further substituted
- each RL23 is independently selected from C1-4 alkyl, -( CH2 ) p- (4-7 membered heterocycloalkyl), 6-12 membered bicyclic heterocycloalkyl,
- each RL23 is independently selected from C1-4 alkyl, 6-12 membered bicyclic heterocycloalkyl, the heterocycloalkyl containing 1-3 heteroatoms selected from N, O, S; the alkyl, heterocycloalkyl is optionally further substituted with 1-4 groups selected from halogen, OH, NH2 , CN, acetyl; and when RL21 and RL22 are both H, at least one RL23 is a 6-12 membered bicyclic heterocycloalkyl;
- each RL23 is independently selected from methyl, ethyl, propyl,
- RL23-1 is selected from methyl, ethyl; in some embodiments, RL23-1 is selected from methyl;
- R L24 is independently selected from H, C 2-6 alkenyl, C 2-6 alkynyl, and the alkenyl and alkynyl are optionally further substituted with 1-4 groups selected from halogen, OH, NH 2 , CN, C 3-10 cycloalkyl, and 5-12 membered heterocyclyl;
- each RL25 , RL27 , RL28 is independently selected from C1-3 alkyl, C2-6 alkenyl, C2-6 alkynyl, and the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 groups selected from halogen, OH, NH2 , CN;
- each RL25 , RL27 , RL28 is independently selected from C1-3 alkyl, C2-4 alkenyl, C2-4 alkynyl, and the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 groups selected from halogen, OH, NH2 , CN;
- each RL25 , RL27 , RL28 is independently selected from methyl, ethyl, propyl;
- RL30 is selected from a 6-14 membered bicyclic or tricyclic heterocyclic group containing 1-3 atoms selected from N, O, S heteroatom; the heterocyclic group is optionally further substituted by 1-4 groups selected from halogen, CN, OH, NH 2 , C 1-4 alkyl, halogenated C 1-4 alkyl; and R L30 is not In some embodiments, RL30 is selected from
- L2-1 is selected from -(CR L21 R L22 ) p -OC(O)-N(R L23 ) 2 , -(CR L21 R L22 ) p N(R L24 )S(O) 2 N(R L25 ) 2 , -(CR L21 R L22 ) p N(R L26 )C(O)N(R L27 )(R L28 ), -(CR L21 R L22 ) p N(R L29 )(R L30 ), -(CR L21 R L22 ) p -C(O)-N(R L29 )-C(O)R L21 , -(CR L21 R L22 ) p -C(O)-N(R L29 )-S(O) 2 R L21 , and -(3-6 membered cycloalkyl)-C( ⁇ O)N(R L25 ) 2 , -(4-7 membered heterocyclyl)-C
- L2-1 is selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) pN ( RL24 )S(O) 2N ( RL25 ), -(CR L21 RL22 ) pN ( RL26 )C(O)N( RL27)(RL28 ) , -(CR L21 RL22 ) pN ( RL29 )( RL30 ), -(CR L21 RL22 ) pC (O)-N( RL29 )-C(O) RL21 , -(CR L21 RL22 ) pC (O)-N( RL29 )-S(O) 2RL21 , - (3-6 membered cycloalkyl)-C( ⁇ O)N( RL25) ) 2 , -(4-7 membered heterocyclyl)-C( ⁇ O) 2RL21
- L2-1 is selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) p N( RL24 )S(O) 2 N( RL25 ) 2 , -(CR L21 R L22 ) p N(R L26 )C(O)N(R L27 )(R L28 ), -(CR L21 R L22 ) p N(R L29 )(R L30 ), -(CR L21 R L22 ) p -C(O)-N(R L29 )-C(O)R L21 , -(CR L21 R L22 ) p -C(O)-N(R L29 )-S(O) 2 R L21 , -(3-6 membered cycloalkyl)-C( ⁇ O)N(R L25 ) 2 , -(4-7 membered heterocyclyl
- L2-1 is selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) pN ( RL24 )S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) pN ( RL26 )C(O)N( RL27)(RL28 ) , -(CR L21 RL22 ) pN ( RL29 )( RL30 );
- L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from
- L2-2 and L2-2c are each independently selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) pN ( RL24 )S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) pN ( RL26 )C(O)N( RL27 )( RL28 ), -(CR L21 RL22 ) pN (RL29)( RL30 ), -(CR L21 RL22 ) p -OC(O) -RL23 , -(CR L21 RL22 ) p -OR L23 , and -(CR L21 RL22 ) p -N (RL26 ) C(O)OR L23 ;
- L2-2 and L2-2c are each independently selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) pN (RL24)S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) pN ( RL26 )C(O)N( RL27 )( RL28 ), -(CR L21 RL22 ) pN ( RL29 )( RL30 ), -(CR L21 RL22 ) p -OC(O) -RL23 , -(CR L21 RL22 ) p -OR L23 ;
- L2-2c is selected from -( CRL21RL22 ) p -OC(O)-N( RL23 ) 2 , -( CRL21RL22 ) pN ( RL24 )S(O) 2N ( RL25 ) 2 , - ( CRL21RL22 ) pN ( RL26 )C(O)N( RL27 )( RL28 ), - ( CRL21RL22 ) pN ( RL29 )( RL30 ) ;
- L2-2 is selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) pN ( RL24 )S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) pN ( RL26 )C(O)N( RL27)(RL28 ) , -(CR L21 RL22 ) pN ( RL29 )( RL30 );
- L 2-2 and L 2-2c are each independently selected from or L 2-2 and L 2-2c are each independently selected from
- L 2-2 and L 2-2c are each independently selected from
- RL32 is selected from -C1-4alkyl- (5-10 membered heteroaryl), -C1-4alkyl- (6-10 membered aryl), wherein the heteroaryl and aryl are optionally further substituted with 1-3 substituents selected from halogen, CN, OH, NO2 , NH2 , halo-substituted C1-4alkyl , -OC1-4alkyl , C2-6alkenyl or C2-6alkynyl ;
- RL32 is selected from -C1-4alkyl- (5-10 membered heteroaryl), wherein the heteroaryl is optionally further substituted with 1-3 substituents selected from halogen, CN, OH, NO2 , NH2 , halo-substituted C1-4alkyl , -OC1-4alkyl , C2-6alkenyl or C2-6alkynyl ;
- RL32 is selected from -C1-4alkyl- (5-10 membered heteroaryl), wherein the heteroaryl is optionally further substituted with 1-3 substituents selected from halogen, CN, OH, NO2 , NH2 , halo-substituted C1-4alkyl , -OC1-4alkyl , C2-6alkenyl or C2-6alkynyl ;
- RL32 is selected from -C1-2 alkyl-(5-6 membered monocyclic heteroaryl), -C1-2 alkyl-(8-10 membered bicyclic heteroaryl), wherein the heteroaryl is optionally further substituted with 1-3 substituents selected from F, Cl, CN, OH, NO2 , NH2 , halogenated C1-2 alkyl;
- RL32 is selected from -C1-2 alkyl-(5-6 membered monocyclic heteroaryl), -C1-2 alkyl-(8-10 membered bicyclic heteroaryl), wherein the heteroaryl is optionally further substituted with 1-3 substituents selected from F, Cl, CN, OH, NO2 , NH2 , -CH2F , -CHF2 , -CF3 ;
- RL33 is selected from C1-4 alkyl, which is optionally further substituted with 1-2 groups selected from halogen, OH, NH2 , CN, N3 , C1-2 alkoxy, fluorinated C1-2 alkoxy, C3-5 cycloalkyl, 4-6 membered heterocycloalkyl, 6-10 membered aryl, 5-10 membered heteroaryl;
- two RL23 and the atoms to which they are attached together form a 5-7 membered heteroatom containing 1-3 heteroatoms selected from N, O, S.
- p is each independently selected from 0, 1, 2, 3, 4;
- p is selected from 0, 1 or 2;
- the conditions are:
- L 1-1b -A1b is not selected from
- O-A1c is not selected from
- Ring C is selected from The "*" end is connected to the left pyridine ring.
- the end is connected to L2 ; in some embodiments, ring C is selected from The "*" end is connected to the left pyridine ring.
- the end is connected to L2 ;
- Ring A is selected from 3-12 membered carbocyclyl, 4-12 membered heterocyclyl or ring A is absent, the heterocyclyl contains 1-3 heteroatoms selected from N, O, S; the carbocyclyl and heterocyclyl are optionally further substituted with 1-4 RA ; in some embodiments, ring A is selected from 4-12 membered carbocyclyl and 4-12 membered heterocyclyl, the heterocyclyl contains 1-3 heteroatoms selected from N, O, S; the carbocyclyl and heterocyclyl are optionally further substituted with 1-4 RA ;
- R a2 R a1, R a2, R a1, R a1 , R a2 , R a1 , R a1, R a1 , R a2, R a1 , R a1, R a1 , R a1, R a1 , R a1 , R a1, R a1, R a1 , R a1 , R a1, R a1, R a1 , R a1, R a1, R a1, R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1 , R a1, R a1 , R a1, R a1 , R a1 , R a1, R a1 , R a1 , R a1, R a1 , R a1 , R a1,
- L1 is selected from a bond, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, -O-, -OC1-6 alkyl-, -S-, -SC1-6 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, -NR L1 -, -NR L1 -C 1-6 alkyl-, the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 R L1 ; in some embodiments, L 1 is selected from a bond, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, -O-, -OC 1-6 alkyl-, -S-, -SC 1-6 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 R L1
- Ring A when Ring A is selected from absent, L 1 is selected from -OC 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl substituted with one COOH; In some embodiments, Ring A is selected from absent, L 1 is selected from -OCH 2 C(CH 3 ) 2 CH 2 COOH, -OCH 2 CH 2 C(CH 3 ) 2 COOH;
- L2 is selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) p N( RL24 )S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) p N( RL26 )C(O)N( RL27)(RL28 ) , -(CR L21 RL22 ) p N(RL29)( RL30 ), -C( ⁇ O)N( RL31 ) 2 , -N( RL31 )-C( ⁇ O )OR L32 , -( CH2 ) p RL33 ;
- Ra1 , Ra2 , RL1 , RL2 , RL21 , RL22, RL23 , RL24 , RL25 , RL26 , RL27 , RL28 , RL29 , RL30 , and RL31 are each independently selected from H, halogen, C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl , C1-4 alkoxy, 5-14 membered heterocyclyl, -( CH2 ) p- (4-7 membered heterocyclyl), -( CH2 ) p - C3-10 cycloalkyl, -( CH2 ) p - OC3-10 cycloalkyl, -OC 3-10 cycloalkyl, the heterocyclic group contains 1-3 heteroatoms selected from N, O, and S; the alkyl, alkenyl, alkynyl, cycloalkyl, and heterocyclic group are optionally further substituted by 1-4
- Ra1 , Ra2 , RL1 , RL2 , RL21 , RL22, RL23 , RL24 , RL25 , RL26 , RL27 , RL28 , RL29 , RL30 , RL31 are each independently selected from H, halogen, C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl , C3-10 cycloalkyl, C1-4 alkoxy, 5-14 membered heterocyclyl, -( CH2 ) p- (4-7 membered heterocyclyl),
- RL32 is selected from -C1-4 alkyl-(5-10 membered heteroaryl), -C1-4 alkyl-(6-10 membered aryl), wherein the heteroaryl and aryl are optionally further substituted with 1-3 substituents selected from halogen, CN, OH, NO2 , NH2 , halo-substituted C1-4 alkyl, -OC1-4 alkyl, C2-6 alkenyl or C2-6 alkynyl; In some embodiments, RL32 is selected from -C1-4 alkyl-(5-10 membered heteroaryl), wherein the heteroaryl is optionally further substituted with 1-3 substituents selected from halogen, CN, OH, NO2 , NH2 , halo-substituted C1-4 alkyl, -OC1-4 alkyl, C2-6 alkenyl or C2-6 alkynyl;
- p is independently selected from 0, 1, 2, 3, and 4.
- the compound of formula (I), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt has the structure of formula (I-1), wherein:
- L2-1 is selected from -(CR L21 R L22 ) p -OC(O)-N(R L23 ) 2 , -(CR L21 R L22 ) p N(R L24 )S(O) 2 N(R L25 ) 2 , -(CR L21 R L22 ) p N(R L26 )C(O)N(R L27 )(R L28 ), -(CR L21 R L22 ) p N(R L29 )(R L30 ), -(CR L21 R L22 ) p -C(O)-N(R L29 )-C(O)R L21 , -(CR L21 R L22 ) p -C(O)-N(R L29 )-S(O) 2 R L21 , and -(3-6 membered cycloalkyl)-C( ⁇ O)N(R L25 ) 2 ⁇ -(4-7 membered heterocyclic group)-C(
- L2-1 is selected from -(CR L21 R L22 ) p -OC(O)-N(R L23 ) 2 , -(CR L21 R L22 ) p N(R L24 )S(O) 2 N(R L25 ) 2 , -(CR L21 R L22 ) p N(R L26 )C(O)N(R L27 )(R L28 ), -(CR L21 R L22 ) p N(R L29 )(R L30 ), -(CR L21 R L22 ) p -C(O)-N(R L29 )-C(O)R L21 , -(CR L21 R L22 ) p -C(O)-N(R L29 )-S(O) 2 R L21 , and -(3-6 membered cycloalkyl)-C( ⁇ O)N(R L25 ) 2 , -(4-7 membered heterocyclyl)-C
- L2-1 is selected from -(CR L21 R L22 ) p -OC(O)-N(R L23 ) 2 , -(CR L21 R L22 ) p N(R L24 )S(O) 2 N(R L25 ) 2 , -(CR L21 R L22 ) p N(R L26 )C(O)N(R L27 )(R L28 ), -(CR L21 R L22 ) p N(R L29 )(R L30 ), -(CR L21 R L22 ) p -C(O)-N(R L29 )-C(O)R L21 , -(CR L21 R L22 ) p -C(O)-N(R L29 )-S(O) 2 R L21 , and -(3-6 membered cycloalkyl)-C( ⁇ O)N(R L25 ) 2 , -(4-7 membered heterocyclyl)-C
- Each RL23 is independently selected from C1-4 alkyl, -( CH2 ) p- (4-7 membered heterocycloalkyl), 6-12 membered bicyclic heterocycloalkyl,
- Each RL23 is independently selected from C1-4 alkyl, -( CH2 ) p- (4-7 membered heterocycloalkyl), 6-12 membered bicyclic heterocycloalkyl,
- each RL23 is independently selected from C1-4 alkyl, 6-12 membered bicyclic heterocycloalkyl, the heterocycloalkyl containing 1-3 heteroatoms selected from N, O, S; the alkyl
- At least one RL23 is selected from -( CH2 ) p- (4-7 membered heterocycloalkyl), 6-12 membered bicyclic heterocycloalkyl, 5-6 membered heteroaryl, 1 to 4 selected from -OCF 3 , -OCHF 2 , -SCF 3 , NH 2 , CN, acetyl, -S(O) 2 CH 3 , Substituted C 1-4 alkyl, -OC 3-6 cycloalkyl, -(CH 2 ) p -OC 3-6 cycloalkyl, substituted by 1 to 4 groups selected from -OCF 3 , -OCHF 2 , -SCF 3 , NH 2 , CN, acetyl, -S(O) 2 CH 3 , Substituted C 3-6 cycloalkyl, The heterocycloalkyl and heteroaryl groups are optionally further substitute
- R L24 are each independently selected from H, C 2-6 alkenyl, C 2-6 alkynyl, wherein the alkenyl and alkynyl are optionally further substituted by 1-4 groups selected from halogen, OH, NH 2 , CN, C 3-10 cycloalkyl, and 5-12 membered heterocyclyl;
- Each RL25 , RL27 , RL28 is independently selected from C1-3 alkyl, C2-6 alkenyl, C2-6 alkynyl, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 groups selected from halogen, OH, NH2 , CN;
- R L29 is selected from H, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 groups selected from halogen, OH, NH 2 , CN;
- R L30 is selected from a 6-14 membered bicyclic or tricyclic heterocyclic group, wherein the heterocyclic group contains 1-3 heteroatoms selected from N, O, and S; the heterocyclic group is optionally further substituted by 1-4 groups selected from halogen, CN, OH, NH 2 , C 1-4 alkyl, and halogenated C 1-4 alkyl;
- p is selected from 0, 1, 2, 3, 4;
- the third technical solution of the present invention is the compound of formula (I-1), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt, wherein:
- L 2-1 is selected from
- L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from Or L 2-1 is selected from
- the compound of formula (I), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt has the structure of formula (I-2), (I-2a), (I-2b), (I-2c), wherein:
- Ring A1, A1b, A1c are each independently selected from 3-12-membered carbocyclyl, 4-12-membered heterocyclyl or absent, the heterocyclyl contains 1-3 heteroatoms selected from N, O, S; the carbocyclyl and heterocyclyl are optionally further substituted with 1-4 RA ; in some embodiments, ring A1, A1b, A1c are each independently selected from 4-12-membered carbocyclyl and 4-12-membered heterocyclyl, the heterocyclyl contains 1-3 heteroatoms selected from N, O, S; the carbocyclyl and heterocyclyl are optionally further substituted with 1-4 RA ;
- R a2 R a1, R a2, R a1, R a1 , R a2 , R a1 , R a1, R a1, R a1, R a2, R a1 , R a1, R a1, R a1, R a1 , R a1 , R a1 , R a1, R a1, R a1, R a1, R a1 , R a1 , R a1 , R a1 , R a1, R a1 , R a1 , R a1, R a1 , R a1 , R a1, R a1 , R a1 , R a1, R a1, R a1, R a1, R a1 , R a1, R a1, R a1 , R a1, R a1, R a1 , R a1, R a1, R a1 , R a1, R a1 , R a1, R
- L 1-1 and L 1-1b are each independently selected from a bond, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, -O-, -OC 1-6 alkyl-, -S-, -SC 1-6 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, -NR L1 -, -NR L1 -C 1-6 alkyl-, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 R L1 ; in some embodiments, L 1-1 and L 1-1b are each independently selected from a bond, a C 1-6 alkyl, a C 2-6 Alkenyl, C 2-6 alkynyl, -O-, -OC 1-6 alkyl-, -S-, -SC 1-6 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, wherein the
- L2-2 and L2-2c are each independently selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) pN ( RL24 )S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) pN ( RL26 )C(O)N( RL27)(RL28 ) , -(CR L21 RL22 ) pN ( RL29)(RL30 ), -(CR L21 RL22 ) p -OC(O) -RL23 , -(CR L21 RL22 ) p -OR L23 , -(CR L21 RL22 ) p -N (RL26 ) C(O)OR L23 ; or
- L2-2 and L2-2c are each independently selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) pN ( RL24 )S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) pN ( RL26 )C(O)N( RL27)(RL28 ) , -(CR L21 RL22 ) pN ( RL29 )( RL30 ), -(CR L21 RL22 ) p -OC(O) -RL23 ; or
- L 2-2 and L 2-2c are each independently selected from -(CR L21 RL22 ) p -OC(O)-N( RL23 ) 2 , -(CR L21 RL22 ) p N( RL24 )S(O) 2N ( RL25 ) 2 , -(CR L21 RL22 ) p N( RL26 )C(O)N( RL27 )( RL28 ), and -(CR L21 RL22 ) p N( RL29 )( RL30 );
- R L29 is selected from H, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 groups selected from halogen, OH, NH 2 , CN;
- R L30 is selected from a 6-14 membered bicyclic or tricyclic heterocyclic group, wherein the heterocyclic group contains 1-3 heteroatoms selected from N, O, and S; the heterocyclic group is optionally further substituted by 1-4 groups selected from halogen, CN, OH, NH 2 , C 1-4 alkyl, and halogenated C 1-4 alkyl;
- p is each independently selected from 0, 1, 2, 3, 4;
- the conditions are:
- L 1-1b -A1b is not selected from
- O-A1c is not selected from
- the fifth technical solution of the present invention is the compound of formula (I-2), (I-2b), (I-2c), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt, wherein:
- Ring A1, A1b, A1c is selected from 3-8 membered monocyclic cycloalkyl, 6-12 membered paracycloalkyl, 4-8 membered monocyclic heterocycloalkyl, 6-12 membered heteroparacycloalkyl, 6-10 membered heterospirocyclyl, 6-10 membered heterobridged cyclyl or does not exist, the heterocycloalkyl, heteroparacycloalkyl, heterospirocyclyl, heterobridged cyclyl contains 1-3 heteroatoms selected from N, O, S, the cycloalkyl, heterocycloalkyl, heteroparacycloalkyl, heterospirocyclyl, heterobridged cyclyl is optionally further substituted by 1-4 R A is substituted; in some embodiments, ring A1, A1b, A1c is selected from 4-8 membered monocyclic cycloalkyl, 6-12 membered cycloalkyl, 4-8 membered monocyclic heterocycloal
- L 1-1 and L 1-1b are each independently selected from a bond, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, -O-, -OC 1-4 alkyl-, -S-, -SC 1-4 alkyl-, -C(O)NR L1 -, -NR L1 C(O)-, wherein the alkyl, alkenyl, alkynyl is optionally further substituted with 1-4 R L1 ;
- the sixth technical solution of the present invention is the compound of formula (I-2), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt, wherein:
- Rings A1, A1b, and A1c are each independently selected from one of the following groups optionally substituted with 1 to 4 RAs :
- L 1-1 and L 1-1b are each independently selected from a bond, C 1-2 alkyl, -OC 1-2 alkyl-, -S-, -O-, Vinyl, propenyl, ethynyl, -C(O)NH-, -NHC(O)-, the alkyl group is optionally further substituted by 1-4 R L1 ; in some embodiments, L 1-1 and L 1-1b are each independently selected from a bond, C 1-2 alkyl, -OC 1-2 alkyl-, -S-, -O-, -NHC(O)-, the alkyl group is optionally further substituted by 1-4 R L1 ;
- L 2-2 and L 2-2c are each independently selected from or
- L 2-2 and L 2-2c are each independently selected from or
- L 2-2 and L 2-2c are each independently selected from
- the seventh technical solution of the present invention is the compound of formula (I-2), (I-2a), (I-2b), (I-2c), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt, wherein:
- Rings A1, A1b, and A1c are each independently selected from the following structures: Or selected from Or selected from
- the compound of formula (I), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt has the structure of formula (I-6),
- Ring A1 is selected from 3-12 membered carbocyclyl, 4-12 membered heterocyclyl or does not exist, the heterocyclyl contains 1-3 heteroatoms selected from N, O, S; the carbocyclyl and heterocyclyl are optionally further substituted by 1-4 R A ; in some embodiments, ring A1 is selected from 3-8 membered monocyclic cycloalkyl, 6-12 membered cycloalkyl, 4-8 membered monocyclic heterocycloalkyl, 6-12 membered heterocycloalkyl, 6-10 membered heterospirocyclyl, 6-10 membered heterobridged cyclyl or ring A1 does not exist, the heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cyclyl contains 1-3 heteroatoms selected from N, O, S, the cycloalkyl, heterocycloalkyl, heterocycloalkyl, heterospirocyclyl, heterobridged cycly
- L 1-1 is selected from -OC 1-6 alkyl substituted with one COOH
- L1-1 is selected from a bond, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, -O-, -OC1-6 alkyl-, -S-, -SC1-6 alkyl-, -C(O)NR L1 -, -NR L1 -, -NR L1 -C 1-6 alkyl-, wherein the alkyl, alkenyl, alkynyl group is optionally further substituted with 1-4 R L1 ;
- RL21 , RL22 , RL24 , RL25 , RL26 , RL27 , RL28 and RL29 are each independently selected from H and C1-4 alkyl.
- the ninth technical solution of the present invention is that the compound of formula (I), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt has the structure of formula (I-3),
- ring A3 is selected from
- L 1 is selected from -O-, -N(CH 3 )-, -NHC(O)-;
- R L23-1 is selected from methyl and ethyl
- the tenth technical solution of the present invention is that the compound of formula (I), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt has the structure of formula (I-5),
- L 1-1 is selected from -OCH 2 -, -OCH 2 CH 2 -, -O-; or
- L 1-1 is selected from -OCH 2 CH 2 C(CH 3 ) 2 -COOH, -OCH 2 C(CH 3 ) 2 CH 2 -COOH;
- p is selected from 0, 1, and 2.
- the eleventh technical solution of the present invention relates to a compound represented by formula (I-6), its stereoisomer, deuterated substance, or pharmaceutically acceptable salt,
- Ring A1 is selected from a 3-12-membered carbocyclic group, a 4-12-membered heterocyclic group or is absent, wherein the heterocyclic group contains 1-3 heteroatoms selected from N, O, and S; the carbocyclic group and the heterocyclic group are optionally further substituted by 1-4 RA ;
- L 1-1 is selected from -OC 1-6 alkyl substituted with one COOH;
- L1-1 is selected from a bond, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, -O-, -OC1-6 alkyl-, -S-, -SC1-6 alkyl-, -C(O)NR L1 -, -NR L1 -, -NR L1 -C 1-6 alkyl-, wherein the alkyl, alkenyl or alkynyl group is optionally further substituted with 1 to 4 R L1 ;
- RA , RL1 and p are as described in the first or eighth technical solution.
- the compound of formula (I) of the present invention is selected from but not limited to the structures in Table 1 and Table 2 below:
- the present invention also provides a pharmaceutical composition, which contains the compound described in any one of the aforementioned schemes, its stereoisomers, deuterated substances, or pharmaceutically acceptable salts, and pharmaceutically acceptable carriers and/or excipients.
- composition or pharmaceutical preparation of the present invention contains 1-1500 mg of the compound described in any one of the aforementioned schemes, its stereoisomer, deuterated substance, or pharmaceutically acceptable salt, and a pharmaceutically acceptable carrier and/or excipient.
- the present invention also provides the use of the compound described in any one of the above schemes, its stereoisomer, deuterated substance, or pharmaceutically acceptable salt in the preparation of a drug for treating/preventing a disease mediated by LPAR1.
- the disease mediated by LPAR1 is selected from idiopathic pulmonary fibrosis, progressive pulmonary fibrosis, systemic sclerosis, benign prostatic hyperplasia, multiple sclerosis, nerve damage, neuralgia, preferably idiopathic pulmonary fibrosis and progressive pulmonary fibrosis.
- the present invention also provides a method for treating a disease in a mammal or a human, the method comprising administering to a subject a therapeutically effective amount of a compound, a stereoisomer, a deuterated substance, or a pharmaceutically acceptable salt thereof, or a composition of the present invention, the disease being selected from idiopathic pulmonary fibrosis, progressive pulmonary fibrosis, systemic sclerosis, benign prostatic hyperplasia, multiple sclerosis, nerve damage, and neuralgia.
- the mammal in the present invention does not include a human.
- an "effective amount” or “therapeutically effective amount” refers to administering a sufficient amount of a compound disclosed herein that will alleviate one or more symptoms of the disease or condition being treated to some extent. In some embodiments, the result is a reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired change in a biological system.
- an "effective amount” for therapeutic use is the amount of a compound disclosed herein required to provide a clinically significant reduction in disease symptoms.
- therapeutically effective amounts include, but are not limited to, 1-1500 mg, 1-1400 mg, 1-1300 mg, 1-1200 mg, 1-1000 mg, 1-900 mg, 1-800 mg, 1-700 mg, 1-600 mg, 1-500 mg, 1-400 mg, 1-300 mg, 1-250 mg, 1-200 mg, 1-150 mg, 1-125 mg, 1-100 mg, 1-80 mg, 1-60 mg, 1-50 mg, 1-40 mg, 1-25 mg, 1-20 mg, 5-1500 mg, 5-1000 mg, 5-900 mg, 5 -800mg, 5-700mg, 5-600mg, 5-500mg, 5-400mg, 5-300mg, 5-250mg, 5-200mg, 5-150mg, 5-125mg, 5-100mg, 5-90mg, 5-70mg, 5-80mg, 5-60 mg, 5-50mg, 5-40mg, 5-30mg, 5-25mg, 5-20mg, 10-1500mg, 10-1000mg, 10-900mg, 10-800mg, 10-700mg, 10-600mg, 10-1000
- the present invention relates to a pharmaceutical composition or pharmaceutical preparation, which comprises a therapeutically effective amount of the compound of the present invention or its stereoisomer, deuterated substance, or pharmaceutically acceptable salt and a carrier and/or excipient.
- the pharmaceutical composition can be in the form of a unit preparation (the amount of the main drug in the unit preparation is also referred to as "preparation specification").
- the pharmaceutical composition includes but is not limited to 1-1500 mg, 5-1000 mg, 10-800 mg, 20-600 mg, 25-500 mg, 40-200 mg, 50-100 mg, 1 mg, 1.25 mg, 2.5 mg, 5 mg, 10 mg, 12.5 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, 100 mg, 110 mg, 120 mg, 125 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 275 mg, 300 mg, 325 mg, 350 mg, 375 mg, 400 mg, 425 mg, 450 mg, 475 mg, 500 mg, 525 mg, 550 mg, 575 mg, 600 mg, 625 mg, 650 mg, 675 mg, 700 mg, 725 mg, 750 mg, 775 mg, 800
- a method for treating a disease in a mammal comprising administering to a subject a therapeutically effective amount of a compound of the present invention, a stereoisomer, a deuterated substance, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier and/or excipient, the therapeutically effective amount being preferably 1-1500 mg, and the disease being preferably idiopathic pulmonary fibrosis or progressive pulmonary fibrosis.
- a method for treating a disease in a mammal or a human comprising administering a drug compound of the present invention, a stereoisomer, a deuterated substance, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier and/or excipient to a subject at a daily dose of 1-1500 mg/day, the daily dose may be a single dose or divided doses.
- the daily dose includes but is not limited to 10-1500 mg/day, 20-1500 mg/day, 25-1500 mg/day, 50-1500 mg/day, 75-1500 mg/day, 100-1500 mg/day, 200-1500 mg/day, 10-1000 mg/day, 20-1000 mg/day, 25-1000 mg/day, 50-1000 mg/day, 75-1000 mg/day, 100-1000 mg/day, 200-1000 mg/day, 25-800 mg/day, 50-800 mg/day, 100-800 mg/day, 200-800 mg/day, 25-400 mg/day, 50-400 mg/day, 100-400 mg/day, 200-400 mg/day, in some embodiments, daily doses include but are not limited to 1 mg/day, 5 mg/day, 10 mg/day, 20 mg/day, 25 mg/day, 50 mg/day, 75 mg/day, 100 mg/day, 125 mg/day, 150 mg/day, 200 mg/day, 400 mg/day, 600 mg/day, 800 mg/day, 1000 mg/day,
- the present invention relates to a kit, which may include a composition in a single-dose or multi-dose form, wherein the kit contains a compound of the present invention or a stereoisomer, a deuterated substance, or a pharmaceutically acceptable salt thereof, and the amount of the compound of the present invention or a stereoisomer, a deuterated substance, or a pharmaceutically acceptable salt thereof is the same as that in the above-mentioned pharmaceutical composition.
- the amount of the compound of the present invention or its stereoisomer, deuterated substance, or pharmaceutically acceptable salt in the present invention is in each case calculated based on the free base form.
- Preparation specifications refers to the weight of the main drug contained in each vial, tablet or other unit preparation.
- Deuterated or “deuterated substance” refers to the situation where the hydrogen atoms on groups such as alkyl, cycloalkyl, alkylene, aryl, heteroaryl, thiol, heterocycloalkyl, alkenyl, alkynyl, etc. are replaced by at least one isotope deuterium, and the upper limit of the number of deuterations is equal to the sum of the number of hydrogen atoms that can be replaced by the substituted group.
- Cycloalkyl refers to a monovalent non-aromatic, partially unsaturated or fully saturated, substituted or unsubstituted carbocyclic hydrocarbon group, which, unless otherwise specified, usually has 3 to 12 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 6 carbon atoms, and further preferably 3 to 4 carbon atoms.
- Non-limiting examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, Or cycloheptyl, etc.
- Alkoxy or “alkyloxy” refers to -O-alkyl, and when not specifically limited, is -OC 1-8 alkyl, preferably -OC 1-6 alkyl, more preferably -OC 1-4 alkyl, and further preferably -OC 1-2 alkyl.
- Non-limiting examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, n-hexyloxy, cyclopropyloxy, and cyclobutyloxy.
- Heteroaromatic ring or “heteroaryl” refers to a heterocyclic ring having aromatic properties.
- Non-limiting examples include pyrazolyl, pyrimidinyl, thiazolyl, pyridinyl, furanyl, and the like.
- Carbocyclic refers to a “cyclic” ring system consisting of only carbon atoms. "Carbocyclic”, “cycloalkyl”, “carbocyclyl” or “carbocyclyl” appearing in this article has the same definition as cyclic.
- Heterocyclic refers to a "cyclic ring” containing a heteroatom.
- the heterocyclic, “heterocyclic radical”, “heterocyclic alkyl”, “cyclic heterocyclic radical” or “heterocyclic radical” appearing in this article have the same definition as the cyclic ring.
- Heterospirocycle refers to a "spirocycle” containing a heteroatom. Heterospirocycle, “heterospirocyclyl”, “spiro heterocyclyl” or “heterospirocyclyl” appearing herein have the same definition as spirocycle.
- Heterobridged ring refers to a “bridged ring” containing a heteroatom.
- the heterobridged ring, “heterobridged ring radical”, “bridged heterocyclic radical” or “heterobridged ring radical” appearing in this article have the same definition as the bridged ring.
- “Optional” or “optionally” means that the event or environment described later can but does not have to occur, and the description includes occasions where the event or environment occurs or does not occur.
- alkyl optionally substituted with F means that the alkyl group can but does not have to be substituted with F, and the description includes the situation where the alkyl group is substituted with F and the situation where the alkyl group is not substituted with F.
- connecting directions include connecting from left to right and from right to left in the reading order.
- ALB when L is selected from -MW-, includes AMWB and AWMB.
- AC(O)NR L1 -B includes AC(O)NR L1 -B and A-NR L1 C(O)-B.
- “Pharmaceutically acceptable salt” refers to a salt of the compound of the present invention which retains the biological effectiveness and properties of the free acid or free base, and the free acid is obtained by reacting with a non-toxic inorganic base or organic base, or the free base is obtained by reacting with a non-toxic inorganic acid or organic acid.
- a “pharmaceutical composition” refers to a mixture of one or more compounds described herein, or stereoisomers, solvates, pharmaceutically acceptable salts or cocrystals thereof, with other ingredients, wherein the other ingredients include physiologically/pharmaceutically acceptable carriers and/or excipients.
- Carrier refers to a system that does not cause significant irritation to the organism and does not eliminate the biological activity and properties of the administered compound, and can change the way the drug enters the human body and its distribution in the body, control the release rate of the drug and deliver the drug to the targeted organ.
- Non-limiting examples include microcapsules and microspheres, nanoparticles, liposomes, etc.
- Excipient refers to a substance that is not a therapeutic agent in itself but is used as a diluent, adjuvant, binder and/or vehicle and is added to a pharmaceutical composition to improve its handling or storage properties or to allow or facilitate the formation of a compound or pharmaceutical composition into a unit dosage form for administration.
- pharmaceutical excipients can serve a variety of functions and can be described as wetting agents, buffers, suspending agents, lubricants, emulsifiers, disintegrants, absorbents, preservatives, surfactants, colorants, flavoring agents and sweeteners.
- Examples of pharmaceutical excipients include, but are not limited to: (1) sugars such as lactose, glucose, and sucrose; (2) starches such as corn starch and potato starch; (3) cellulose and its derivatives such as sodium carboxymethylcellulose, ethylcellulose, cellulose acetate, hydroxypropyl methylcellulose, hydroxypropyl cellulose, microcrystalline cellulose, and cross-linked carboxymethylcellulose (e.g., cross-linked sodium carboxymethylcellulose); (4) tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients such as cocoa butter and suppository waxes; (9) oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn starch, etc.
- sugars such as lactose, glucose, and sucrose
- starches such as corn starch and potato starch
- cellulose and its derivatives such as sodium carboxymethylcellulose, ethylcellulose, cellulose acetate,
- glycols such as propylene glycol
- polyols such as glycerol, sorbitol, mannitol and polyethylene glycol
- esters such as ethyl oleate and ethyl laurate
- agar such as agar
- buffers such as magnesium hydroxide and aluminum hydroxide
- “Isomers” include “stereoisomers” and “tautomers”. “Stereoisomers” refer to isomers produced by the same order of connection between atoms or atomic groups in molecules, but different spatial arrangements. Stereoisomers include cis-trans isomers and optical isomers. “Tautomers” refer to the transformation of one functional group to another functional group that can be converted into each other through a reversible chemical reaction called tautomerization, usually caused by the concomitant migration of hydrogen atoms and ⁇ bonds (double bonds or triple bonds). For example, the following pairs of compounds: aldehyde/keto-enol, imine-enamine.
- NMR nuclear magnetic resonance
- MS mass spectrometry
- HPLC determination was performed using an Agilent 1260DAD high pressure liquid chromatograph (Zorbax SB-C 18 100 ⁇ 4.6 mm, 3.5 ⁇ M);
- the thin layer chromatography silica gel plate uses Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plate.
- the silica gel plate used in thin layer chromatography (TLC) uses a specification of 0.15mm-0.20mm, and the specification used for thin layer chromatography separation and purification products is 0.4mm-0.5mm;
- the first step ethyl 2-(diethoxyphosphoryl)acetate (2.31 g, 10.32 mmol) was dissolved in tetrahydrofuran (30 mL), and then sodium hydride (0.37 g, 15.33 mmol) was added, and the gas was replaced with nitrogen 3 times, and then the reaction was carried out at 0°C for half an hour, and then 1A (1.5 g, 7.37 mmol) was dissolved in tetrahydrofuran solution and slowly injected into the above reaction.
- Step 2 1B (0.5 g, 1.83 mmol) was dissolved in ethanol (8 mL) and 1 M dilute hydrochloric acid solution (2 mL), then palladium carbon (0.19 g, 1.83 mmol) was added, and the hydrogen gas was replaced 3 times, and the hydrogenation reaction was carried out at room temperature overnight. After the reaction was completed, the reaction solution was filtered through diatomaceous earth, repeatedly rinsed with dichloromethane and methanol, the filtrate was spin-dried, and dissolved again in 10 ml of dichloromethane, and an excess of potassium carbonate was added until the solution pH was weakly alkaline, filtered, and the filtrate was concentrated to obtain the free product 1C (0.3 g, 88%).
- Step 4 1E (0.035 g, 0.072 mmol) was dissolved in methanol (2 mL), tetrahydrofuran (2 mL) and water (2 mL), and then lithium hydroxide (0.0069 g, 0.29 mmol) was added and reacted at room temperature for 1 hour. After the reaction was completed, 1M dilute hydrochloric acid was directly added to adjust the pH to weak acidity, and then a small amount of water was added, and ethyl acetate was extracted 3 times. The organic phases were combined and concentrated, and then purified by preparative HPLC to obtain compound 1 trifluoroacetate (4 mg, 12%).
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- Step 1 Dissolve compound 2A (1.00 g, 4.49 mmol, HCl salt) in anhydrous tetrahydrofuran (20 mL), add triethylamine (682 mg, 6.74 mmol) and methanesulfonyl chloride (617 mg, 5.39 mmol) in turn under stirring, and react at room temperature for 4 hours.
- Step 3 Dissolve compound 2D (200 mg, 0.36 mmol, prepared according to the method of patent WO2017223016A1) and crude product 2C (220 mg) in 10 mL of tetrahydrofuran, add DIPEA (140 mg, 1.08 mmol), and react at room temperature for 2 hours.
- Step 2 Compound 4B (470 mg, 2.38 mmol) was added to a reaction flask, dissolved with dichloromethane (10 ml), and then trifluoroacetic acid (0.5 ml) was added to react at room temperature for 1 h. After the reaction was completed by TLC monitoring, it was concentrated under reduced pressure to obtain a crude compound 4C (250 mg, TFA salt), which was directly used in the next step.
- Step 1 Dissolve lithium aluminum hydride (815 mg, 21.48 mmol) in tetrahydrofuran (10 ml), then dissolve compound 5A (1.0 g, 10.74 mmol) in tetrahydrofuran (10 ml), add to the above system at room temperature, and finally react at 70°C for 3 hours. After the reaction is completed by TLC monitoring, cool to room temperature, add water (1 ml) to quench, stir at room temperature for 30 minutes, filter, collect the filtrate, and concentrate under reduced pressure to obtain compound 5B (0.9 g, yield: 86.54%).
- Embodiment 6 is a diagrammatic representation of Embodiment 6
- Step 4 Dissolve the intermediate 6E (0.4 g, 1.04 mmol) in tetrahydrofuran (30 mL), then add pyridine (410 mg, 5.18 mmol) and p-nitrophenyl chloroformate (630 mg, 3.13 mmol). After the addition is completed, the reaction is stirred at room temperature for 2 h, diluted with water (40 mL), and extracted three times with ethyl acetate (50 mL).
- Step 6 Compound 6G (400 mg) was further subjected to chiral separation to obtain compounds 6G-P1 (150 mg) and 6G-P2 (150 mg).
- Preparation method Instrument: Waters 150Prep-SFC, Column: Chiral AD Column; Mobile phase: A: CO 2 , B: 0.1% NH3 ⁇ H2O in ETOH; Gradient: 12% B Gradient elution flow rate: 80mL/min, column temperature: 25°C Wavelength: 220nm Cycle time: 10.5min Sample preparation: Sample concentration 10mg/ml, ethanol solution injection: 1.5ml each time. After separation, the fractions were dried by rotary evaporator at bath temperature 35°C to obtain compounds 6G-P1 (70mg, retention time 1.558min) and 6G-P2 (80mg, retention time 1.799min).
- Step 1 Add compound ethyl triphenylphosphine bromide (25 g, 67.48 mmol) to the reaction bottle, dissolve it with tetrahydrofuran (300 ml), cool it to -45 ° C, then add KHMDS (70 ml, 1 mol/L in THF), maintain this temperature for 30 min, then dissolve compound 7A (10 g, 53.99 mmol) with THF (100 ml), add it dropwise to the above system at -45 ° C, and then slowly warm it to room temperature for 16 hours.
- KHMDS 70 ml, 1 mol/L in THF
- Embodiment 8 is a diagrammatic representation of Embodiment 8
- Step 3 Compound 8B (400 mg) was further subjected to chiral separation to obtain compounds 8-1 (100 mg) and 8-2 (100 mg).
- Preparation method Instrument: SFC Prep 150AP, column: Daicel IG (19mm ⁇ 250mm); mobile phase: A: CO 2 , B: 0.05% NH 3 ⁇ H 2 O in ETOH; gradient: 12% B gradient elution flow rate: 80mL/min, column temperature: 25°C wavelength: 220nm cycle time: 20min sample preparation: sample concentration 10mg/ml, the sample was dissolved in DMF, filtered with a 0.45 ⁇ m filter head to prepare a sample solution. After separation, the fraction was dried by rotary evaporator at a bath temperature of 35°C to obtain compounds 8-1 (100mg, retention time 10.0min) and 8-2 (100mg, retention time 16.7min).
- Embodiment 9 is a diagrammatic representation of Embodiment 9:
- Preparation method Instrument: SFC Prep 150AP, column: Daicel IG (19mm ⁇ 250mm); mobile phase: A: CO 2 , B: 0.05% NH 3 ⁇ H 2 O in ETOH; gradient: 12% B gradient elution flow rate: 80mL/min, column temperature: 25°C wavelength: 220nm cycle time: 25min sample preparation: sample concentration 10mg/ml, the sample was dissolved in DMF, filtered with a 0.45 ⁇ m filter head to prepare a sample solution. After separation, the fraction was dried by rotary evaporator at a bath temperature of 35°C to obtain compounds 9-1 (100mg, retention time 12.0min) and 9-2 (100mg, retention time 19.6min).
- Embodiment 10 is a diagrammatic representation of Embodiment 10:
- Step 2 10B (145 mg, 0.27 mmol), cyclopropylacetylene (52 mg, 0.79 mmol), bis(triphenylphosphine)palladium dichloride (19 mg, 0.027 mmol), cuprous iodide (10 mg, 0.05 mmol) and triethylamine (80 mg, 0.79 mmol) were dissolved in anhydrous sodium sulfate. The mixture was added to tetrahydrofuran (8 mL) with nitrogen as protection and reacted at 40°C overnight. After the reaction was complete, the mixture was cooled to room temperature, 20 mL of water was added to the reaction solution, and the mixture was extracted with ethyl acetate (15 mL ⁇ 3).
- Embodiment 11 is a diagrammatic representation of Embodiment 11:
- Embodiment 12 is a diagrammatic representation of Embodiment 12
- Step 1 Add potassium tert-butoxide (5.0 g, 44.56 mmol) to a three-necked flask, dissolve it with DMF (50 ml), replace it with nitrogen three times, cool it to -45 ° C, slowly drop 12A (5.0 g, 27.00 mmol) in DMF (25 ml) and difluoromethyl (2-pyridyl) sulfone (4.35 g, 22.95 mmol) in DMF (25 ml), after the addition is complete, slowly warm to room temperature and react for 16 hours.
- DMF 50 ml
- 12A 5.0 g, 27.00 mmol
- difluoromethyl (2-pyridyl) sulfone 4.35 g, 22.95 mmol
- Embodiment 14 is a diagrammatic representation of Embodiment 14:
- Step 3 At room temperature, 14C (320 mg, 1.32 mmol) was dissolved in dichloromethane (5 mL), and a solution of hydrochloric acid in dioxane (1.32 mL, 5.28 mmol, 4 M) was added. The reaction was continued for 1 hour, and the reaction was stopped after the disappearance of the starting material by TLC monitoring. The reaction was concentrated to obtain compound 14D (180 mg, 95.60%).
- Step 4 At room temperature, 14E (240 mg, 0.54 mmol) (synthesized according to patent WO2017223016A1) was dissolved in dry dichloromethane (20 mL), triethylamine (209 mg, 1.62 mmol) was added, and stirred evenly. 14D (170 mg, 1.19 mmol) was added under ice bath, and the reaction was carried out at room temperature for 16 hours. The reaction was stopped after the disappearance of the raw material by TLC monitoring.
- Step 5 At room temperature, 14F (230 mg, 0.51 mmol) was dissolved in dry tetrahydrofuran (10 mL), and diboronic acid pinacol ester (259 mg, 1.02 mmol), Pd(dppf)Cl 2 (83 mg, 0.10 mmol), and potassium acetate (100 mg, 1.02 mmol) were added. The reaction was carried out at 80°C for 16 hours under nitrogen atmosphere. The reaction was stopped after the disappearance of the raw material by TLC monitoring.
- Step 7 At room temperature, 14H (90 mg, 0.23 mmol) was dissolved in dry toluene (5 mL), 14I (86 mg, 0.46 mmol) (synthesized according to patent WO2017223016A1) and tri-n-butylphosphine (140 mg, 0.69 mmol) were added thereto, stirred evenly, and then azodicarbonyl dipiperidine (174 mg, 0.69 mmol) was added. Under nitrogen atmosphere, the reaction was carried out at 50 ° C for 16 hours. The raw material disappeared after TLC monitoring, and the reaction was stopped.
- 15C 1.1 g, hydrochloride, refer to ChemMedChem. 2012 Jul; 7 (7): 1230-6.
- Step 2 15F (850 mg, 2.15 mmol) was dissolved in N,N-dimethylformamide (20 mL) and added at 0 °C. Sodium hydroxide (250 mg, 6.45 mmol, 60%) was added, and iodomethane (920 mg, 6.45 mmol) was added after the reaction for 0.5 hours, and the reaction was carried out overnight at 40°C.
- Step 1 Dissolve 28A (500 mg, 2.24 mmol) in acetonitrile (8 mL), then add trifluoromethylthio tetramethylammonium salt (588 mg, 3.36 mmol), react at room temperature overnight, and after the reaction is complete, the reaction solution is concentrated by rotary evaporation, and dichloromethane (8 mL) and 20% aqueous sulfuric acid solution (5 mL) are added to the residue, and stirred at room temperature for 2 h.
- Embodiment 29 is a diagrammatic representation of Embodiment 29.
- the first step Compound 29A (15.00 g, 102.64 mmol) was dissolved in methanol (150 mL), cooled to 0-5 ° C, and concentrated sulfuric acid (2 mL) was slowly added dropwise. After addition, the mixture was returned to room temperature and stirred for 17 hours. After the reaction was completed, the mixture was concentrated under pressure, and then saturated sodium bicarbonate aqueous solution (150 mL) was added in batches and impurities were extracted twice with petroleum ether (100 mL). The aqueous phase was cooled to 0 ° C, pH was adjusted to 3-4 with 6N hydrochloric acid aqueous solution, and the product was extracted twice with ethyl acetate (100 mL). The combined organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain compound 29B (9.20 g, yield: 56%).
- Step 2 Compound 29B (5.00 g, 31.22 mmol) was dissolved in dry tetrahydrofuran (50 mL), replaced with nitrogen three times, cooled to 0-5°C, and borane tetrahydrofuran solution (62.44 mL, 62.44 mmol, 1.0 mol/L tetrahydrofuran solution) was slowly added dropwise. After the addition was completed, the temperature was slowly returned to room temperature to react for 3 hours. After the reaction was completed under TLC monitoring, the temperature was lowered to 0°C, and methanol (100 mL) was slowly added dropwise to quench the reaction. After quenching was complete, the reaction was concentrated under reduced pressure. The residue was purified by normal phase column to obtain compound 29C (2.60 g, yield: 57%).
- Step 3 Compound 29C (0.96 g, 6.58 mmol) was added to a dichloromethane (10 mL) solution, and triethylamine (1.33 g, 13.16 mmol) was added. After addition, the temperature was lowered to 0-5°C and methanesulfonic anhydride (1.20 g, 6.91 mmol) was added in batches. After addition, the temperature was kept at 0-5°C and the reaction was carried out for 2 hours. After the reaction was completed under TLC monitoring, the reaction was concentrated under reduced pressure.
- Step 4 Compound 29E (0.23 g, 0.53 mmol) was added to methanol (10 mL), followed by trifluoroacetic acid (2 mL), and the mixture was reacted at room temperature for 3 hours. After the reaction was completed as monitored by TLC, the mixture was concentrated under reduced pressure and the residue was purified by normal phase column to obtain compound 29F (0.15 g, yield: 81%).
- Step 6 Compound 29G (0.17 g, 0.33 mmol) was added to tetrahydrofuran (5 mL), and then triethylamine (0.17 g, 1.65 mmol) and compound 4C (100 mg, TFA salt) were added in sequence. The mixture was reacted at room temperature for 3 hours. After the reaction was completed as monitored by TLC, the reaction was concentrated under reduced pressure. The residue was purified by normal phase column to obtain compound 29H (0.13 g, yield: 83%).
- Step 7 Compound 29H (0.13 g, 0.27 mmol) was dissolved in methanol (3 mL), tetrahydrofuran (3 mL) and water (3 mL), and then lithium hydroxide (112 mg, 2.71 mmol) was added and reacted at room temperature for 15 hours. After the reaction was completed, 1 M dilute hydrochloric acid was directly added to adjust the pH to weak acidity, and then a small amount of water was added, and ethyl acetate (20 mL) was extracted 3 times, and the organic phases were combined and concentrated and purified by HPLC to obtain compound 29 (11.0 mg, 9%).
- Step 1 30A (400 mg, 1.99 mmol), silver trifluoromethanesulfonate (2.04 g, 7.96 mmol), SELECTFLUOR fluorinating agent (1.06 g, 2.98 mmol), potassium fluoride (461 mg, 7.96 mmol) and 2-fluoropyridine (772 mg, 7.96 mmol) were dissolved in ethyl acetate (30 mL), stirred evenly, trifluoromethyl trimethylsilane (706 mg, 4.98 mmol) was added dropwise, and reacted at room temperature for 36 h.
- Step 1 Compound 25 (1.34 g) was subjected to chiral separation to obtain compounds 32-1 (6 mg, retention time 1.07 min), 32-2 (10 mg, retention time 1.22 min), 32-3 (537 mg, retention time 1.46 min) and 32-4 (502 mg, retention time 1.78 min).
- Preparation method Instrument: SFC Prep 150AP, column: Daicel IG (19mm ⁇ 250mm); mobile phase: A: CO 2 , B: 0.05% NH 3 ⁇ H 2 O in ETOH; gradient: 12% B gradient elution flow rate: 120mL/min, column temperature: 25°C wavelength: 220nm cycle time: 25min sample preparation: sample concentration 10mg/ml, sample dissolved in DMF, filtered with a 0.45 ⁇ m filter head to prepare sample solution.
- Instrument SFC Prep 150AP, column: Daicel IG (19mm ⁇ 250mm); mobile phase: A: CO 2 , B: 0.05% NH 3 ⁇ H 2 O in ETOH; gradient: 12% B gradient elution flow rate: 120mL/min, column temperature: 25°C wavelength: 220nm cycle time: 25min sample preparation: sample concentration 10mg/ml, sample dissolved in DMF, filtered with a 0.45 ⁇ m filter head to prepare sample solution.
- Step 1 Add compound 33A (600 mg, 2.98 mmol, synthesized according to the method of patent CN 116789556A) into a reaction bottle, dissolve it with dichloromethane (10 ml), then add 4N hydrochloric acid dioxane solution (10 ml), and react at room temperature for 18 hours. After the reaction is completed by TLC monitoring, it is concentrated under reduced pressure to obtain compound 33B (330 mg, yield: 80.44%), which can be directly used in the next step without further purification.
- compound 33A 600 mg, 2.98 mmol, synthesized according to the method of patent CN 116789556A
- Step 2 Compound 2D (250 mg, 0.45 mmol) and compound 33B (185 mg, 1.35 mmol) were added to a reaction flask, dissolved with dichloromethane (10 ml), and then DIPEA (645 mg, 5.0 mmol) was added and reacted at room temperature for 3 hours. After the reaction was completed by TLC monitoring, it was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain compound 33C (180 mg, yield: 77.30%).
- Step 3 Compound 33C (180 mg, 0.35 mmol) was added to a reaction bottle, dissolved with DMF (10 ml), then cooled to 0°C, NaH (17 mg, 0.42 mmol) was added, the temperature was maintained and stirred for 20 min, iodomethane (75 mg, 0.52 mmol) was added, and the mixture was heated to room temperature for 1 hour. After the reaction was completed by TLC monitoring, saturated ammonium chloride solution (20 ml) was added, and then extracted with ethyl acetate (20 ml ⁇ 2), the organic phases were combined and dried, and concentrated under reduced pressure to obtain compound 33D (180 mg, yield: 95.35%), which could be directly used in the next step without further purification.
- Step 5 Compound 34E (0.15 g, 0.34 mmol) was dissolved in dichloromethane (3 mL), and trifluoroacetic acid (0.3 mL) was added to react at room temperature for 2 hours. The mixture was directly concentrated to obtain compound 34F for the next step.
- Step 8 Chiral analysis of compound 34 (400 mg) showed that there were two isomers: P1 (retention time: 2.699 min, set as compound 34-1), P2 (retention time: 3.511 min, set as compound 34-2), analysis method: instrument: Waters UPC2 analytical SFC (SFC-H); column: ChiralPak IK, 150 ⁇ 4.6 mm I.D., 3 ⁇ m; mobile phase: A for CO2 and B for Ethanol (0.05% DEA); gradient: 40% B gradient elution; flow rate: 2.5 mL/min; column pressure: 100 bar; column temperature: 35°C; wavelength: 220 nm; cycle time: 4 min;
- Compound 34D was used as the raw material, and referring to the fourth to eighth steps of Example 34, compound 35-1 (retention time: 2.609 min) and compound 35-2 (retention time: 3.449 min) were obtained.
- Analysis method instrument: Waters UPC2 analytical SFC (SFC-H); column: ChiralPak IK, 150 ⁇ 4.6 mm I.D., 3 ⁇ m; mobile phase: A for CO2 and B for Ethanol (0.05% DEA); gradient: 40% B gradient elution; flow rate: 2.5 mL/min; column pressure: 100 bar; column temperature: 35°C; wavelength: 220 nm; cycle time: 4 min;
- Preparation method instrument: WATERS150preparative SFC (SFC-26); column: ChiralPak IH, 250 ⁇ 30mm I.D., 10 ⁇ m; mobile phase: A for CO2 and B for Ethanol (0.1% NH3H2O); gradient: 40% B gradient elution; flow rate: 120mL/min; column temperature: 38°C; wavelength: 220nm; cycle time: 4min; sample preparation: Compound was dissolved in ⁇ 20ml methanol/DCM injection: 2.2mL each time, to obtain compound 35-1 (17mg), compound 35-2 (13mg).
- Step 1 Compound 36A (0.1 g, 0.45 mmol, synthesized according to the method of patent WO2008/141462) was added to DMF (5 mL), and then compound 17E (0.14 g, 0.45 mmol) and cesium carbonate (0.44 g, 1.35 mmol) were added, and the mixture was reacted at 50°C for 2 hours. After the reaction was completed as monitored by TLC, water was added to quench the mixture, and the mixture was extracted 3 times with ethyl acetate (20 mL). The organic phases were combined and concentrated, and the residue was purified by normal phase column to obtain compound 36E (120 mg, yield: 62%).
- Compound 37F was separated by SFC to obtain compound 37-1 (SFC analysis retention time: 2.311 min, 98 mg), compound 37-2 (SFC analysis retention time: 2.173 min, 112 mg), compound 37-3 (SFC analysis retention time: 1.763 min, 42.3 mg) and compound 37-4 (SFC analysis retention time: 1.374 min, 39.1 mg).
- SFC first analysis method Instrument: Waters 150Prep-SFC, Column: Chiral WHEIK column; Mobile phase: A: CO 2 , B: 0.1% NH 3 ⁇ H 2 O in MeOH; Gradient: 35% B gradient elution flow rate: 120mL/min, Column temperature: room temperature Wavelength: 220nm Cycle time: 4.3min; Sample preparation: Sample concentration 10mg/mL, Methanol solution injection: 3mL each time. After separation, the dried fractions were obtained to obtain Compound 37-1 and Compound 37-2.
- SFC second analysis method Instrument: Waters 150Prep-SFC, Column: Chiral AD column; Mobile phase: A: CO 2 , B: 0.1% NH 3 ⁇ H 2 O in MeOH; Gradient: 30% B gradient elution flow rate: 120mL/min, Column temperature: room temperature Wavelength: 220nm Cycle time: 8min; Sample preparation: Sample concentration 10mg/mL, Methanol solution injection: 3mL each time. After separation, the dried fractions were obtained to obtain Compound 37-3 and Compound 37-4.
- Step 1 Compound 24J (360.0 mg, 0.76 mmol) was added to a mixed solvent of dry toluene (10 mL) and N,N-dimethylformamide (3 mL), and then iodine (407.0 mg, 3.04 mmol) was added. After nitrogen replacement three times, (trifluoromethyl)trimethylsilane (540.0 mg, 3.80 mmol) and tri-n-butylphosphine (921.2 mg, 4.56 mmol) were added in sequence. After the addition, the temperature was raised to 45 ° C and the reaction was carried out for 16 hours.
- Step 2 38A (90.0 mg, 0.18 mmol) was dissolved in a mixed solvent of methanol (3 mL), tetrahydrofuran (3 mL) and water (3 mL), and then lithium hydroxide (37 mg, 0.90 mmol) was added, and the reaction was carried out at room temperature for 6 hours. After the reaction was completed, 1 M dilute hydrochloric acid was directly added to adjust the pH to weak acidity, and then a small amount of water was added, and ethyl acetate (20 mL) was extracted 3 times, and the organic phases were combined, concentrated, and sent to HPLC for preparation and purification to obtain compound 38 (30.0 mg, 32%).
- Step 1 Using 41A (890 mg, 5.0 mmol) as raw material, compound 41B (300 mg, 21.40%) was synthesized by referring to the synthesis method of the first step of Example 30.
- Step 2 At room temperature, 41B (300 mg, 1.22 mmol) was dissolved in dry tetrahydrofuran (10 mL), palladium hydroxide/carbon (856 mg, 1.22 mmol) and hydrochloric acid (5 mg, 0.12 mmol) were added, and the mixture was reacted at room temperature for 16 hours under a hydrogen atmosphere. The reaction was stopped after the disappearance of the raw material monitored by TLC, and filtered to obtain compound 41C (180 mg, 94.64%).
- Step 3 41C (180 mg, 1.15 mmol) was dissolved in dry tetrahydrofuran (5 mL) at room temperature, triethylamine (350 mg, 3.45 mmol) and N,N'-carbonyldiimidazole (186 mg, 1.15 mmol) were added under nitrogen atmosphere, and the reaction was continued for 1 hour. Then 11D (534 mg, 1.38 mmol) was added thereto, and the reaction was carried out at 80°C for 16 hours under nitrogen atmosphere. The reaction was stopped after the disappearance of the raw material by TLC monitoring.
- Step 4 Using 41D (70 mg, 0.12 mmol) as raw material, compound 41 (25 mg, 38.56%) was synthesized by referring to the synthesis method of Step 4 of Example 1.
- Embodiment 42 is a diagrammatic representation of Embodiment 42.
- Compound 42 (27 mg, 29.15%) was synthesized using 42A (890 mg, 5.0 mmol) as starting material and referring to the synthetic route of Example 41.
- Step 1 Compound 43A (1.5 g, 13.05 mmol) was synthesized into compound 43B (1.5 g) according to the method of patent WO2011046771.
- Step 4 Compound 43D (0.1 g, 0.29 mmol) was dissolved in dry tetrahydrofuran (5 ml), and diphenylphosphoryl azide (44 mg, 1.16 mmol) and 1,8-diazacyclo[5,4,0]undecene-7 (178 mg, 1.16 mmol) were added in sequence. The mixture was stirred at room temperature for 1 hour. After the reaction was completed as monitored by TLC, the residue was directly concentrated and purified by normal phase column to obtain compound 43E (90 mg, yield: 83%).
- Step 5 Compound 43E (90 mg, 0.24 mmol) was dissolved in tetrahydrofuran/water (3 ml/1 ml), and triphenylmethane was added. Phosphine (94 mg, 0.36 mmol) was stirred at room temperature for 1 hour. After the reaction was completed under TLC monitoring, the residue was directly concentrated and purified by normal phase column to give compound 43F (53 mg, yield: 64%).
- Step 1 Compound 29F (85 mg, 0.24 mmol) was added to tetrahydrofuran (5 ml), and then DPPA (180 mg, 0.48 mmol) and DBU (73 mg, 0.48 mmol) were added. The mixture was stirred at room temperature for 2 hours. After the reaction was completed by TLC monitoring, the mixture was diluted with water, extracted with ethyl acetate, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain compound 44A (75 mg, yield: 82%).
- Step 2 Compound 44A (75 mg, 0.20 mmol) was added to a mixed solvent of 3 mL tetrahydrofuran and 1 mL water, and then triphenylphosphine (100 mg, 0.40 mmol) was added. The mixture was protected by nitrogen and stirred at room temperature for 12 hours. After the reaction was completed by TLC monitoring, the mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain compound 44B (55 mg, yield: 79%).
- Step 3 Compound 44B (55 mg, 0.16 mmol) and compound 22D (68 mg, 0.24 mmol) were added to a reaction bottle, dissolved with tetrahydrofuran (5 ml), and then DIPEA (41 mg, 0.32 mmol) was added and reacted at room temperature for 3 hours. After the reaction was completed by TLC monitoring, it was diluted with water, extracted with ethyl acetate, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain compound 44C (60 mg, yield: 77%).
- Step 1 Dissolve compound 45A (1.0 g, 5.81 mmol) in THF (20 ml), add borane dimethyl sulfide solution (0.8 ml, 10 M in DMS) at 0°C, and warm to room temperature for 16 hours. After the reaction is completed by TLC monitoring, quench the reaction with methanol, concentrate under reduced pressure, and purify the residue by silica gel column chromatography to obtain compound 45B (0.9 g, yield: 97.82%).
- Step 2 Compound 17E (0.95 g, 3.12 mmol), compound 45B (0.89 g, 5.62 mmol) and tributylphosphine (1.9 g, 9.36 mmol) were added to a reaction bottle, dissolved with toluene (50 ml), and then ADDP (2.35 g, 9.36 mmol) was added and reacted at 55° C. for 16 hours. After the reaction was completed as monitored by TLC, it was cooled to room temperature and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain compound 45C (1.2 g, yield: 86.48%).
- Step 3 Compound 45C (1.2 g, 2.70 mmol) was added to a reaction bottle, dissolved in methanol (15 ml), and then PPTS (0.68 g, 2.70 mmol) was added and reacted at 60° C. for 4 hours. After the reaction was completed by TLC monitoring, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain compound 45D (0.56 g, yield: 57.56%).
- Step 4 Compound 45D (0.56 g, 1.55 mmol) was added to a reaction flask, dissolved in tetrahydrofuran (10 ml), and then DPPA (850 mg, 3.10 mmol) and DBU (470 mg, 3.10 mmol) were added, and reacted at room temperature for 2 hours. After the reaction was completed by TLC monitoring, it was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain compound 45E (0.55 g, yield: 91.84%).
- Step 6 Compound 45F (0.25 g, 0.70 mmol) was added to a reaction flask, dissolved with dichloromethane (10 ml), and then DIPEA (0.36 ml, 2.1 mmol) and compound 22D (0.24 g, 0.84 mmol) were added, and reacted at room temperature for 16 hours. After the reaction was completed by TLC monitoring, it was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain compound 45G (0.3 g, yield: 85.32%).
- Step 5 Compound 46D was resolved by SFC to obtain compound 46-1 (SFC analysis retention time: 2.004 min, 70 mg), Compound 46-2 (SFC analysis retention time: 2.219 min, 80 mg).
- SFC preparation method Instrument: Waters 150Prep-SFC, column: Chiral IK column; mobile phase: A: CO 2 , B: 0.1% NH3 ⁇ H2O in i-PrOH; gradient: 30% B gradient elution flow rate: 100mL/min, column temperature: 25°C, wavelength: 220nm, cycle time: 7.0min; sample preparation: sample concentration 8mg/mL, acetonitrile methanol mixed solution injection: 5.0mL each time. After separation, the dried fractions were obtained to obtain compound 46-1 and compound 46-2.
- Step 1 Cool a solution of diazomethane (1 mol/L) in ether (200 ml) to 0°C, add 47A (5 g, 51 mmol) and palladium acetate (0.57 g, 2.5 mmol), replace with N2 , and react at room temperature for 3 h. Filter, and directly concentrate the filtrate under reduced pressure to obtain 47B (5 g, 87.5%).
- Step 2 47B (5 g, 44.59 mmol) was added in batches to a 33% HBr solution in acetic acid (40 ml), and reacted at room temperature for 2 h. Water (200 ml) was added, filtered, and the solid was washed with water to obtain 47C (4 g, 46.47%).
- Step 3 47C (2 g, 10.36 mmol) was added to methanol (20 mL), and then thionyl chloride (3.70 g, 31.08 mmol) was added, and the mixture was reacted at 70°C for 2 h. After monitoring the reaction completion, the mixture was cooled to room temperature, and the methanol was directly concentrated under reduced pressure, and ethyl acetate (30 ml) was added, and the mixture was washed with water and then with saturated sodium chloride solution. The organic phase was concentrated under reduced pressure to obtain 47D (2 g, 93.22%).
- Step 5 Compound 48E was subjected to chiral separation to obtain compounds 48-1 (SFC analysis retention time: 1.671 min, 8 mg), 48-2 (SFC analysis retention time: 1.791 min, 10 mg), 48-3 (SFC analysis retention time: 1.634 min, 6 mg), 48-4 (SFC analysis retention time: 1.708 min, 3 mg).
- SFC analysis method instrument: SHIMADZU LC-30AD, column: Chiral WHELK column; mobile phase: A: CO 2 , B: 0.1% NH 3 .H 2 O in MeOH; gradient: 35% B in A; flow rate: 110 mL/min, column temperature: 35° C., wavelength: 220 nm.
- SFC preparation method Instrument: Waters 150Prep-SFC, Column: Chiral WHELK column; Mobile phase: A: CO 2 , B: isopropanol; Gradient: 33% B gradient elution flow rate: 120 mL/min, Column temperature: 25°C Wavelength: 254 nm Cycle time: 8.1 min; Sample preparation: Sample concentration 2 mg/mL, Ethanol solution injection: 2 mL each time. After separation, freeze-dried at -80°C to obtain compounds 48-1, 48-2, 48-3 and 48-4.
- CHO-LPA1 cells were cultured using F12 medium (10% FBS).
- the compounds of the present invention have a significant antagonistic effect on LPAR 1 enzyme activity in vitro, and the IC 50 value of the example compounds on LPAR 1 enzyme activity is less than 100 ⁇ M.
- the IC 50 value is expressed in A, B, C, and D grades, A means 0 ⁇ IC 50 ⁇ 10nM, B means 10nM ⁇ IC 50 ⁇ 50nM, C means 50nM ⁇ IC 50 ⁇ 100nM, and D means IC 50 >100nM.
- the test results of some examples are shown in Table 1.
- the compounds of the present invention show high antagonistic activity against LPAR1 receptors.
- the IC50 of compounds 4, 5, 7, 12 and 19 is 2 nM.
- mice Male C57 mice, 20-25 g, 6 mice/compound, purchased from Chengdu Dashuo Experimental Animal Co., Ltd.
- mice were randomly divided into groups according to body weight. They were fasted but not watered for 12-14 hours one day before administration and fed 4 hours after administration.
- the compounds of the present invention have good pharmacokinetic characteristics in mice, for example, compounds 4, 12, 22, 26, and 47 have excellent pharmacokinetic characteristics in mice.
- mice Male SD rats, about 220 g, 6 to 8 weeks old, 6 rats per compound, purchased from Chengdu Dashuo Experimental Animal Co., Ltd.
- Example Compounds 22, 26, and 29 have good pharmacokinetic characteristics in rats.
- the compounds of the present invention such as the compounds in the examples, have good pharmacokinetic characteristics in beagle dogs.
- the compounds of the present invention such as the compounds in the examples, have good pharmacokinetic characteristics in monkeys.
- Cell line Chinese hamster ovary (CHO) cell line stably expressing hERG potassium channel
- CHO (Chinese Hamster Ovary) cells stably expressing hERG potassium channels were used to record hERG potassium channel currents using the whole-cell patch clamp technique at room temperature.
- the glass microelectrode was pulled from a glass electrode blank (BF150-86-10, Sutter) by a puller.
- the tip resistance after perfusion of the electrode liquid was about 2-5M ⁇ .
- the glass microelectrode was inserted into the amplifier probe to connect to the patch clamp amplifier.
- the clamping voltage and data recording were controlled and recorded by pClamp 10 software through a computer, with a sampling frequency of 10kHz and a filter frequency of 2kHz.
- the cell was clamped at -80mV, and the step voltage to induce the hERG potassium current (I hERG) was given a 2s depolarization voltage from -80mV to +20mV, then repolarized to -50mV, and returned to -80mV after 1s.
- This voltage stimulation was given every 10s, and the drug administration process was started after the hERG potassium current was determined to be stable (at least 1 minute).
- Compounds were administered for at least 1 min at each tested concentration, and at least 2 cells (n ⁇ 2) were tested at each concentration.
- Inhibition% represents the inhibition percentage of the compound on hERG potassium current
- I and Io represent the inhibition percentage after and after drug addition, respectively. Amplitude of pre-drug hERG potassium current.
- the IC50 of the compounds was calculated using GraphPad Prism 5 software by fitting the following equation:
- X is the Log value of the test sample concentration
- Y is the inhibition percentage at the corresponding concentration
- the compounds of the present invention such as the compounds in the examples, have no inhibitory effect on hERG.
- the purpose of this study was to evaluate the effects of the test substances on the activities of five isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) of human liver microsomal cytochrome P450 (CYP) using an in vitro test system.
- Specific probe substrates of CYP450 isoenzymes were incubated with human liver microsomes and different concentrations of the test substances, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) was added to initiate the reaction.
- NADPH nicotinamide adenine dinucleotide phosphate
- the metabolites produced by the specific substrates were quantitatively detected by treating the samples and using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine the changes in CYP enzyme activity, calculate IC50 values, and evaluate the inhibitory potential of the test substances on each CYP enzyme subtype. Under the test conditions, the incubation concentration was 0-30 ⁇ M.
- the compounds of the present invention have no inhibitory effect on CYP enzymes.
- liver microsomes from five species including humans, dogs, rats and mice, were used as in vitro models to evaluate the metabolic stability of the test substances.
- test substance was incubated with microsomal proteins and coenzyme NADPH. After a certain time (5, 10, 20, 30, 60 min), ice-cold acetonitrile containing internal standard was added to terminate the reaction. The concentration of the test substance in the sample was detected by LC-MS/MS. T 1/2 was calculated by the ln value of the drug residual rate in the incubation system and the incubation time, and the liver microsomal intrinsic clearance CL int(mic) and liver intrinsic clearance CL int(Liver) were further calculated.
- the compounds of the present invention such as the compounds in the examples, have good liver microsomal stability.
- the experiment used a monolayer of Caco-2 cells and was incubated in triplicate in a 96-well Transwell plate.
- a transport buffer solution (HBSS, 10 mM HEPES, pH 7.4 ⁇ 0.05) containing the compound of the present invention (2 ⁇ M) or the control compounds digoxin (10 ⁇ M), nadolol (2 ⁇ M) and metoprolol (2 ⁇ M) was added to the dosing port well on the apical side or the basolateral side.
- a transport buffer solution containing DMSO was added to the corresponding receiving port well. After incubation at 37 ⁇ 1 ° C for 2 hours, the cell plate was removed and appropriate amounts of samples were taken from the top and bottom ends to a new 96-well plate.
- acetonitrile containing an internal standard was added to precipitate the protein.
- the samples were analyzed using LC MS/MS and the concentrations of the compound of the present invention and the control compound were determined. The concentration data were used to calculate the apparent permeability coefficients for transport from the apical side to the basolateral side of the monolayer cells and from the basolateral side to the apical side, thereby calculating the efflux rate.
- the integrity of the monolayer cells after 2 hours of incubation was evaluated by leakage of fluorescent yellow.
- the compounds of the present invention such as the compounds in the examples, have good permeability.
- mice in the model group were injected intratracheally (i.t.) with bleomycin at a dose of 0.66 mg/kg (1 U/kg) in a volume of 50 ⁇ L on the first day.
- Group 3 was given Compound 22 at a dose of 1 mg/kg, with a dosing volume of 10 mL/kg body weight, and was administered by gavage twice a day;
- Group 4 was given Compound 22 at a dose of 3 mg/kg, with a dosing volume of 10 mL/kg body weight, and was administered by gavage twice a day;
- Group 5 was given BMS-986278 at a dose of 10 mg/kg, with a dosing volume of 10 mL/kg body weight, and was administered by gavage twice a day;
- Group 6 was given Nintedanib at a dose of 60 mg/kg, with a dosing volume of 10 mL/kg body weight, and was administered by gavage once a day.
- Sham group 1 and model group 2 were given the vehicle at a dosing volume of 10 mL/kg body weight, and were administered by gavage twice a day.
- the Modified Ashcroft score of the 3 mg/kg administration was less than 4 points, and the area of pulmonary fibrosis was less than 20%; the test compound 22 at a dose of 1 mg/kg was equivalent to 10 mg/kg BMS-986278 and 60 mg/kg nintedanib, and was superior to BMS-986278 and nintedanib at a dose of 3 mg/kg.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pulmonology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种LPAR1拮抗剂及其用途。涉及一种式(I)所示的化合物,或其立体异构体、氘代物、或药学上可接受的盐和它们的药物组合物,及其在制备治疗/预防LPAR1介导的疾病的药物中的用途,式(I)中各基团如说明书之定义。
Description
本发明属于药物领域,尤其涉及一种具有LPAR1拮抗活性的小分子化合物,其立体异构体、氘代物或药学上可接受的盐,及其在制备治疗相关疾病的药物中的用途。
溶血磷脂酸(lysophosphatidic acid,LPA)是一种小分子甘油磷酸,分子量在430~480D。LPA广泛存在于人体内,与受体结合后可以激活多条细胞信号通路,参与调控细胞的增殖、分化、凋亡、神经递质释放等生命活动,在癌症、纤维化、神经元功能障碍、骨代谢障碍等疾病中发挥重要的作用。LPA主要由自分泌运动因子水解溶血磷脂(主要为溶血磷脂酰胆碱)生成。在博来霉素致肺纤维化模型中,支气管肺泡灌洗液的LPA水平明显升高,并导致血管渗透性增加和肺纤维化;LPA还可介导成纤维细胞产生多种旁分泌的介质,作用于上皮细胞、白细胞和内皮细胞,调节组织重塑、血管形成、炎症、伤口愈合和肿瘤进展;LPA甚至可诱导成纤维细胞的表皮生长因子(EGF)家族配体细胞外脱落,激活可溶性因子释放,并部分通过EGFR作用,刺激肺上皮细胞,扩大局部成纤维细胞反应。最新研究还发现,LPA-LPA1信号途径可促进特发性肺纤维化(IPF)中肺组织上皮细胞凋亡,抑制成纤维细胞凋亡,提示该信号途径可能调控肺损伤后纤维化的发展。研究表明,LPA与器官纤维化密切相关,主要通过溶血磷脂酸受体(lysophosphatidic acid receptor,LPAR)1介导。目前已发现6种LPAR,即LPAR1~LPAR6,其中LPAR1的功能是近年来研究的热点。临床研究证实,LPAR拮抗剂对特发性肺纤维化具有治疗作用;还发现LPAR1拮抗剂BMS-986020可有效改善特发性肺纤维化患者的肺功能。
发明内容
本发明提供了一种具有LPAR1拮抗活性的小分子化合物,其立体异构体、氘代物或药学上可接受的盐,其具有活性好、理化性质优异、便于制剂、药代动力学性质优异、生物利用度高、毒副作用低的优异效果,所述化合物如式(I)、(I-1)、(I-2)、(I-2a)、(I-2b)、(I-2c)、(I-3)、(I-4)、(I-5)、(I-6)的结构,
环C选自“*”端与左侧吡啶环相连,端与L2相连;在一些实施方案中,环C选自“*”端与左侧吡啶环相连,端与L2相连;
环A选自3-12元碳环基、4-12元杂环基或环A不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;
当环A选自不存在时,L1选自被一个COOH取代的C1-6烷基、C2-6烯基、C2-6炔基;
当环A选自不存在时,L1选自被一个COOH取代的-OC1-6烷基、C2-6烯基、C2-6炔基;
当环A1、A1b各自独立地选自不存在时,L1-1、L1-1b各自独立地选自被一个COOH取代的-OC1-6烷基、C2-6烯基、C2-6炔基;在一些实施方案中,环A1选自不存在,L1-1选自被一个COOH取代的-OC1-6烷基;在一些实施方案中,环A、环A1或A1b各自独立地选自不存在,L1、L1-1、L1-1b各自独立地选自-OCH2C(CH3)2CH2COOH、-OCH2CH2C(CH3)2COOH;
在一些实施方案中,环A选自4-12元碳环基、4-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;
在一些实施方案中,环A选自4-8元单环碳环基、6-12元双环碳环基、4-8元单环杂环基、6-12元双环杂环基、6-10元杂桥环基;所述的碳环基、杂环基、杂桥环基任选被1-4个RA取代;
在一些实施方案中,环A选自4-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子;所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;
在一些实施方案中,环A选自任选被1-4个RA取代的如下结构形成的基团之一:
或环A不存在;
环A1、A1b、A1c各自独立地选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;
在一些实施方案中,环A1、A1b、A1c各自独立地选自3-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基或不存在,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;
环A1选自4-12元碳环基、4-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;且L1-1-A1不选自
在一些实施方案中,环A1选自4-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;且L1-1-A1不选自
在一些实施方案中,环A1选自任选被1-4个RA取代的如下结构形成的基团之一:
且L1-1-A1不选自
在一些实施方案中,环A1选自任选被1-4个RA取代的如下结构形成的基团之一:
且L1-1-A1不选自
环A1b选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;且L1-1b-A1b不选自
在一些实施方案中,环A1b选自4-12元碳环基、4-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;且L1-1b-A1b不选自
在一些实施方案中,环A1b选自4-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;且L1-1b-A1b不选自
在一些实施方案中,环A1b选自任选被1-4个RA取代的如下结构形成的基团之一:
或环A1b不存在;且L1-1b-A1b不选自
在一些实施方案中,环A1c选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;且O-A1c不选自
在一些实施方案中,环A1c选自4-12元碳环基、4-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;且O-A1c不选自
在一些实施方案中,环A1c选自4-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;且O-A1c不选自
在一些实施方案中,环A1c选自任选被1-4个RA取代的如下结构形成的基团之一:
或环A1c不存在;且O-A1c不选自
RA各自独立地选自H、卤素、=O、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-(5-10元杂环基)、-(3-6元碳环)-COORa1、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、或-(CH2)p-P(O)(OH)2或选自=CH2、=CF2、=CH-CH3、=C-(CH3)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;
在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-(5-10元杂环基)、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、或-(CH2)p-P(O)(OH)2或选自=CH2、=CF2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;
在一些实施方案中,RA各自独立地选自H、卤素、=O、CN、OH、C1-4烷基、C2-4烯基、C2-4炔基、-OC1-2烷基、-(CH2)p-(5-8元杂环基)、-(3-6元碳环)-COORa1、-(CH2)p-COORa1或选自=CH2、=CF2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-2烷基的基团取代;
在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、C1-4烷基、C2-4烯基、C2-4炔基、-OC1-2烷基、-(CH2)p-(5-8元杂环基)、-(CH2)p-COORa1或选自=CH2、=CF2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-2烷基的基团取代;
在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、-COOH、-CH2-COOH、-CH2CH2-COOH或选自=CH2;
在一些实施方案中,RA各自独立地选自H、F、Cl、CN、OH、-COOH、-CH2-COOH、-CH2CH2-COOH或选自=CH2;
在一些实施方案中,环A1、A1b、A1c各自独立地选自如下结构:
或选自
环A3选自
L1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
在一些实施方案中,L1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
在一些实施方案中,L1选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
在一些实施方案中,L1选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-,所述烷基任选进一步的被1-4个RL1取代;
在一些实施方案中,L1选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-、-NH-、-N(CH3)-、-NHCH(CH3)-;
在一些实施方案中,L1选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-NHC(O)-、-CH2-、-NH-、-N(CH3)-、-NHCH(CH3)-;
在一些实施方案中,L1选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-;
在一些实施方案中,L1选自-O-、-N(CH3)-;
L1-1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
在一些实施方案中,L1-1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-,
所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-、乙烯基、丙烯基、乙炔基、-C(O)NH-,所述烷基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-,所述烷基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1选自键、-OCH2-、-OCH2CH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-;在一些实施方案中,L1-1选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-;
L1-1a选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1a选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1a各自独立地选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-、-NH-、-N(CH3)-、-NHCH(CH3)-;在一些实施方案中,L1-1a选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-C(=O)-、-CH2-;
L1-1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
在一些实施方案中,L1-1b选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1b选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1b选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-、乙烯基、丙烯基、乙炔基、-C(O)NH-、-NHC(O)-,所述烷基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1b选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-,所述烷基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1b选自键、-OCH2-、-OCH2CH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-;在一些实施方案中,L1-1b选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-;
RL1各自独立地选自H、卤素、=O、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;在一些实施方案中,RL1各自独立地选自H、卤素、=O、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;在一些实施方案中,RL1各自独立地选自H、卤素、=O、OH、C1-2烷基、卤代C1-2烷基、3-6元环烷基,所述的烷基、环烷基任选进一步被1-4
个选自卤素、OH、NH2取代;在一些实施方案中,RL1各自独立地选自H、卤素、=O、OH、C1-2烷基、3-6元环烷基;在一些实施方案中,RL1各自独立地选自H、F、Cl、Br、=O、OH、甲基、乙基、环丙基、环丁基、环戊基、环己基;在一些实施方案中,RL1各自独立地选自H、卤素、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;在一些实施方案中,RL1各自独立地选自H、卤素、OH、C1-2烷基、卤代C1-2烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;在一些实施方案中,RL1各自独立地选自H、卤素、OH、C1-2烷基、3-6元环烷基;L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、
-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33;在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32;在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-N(RL31)-C(=O)ORL32;在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30);
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基、-(CH2)p-O-C3-10环烷基、-O-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-SCF3、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;
Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基、-O-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-10元杂环烷基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、
烯基、炔基、环烷基、杂环烷基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基),所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、C1-4烷氧基、5-14元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、烷氧基、杂环基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、乙酰基、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-10元杂环烷基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环烷基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2各自独立地选自H、卤素、C1-4烷基、C2-4烯基、C2-4炔基、C3-6环烷基、C1-4烷氧基,所述的烷基、烯基、炔基、环烷基、烷氧基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、乙酰基、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2各自独立地选自H、甲基、乙基、丙基、异丙基、环丙基、环丁基;
在一些实施方案中,每个RL21、RL22各自独立地选自H、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、5-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;
在一些实施方案中,每个RL21、RL22各自独立地选自H、C1-2烷基、C2-4烯基、C2-4炔基、C3-6环烷基,所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、OH、
NH2、CN、C1-4烷基的基团取代;
在一些实施方案中,每个RL21、RL22各自独立地选自H、C1-2烷基、C3-6环烷基,所述的烷基、环烷基任选进一步被1-4个选自F、Cl、OH、NH2、CN的基团取代;
在一些实施方案中,每个L21、RL22各自独立地选自H、甲基、乙基、环丙基;
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、-(CH2)p-O-C3-6环烷基、C3-6环烷基、-O-C3-6环烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
5-6元杂芳基,所述杂环烷基、杂芳基含有1-3个选自N、O、S、S(O)、S(O)2的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
且当RL21、RL22同时为H,L1为O时,至少1个RL23选自-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基、
被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C1-4烷基、-O-C3-6环烷基、-(CH2)p-O-C3-6环烷基、被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C3-6环烷基,所述的杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、-(CH2)p-O-C3-6环烷基、C3-6环烷基、-O-C3-6环烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
5-6元杂芳基,所述杂环烷基、杂芳基
含有1-3个选自N、O、S、S(O)、S(O)2的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
在一些实施方案中,每个RL23各自独立地选自-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基、
被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C1-4烷基、-O-C3-6环烷基、-(CH2)p-O-C3-6环烷基、被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C3-6环烷基,所述的杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、-O-C3-6环烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
5-6元杂芳基,所述杂环烷基、杂芳基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;且当RL21、RL22同时为H时,至少1个RL23为-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
被取代的5-6元杂芳基、-CH2CH2OCF3、-O-C3-6环烷基、
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、所述杂环烷基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基任选进一步被1-4个选自=O、卤素、OH、NH2、CN、乙酰基、-S(O)2CH3的基团取代;且当RL21、RL22同时为H时,至少1个RL23为-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基,所述杂环烷基、杂芳基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;且当RL21、RL22同时为H时,至少1个RL23为-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
被取代的5-6元杂芳基;
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、所述杂环烷基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基任选进一步被1-4个选自=O、卤素、OH、NH2、CN、乙酰基、-S(O)2CH3的基团取代;且当RL21、RL22同时为H时,至少1个RL23为-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、6-12元双环杂环烷基,所述杂环烷基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基任选进一步被1-4个选自卤素、OH、NH2、CN、乙酰基的基团取代;且当RL21、RL22同时为H时,至少1个RL23为6-12元双环杂环烷基;
在一些实施方案中,每个RL23各自独立地选自甲基、乙基、丙基、
RL23-1选自甲基、乙基;在一些实施方案中,RL23-1选自甲基;
RL23-2选自-(CH2)p-(4-7元杂环烷基)、-(CH2)p-C4-6单环环烷基、-O-C3-6环烷基、-CH2CH2OCF3,所述杂环烷基含有1-2个N原子;其中所述的杂环烷基任选进一步被1-2个-S(O)2CH3、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2的基团取代,所述环烷基进一步被1-2个=CH2、=CF2、=CH-CH3、=C-(CH3)2的基团取代;在一些实施方案中,RL23-2选自-CH2CH2OCF3、
RL23-1a选自H、甲基、乙基;在一些实施方案中,RL23-1a选自H、甲基;在一些实施方案中,RL23-1a选自甲基、乙基;
RL23-2a选自选自-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基、
被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C1-4烷基、-O-C3-6环烷基、-(CH2)p-O-C3-6环烷基、被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C3-6环烷基,所述的杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;在一些实施方案中,RL23-2a选自选自4-7元杂环烷基、-CH2-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基、
被1-4个选自-OCF3、-OCHF2、-SCF3取代的C2-4烷基、-O-C3-6环烷基、-(CH2)2-O-C3-6环烷基、被1个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C3-6环烷基,所述的杂环烷基、杂芳基任选进一步被1、2、3个选自=O、F、Cl、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
在一些实施方案中,RL24各自独立地选自H、C2-6烯基、C2-6炔基,所述的烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,每个RL25、RL27、RL28各自独立地选自C1-3烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;
在一些实施方案中,每个RL25、RL27、RL28各自独立地选自C1-3烷基、C2-4烯基、C2-4炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;
在一些实施方案中,每个RL25、RL27、RL28各自独立地选自甲基、乙基、丙基;
在一些实施方案中,RL29选自H、C1-4烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;在一些实施方案中,RL29选自H、C1-4烷基、C2-4烯基、C2-4炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;在一些实施方案中,RL29选自H、甲基、乙基;
在一些实施方案中,RL30选自6-14元双环或三环杂环基,所述杂环基含有1-3个选自N、O、
S的杂原子;所述的杂环基任选进一步被1-4个选自卤素、CN、OH、NH2、C1-4烷基、卤代C1-4烷基的基团取代;且RL30不为在一些实施方案中,RL30选自
所述化合物不为
L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、
-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30);
在一些实施方案中,L2-1选自
在一些实施方案中,L2-1选自
或者L2-1选自或者L2-1选自或者L2-1选自
或者L2-1选自
或者L2-1选自
或者L2-1选自
L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23;
在一些实施方案中,L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23;
在一些实施方案中,L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-OC(O)-RL23;
在一些实施方案中,L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30);
在一些实施方案中,L2-2c选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30);
在一些实施方案中,L2-2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30);
在一些实施方案中,L2-2、L2-2c各自独立地选自
或者L2-2、L2-2c各自独立地选自
在一些实施方案中,L2-2、L2-2c各自独立地选自
RL32选自-C1-4烷基-(5-10元杂芳基)、-C1-4烷基-(6-10元芳基),所述的杂芳基、芳基任选进一步被1-3个选自卤素、CN、OH、NO2、NH2、卤代C1-4烷基、-OC1-4烷基、C2-6烯基或C2-6炔基的取代基取代;
在一些实施方案中,RL32选自-C1-4烷基-(5-10元杂芳基),所述的杂芳基任选进一步被1-3个选自卤素、CN、OH、NO2、NH2、卤代C1-4烷基、-OC1-4烷基、C2-6烯基或C2-6炔基的取代基取代;
在一些实施方案中,RL32选自-C1-4烷基-(5-10元杂芳基),所述的杂芳基任选进一步被1-3个选自卤素、CN、OH、NO2、NH2、卤代C1-4烷基、-OC1-4烷基、C2-6烯基或C2-6炔基的取代基取代;
在一些实施方案中,RL32选自-C1-2烷基-(5-6元单环杂芳基)、-C1-2烷基-(8-10元双环杂芳基),所述的杂芳基任选进一步被1-3个选自F、Cl、CN、OH、NO2、NH2、卤代C1-2烷基的取代基取代;
在一些实施方案中,RL32选自-C1-2烷基-(5-6元单环杂芳基)、-C1-2烷基-(8-10元双环杂芳基),所述的杂芳基任选进一步被1-3个选自F、Cl、CN、OH、NO2、NH2、-CH2F、-CHF2、-CF3的取代基取代;
RL33选自C1-4烷基、卤素、OH、NH2、CN、C2-6烯基、C2-6炔基、-C(=O)H、-C(=O)OH、C3-10环烷基、C1-4烷氧基、5-14元杂环基,所述的烷基、烷氧基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、N3、C1-4烷氧基、卤代C1-4烷氧基、C3-5环烷基、4-6元杂环烷基、6-10元芳基、5-10元杂芳基的基团取代;
在一些实施方案中,RL33选自C1-4烷基,所述的烷基任选进一步被1-2个选自卤素、OH、NH2、CN、N3、C1-2烷氧基、氟代C1-2烷氧基、C3-5环烷基、4-6元杂环烷基、6-10元芳基、5-10元杂芳基的基团取代;
作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;
或者作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基、乙酰基的基团取代;
作为选择,两个RL23和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂
环,所述杂环任选进一步被1-3个选自=O、OH、NH2、CN、乙酰基的基团取代;
p各自独立地选自0、1、2、3、4;
在一些实施方案中,p选自0、1或2;
在一些实施方案中,p选自0或1;
条件是:
(1)、对于式(I-2),当L2-2选自时,L1-1-A1不选自
(2)、对于式(I-2),当L2-2选自时,L1-1-A1不选自
(3)、对于式(I-2b),L1-1b-A1b不选自
(4)、对于式(I-2c),O-A1c不选自
且所述化合物不为
具体而言,本发明第一技术方案,所述的式(I)化合物,其立体异构体、氘代物、或药学上可接受的盐,
环C选自“*”端与左侧吡啶环相连,端与L2相连;在一些实施方案中,环C选自“*”端与左侧吡啶环相连,端与L2相连;
环A选自3-12元碳环基、4-12元杂环基或环A不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;在一些实施方案中,环A选自4-12元碳环基、4-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;
RA各自独立地选自H、卤素、=O、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-(5-10元杂环基)、-(3-6元碳环)-COORa1、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、或-(CH2)p-P(O)(OH)2或、=CH2、=CF2、=CH-CH3、=C-(CH3)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-(5-10元杂环基)、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、或-(CH2)p-P(O)(OH)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被
1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;
L1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
RL1各自独立地选自H、卤素、=O、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;在一些实施方案中,RL1各自独立地选自H、卤素、=O、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;
当环A选自不存在时,L1选自被一个COOH取代的C1-6烷基、C2-6烯基、C2-6炔基;
在一些实施方式中,当环A选自不存在时,L1选自被一个COOH取代的-OC1-6烷基、C2-6烯基、C2-6炔基;在一些实施方案中,环A选自不存在,L1选自-OCH2C(CH3)2CH2COOH、-OCH2CH2C(CH3)2COOH;
L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;或者
L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;或者
L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环
基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;或者
L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;
在一些实施方案中,L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33;
Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基、-(CH2)p-O-C3-10环烷基、-O-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-SCF3、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;或者
Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;或者
Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、
RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、C1-4烷氧基、5-14元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、乙酰基、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
RL32选自-C1-4烷基-(5-10元杂芳基)、-C1-4烷基-(6-10元芳基),所述的杂芳基、芳基任选进一步被1-3个选自卤素、CN、OH、NO2、NH2、卤代C1-4烷基、-OC1-4烷基、C2-6烯基或C2-6炔基的取代基取代;在一些实施方案中,RL32选自-C1-4烷基-(5-10元杂芳基),所述的杂芳基任选进一步被1-3个选自卤素、CN、OH、NO2、NH2、卤代C1-4烷基、-OC1-4烷基、C2-6烯基或C2-6炔基的取代基取代;
RL33选自C1-4烷基、卤素、OH、NH2、CN、C2-6烯基、C2-6炔基、-C(=O)H、-C(=O)OH、C3-10环烷基、C1-4烷氧基、5-14元杂环基,所述的烷基、烷氧基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、N3、C1-4烷氧基、卤代C1-4烷氧基、C3-5环烷基、4-6元杂环烷基、6-10元芳基、5-10元杂芳基的基团取代;
作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;
或者作为选择,RL24与RL25或RL26与RL27或两个RL23和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基、乙酰基的基团取代;
p各自独立地选自0、1、2、3、4。
本发明第二技术方案,所述的式(I)化合物,其立体异构体、氘代物、或药学上可接受的盐,具有式(I-1)的结构,其中,
L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、
-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;或者
L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;或者
L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;或者
L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;在一些实施方案中,L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30);
RL21、RL22各自独立地选自H、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、5-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;
每个RL23各自独立地选自C1-4烷基、-(CH2)p-O-C3-6环烷基、C3-6环烷基、-O-C3-6环烷基、
-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
5-6元杂芳基,所述杂环烷基、杂芳基含有1-3个选自N、O、S、S(O)、S(O)2的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
且当RL21、RL22同时为H,L1为O时,至少1个RL23选自-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基、
被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C1-4烷基、-O-C3-6环烷基、-(CH2)p-O-C3-6环烷基、被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C3-6环烷基,所述的杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;或者
每个RL23各自独立地选自C1-4烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
5-6元杂芳基,所述杂环烷基、杂芳基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;且当RL21、RL22同时为H时,至少1个RL23为-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、被取代的5-6元杂芳基;或者
每个RL23各自独立地选自C1-4烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
所述杂环烷基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基任选进一步被1-4个选自=O、卤素、OH、NH2、CN、乙酰基、-S(O)2CH3的基
团取代;且当RL21、RL22同时为H时,至少1个RL23为-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、或者
每个RL23各自独立地选自C1-4烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
所述杂环烷基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基任选进一步被1-4个选自=O、卤素、OH、NH2、CN、乙酰基、-S(O)2CH3的基团取代;且当RL21、RL22同时为H时,至少1个RL23为-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
在一些实施方案中,每个RL23各自独立地选自C1-4烷基、6-12元双环杂环烷基,所述杂环烷基含有1-3个选自N、O、S的杂原子;所述的烷基、杂环烷基任选进一步被1-4个选自卤素、OH、NH2、CN、乙酰基的基团取代;且当RL21、RL22同时为H时,至少1个RL23为6-12元双环杂环烷基;或者
每个RL23各自独立地选自C1-4烷基、-(CH2)p-O-C3-6环烷基、C3-6环烷基、-O-C3-6环烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、
5-6元杂芳基,所述杂环烷基、杂芳基含有1-3个选自N、O、S、S(O)、S(O)2的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
且当RL21、RL22同时为H,L1为O时,至少1个RL23选自-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基、
被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C1-4烷基、-O-C3-6环烷基、-(CH2)p-O-C3-6环烷基、被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C3-6环烷基,所
述的杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;
RL24各自独立地选自H、C2-6烯基、C2-6炔基,所述的烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN、C3-10环烷基、5-12元杂环基的基团取代;
每个RL25、RL27、RL28各自独立地选自C1-3烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;
RL26各自独立地选自C2-6烯基、C2-6炔基、C3-6环烷基,所述的烯基、炔基、环烷基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;
RL29选自H、C1-4烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;
RL30选自6-14元双环或三环杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的杂环基任选进一步被1-4个选自卤素、CN、OH、NH2、C1-4烷基、卤代C1-4烷基的基团取代;
p选自0、1、2、3、4;
作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;
或者作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基、乙酰基的基团取代;
作为选择,两个RL23和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自=O、OH、NH2、CN、乙酰基的基团取代;
条件是,(1)、RL30不为
(2)、所述化合物不为
其他基团定义与第一技术方案一致。
本发明第三技术方案,所述的式(I-1)化合物,其立体异构体、氘代物、或药学上可接受的盐,其中,
L2-1选自
在一些实施方式中,L2-1选自
或者L2-1选自
或者L2-1选自
或者L2-1选自
或者L2-1选自
L1选自键、-OCH2-、-OCH2CH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-NHC(O)-、-CH2-、-NH-、-N(CH3)-、-NHCH(CH3)-;在一些实施方案中,L1选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-NHC(O)-、-CH2-;
其他基团定义与第二技术方案一致。
本发明第四技术方案,所述的式(I)化合物,其立体异构体、氘代物、或药学上可接受的盐,具有式(I-2)、(I-2a)、(I-2b)、(I-2c)的结构,其中,
环A1、A1b、A1c各自独立地选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;在一些实施方案中,环A1、A1b、A1c各自独立地选自4-12元碳环基、4-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;
RA各自独立地选自H、=O、卤素、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-5-10元杂环基、-(3-6元碳环)-COORa1、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、或-(CH2)p-P(O)(OH)2或=CH2、=CF2、=CH-CH3、=C-(CH3)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-5-10元杂环基、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、或-(CH2)p-P(O)(OH)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;且L1-1-A1、L1-1b-A1b、O-A1c不选自
L1-1、L1-1b各自独立地选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1、L1-1b各自独立地选自键、C1-6烷基、C2-6
烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
L1-1a选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)--NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1a选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
RL1各自独立地选自H、卤素、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;
在一些实施方式中,当环A1、A1b各自独立地选自不存在时,L1-1、L1-1b各自独立地选自被一个COOH取代的-OC1-6烷基、C2-6烯基、C2-6炔基;在一些实施方式中,RL1各自独立地选自H、卤素、=O、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;
L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23;或者
L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-OC(O)-RL23;或者
L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30);
Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-10元杂环烷基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基、-(CH2)p-OC3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环烷基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、卤代C1-4烷氧基、-SCF3、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;或者
Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-10元杂环烷基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环烷基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;或者
Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-10元杂环烷基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环烷基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、
NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
在一些实施方案中,Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、C1-4烷氧基、5-10元杂环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环烷基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、乙酰基、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基的基团取代;
RL29选自H、C1-4烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;
RL30选自6-14元双环或三环杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的杂环基任选进一步被1-4个选自卤素、CN、OH、NH2、C1-4烷基、卤代C1-4烷基的基团取代;
作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;
p各自独立地选自0、1、2、3、4;
条件是:
(1)、对于式(I-2),当L2-2选自时,L1-1-A1不选自
(2)、对于式(I-2),当L2-2选自时,L1-1-A1不选自
(3)、对于式(I-2b),L1-1b-A1b不选自
(4)、对于式(I-2c),O-A1c不选自
其他基团定义与第一技术方案一致。
本发明第五技术方案,所述的式(I-2)、(I-2b)、(I-2c)化合物,其立体异构体、氘代物、或药学上可接受的盐,其中,
环A1、A1b、A1c选自3-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基或不存在,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;在一些实施方案中,环A1、A1b、A1c选自4-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;
RA各自独立地选自H、卤素、=O、CN、OH、C1-4烷基、C2-4烯基、C2-4炔基、-OC1-2烷基、-(CH2)p-(5-8元杂环基)、-(3-6元碳环)-COORa1、-(CH2)p-COORa1或=CH2、=CF2、=CH-CH3或=C-(CH3)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-2烷基的基团取代;在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、C1-4烷基、C2-4烯基、C2-4炔基、-OC1-2烷基、-(CH2)p-(5-8元杂环基)、-(CH2)p-COORa1,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-2烷基的基团取代;
L1-1、L1-1b各自独立地选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
RL1各自独立地选自H、卤素、=O、OH、C1-2烷基、卤代C1-2烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;在一些实施方案中,RL1各自独立地选自H、卤素、=O、OH、C1-2烷基、卤代C1-2烷基、3-6元环烷基,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;
其他基团定义与第四技术方案一致。
本发明第六技术方案,所述的式(I-2)化合物,其立体异构体、氘代物、或药学上可接受的盐,其中,
环A1、A1b、A1c各自独立地选自任选被1-4个RA取代的如下结构形成的基团之一:
RA各自独立地选自H、C1-2烷基、卤素、CN、OH、-COOH、-CH2-COOH、-CH2CH2-COOH、=CH2、=CF2、=CH-CH3或=C-(CH3)2;在一些实施方案中,RA各自独立地选自H、C1-2烷基、卤素、CN、OH、-COOH、-CH2-COOH、-CH2CH2-COOH;在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、-COOH、-CH2-COOH、-CH2CH2-COOH;
L1-1、L1-1b各自独立地选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-、乙烯基、丙烯基、乙炔基、-C(O)NH-、-NHC(O)-,所述烷基任选进一步的被1-4个RL1取代;在一些实施方案中,L1-1、L1-1b各自独立地选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-、-NHC(O)-,所述烷基任选进一步的被1-4个RL1取代;
RL1各自独立地选自H、卤素、=O、OH、C1-2烷基、3-6元环烷基;
L2-2、L2-2c各自独立地选自
或者
L2-2、L2-2c各自独立地选自或者
L2-2、L2-2c各自独立地选自
其他基团定义与第五技术方案一致。
本发明第七技术方案,所述的式(I-2)、(I-2a)、(I-2b)、(I-2c)化合物,其立体异构体、氘代物、或药学上可接受的盐,其中,
环A1、A1b、A1c各自独立地选自如下结构:
或选自或选自
L1-1、L1-1b各自独立地选自键、-OCH2-、-OCH2CH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-;在一些实施方案中,L1-1、L1-1b各自独立地选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-;
L1-1a各自独立地选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-、-NH-、-N(CH3)-、-NHCH(CH3)-;在一些实施方案中,L1-1a各自独立地选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-C(=O)-、-NHC(O)-、-CH2-;
其他基团定义与第六技术方案一致。
本发明第八技术方案,所述的式(I)化合物,其立体异构体、氘代物、或药学上可接受的盐,具有式(I-6)结构,
其中
环A1选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;在一些实施方案中,环A1选自3-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基或环A1不存在,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;在一些实施方案中,环A1选自4-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;在一些实施方案中,环A1选自如下结构:
在一些实施方案中,当环A1选自不存在时,L1-1选自被一个COOH取代的-OC1-6烷基;
L1-1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;在
一些实施方案中,L1-1选自键、-OCH2-、-OCH2CH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-;
RA各自独立地选自H、卤素、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-(5-10元杂环基)、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、-(CH2)p-P(O)(OH)2、=CH2、=CF2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;在一些实施方案中,RA各自独立地选自H、卤素、CN、OH、-COOH、-CH2-COOH、-CH2CH2-COOH或=CH2;
L2-2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;在一些实施方案中,L2-2选自-(CRL21RL22)p-OC(O)-N(CH3)RL23、-(CRL21RL22)p-OC(O)-NHRL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23;
RL23选自-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的环烷基、杂环基任选进一步被1-4个选自=CH2、=CF2、=CH-CH3、=C-(CH3)2的基团取代;
RL21、RL22、RL24、RL25、RL26、RL27、RL28、RL29各自独立地选自H、C1-4烷基。
本发明第九技术方案,式(I)化合物,其立体异构体、氘代物、或药学上可接受的盐,具有式(I-3)结构,
其中,环A3选自
L1选自-O-、-N(CH3)-、-NHC(O)-;
RL23-1选自甲基、乙基;
RL23-2选自-(CH2)p-(4-7元杂环烷基)、-(CH2)p-C4-6单环环烷基、-(CH2)2-O-C3-6环烷基、-O-C3-6环烷基、-CH2CH2OCF3,所述杂环烷基含有1-2个N原子;其中所述的杂环烷基任选进一步被1-2个-S(O)2CH3、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2的基团取代,所述环烷基进一步被1-2个=CH2、=CF2、=CH-CH3、=C-(CH3)2的基团取代;在一些实施方案中,RL23-2选自-CH2CH2OCF3、
p选自0、1、2。
本发明第十技术方案,式(I)化合物,其立体异构体、氘代物、或药学上可接受的盐,具有式(I-5)结构,
其中,环A1选自4-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基或不存在,在一些实施方案中,环A1选自
或不存在;
L1-1选自-OCH2-、-OCH2CH2-、-O-;或者
环A1选自不存在时,L1-1选自-OCH2CH2C(CH3)2-COOH、-OCH2C(CH3)2CH2-COOH;
RL26选自H、C1-4烷基;
RL23选自-(CH2)p-(4-7元杂环烷基)、-(CH2)p-C4-6单环环烷基,所述杂环烷基含有1-2个N原子;其中所述的杂环烷基任选进一步被1-2个=CH2、=CF2、=CH-CH3、=C-(CH3)2、=CHF、卤代烷氧基的基团取代;所述的环烷基进一步被1-2个=CH2、=CH-CH3、=C-(CH3)2、=CF2、=CHF、卤代烷氧基的基团取代;在一些实施方案中,RL23选自
p选自0、1、2。
本发明第十一技术方案,涉及一种式(I-6)所示的化合物,其立体异构体、氘代物、或药学上可接受的盐,
其中,
L2-2选自-(CRL21RL22)p-OC(O)-N(CH3)RL23、-(CRL21RL22)p-OC(O)-NHRL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23;
RL21、RL22、RL26各自独立地选自H、C1-4烷基;
RL23选自-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的环烷基、杂环基进一步被1-4个选自=CH2、=CF2、=CH-CH3、=C-(CH3)2的基团取代;
环A1选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;
当环A1选自不存在时,L1-1选自被一个COOH取代的-OC1-6烷基;
L1-1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;
RA、RL1、p如前述第一或第八技术方案所述。
更具体的,本发明所述式(I)的化合物,其立体异构体、氘代物、或药学上可接受的盐,其化合物选自但不限于如下表一、表二中的结构:
表一
表二
其次,本发明还提供了一种药物组合物,其中含有前述任意一项方案所述的化合物,其立体异构体、氘代物、或药学上可接受的盐,以及药学上可接受的载体和/或辅料。
进一步地,本发明的药物组合物或药物制剂,其中含有1-1500mg的前述任意一项方案所述的化合物,其立体异构体、氘代物、或药学上可接受的盐,以及药学上可接受的载体和/或辅料。
进一步地,本发明还提供了前述任意一项方案所述的化合物,其立体异构体、氘代物、或药学上可接受的盐在在制备治疗/预防LPAR1介导的疾病的药物中的用途。进一步地,所述LPAR1介导的疾病选自特发性肺纤维化、进展性肺纤维化、系统性硬化症、良性前列腺增生、多发性硬化症、神经损伤、神经痛,优选特发性肺纤维化、进展性肺纤维化。
本发明还提供了一种用于治疗哺乳动物或人的疾病的方法,所述方法包括给予受试者治疗有效量的前述任意一项方案所示的化合物,其立体异构体、氘代物、或药学上可接受的盐或者本发明所述的组合物,所述疾病选自特发性肺纤维化、进展性肺纤维化、系统性硬化症、良性前列腺增生、多发性硬化症、神经损伤、神经痛。一些实施方案中,本发明中所述哺乳动物不包括人。
本申请中所述“有效量”或“治疗有效量”是指给予足够量的本申请公开的化合物,其将在某种程度上缓解所治疗的疾病或病症的一种或多种症状。在一些实施方案中,结果是减少和/或缓和疾病的体征、症状或原因,或生物系统的任何其它希望改变。例如,针对治疗用途的“有效量”是提供临床上显著的疾病症状降低所需的包含本申请公开的化合物的量。治疗有效量的实例包括但不限于1-1500mg、1-1400mg、1-1300mg、1-1200mg、1-1000mg、1-900mg、1-800mg、1-700mg、1-600mg、1-500mg、1-400mg、1-300mg、1-250mg、1-200mg、1-150mg、1-125mg、1-100mg、1-80mg、1-60mg、1-50mg、1-40mg、1-25mg、1-20mg、5-1500mg、5-1000mg、5-900mg、5-800mg、5-700mg、5-600mg、5-500mg、5-400mg、5-300mg、5-250mg、5-200mg、5-150mg、5-125mg、5-100mg、5-90mg、5-70mg、5-80mg、5-60mg、5-50mg、5-40mg、5-30mg、5-25mg、5-20mg、10-1500mg、10-1000mg、10-900mg、10-800mg、10-700mg、10-600mg、10-500mg、10-450mg、
10-400mg、10-300mg、10-250mg、10-200mg、10-150mg、10-125mg、10-100mg、10-90mg、10-80mg、10-70mg、10-60mg、10-50mg、10-40mg、10-30mg、10-20mg;20-1500mg、20-1000mg、20-900mg、20-800mg、20-700mg、20-600mg、20-500mg、20-400mg、20-350mg、20-300mg、20-250mg、20-200mg、20-150mg、20-125mg、20-100mg、20-90mg、20-80mg、20-70mg、20-60mg、20-50mg、20-40mg、20-30mg;50-1500mg、50-1000mg、50-900mg、50-800mg、50-700mg、50-600mg、50-500mg、50-400mg、50-300mg、50-250mg、50-200mg、50-150mg、50-125mg、50-100mg;100-1500mg、100-1000mg、100-900mg、100-800mg、100-700mg、100-600mg、100-500mg、100-400mg、100-300mg、100-250mg、100-200mg。
本发明涉及一种药物组合物或药物制剂,所述的药物组合物或药物制剂包含治疗有效量的本发明所述的化合物或者其立体异构体、氘代物、或药学上可接受的盐以及载体和/或辅料。该药物组合物可以为单位制剂形式(单位制剂中主药的量也被称为“制剂规格”)。在一些实施方案中,该药物组合物包括但不限于1-1500mg、5-1000mg、10-800mg、20-600mg、25-500mg、40-200mg、50-100mg、1mg、1.25mg、2.5mg、5mg、10mg、12.5mg、15mg、20mg、25mg、30mg、35mg、40mg、45mg、50mg、55mg、60mg、65mg、70mg、75mg、80mg、85mg、90mg、95mg、100mg、110mg、120mg、125mg、130mg、140mg、150mg、160mg、170mg、180mg、190mg、200mg、210mg、220mg、230mg、240mg、250mg、275mg、300mg、325mg、350mg、375mg、400mg、425mg、450mg、475mg、500mg、525mg、550mg、575mg、600mg、625mg、650mg、675mg、700mg、725mg、750mg、775mg、800mg、850mg、900mg、950mg、1000mg、1100mg、1200mg、1300mg、1400mg、1500mg的本发明化合物或者其立体异构体、氘代物、或药学上可接受的盐。
一种用于治疗哺乳动物的疾病的方法,所述方法包括给予受试者治疗有效量的本发明化合物,其立体异构体、氘代物、或药学上可接受的盐,以及药学上可接受的载体和/或辅料,治疗有效量优选1-1500mg,所述的疾病优选特发性肺纤维化、进展性肺纤维化。
一种用于治疗哺乳动物或人的疾病的方法所述方法包括,将药物本发明化合物,其立体异构体、氘代物、或药学上可接受的盐,以及药学上可接受的载体和/或辅料,以1-1500mg/天的日剂量给予受试者,所述日剂量可以为单剂量或分剂量,在一些实施方案中,日剂量包括但不限于10-1500mg/天、20-1500mg/天、25-1500mg/天、50-1500mg/天、75-1500mg/天、100-1500mg/天、200-1500mg/天、10-1000mg/天、20-1000mg/天、25-1000mg/天、50-1000mg/天、75-1000mg/天、100-1000mg/天、200-1000mg/天、25-800mg/天、50-800mg/天、100-800mg/天、200-800mg/天、25-400mg/天、50-400mg/天、100-400mg/天、200-400mg/天,在一些实施方案中,日剂量包括但不限于1mg/天、5mg/天、10mg/天、20mg/天、25mg/天、50mg/天、75mg/天、100mg/天、125mg/天、150mg/天、200mg/天、400mg/天、600mg/天、800mg/天、1000mg/天、1200mg/天、1400mg/天、1500mg/天。
本发明涉及一种试剂盒,该试剂盒可以包括单剂量或多剂量形式的组合物,该试剂盒包含本发明化合物或者其立体异构体、氘代物、或药学上可接受的盐,本发明化合物或者其立体异构体、氘代物、或药学上可接受的盐量与上述药物组合物中其量相同。
本发明中本发明化合物或者其立体异构体、氘代物、或药学上可接受的盐的量在每种情况下以游离碱的形式换算。
“制剂规格”是指每一支、片或其他每一个单位制剂中含有主药的重量。
合成路线
本领域技术人员可以结合该文献以及已知的有机合成技术制备本发明的化合物,其起始原料为市售化学品和(或)化学文献中所述的化合物。“市售化学品”是从正规商业来源获得的,供应商包括:泰坦科技、安耐吉化学、上海德默、成都科龙化工、韶远化学科技、南京药石、药明康德和百灵威科技等公司。
通过美国化学会化学文摘社制备的已知化学物质的索引,可以选择性地识别特定和类似
的反应物,这些索引可在大多数公共图书馆和大学图书馆以及在线获得。已知但在目录中不可商购的化学品可选地由定制化学合成工厂制备,其中许多标准化学供应工厂(例如,上面列出的那些)提供定制合成服务。
术语
在本发明未特殊说明的情况下,本发明的术语具有以下含义:
“卤素”在本文中是指F、Cl、Br、I、或者它们的同位素。
“卤代”或“卤素取代”是指氢原子被一个以上选自F、Cl、Br、I、或者它们的同位素代,卤素取代基数量的上限等于被取代基团可被取代的氢数之和,在未作特殊限定下,卤素取代基数量为1至该上限之间的任意整数,当卤素取代基数量大于1时,可以是相同或不同的卤素进行取代。
“氘代”或“氘代物”是指烷基、环烷基、亚烷基、芳基、杂芳基、巯基、杂环烷基、烯基、炔基等基团上的氢原子被至少一个同位素氘取代的情形,氘代的数量上限等于被取代基团可被取代的氢数之和,在未作特殊限定下,氘代数量为1至该上限之间的任意整数,优选1-20个氘原子取代,更优选为1-10个氘原子取代,更优选为1-6个氘原子取代,进一步优选为1-3个氘原子取代。
“烷基”是指一价的直链或支链饱和脂肪族烃基,无特殊说明时,为1至20个碳原子的烷基,优选为1至8个碳原子的烷基,更优选为1至6个碳原子的烷基,进一步优选为1至4个碳原子的烷基,进一步优选1-2个碳原子的烷基。非限制性实施例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、新丁基、叔丁基、正戊基、异戊基、新戊基、正己基及其各种支链异构体。
“亚烷基”是指二价的直链和支链饱和烷基,亚烷基实施例包括但不限于亚甲基、亚乙基、亚丙基和亚丁基等。
“亚环烷基”是指“环烷基”的二价基团,非限制性实施例包括亚环丙基、亚环丁基等。
“碳环”或“碳环基”是指取代或未取代、饱和或不饱和的、芳香或非芳香的碳环基团,包括单环碳环、双环桥环、双环并环和双环螺环等,未特殊说明时,有3至12个碳原子,优选有3-10个碳原子,进一步优选有3-6个碳原子。其定义包括环烷基和芳基。非限制性实施例中,单环碳环包括环丙基、环丁基、环戊基、环己基、环庚基或苯基、等,双环桥环包括
等,双环并环包括等,双环螺环包括
等。
“环烷基”是指一价非芳族、部分不饱和或完全饱和的、取代或未取代的碳环烃基,无特殊说明时,通常有3至12个碳原子,优选有3-10个碳原子,更优选有3-6个碳原子,进一步优选有3-4个碳原子,非限制性实施例包括环丙基、环丁基、环戊基、环己基、或环庚基等。
“芳基”是指具有芳香性的碳环。非限制性实施例包括苯基、萘基等。
“炔基”是指直链或支链的、含有一个以上碳碳三键的一价不饱和烃基,除非特殊说明,炔基含有2-6个碳原子,优选含有2-4个碳原子,非限制性地的实施例为乙炔基、丙炔基、炔丙基等。
“烯基”是指直链或支链的、含有一个以上碳碳双键的一价不饱和烃基,除非特殊说明,烯基含有2-6个碳原子,优选含有2-4个碳原子,非限制性地的实施例为乙烯基、丙烯基、烯丙基、2-丁烯基、1-丁烯基等。
“烷氧基”或“烷基氧基”是指-O-烷基,未特殊限定时,为-O-C1-8烷基,优选为-O-C1-6烷基,更优选为-O-C1-4烷基,进一步优选为-O-C1-2烷基。非限制性实施例包括甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基、正己氧基、环丙氧基和环丁氧基等。
“卤代烷氧基”是指-O-卤代烷基,未特殊限定时,为-O-卤代C1-8烷基,优选为-O-卤代C1-6烷基,更优选为-O-卤代C1-4烷基,进一步优选为-O-卤代C1-2烷基。非限制性实施例包括一氟甲氧基、二氟甲氧基、三氟甲氧基、二氟乙基氧基等。
“C1-4烷基酰基”是指C1-4烷基-C(O)-。非限制性实施例包括甲酰基、乙酰基、丙酰基。
“杂环”或“杂环基”是指取代或未取代、饱和或不饱和的芳香环或者非芳香环,未特殊限定时,包含1至3个选自N、O或S的杂原子,包括单环杂环、双环桥杂环、双环并杂环和双环螺杂环等,未特殊限定时,为3至12元杂环,更优选为4-12元杂环,更优选为4-10元杂环,进一步优选为4-7元杂环。其定义包括杂环烷基和杂芳基。杂环基环中的N、S可被氧化成各种氧化态。杂环基可以连接在杂原子或者碳原子上,非限制性实施例包括环氧乙基、氮杂环丙基、氧杂环丁基、氮杂环丁基、1,3-二氧戊环基、1,4-二氧戊环基、1,3-二氧六环基、氮杂环庚基、吡啶基、呋喃基、噻吩基、吡喃基、N-烷基吡咯基、嘧啶基、吡嗪基、吡唑基、哒嗪基、咪唑基、哌啶基、哌叮基、吗啉基、硫代吗啉基、1,3-二噻基、二氢呋喃基、二氢吡喃基、二噻戊环基、四氢呋喃基、四氢吡咯基、四氢咪唑基、噁唑基、二氢噁唑基、四氢噁唑基、四氢噻唑基、四氢吡喃基、苯并咪唑基、苯并吡啶基、吡咯并吡啶基、苯并二氢呋喃基、氮杂二环[3.2.1]辛烷基、氮杂二环[5.2.0]壬烷基、氧杂三环[5.3.1.1]十二烷基、氮杂金刚烷基和氧杂螺[3.3]庚烷基、
等。
“亚杂环基”是“杂环基”对应的二价基团,非限制性实施例包括亚咪唑基、亚哌啶基、亚氮杂环丙基等。
“杂芳环”或“杂芳基”是指具有芳香性的杂环。非限制性实施例包括吡唑基、嘧啶基、噻唑基、吡啶基、呋喃基等。
“杂环烷基”是指包含1、2、3、4、5个选自N、S、O、P、Si杂原子的饱和或部分不饱和的非芳香性碳环。杂环烷基可以是单环、双环或多环,双环或多环可以是桥环、并环、螺环或其组合形式,双环或多环中可以包括一个及以上的芳环或杂芳环,但环系统整体不具有芳香性,连接位点在非芳香环上。通常杂环烷基为3至20元环,当为单环杂环烷基时,通常为3至15元环,或者3-10元环,或者3-8元环,或者3-6元环;当为双环或多环杂环烷基时,通常为5-12元环,或者5-11元环,或者6-9元环。其中的杂原子N、S、P包括其氧化态C=O、N-O、S=O、S(=O)2、
P=O、P(=O)2。杂环烷基为双环或多环时,至少其中的一个环中包含至少一个杂原子,可以是含杂原子的环与不含杂原子的环形成的二环或多环,也可以是含杂原子的环与含杂原子的环形成的二环或多环;当与其他基团连接时,可以是杂原子或碳原子处作为连接点;杂环烷基的非限制性实施例包括氮杂环丁基、吗啉基、哌嗪基、哌啶基、四氢吡喃基、氧杂环丁基、吡喃基、氮杂环戊烯基、氮杂环己烯基、氧杂环戊烯基、氧杂环己烯基等,杂环烷基可以任选地被取代基取代。
“螺环”是指环与环之间共用一个碳原子(称螺原子)的多环基团,其可以包含0或1个以上的双键或三键,可以含有0至5个选自N、O、S及其氧化态的杂原子。通常螺环为5至14元环,或者5至12元环,或者5至10元环。通常螺环为三螺三(表示三元环螺三元环)、三螺四、三螺五、三螺六、四螺四、四螺五、四螺六、五螺五或者五螺六。螺环可以是螺环的其非限定性实例包括,所述的螺环可以任选被取代基所取代。
“并环”是指环与环共享毗邻的两个环原子和一个化学键的多环基团,可以含有一个或多个双键或三键,并环可以含0至5个选自N、S、O及其氧化态的杂原子。通常并环为5至20元环,或者5至14元环,或者5至12元环,或者5至10元环。通常并环为三并四环(表示三元环与四元环形成的并环,根据IUPC命名规则有可能是三元环作为基本环也可能是四元环作为基本环的并环,以下同理)、三并五环、三并六环,四并四环、四并五环、四并六环、五并五环、五并六环、六并六环。并环的非限定性实例包括嘌呤、喹啉、异喹啉、苯并吡喃、苯并呋喃、苯并噻吩、;所述的并环可以任选被取代基所取代。
“桥环”是指两个环之间共享两个不相邻的环原子,可以含有1个或多个双键或三键。桥环可以含0至5个选自N、S、O及其氧化态的杂原子。通常桥环的环原子为5至20个,或者5至14个,或者5至12个,或者5至10个。桥环的非限定性实例包括金刚烷、
“碳并环”、“并环烷基”、“并碳环基”或“碳并环基”是指环体系仅有碳原子组成的“并环”。本文中出现的“碳并环”、“并环烷基”、“并碳环基”或“碳并环基”,其定义与并环一致。
“杂并环”、“杂并环基”、“杂并环烷基”、“并环杂环基”或“杂并环基”是指含有杂原子的“并环”。本文中出现的杂并环、“杂并环基”、“杂并环烷基”、“并环杂环基”或“杂并环基”,其定义与并环一致。
“杂螺环”、“杂螺环基”、“螺环杂环基”或“杂螺环基”是指含有杂原子的“螺环”。本文中出现的杂螺环、“杂螺环基”、“螺环杂环基”或“杂螺环基”,其定义与螺环一致。
“杂桥环”、“杂桥环基”、“桥环杂环基”或“杂桥环基”是指含有杂原子的“桥环”。本文中出现的杂桥环、“杂桥环基”、“桥环杂环基”或“杂桥环基”,其定义与桥环一致。“任选”或“任选地”是指随后所描述的事件或环境可以但不必须发生,该说明包括该事件或环境发生或不发生的场合。如:“任选被F取代的烷基”指烷基可以但不必须被F取代,说明包括烷基被F取代的情形和烷基不被F取代的情形。
当所列举的连接基团没有指明其连接方向时,其连接方向包括了从左向右和从右向左的读取顺序的方向进行连接,例如A-L-B,L选自-M-W-时,包括了A-M-W-B和A-W-M-B,举例说明如A-C(O)NRL1-B,包括了A-C(O)NRL1-B和A-NRL1C(O)-B。
“药学上可接受的盐”是指本发明化合物保持游离酸或者游离碱的生物有效性和特性,且所述的游离酸通过与无毒的无机碱或者有机碱,所述的游离碱通过与无毒的无机酸或者有机酸反应获得的盐。
“药物组合物”表示一种或多种本文所述化合物或其立体异构体、溶剂化物、药学上可接受的盐或共晶,与其他组成成分的混合物,其中其他组分包含生理学/药学上可接受的载体和/赋形剂。
“载体”指的是:不会对生物体产生明显刺激且不会消除所给予化合物的生物活性和特性,并能改变药物进入人体的方式和在体内的分布、控制药物的释放速度并将药物输送到靶向器官的体系,非限制性的实例包括微囊与微球、纳米粒、脂质体等。
“赋形剂”指的是:其本身并非治疗剂,用作稀释剂、辅料、粘合剂和/或媒介物,用于添加至药物组合物中以改善其处置或储存性质或允许或促进化合物或药物组合物形成用于给药的单位剂型。如本领域技术人员所已知的,药用赋形剂可提供各种功能且可描述为润湿剂、缓冲剂、助悬剂、润滑剂、乳化剂、崩解剂、吸收剂、防腐剂、表面活性剂、着色剂、矫味剂及甜味剂。药用赋形剂的实例包括但不限于:(1)糖,例如乳糖、葡萄糖及蔗糖;(2)淀粉,例如玉米淀粉及马铃薯淀粉;(3)纤维素及其衍生物,例如羧甲基纤维素钠、乙基纤维素、乙酸纤维素、羟丙基甲基纤维素、羟丙基纤维素、微晶纤维素及交联羧甲基纤维素(例如交联羧甲基纤维素钠);(4)黄蓍胶粉;(5)麦芽;(6)明胶;(7)滑石;(8)赋形剂,例如可可脂及栓剂蜡;(9)油,例如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油及大豆油;(10)二醇,例如丙二醇;(11)多元醇,例如甘油、山梨醇、甘露醇及聚乙二醇;(12)酯,例如油酸乙酯及月桂酸乙酯;(13)琼脂;(14)缓冲剂,例如氢氧化镁及氢氧化铝;(15)海藻酸;(16)无热原水;(17)等渗盐水;(18)林格溶液(Ringer’s solution);(19)乙醇;(20)pH缓冲溶液;(21)聚酯、聚碳酸酯和/或聚酐;及(22)其他用于药物制剂中的无毒相容物质。
“异构体”包括“立体异构体”和“互变异构体”。“立体异构体”是指分子中原子或原子团互相连接次序相同,但在空间上排列方式不同所产生的异构体。立体异构体包括顺反异构体、旋光异构体。“互变异构体”指可以通过被称为互变异构化的可逆化学反应相互转变,通常由氢原子和π键(双键或叁键)的伴行迁移引起的一种官能团向另一种官能团的转变。例如下述成对化合物:醛/酮-烯醇、亚胺-烯胺。
以下将通过实施例对本发明的内容进行详细描述。实施例中未注明具体条件的,按照常规条
件的实验方法进行。所举实施例是为了更好地对本发明的内容进行说明,但并不能理解为本发明的内容仅限于所举实例。本领域常规技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
测试方法
化合物的结构是通过核磁共振(NMR)或(和)质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用(Bruker Avance III 400和Bruker Avance 300)核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6),氘代氯仿(CDCl3),氘代甲醇(CD3OD),内标为四甲基硅烷(TMS);
MS的测定用(Agilent 6120B(ESI)和Agilent 6120B(APCI));
HPLC的测定使用Agilent 1260DAD高压液相色谱仪(Zorbax SB-C18 100×4.6mm,3.5μM);
薄层层析硅胶板使用烟台黄海HSGF254或青岛GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.15mm-0.20mm,薄层层析分离纯化产品采用的规格是0.4mm-0.5mm;
柱层析一般使用烟台黄海硅胶200-300目硅胶为载体。
实施例1
第一步:将2-(二乙氧基磷酰基)乙酸乙酯(2.31g,10.32mmol)溶于四氢呋喃(30mL)中,然后加入氢化钠(0.37g,15.33mmol),氮气置换气3次,然后于0℃反应半小时,之后将1A(1.5g,7.37mmol)溶于四氢呋喃溶液中缓慢注入到上述反应中。反应完成后,加水淬灭反应,然后乙酸乙酯萃取3次合并有机相浓缩干正相纯化(石油醚:乙酸乙酯=20:1)得到产品1B(1.6g,79%)。
LC-MS(ESI):m/z=274.2[M+H]+。
第二步:将1B(0.5g,1.83mmol)溶于乙醇(8mL)和1M的稀盐酸溶液中(2mL)中,然后加入钯碳(0.19g,1.83mmol),氢气置换气3次后,在室温下氢化反应过夜。反应完成后,反应液通过硅藻土过滤,用二氯甲烷和甲醇反复冲洗,滤液旋干,再次溶于10毫升二氯甲烷中,加入过量的碳酸钾直到溶液pH为弱碱性,过滤,滤液浓缩干得到游离态的产品1C(0.3g,88%)。
LC-MS(ESI):m/z=186.1[M+H]+。
第三步:将1D(0.5g,1.31mmol,根据文献Journal of Medicinal Chemistry,2021,vol.64,#21,p.15549-15581合成),1C(0.32g,1.73mmol),碳酸铯(0.85g,2.62mmol),Ruphos Pd G3(0.11g,0.13mmol)溶于1,4-二氧六环(15mL)中,氮气置换气3次,然后在90度下反应6小时。反应完成后,浓缩干,正相纯化(石油醚:乙酸乙酯=2:1)得到产品1E(35mg,5.5%)。
LC-MS(ESI):m/z=487.1[M+H]+。
第四步:将1E(0.035g,0.072mmol)溶于甲醇(2mL),四氢呋喃(2mL)和水(2mL)中,然后加入氢氧化锂(0.0069g,0.29mmol),常温反应1小时。反应完成后,直接加入1M稀盐酸调pH到弱酸性,然后加少量水,乙酸乙酯萃取3次,合并有机相浓缩后制备HPLC纯化得到化合物1三氟乙酸盐(4mg,12%)。
LC-MS(ESI):m/z=459.3[M+H]+。
1H NMR(400MHz,Chloroform-d)δ7.96(s,1H),7.80(d,1H),5.61(s,2H),4.18(s,3H),3.29-3.10(m,11H),2.88-2.73(m,3H),2.36-2.20(m,3H),1.90-1.78(m,3H),1.56-1.41(m,3H),0.90-0.74(m,3H).
实施例2:
第一步:将化合物2A(1.00g,4.49mmol,HCl盐)溶于无水四氢呋喃中(20mL),搅拌下依次加入三乙胺(682mg,6.74mmol)和甲磺酰氯(617mg,5.39mmol),室温反应4小时。TLC检测原料消失后,将反应液浓缩至5mL左右,滴入15mL冰水中,用20mL乙酸乙酯萃取两次,有机相合并浓缩,残留物经硅胶柱层析(石油醚:乙酸乙酯(v/v)=1:1)得到化合物2B(680mg,57%)。
1H NMR(400MHz,CDCl3)δ4.78(s,1H),4.15-4.03(m,4H),2.91-2.87(m,6H),1.46(s,9H).
第二步:将化合物2B(300mg,1.13mmol),溶于4mL二氯甲烷和三氟乙酸的混合溶剂中(二氯甲烷:三氟乙酸=3:1),室温反应2小时。TLC检测原料消失后,将反应液浓缩得2C粗品(220mg,TFA盐)直接用于下一步。
LC-MS(ESI):m/z=165.2[M+H]+.
第三步:将化合物2D(200mg,0.36mmol,依照专利WO2017223016A1的方法制备得到)与粗品2C(220mg)溶于10mL四氢呋喃中,加入DIPEA(140mg,1.08mmol),室温反应2小时。LCMS监测原料消失后,将反应液浓缩至2mL,滴入15mL冰水中,用20mL乙酸乙酯萃取两次,有机相合并浓缩,残留物经硅胶柱层析(石油醚:乙酸乙酯(v/v)=3:1)得到化合物2E(120mg,57%)。
LC-MS(ESI):m/z=579.3[M+H]+.
第四步:将化合物2E(120mg,0.21mmol)溶于5mL四氢呋喃和水混合溶液(THF:H2O=4:1)中,加入氢氧化锂一水合物(28mg,0.63mmol),室温反应16小时。LCMS监测原料消失后,过滤,滤液浓缩后通过C18反相柱分离得到目标化合物2的三氟乙酸盐(21mg,17%)。
LC-MS(ESI):m/z=537.5[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.87-7.82(m,1H),7.52-7.46(m,1H),5.68(s,2H),4.78(s,1H),4.10(s,3H),4.02-3.84(m,4H),3.05-2.80(m,7H),2.69-2.60(m,1H),2.41(s,3H),2.08-2.07(m,1H),1.91-1.73(m,3H),1.68-1.44(m,4H).
实施例3
第一步:将化合物2D(204mg,0.37mmol)溶解二氯甲烷(5mL)中,加入3-亚甲脒(38mg,0.55mmol)和过量吡啶,室温下反应4h,原料完全消失后,浓缩,粗品经硅胶柱层析(石油醚:乙酸乙酯=1:0~3:1)分离后得到目标化合物3A(164mg,收率:91.6%)。
LC-MS(ESI):m/z=484.3[M+1]+。
第二步:化合物3A(163mg,0.34mmol)溶于四氢呋喃(10mL)中,加入1M氢氧化锂水溶液(2mL),500C下反应48h。加入过量柠檬酸至弱酸性,浓缩,所得残余物经硅胶柱层析(二氯甲烷:无水甲醇=1:0~10:1)分离后得到化合物3(48mg,收率:33.1%)。
LC-MS(ESI):m/z=442.3[M+1]+。
1H NMR(400MHz,DMSO-d6)δ7.83(d,1H),7.46(d,1H),5.74(s,2H),5.66(s,2H),4.81-4.73(m,1H),4.48-4.38(m,4H),4.07(s,3H),2.40(s,3H),2.04-1.96(m,1H),1.89-1.71(m,4H),1.68-1.43(m,4H).
实施例4
第一步:将化合物4A(500mg,2.73mmol)加入反应瓶,用DMF(10ml)溶解,在0℃下加入NaH(160mg,4.10mmol),维持此温度反应30min,然后加入碘甲烷(775mg,5.46mmol),升到室温反应3小时。TLC监测反应完成后,加水(50ml)稀释,然后用乙酸乙酯萃取两次(50ml×2),合并有机相并干燥,减压浓缩,所得残余物经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1),得到化合物4B(475mg,产率:88.29%)。
1H NMR(400MHz,DMSO-d6)δ4.84-4.80(m,2H),4.50-4.24(m,1H),2.90-2.80(m,2H),2.78-2.70(m,2H),1.39(s,9H).
第二步:将化合物4B(470mg,2.38mmol)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入三氟乙酸(0.5ml),室温反应1h。TLC监测反应完成后,减压浓缩,得粗品化合物4C(250mg,TFA盐),直接用于下一步。
LC-MS(ESI):m/z=98.1[M+H]+.
第三步:将化合物2D(200mg,0.36mmol,依照专利WO2017223016A1的方法合成)和粗品化合物4C(250mg)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入DIPEA(0.62ml,3.6mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(石油醚:乙酸乙酯=2:1),得到化合4D(120mg,产率:64.93%)。
LC-MS(ESI):m/z=512.3[M+H]+.
第四步:将化合物4D(120mg,0.23mmol)加入反应瓶,用THF:MeOH:H2O=3:1:1(15ml)溶解,然后加入无水氢氧化锂(22mg,0.92mmol),在50℃反应16小时。TLC监测反应完成后,减压浓缩,所得残余物通过C18反相柱分离得到化合物4的三氟乙酸盐(35mg,产率:32.40%)。
LC-MS(ESI):m/z=470.4[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.87-7.82(m,1H),7.52-7.47(m,1H),5.64(s,2H),4.79(s,3H),4.10(s,3H),2.88-2.59(m,9H),2.41(s,3H),2.06-1.98(m,1H),1.91-1.73(m,3H),1.68-1.45(m,4H).
实施例5
第一步:将氢化铝锂(815mg,21.48mmol)用四氢呋喃(10ml)溶解,然后将化合物5A(1.0g,10.74mmol)用四氢呋喃(10ml)溶解,室温加入到上述体系中,最后在70℃反应3小时。TLC监测反应完成后,冷却到室温,加水(1ml)淬灭,室温搅拌30min,过滤,收集滤液,减压浓缩,得化合物5B(0.9g,产率:86.54%)。
LC-MS(ESI):m/z=98.2[M+H]+.
第二步:将化合物5B(900mg,9.26mmol)加入反应瓶,用四氢呋喃(10ml)溶解,依次加入二碳酸二叔丁酯(2.0g,9.26mmol)和三乙胺(2.5ml,18.52mmol),室温反应16小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(石油醚:乙酸乙酯=15:1),得到化合物5C(1.36g,产率:95.10%)。
1H NMR(400MHz,DMSO-d6)δ6.86(s,1H),4.75-4.69(m,2H),3.03-2.94(m,2H),2.70-2.57(m,2H),2.39-2.26(m,3H),1.37(s,9H).
以化合物5C为原料,参照实施例4的第一到四步,得到化合物5的三氟乙酸盐(40mg,产率:34.48%)。
LC-MS(ESI):m/z=484.4[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.87-7.82(m,1H),7.53-7.47(m,1H),5.63(s,2H),4.82-4.52(m,3H),4.10(s,3H),3.36-3.14(m,2H),2.82-2.72(m,3H),2.70-2.57(m,2H),2.42(s,3H),2.39-2.28(m,2H),2.22-2.10(m,1H),2.06-1.98(m,1H),1.93-1.42(m,8H).
实施例6:
第一步:将化合物6A(5.00g,28.6mmol)和70mL冰乙酸加入200mL高压釜中,加入二氧化铂(1.62g,7.15mmol),并充入2MPa氢气。加热至70℃搅拌48h,过滤并浓缩,用碳酸氢钠溶液中和至pH为8左右,粗品经柱层析(二氯甲烷:无水甲醇=70/10)纯化得到目标化合物6B(2.2g,42%)。
LC-MS(ESI):m/z=184.1[M+H]+。
第二步:将中间体6C(1g,2.72mmol)(参考专利WO2017223016A1合成),中间体6B(1g,5.44mmol),BrettPhos-G3-Pd(270mg,0.25mmol)和碳酸铯(1.77g,5.44mmol)加入1,4-二氧六环(30mL)中,抽换氮气三次,加热至95℃反应12h后,冷至室温,过滤,浓缩,柱层析(PE/EA=2/1)得到中间体6D(700mg,55%)。
LC-MS(ESI):m/z=470.3[M+H]+。
第三步:将中间体6D(0.7g,1.49mmol)溶于无水甲醇(20mL)中,然后加入吡啶对甲苯磺酸盐(750mg,2.98mmol)。加料完成后反应在65℃搅拌4h,浓缩后加水(40mL)稀释,并用乙酸乙酯(30mL)萃取三次,合并有机相经无水硫酸钠干燥后真空浓缩得粗品,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=20/80)纯化得到中间体6E(400mg,70%)。
LC-MS(ESI):m/z=386.2[M+H]+。
第四步:将中间体6E(0.4g,1.04mmol)溶于四氢呋喃(30mL)中,然后加入吡啶(410mg,5.18mmol)和对硝基氯甲酸苯酯(630mg,3.13mmol)。加料完成后反应在室温下搅拌2h,加水(40mL)稀释,并用乙酸乙酯(50mL)萃取三次,合并有机相经无水硫酸钠干燥后真空浓缩得粗品,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=40/60)纯化得到中间体6F(500mg,产率:87%)。
LC-MS(ESI):m/z=551.2[M+H]+。
第五步:将化合物6F(500mg,0.91mmol),和甲基正丙胺(200mg,0.73mmol)加入反应瓶,用四氢呋喃(20ml)溶解,然后加入DIPEA(750mg,2.71mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=30/70),得到化合6G(400mg,产率:91%)。
第六步:将化合物6G(400mg)进一步经手性拆分得到化合物6G-P1(150mg)和6G-P2(150mg)。
分析方法:仪器:SHIMADZU LC-30AD,柱:Chiral AD Column;流动相:A:CO2,B:0.05%DEA in MeOH;梯度:5-10% B in A;流速:3mL/min柱温:35℃波长:220nm.
制备方法:仪器:Waters 150Prep-SFC,柱:Chiral AD Column;流动相:A:CO2,B:
0.1%NH3·H2O in ETOH;梯度:12% B梯度洗脱流速:80mL/min,柱温:25℃波长:220nm循环时间:10.5min样品制备:样品浓度10mg/ml,乙醇溶液进样:每次1.5ml。分离后,通过旋转蒸发仪浴温35℃下干燥馏分得到化合物6G-P1(70mg,保留时间1.558min)和6G-P2(80mg,保留时间1.799min)。
第七步:将化合物6G-P1(150mg,0.31mmol)加入反应瓶,用THF:MeOH:H2O=5:1:1(15ml)溶解,然后加入无水氢氧化锂(52mg,1.24mmol),在25℃反应16小时。TLC监测反应完成后,用1M HCl调pH至7左右,减压浓缩,所得残余物通过硅胶柱层析纯化(二氯甲烷:无水甲醇=10:1)分离得到化合物6-1(50mg,产率:34%)。
LC-MS(ESI):m/z=471.4[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.74(d,1H),7.30(d,1H),5.64-5.67(m,2H),4.08(s,3H),3.82-3.87(m,1H),3.60-3.64(m,1H),3.15-3.17(m,1H),3.04-3.07(m,1H),2.95-3.00(m,1H),2.74-2.80(m,3H),2.44(s,3H),2.37-2.44(m,1H),2.16-2.19(m,1H),1.88-1.93(m,1H),1.72-1.80(m,2H),1.33-1.64(m,7H),0.65-0.82(m,3H).
将化合物6G-P2(150mg,0.31mmol)加入反应瓶,用THF:MeOH:H2O=5:1:1(15ml)溶解,然后加入无水氢氧化锂(52mg,1.24mmol),在25℃反应16小时。TLC监测反应完成后,用1M HCl调pH至7左右,减压浓缩,所得残余物通过硅胶柱层析纯化(二氯甲烷:无水甲醇=10:1)分离得到化合物6-2(40mg,产率:27%)。
LC-MS(ESI):m/z=471.4[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.74(d,1H),7.30(d,1H),5.64-5.67(m,2H),4.08(s,3H),3.82-3.87(m,1H),3.60-3.64(m,1H),3.15-3.17(m,1H),3.04-3.07(m,1H),2.95-3.00(m,1H),2.74-2.80(m,3H),2.44(s,3H),2.37-2.44(m,1H),2.16-2.19(m,1H),1.88-1.93(m,1H),1.72-1.80(m,2H),1.33-1.64(m,7H),0.65-0.82(m,3H).
实施例7
第一步:将化合物乙基三苯基溴化膦(25g,67.48mmol)加入反应瓶,用四氢呋喃(300ml)溶解,冷却到-45℃,然后滴加KHMDS(70ml,1mol/L in THF),维持此温度反应30min,然后再将化合物7A(10g,53.99mmol)用THF(100ml)溶解,在-45℃下滴加到上述体系中,然后缓慢升到室温反应16小时。TLC监测反应完成后,加饱和氯化铵溶液(200ml)淬灭反应,然后用乙酸乙酯萃取两次(150ml×2),合并有机相并干燥,减压浓缩,所得残余物经硅胶柱层析纯化(石油醚:乙酸乙酯=20:1),得到化合物7B(5.1g,产率:47.89%)。
1H NMR(400MHz,DMSO-d6)δ7.24-7.14(m,1H),5.19-5.09(m,1H),3.97-3.84(m,1H),2.88-2.72(m,2H),2.57-2.40(m,2H),1.47-1.42(m,3H),1.37(s,9H).
以化合物7B为原料,参照实施例4的第一到四步,得到化合物7的三氟乙酸盐(53mg,产率:40.77%)。
1H NMR(400MHz,DMSO-d6)δ7.89-7.82(m,1H),7.56-7.50(m,1H),5.67-5.58(m,3H),5.20-5.11(m,1H),4.82-4.76(m,1H),4.10(s,3H),2.76(s,3H),2.72-2.55(m,4H),2.43(s,3H),2.06-1.74(m,4H),1.71-1.35(m,8H).
LC-MS(ESI):m/z=484.4[M+H]+.
实施例8:
第一步:将化合物6F(300mg,0.54mmol)和中间体4C(100mg,1.03mmol)加入反应瓶,用四氢呋喃(20ml)溶解,然后加入DIPEA(140mg,1.62mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=30/70),得到化合8A(300mg,产率:91%)。
LC-MS(ESI):m/z=509.3[M+H]+.
第二步:将化合物8A(300mg,0.59mmol)加入反应瓶,用THF:Me OH:H2O=5:1:1(10ml)溶解,然后加入无水氢氧化锂(120mg,2.96mmol),在25℃反应16小时。TLC监测反应完成后,用1MHCl调pH至7左右,减压浓缩,所得残余物通过硅胶柱层析纯化(洗脱剂:二氯甲烷:无水甲醇=10:1)分离得到化合物8B(230mg,产率:79%)。
LC-MS(ESI):m/z=495.3[M+H]+.
第三步:将化合物8B(400mg)进一步经手性拆分得到化合物8-1(100mg)和8-2(100mg)。
分析方法:仪器:SHIMADZU LC-30AD,柱:Chiral AD Column;流动相:A:CO2,B:0.05%DEA in MeOH;梯度:5-10% B in A;流速:3mL/min柱温:35℃波长:220nm.
制备方法:仪器:SFC Prep 150AP,柱:大赛璐IG(19mm×250mm);流动相:A:CO2,B:0.05%NH3·H2O in ETOH;梯度:12% B梯度洗脱流速:80mL/min,柱温:25℃波长:220nm循环时间:20min样品制备:样品浓度10mg/ml,样品用DMF溶解,用0.45μm滤头过滤,制成样品液。分离后,通过旋转蒸发仪浴温35℃下干燥馏分得到化合物8-1(100mg,保留时间10.0min)和8-2(100mg,保留时间16.7min)。
8-1:(保留时间10.0min),1H NMR(400MHz,DMSO-d6)δ11.77(s,1H),7.75(d,1H),7.31(d,1H),5.71-5.63(m,2H),4.79(s,2H),4.43-4.39(m,1H),4.08(s,3H),3.87-3.83(m,1H),3.66-3.60(m,1H),2.99-2.92(m,1H),2.87-3.58(m,7H),2.43(s,3H),2.41-2.32(m,1H),2.24-2.21(m,1H),1.92-1.87(m,1H),1.80-1.71(m,2H),1.63-1.51(m,5H).
8-2:(保留时间16.7min),1H NMR(400MHz,DMSO-d6)δ11.77(s,1H),7.75(d,1H),7.31(d,1H),5.71-5.63(m,2H),4.79(s,2H),4.43-4.39(m,1H),4.08(s,3H),3.87-3.83(m,1H),3.66-3.60(m,1H),2.99-2.92(m,1H),2.87-3.58(m,7H),2.43(s,3H),2.41-2.32(m,1H),2.24-2.21(m,1H),1.92-1.87(m,1H),1.80-1.71(m,2H),1.63-1.51(m,5H).
实施例9:
以化合物6F为原料,参照实施例8的第一到三步,得到化合物9-1(25mg)和9-2(22mg)。
分析方法:仪器:SHIMADZU LC-30AD,柱:Chiral AD Column;流动相:A:CO2,B:0.05%DEA in MeOH;梯度:5-10% B in A;流速:3mL/min柱温:35℃波长:220nm.
制备方法:仪器:SFC Prep 150AP,柱:大赛璐IG(19mm×250mm);流动相:A:CO2,B:0.05%NH3·H2O in ETOH;梯度:12% B梯度洗脱流速:80mL/min,柱温:25℃波长:220nm循环时间:25min样品制备:样品浓度10mg/ml,样品用DMF溶解,用0.45μm滤头过滤,制成样品液。分离后,通过旋转蒸发仪浴温35℃下干燥馏分得到化合物9-1(100mg,保留时间12.0min)和9-2(100mg,保留时间19.6min)。
9-1:(保留时间12.0min)1H NMR(400MHz,DMSO-d6)δ11.68(s,1H),7.75(d,1H),7.31(d,1H),5.70-5.63(m,2H),4.74-4.59(m,2H),4.08(s,3H),3.87-3.83(m,1H),3.66-3.60(m,1H),3.33-3.29(m,1H),3.25-3.19(m,1H),2.99-2.93(m,1H),2.80-2.65(m,4H),2.53-2.50(m,1H),2.44(s,3H),2.44-2.32(m,3H),2.26-2.14(m,2H),1.94-1.87(m,1H),1.80-1.71(m,2H),1.63-1.51(m,5H).
9-2:(保留时间19.6min)1H NMR(400MHz,DMSO-d6)δ11.68(s,1H),7.75(d,1H),7.31(d,1H),5.70-5.63(m,2H),4.74-4.59(m,2H),4.08(s,3H),3.87-3.83(m,1H),3.66-3.60(m,1H),3.33-3.29(m,1H),3.25-3.19(m,1H),2.99-2.93(m,1H),2.80-2.65(m,4H),2.53-2.50(m,1H),2.44(s,3H),2.44-2.32(m,3H),2.26-2.14(m,2H),1.94-1.87(m,1H),1.80-1.71(m,2H),1.63-1.51(m,5H).
实施例10:
第一步:将化合物10A(200mg,0.52mmol,依照专利WO2017223016A1的方法制备得到)溶于无水四氢呋喃中(8mL),冰浴下加入60%氢化钠(31mg,0.77mmol),搅拌10分钟后加入2,4-二溴噻唑(150mg,0.62mmol),室温反应1小时。待反应完全后,将反应液缓慢滴入0.5M盐酸水溶液(20mL)淬灭反应,用乙酸乙酯(15mL×3)萃取,合并有机层,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤后将滤液浓缩,残留物用硅胶柱层析分离提纯(二氯甲烷:甲醇(v/v)=25:1)得到10B(145mg,51%)。
LC-MS(ESI):m/z=550.1[M+H]+.
第二步:将10B(145mg,0.27mmol)、环丙乙炔(52mg,0.79mmol)、二(三苯基膦)二氯化钯(19mg,0.027mmol)、碘化亚铜(10mg,0.05mmol)及三乙胺(80mg,0.79mmol)溶解于无
水四氢呋喃(8mL)中,氮气换气保护,于40℃反应过夜。待反应完全后,冷却至室温,向反应液中加入20mL水,用乙酸乙酯(15mL×3)萃取,合并有机层,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤后将滤液浓缩,残留物用硅胶柱层析分离提纯(石油醚:乙酸乙酯(v/v)=5:1)得到10C(85mg,60%)。
LC-MS(ESI):m/z=536.3[M+H]+.
第三步:将10C(85mg,0.16mmol)溶于5mL四氢呋喃和水的混合溶液(THF:H2O(v/v)=4:1)中,加入氢氧化锂一水合物(20mg,0.48mmol),室温反应过夜。待反应完全后,过滤,将滤液浓缩后,残留物用硅胶柱层析分离提纯(二氯甲烷:甲醇(v/v)=20:1)得到化合物10(15mg,19%)。
LC-MS(ESI):m/z=494.1[M+H]+.
1H NMR(400MHz,CDCl3)δ8.04-8.01(m,1H),7.54-7.51(m,1H),6.76(s,1H),6.03-5.93(m,2H),4.78(s,1H),4.18(s,3H),2.90-2.85(m,1H),2.62(s,3H),2.13-1.91(m,4H),1.80-1.64(m,4H),1.43-1.35(m,1H),0.91-0.83(m,2H),0.81-0.74(m,2H).
实施例11:
第一步:将化合物11A(1.0g,10.19mmol)加入20ml四氢呋喃中,然后加入吡啶(4030mg,50.95mmol)和对硝基氯甲酸苯基甲酯(6160mg,30.57mmol),室温搅拌2小时,TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=5/1),得到化合11B(870mg,产率:32%)。
LC-MS(ESI):m/z=264.1[M+H]+.
第二步:将化合物11C(220mg,0.61mmol,依照专利WO2017223016A1的方法制备得到)和醋酸铵(470mg,6.1mmol)加入反应瓶,然后加入无水甲醇(20ml),室温反应1小时后加入氰基硼氢化钠(77mg,1.22mmol),室温搅拌16小时,TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(DCM:MeOH=10/1),得到化合11D(45mg,产率:20%)。
LC-MS(ESI):m/z=360.2[M+H]+.
第三步:将化合物11D(45mg,0.13mmol)和化合物11B(51mg,0.20mmol)加入反应瓶,用四氢呋喃(20ml)溶解,然后加入DIPEA(50mg,0.39mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=30/70),得到化合11E(25mg,产率:41%)。
LC-MS(ESI):m/z=484.2[M+H]+.
第四步:将化合物11E(25mg,0.052mmol)加入反应瓶,用THF:MeOH:H2O=5:1:1(10ml)溶解,然后加入一水合氢氧化锂(11mg,0.26mmol),在25℃反应16小时。TLC监测反应完成后,用
1M HCl调pH至7左右,减压浓缩,所得残余物通过硅胶柱层析纯化(洗脱剂:二氯甲烷:无水甲醇=10:1)分离得到化合物11(15mg,产率:62%)。
LC-MS(ESI):m/z=470.3[M+H]+.
1H NMR(400MHz,CD3OD)δ7.81(d,1H),7.45(d,1H),4.80-4.83(m,1H),4.71-4.73(m,4H),4.15(s,3H),4.05-4.06(m,2H),2.61-2.75(m,3H),2.54-2.57(m,1H),2.53(s,3H),2.37-2.43(m,2H),2.07-2.11(m,1H),1.87-1.93(m,3H),1.70-1.77(m,1H),1.54-1.67(m,3H).
实施例12:
第一步:将叔丁醇钾(5.0g,44.56mmol)加入三口瓶,用DMF(50ml)溶解,氮气置换三次,冷却到-45℃,缓慢滴加12A(5.0g,27.00mmol)的DMF(25ml)溶液和二氟甲基(2-吡啶基)砜(4.35g,22.95mmol)的DMF(25ml),滴加完成后,缓慢升到室温反应16小时。TLC监测反应完成后,向反应液中加入饱和氯化铵溶液(50ml)和3M盐酸水溶液(15ml),室温搅拌1小时。然后加水(100ml)稀释,用乙酸乙酯萃取两次(100ml×2),合并有机相并干燥,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=20:1),得到化合物12B(360mg,产率:6.08%)。
1H NMR(400MHz,DMSO-d6)δ7.40-7.30(m,1H),4.13-4.00(m,1H),2.95-2.84(m,2H),2.65-2.54(m,2H),1.38(s,9H).
以化合物12B为原料,参照实施例4的第一到四步,得到化合物12的三氟乙酸盐(76mg,产率:55.07%)。
1H NMR(400MHz,DMSO-d6)δ7.87-7.82(m,1H),7.52-7.47(m,1H),5.65(s,2H),4.82-4.75(m,1H),4.70-4.30(m,1H),4.10(s,3H),2.93-2.69(m,7H),2.67-2.60(m,1H),2.41(s,3H),2.06-1.74(m,4H),1.68-1.45(m,4H).
LC-MS(ESI):m/z=506.6[M+H]+.
实施例13
以化合物13A为原料,参照实施例12的第一到五步,得到化合物13的三氟乙酸盐(85mg,产率:81.73%)。
1H NMR(400MHz,DMSO-d6)δ7.87-7.82(m,1H),7.52-7.46(m,1H),5.71-5.52(m,2H),4.81-4.75(m,1H),4.10(s,3H),3.39-3.16(m,2H),2.83-2.56(m,6H),2.42(s,3H),2.39-2.32(m,1H),2.23-1.97(m,2H),1.92-1.40(m,8H).
LC-MS(ESI):m/z=520.6[M+H]+.
实施例14:
第一步:室温下,将14A(1.3g,10mmol)溶解于二氯甲烷(20ml)中,向其中加入三乙胺(3.03g,30mmol),搅拌均匀,再加入二碳酸二叔丁酯(2.18g,10mmol),继续反应16小时,TLC监测反应完全,停止反应。向反应液中加入EA(30mL),有机相用水(30mL×3)洗涤,饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=10:1)分离纯化得到化合物14B(640mg,27.73%)。
LC-MS(ESI):m/z=230.1[M+H]+.
第二步:室温下,将14B(640mg,2.79mmol)溶解于干燥的DMF(5mL)中,冰浴下,向其中加入NaH(134mg,3.35mmol),搅拌15分钟,再加入碘甲烷(439mg,3.07mmol),室温反应1小时,TLC监测原料消失,停止反应。向反应液中加入乙酸乙酯(15mL),有机相用水(20mL×3)洗涤,饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=10:1)分离纯化得到化合物14C(320mg,47.12%)。
LC-MS(ESI):m/z=244.1[M+H]+.
第三步:室温下,将14C(320mg,1.32mmol)溶解于二氯甲烷(5mL)中,加入盐酸的二氧六环溶液(1.32mL,5.28mmol,4M),继续反应1小时,TLC监测原料消失,停止反应。浓缩反应,得到化合物14D(180mg,95.60%)。
LC-MS(ESI):m/z=144.1[M+H]+.
第四步:室温下,将14E(240mg,0.54mmol)(参考专利WO2017223016A1合成)溶解于干燥的二氯甲烷(20mL)中,加入三乙胺(209mg,1.62mmol),搅拌均匀,冰浴下,加入14D(170mg,1.19mmol),室温反应16小时,TLC监测原料消失,停止反应。向反应液中加入二氯甲烷(20mL),有机相用水(30mL×3)洗涤,饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=2:1)分离纯化得到化合物14F(230mg,94.99%)。
LC-MS(ESI):m/z=452.4[M+H]+.
第五步:室温下,将14F(230mg,0.51mmol)溶解于干燥的四氢呋喃(10mL)中,加入联硼酸频哪醇酯(259mg,1.02mmol),Pd(dppf)Cl2(83mg,0.10mmol),乙酸钾(100mg,1.02mmol)。氮气气氛下,80℃反应16小时,TLC监测原料消失,停止反应。冷却至室温,向反应液中加入乙酸乙酯(20mL),有机相用水(20mL×3)洗涤,饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,无需纯化得到化合物14G(180mg,84.84%)。
LC-MS(ESI):m/z=418.5[M+H]+.
第六步:室温下,将14G(180mg,0.43mmol)溶解于乙酸乙酯(5mL)中,冰浴下,将过氧化氢(244mg,2.15mmol,30%)滴加到反应液中,室温反应两小时,TLC监测原料消失,停止反应。
向反应液中加入乙酸乙酯(10mL),有机相用水(20mL×3)洗涤,饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=1:1)分离纯化得到化合物14H(90mg,53.57%)。
LC-MS(ESI):m/z=390.3[M+H]+.
第七步:室温下,将14H(90mg,0.23mmol)溶解于干燥的甲苯(5mL)中,向其中加入14I(86mg,0.46mmol)(参考专利WO2017223016A1合成),三正丁基膦(140mg,0.69mmol),搅拌均匀,再加入偶氮二甲酰二哌啶(174mg,0.69mmol),氮气气氛下,50℃反应16小时,TLC监测原料消失,停止反应。冷却至室温,向反应液中加入乙酸乙酯(15mL),有机相用水(20mL×3)洗涤,饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=1:1)分离纯化得到化合物14J(100mg,77.59%)。
LC-MS(ESI):m/z=558.7[M+H]+.
第八步:室温下,将14J(100mg,0.18mmol)溶解于四氢呋喃(3mL)中,加入水(3mL),搅拌均匀,向其中加入氢氧化锂(22mg,0.9mmol),室温反应16小时,TLC监测原料消失,停止反应。向反应液中加入乙酸乙酯(10mL),用稀盐酸将PH调为弱酸性,分液,有机相用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(DCM:MeOH=15:1)分离纯化得到化合物14(35mg,37.86%)。
LC-MS(ESI):m/z=516.1[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.85-7.83(d,1H),7.48-7.46(d,1H),5.69-5.64(d,2H),4.77(s,1H),4.18(s,1H),4.09(s,3H),4.00(s,1H),3.54-3.44(d,2H),2.86-2.81(d,3H),2.68-2.59(m,1H),2.40(s,3H),2.03-1.99(m,1H),1.88-1.77(m,3H),1.66-1.45(m,4H).
实施例15
第一步:室温下,将14E(1.5g,3.35mmol),N,N-二异丙基乙胺(1.73g,13.4mmol)加入反应液中,再加入15C(1.1g,盐酸盐,参考ChemMedChem.2012Jul;7(7):1230-6.),室温反应过夜。反应结束后将反应液浓缩,残留物经柱层析(石油醚:乙酸乙酯(v/v)=1:1)纯化得到目标化合物15F(0.85g,64%)。
LC-MS(ESI):m/z=398.0[M+H]+.
第二步:将15F(850mg,2.15mmol)溶于N,N-二甲基甲酰胺(20mL)中,在0℃下加入
钠氢(250mg,6.45mmol,60%),反应0.5小时后加入碘甲烷(920mg,6.45mmol),40℃反应过夜。反应结束后将反应液用饱和氯化铵溶液淬灭再乙酸乙酯萃取、洗涤、浓缩,残留物经柱层析纯化(石油醚:乙酸乙酯(v/v)=1:1)得到目标化合物15G(0.5g,1.22mmol)。
LC-MS(ESI):m/z=410.0[M+H]+.
第三步:将15G(0.5g,1.22mmol)、联硼酸频那醇酯(0.46g,1.83mmol)、乙酸钾(0.30g,3.05mmol)、[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(89mg,0.12mmol)溶于1,4-二氧六环(10mL)中,氮气保护,80℃反应16小时。反应结束后反应液乙酸乙酯萃取、洗涤、浓缩后直接用于下一步。
LC-MS(ESI):m/z=376.1[M+H]+.
第四步:将上一步产物溶于乙酸乙酯(10mL)中,在零摄氏度下加入过氧化氢溶液(0.61mL,6mmol,30%),室温反应2小时。反应结束后将反应液用饱和硫代硫酸钠溶液淬灭,再萃取(乙酸乙酯)、洗涤、浓缩,残留物经柱层析(石油醚:乙酸乙酯(v/v)=1:1)纯化得到目标化合物15I(0.3g,72%)。
LC-MS(ESI):m/z=348.1[M+H]+.
第五步:将14I(5g,26.85mmol)、叔丁基二苯基氯硅烷(8.12g,29.54mmol)、咪唑(5.48g,80.55mmol)溶于N,N-二甲基甲酰胺(50mL)中,60℃反应16小时。反应结束后将反应液萃取(乙酸乙酯)、洗涤、浓缩,残留物经柱层析纯化(石油醚:乙酸乙酯(v/v)=10:1)得到目标化合物15K(10.3g,90%)。
LC-MS(ESI):m/z=425.3[M+H]+.
第六步:将15K(10.3g,24.26mmol)溶于甲醇(40mL)、四氢呋喃(40mL)、水(20mL)中,再加入氢氧化锂一水合物(3.05g,72.78mmol),室温反应2小时。反应结束后将反应液调pH=5-6,再萃取(乙酸乙酯)、洗涤、浓缩即得到目标化合物15L(9.2g,99%)。
LC-MS(ESI):m/z=383.3[M+H]+.
第七步:将15L(9.2g,24.05mmol)、N,N-二甲基甲酰胺二叔丁基缩醛(19.56g,96.2mmol)溶于甲苯(150mL)中,110℃反应24小时。反应结束后将反应液萃取(乙酸乙酯)、洗涤、浓缩,残留物经柱层析纯化(石油醚:乙酸乙酯(v/v)=10:1)得到目标化合物15M(4.1g,38%)。
LC-MS(ESI):m/z=383.1[M+H-56]+.
第八步:将15M(4.1g,9.35mmol)溶于四氢呋喃(40mL)中,再加入四丁基氟化铵(18.7mL,18.7mmol,1M),室温反应16小时。反应结束后将反应液萃取(乙酸乙酯)、洗涤、浓缩,残留物经柱层析纯化(石油醚:乙酸乙酯(v/v)=3:1)得到目标化合物15N(2.2g,不纯)。
第九步:将15I(0.1g,0.29mmol)、15N(0.17g,0.87mmol)、三苯基膦(0.15g,0.58mmol)溶于1,2-二氯乙烷(5mL)中,在零摄氏度下滴加偶氮二甲酸二异丙酯(0.12g,0.58mmol),然后升温至80℃反应16小时。反应结束后将反应液浓缩,残留物经柱层析纯化(石油醚:乙酸乙酯(v/v)=1:2)得到目标化合物15O(30mg,19%)。
LC-MS(ESI):m/z=530.3[M+1]+.
第十步:将15O(30mg,0.06mmol)溶于二氯甲烷(2mL)中,再加入三氟乙酸(0.5mL),室温反应1小时。反应结束后将反应液浓缩,残留物经制备纯化得到目标化合物15的三氟乙酸盐(2.09mg,7%)。
LC-MS(ESI):m/z=474.2[M+1]+.
1H NMR(400MHz,CDCl3)δ8.01(d,1H),7.63(d,1H),5.70(dd,2H),4.31(t,1H),4.19(s,3H),3.11(s,3H),2.90(m,1H),2.74(s,3H),2.15-2.10(m,2H),2.07-2.00(m,4H),1.97-1.91(m,2H),1.80-1.78(m,3H),1.71-1.66(m,2H),1.49-1.46(m,1H),1.26(m,1H).
实施例16:
第一步:室温下,将甲基-氨基甲酸叔丁酯(1.3g,10mmol)溶解于干燥的DMF(10mL)中,冰浴下,加入NaH(440mg,11mmol),搅拌30分钟,加入16A(1.32g,10mmol),室温反应16小时,TLC监测原料消失,停止反应。向反应液中加入乙酸乙酯(20mL),有机相用水(20mL×3)洗涤,饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=10:1)分离纯化得到化合物16B(1.7g,94.90%)。
LC-MS(ESI):m/z=184.2[M+H]+.
第二步:室温下,将16B(1.7g,9.29mmol)溶解于二氯甲烷(10mL)中,加入盐酸的二氧六环溶液(9.3mL,37.15mmol,4M),继续反应1小时,TLC监测原料消失,停止反应。浓缩反应,无需纯化,得到化合物16C(760mg,98.54%)。
LC-MS(ESI):m/z=84.2[M+H]+.
以化合物16C为原料,参照实施例14的第四到八步,得到化合物16(25mg,24.83%)。
LC-MS(ESI):m/z=456.1[M+H]+.
1H NMR(400MHz,CDCl3)δ7.99-7.96(d,1H),7.37-7.35(d,1H),5.76-5.73(d,2H),4.74(s,1H),4.16(s,3H),4.04-3.92(d,2H),2.94-2.90(d,4H),2.58(s,3H),2.15-2.11(d,1H),2.01-1.89(m,3H),1.80-1.78(d,3H),1.74-1.64(m,4H).
实施例17
第一步:将化合物17A(参考专利WO2019/126093合成)(4.68g,30mmol)溶解二氯甲烷(100mL)中,加入三乙胺(9.18g,90mmol)、DMAP(366mg,3mmol)和叔丁基二苯基氯硅烷(9.1g,33mmol),室温下反应3h,原料完全消失后,浓缩,粗品经硅胶柱层析(石油醚:乙酸乙酯(v:v)=20:1)分离后得到目标化合物17B(10.9g,收率:92.3%)。
第二步:化合物17B(10.9g,27.6mmol)溶于无水甲苯(100mL)中,加入三甲基硅烷基2-(氟磺酰基)二氟乙酸酯(34.5g,138mmol),110℃下反应过夜。先后用饱和硫代硫酸钠、饱和食盐水洗涤,干燥有机相,浓缩,所得残余物经硅胶柱层析(石油醚:乙酸乙酯(v:v)=20:1)分离后得到目标化合物17C(3.1g,收率:25.3%)。
第三步:化合物17C(3.1g,7.0mmol)溶于四氢呋喃(20ml)中,加入过量四丁基氟化铵,室温搅拌过夜,反应结束后,加入乙酸乙酯(100mL),水洗(100mL×4),收集有机相,无水硫酸钠干燥,浓缩,所得粗产物经硅胶柱层析分离(石油醚:乙酸乙酯(v:v)=3:1)后得到标题目标化合物17D(1.1g,78.5%)。
第四步:室温下,将17D(1.1g,5.3mmol)溶解于干燥的甲苯(100mL)中,向其中加入17E(1.8g,6mmol)(参考专利WO2019/126093合成),三正丁基膦(3.2g,15.9mmol),搅拌均匀,再加入偶氮二甲酰二哌啶(4.0g,15.9mmol),氮气气氛下,50℃反应16小时,TLC监测原料消失,停止反应。冷却至室温,向反应液中加入乙酸乙酯(100mL),有机相用水(100mL×3)洗涤,饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=1:1)分离纯化得到目标化合物17F(1.1g,43.3%)。
LC-MS(ESI):m/z=493.2[M+H]+。
以化合物17F为原料,参照实施例6的第三,四,五,七步,得到化合物得到化合物17-1的三氟乙酸盐(制备HPLC出峰时间:18.85min,9.3mg)和化合物17-2的三氟乙酸盐(HPLC出峰时间:19.23min,16.5mg)。HPLC制备方法:仪器:waters 2767制备液相,柱:Sunfire Prep C18(19mm×250mm)5um;流动相:A:乙腈,B:水(含千分之一TFA,v/v);梯度:流动相A梯度20分钟从10%升至60%,梯度洗脱流速:15mL/min。
化合物17-1(制备HPLC出峰时间:18.85min):LC-MS(ESI):m/z=518.8[M+H]+。
化合物17-2(制备HPLC出峰时间:19.23min):1H NMR(400MHz,DMSO-d6)δ7.85(d,1H),7.48(d,1H),5.70(s,2H),4.78(s,1H),4.21-4.01(m,6H),3.21-3.16(m,1H),2.97-2.55(m,5H),2.41(s,3H),2.07-1.97(m,1H),1.91-1.72(m,3H),1.69-1.40(m,4H).
LC-MS(ESI):m/z=518.8[M+H]+。
实施例18
第一步:将化合物7A(5.0g,27.0mmol)和四溴化碳(17.9g,54.0mmol)加入反应瓶,用甲苯
(200ml)混匀,然后加入三苯基膦(28.3g,108.0mmol),在80℃反应3小时。TLC监测反应完成后。冷却到室温,减压浓缩除去甲苯,残渣用乙酸乙酯(200ml)溶解,然后用水洗涤两次(100ml×2),收集有机相并干燥,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=5:1),得到化合物18A(5.4g,产率:59.01%)。
1H NMR(400MHz,DMSO-d6)δ7.34-7.26(m,1H),4.01-3.90(m,1H),2.88-2.78(m,2H),2.56-2.51(m,2H),1.38(s,9H).
第二步:将化合物18A(2.0g,5.90mmol)加入反应瓶,用四氢呋喃(50ml)溶解,冷却到0℃,然后加入NaH(0.35g,8.85mmol),维持此温度反应30min,再加入碘甲烷(1.7g,11.80mmol),升到室温反应2小时。TLC监测反应完成后,向反应体系中加入饱和氯化铵溶液(100ml)淬灭,然后用乙酸乙酯萃取两次(100ml×2),合并有机相并干燥,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=30:1),得到化合物18B(2.02g,产率:97.11%)。
1H NMR(400MHz,DMSO-d6)δ4.39(s,1H),2.86-2.71(m,7H),1.40(s,9H).
第三步:将碘化亚铜(10.8g,57.20mmol)加入反应瓶,用四氢呋喃(60ml)混匀,在0℃下滴加甲基锂溶液(43ml,1.6mol/L in ether),滴加完成后,再加入化合物18B(2.02g,5.72mmol)的四氢呋喃(60ml)溶液,滴加完成后,升到室温反应16小时。TLC监测反应完成后,加入饱和氯化铵溶液(100ml)淬灭,然后用乙酸乙酯萃取两次(50ml×2),合并有机相并干燥,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=20:1),得到化合物18C(800mg,产率:62.02%)。
1H NMR(400MHz,DMSO-d6)δ4.36(s,1H),2.77-2.64(m,7H),1.50(s,6H),1.39(s,9H).
第四步:将化合物18C(300mg,1.33mmol)加入反应瓶,用二氯甲烷(6ml)溶解,然后加入三氟乙酸(1ml),室温反应2小时。TLC监测反应完成后,减压浓缩,得到化合18D(170mg,TFA盐),直接下一步。
LC-MS(ESI):m/z=126.2[M+H]+.
第五步:将粗品化合物18D(170mg)加入反应瓶,用二氯甲烷(10ml)溶解,然后依次加入DIPEA(0.6ml,3.60mmol)和化合物2D(100mg,0.18mmol),室温反应2小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(石油醚:乙酸乙酯=1:1),得到化合18E(90mg,产率:92.78%)。
LC-MS(ESI):m/z=540.6[M+H]+.
第六步:将化合物18E(90mg,0.17mmol)加入反应瓶,用THF:MeOH:H2O=1:1:1(9ml)溶解,然后加入无水氢氧化锂(17mg,0.68mmol),室温反应16小时。TLC监测反应完成后,减压浓缩,所得残余物通过C18反相柱分离得到化合物18的三氟乙酸盐(43mg,产率:50.83%)。
1H NMR(400MHz,DMSO-d6)δ7.89-7.81(m,1H),7.52-7.47(m,1H),5.64(s,2H),4.81-4.75(m,1H),4.09(s,3H),2.75(s,3H),2.70-2.56(m,5H),2.44-2.31(m,4H),2.06-1.95(m,1H),1.91-1.73(m,3H),1.68-1.50(m,4H),1.45(s,6H).
LC-MS(ESI):m/z=498.3[M+H]+.
实施例19
第一步:将化合物2D(200mg,0.36mmol)和化合物19A(100mg,0.72mmol,依照专利EP585130A2的方法合成)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入DIPEA(0.20ml,1.2mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(石油醚:乙酸乙酯=1:1),得到化合物19B(110mg,产率:54.99%)。
LC-MS(ESI):m/z=554.6[M+H]+.
第二步:将化合物19B(110mg,0.20mmol)溶于四氢呋喃/水的混合溶剂中(8mL,3:1,v:v),然后加入氢氧化锂(35mg,0.80mmol)。反应液在30℃反应16小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(乙酸乙酯)后进一步通过C18反相柱分离得到目标化合物19(32mg,产率:31.48%)。
LC-MS(ESI):m/z=512.4[M+H]+.
1H NMR(400MHz,CDCl3)δ7.97-7.94(m,1H),7.22-7.19(m,1H),5.76-5.74(m,2H),5.35-5.21(m,1H),4.70(s,1H),4.62-4.47(m,1H),4.13(s,3H),3.23-3.16(m,1H),3.06-2.98(m,1H),2.91-2.82(m,4H),2.49(s,3H),2.17-2.13(m,1H),1.98-1.92(m,4H),1.80-1.74(m,3H),1.70-1.64(m,5H),1.58-1.56(m,2H),1.25-1.07(m,2H).
实施例20:
第一步:将化合物14I(1500mg,8.05mmol,依照专利WO2017223016A1的方法制备得到)加入40ml二氯甲烷中,然后加入三乙胺(1630mg,16.1mmol)和甲基磺酰氯(1200mg,10.47mmol),室温搅拌2小时,TLC监测反应完成后,加入饱和碳酸氢钠溶液稀释,二氯甲烷萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合20B(1500mg,产率:70%)。
第二步:将化合物20B(1.5g,5.67mmol,和叠氮钠(1.11g,17.01mmol)加入反应瓶,然后加入DMF(30ml),加热至110℃反应2小时后冷却,加水稀释后,乙酸乙酯萃取,饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合20C(1.1g,产率:92%)。
第三步:将化合物20C(1.1g,5.21mmol)和三苯基膦(2.73g,10.42mmol)加入四氢呋喃(20ml)和水(20ml)的混合溶剂中,氮气置换保护,室温反应10小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:DCM/MeOH=100/15),得到化合物20D(710mg,产率:74%)。
LC-MS(ESI):m/z=186.1[M+H]+.
第四步:将化合物20D(400mg,2.16mmol)和6C(190mg,2.16mmol,依照专利WO2017223016A1的方法制备得到)加入1,4-二氧六环(20ml)中,然后加入RuphosPdG3(90mg,0.11mmol)和碳酸铯(1.41g,4.32mmol),氮气置换保护,加热至110℃反应10小时。TLC监测反应完成后,冷却,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:PE/EA=1/1),得到化合物20F(500mg,产率:49%)。
LC-MS(ESI):m/z=472.3[M+H]+.
第五步:将化合物20F(0.5g,1.06mmol)溶于无水甲醇(20mL)中,然后加入吡啶对甲苯磺酸盐(530mg,2.12mmol)。加料完成后反应在65℃搅拌4h,浓缩后加水(20mL)稀释,并用乙酸乙酯(30mL)萃取三次,合并有机相经无水硫酸钠干燥后真空浓缩得粗品,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=20/80)纯化得到化合物20G(400mg,97%)。
LC-MS(ESI):m/z=388.2[M+H]+。
第六步:将化合物20G(0.4g,1.03mmol)溶于四氢呋喃(30mL)中,然后加入吡啶(410mg,5.15mmol)和对硝基氯甲酸苯酯(620mg,3.09mmol)。加料完成后反应在室温下搅拌2小时,加水(40mL)稀释,并用乙酸乙酯(50mL)萃取三次,合并有机相经无水硫酸钠干燥后真空浓缩得粗品,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=40/60)纯化得到化合物20H(140mg,产率:25%)。
LC-MS(ESI):m/z=553.2[M+H]+。
第七步:将化合物20H(140mg,0.25mmol)和N-甲基-3-亚甲基环丁烷-1-胺盐酸盐(43mg,0.33mmol)加入反应瓶,用四氢呋喃(10ml)溶解,然后加入DIPEA(97mg,0.75mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=30/70),得到化合物20I(120mg,产率:93%)。
LC-MS(ESI):m/z=511.3[M+H]+。
第八步:将化合物20I(120mg,0.24mmol)和碘甲烷(51mg,0.36mmol)溶于干燥的四氢呋喃(30mL)中,冰浴下缓慢加入LiHMDS(80mg,0.48mmol)。加料完成后继续搅拌反应2h,TLC监测原料反应完全,加入饱和氯化铵溶液淬灭反应,并用乙酸乙酯(50mL)萃取三次,合并有机相经无水硫酸钠干燥后真空浓缩得粗品,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=40/60)纯化得到化合物20J(80mg,产率:73%)。
LC-MS(ESI):m/z=525.3[M+H]+。
第九步:将化合物20J(80mg,0.15mmol)加入反应瓶,用THF:MeOH:H2O=5:1:1(7ml)溶解,然后加入一水合氢氧化锂(31mg,0.75mmol),在25℃反应16小时。TLC监测反应完成后,用1M HCl调pH至7左右,减压浓缩,所得残余物通过HPLC纯化分离得到化合物20-1和化合物20-2(分离方法:仪器:SHIMADZU LC-20AP;反相柱:C18;流动相:A is 10mmol NH4HCO3in water;B is acetonitrile;梯度:B from 15%to 45%in 16min;流速:25mL/min;柱温:Room temperature;波长:
210&254nm)。
化合物20-1:出峰时间2.039min。
LC-MS(ESI):m/z=483.3[M+H]+.
1H NMR(400MHz,CD3OD)δ7.78(d,1H),7.53(d,1H),5.70(s,2H),4.76-4.80(m,2H),4.17(s,3H),2.93-2.99(m,1H),2.77-2.92(m,6H),2.65-2.78(m,5H),2.52(s,3H),2.18-2.23(m,1H),1.99-2.04(m,1H),1.84-1.90(m,2H),1.76-1.82(m,1H),1.59-1.68(m,1H),1.457-1.52(m,1H),1.28-1.34(m,2H).
化合物20-2:出峰时间2.141min。
LC-MS(ESI):m/z=483.3[M+H]+.
1H NMR(400MHz,CD3Cl)δ7.94(d,1H),7.45(d,1H),5.73-5.83(m,2H),4.75-4.89(m,2H),4.13(s,3H),3.23-3.32(m,1H),2.66-3.00(m,8H),2.62(s,3H),2.55(s,3H),1.97-2.06(m,1H),1.80-1.92(m,2H),1.53-1.80(m,5H),1.37-1.47(m,1H).
实施例21:
第一步:将化合物20I(120mg,0.24mmol)加入反应瓶,用THF:MeOH:H2O=5:1:1(7ml)溶解,然后加入一水合氢氧化锂(50mg,1.20mmol),在25℃反应16小时。TLC监测反应完成后,用1M HCl调pH至7左右,减压浓缩,所得残余物通过TLC(DCM:MeOH=10:1)纯化分离得到化合物21.
LC-MS(ESI):m/z=469.2[M+H]+.
1H NMR(400MHz,CDCl3)δ7.95(d,1H),7.14(d,1H),5.73(s,2H),4.78-4.87(m,2H),4.12(s,3H),3.70-3.79(m,1H),2.70-2.92(m,8H),2.48(s,3H),2.23-2.33(m,1H),1.87-2.01(m,2H),1.58-1.78(m,5H),1.43-1.56(m,2H).
实施例22:
第一步:将叔丁醇钾(9.53g,85.13mmol)加入三口瓶,用DMF(100ml)溶解,氮气置换三次,冷却到-45℃,缓慢滴加22A(10g,56.75mmol)的DMF(25ml)溶液和2-(二氟甲烷磺酰基)吡啶(9.86g,51.08mmol)的DMF(25ml)溶液,滴加完成后在此温度下反应一小时。然后加入氯化铵饱和溶液(30mL)和盐酸水溶液(1N,50mL),缓慢升到室温反应16小时。TLC监测反应完成后,然后加水(100ml)稀释,用甲基叔丁基醚萃取两次(100ml×2),合并有机相并干燥,30℃下减压浓
缩,所得残余物经硅胶柱层析纯化(PE:EA=10:1),得到化合物22B(4g,产率:33.53%)。
1H NMR(400MHz,CDCl3-d)δ7.29-7.20(m,5H),4.36(s,2H),4.11-4.03(m,1H),2.86-2.79(m,2H),2.64-2.55(m,2H).
第二步:将化合物22B(4g,19.05mmol)加入反应瓶,用二氯甲烷(100ml)溶解,氮气置换三次,冷却到-78℃,然后滴加三溴化硼(9.52g,38.10mmol),维持此温度反应一小时。TLC监测反应完成后,加入饱和碳酸氢钠溶液(200ml)调至pH大于7,二氯甲烷萃取两次(50ml×2),合并有机相并干燥,20℃下浓缩,所得残余物经硅胶柱层析纯化(PE:EA=5:1),得到化合物22C(1.63g,产率:71.33%)。
第三步:将化合物22C(1.63g,13.58mmol)加入反应瓶,用四氢呋喃(20ml)溶解,然后加入吡啶(5.37g,67.90mmol)和对硝基苯基氯甲酸酯(8.2g,40.74mmol),室温反应一小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=5:1),得到化合物22D(2.4g,产率:62.02%)。
1H NMR(400MHz,CDCl3-d)δ8.32-8.26(m,2H),7.43-7.36(m,2H),5.23-5.10(m,1H),3.25-3.14(m,2H),3.01-2.88(m,2H).
第四步:将化合物22F(100mg,0.26mmol,参考WO2019126093)溶解四氢呋喃(5mL)中,加入化合物22D(150mg,0.52mmol)和N,N-二异丙基乙胺(100mg,0.78mmol),室温下反应1h,原料完全消失后,浓缩,粗品经硅胶柱层析(二氯甲烷:甲醇=10:1)分离后得到目标化合物22E(108mg,收率:78.83%)。
LC-MS(ESI):m/z=534.3[M+1]+。
第五步:将化合物22E(108mg,0.20mmol)加入反应瓶,用THF:MeOH:H2O=3:1:1(15ml)溶解,然后加入无水氢氧化锂(27mg,0.61mmol),在室温下反应16小时。LC-MS监测反应完成后,用盐酸水溶液(1moL/L)调至pH=4-5,减压浓缩,所得残余物通过反相柱层析纯化分离得到化合物22(45.1mg,产率:45.31%)。
LC-MS(ESI):m/z=492.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.82(d,1H),7.71(m,1H),7.49(d,1H),4.95-4.92(m,1H),4.77-4.76(m,3H),4.04(s,3H),3.07-2.99(m,2H),2.73-2.54(m,3H),2.44(s,3H),2.02-1.92(m,1H),1.88-1.74(m,3H),1.70-1.43(m,4H).
实施例23:
以化合物23A为原料,参照实施例22的第一到五步,得到化合物23(5.4mg,6%)。
LC-MS(ESI):m/z=506.3[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.83(d,1H),7.69-7.63(m,1H),7.49(d,1H),4.80-4.74(m,3H),4.07-3.97(m,5H),2.77-2.57(m,4H),2.46-2.30(m,5H),2.03-1.95(m,1H),1.88-1.75(m,3H),1.67-1.47(m,4H).
实施例24:
第一步:将化合物24A(3.00g,11.70mmol,依照专利WO2013090929A1的方法合成)加入甲醇(30mL)中,然后加入甲醇钠(2.11g,11.70mmol,30%甲醇溶液),加完室温搅拌2小时,TLC监测反应完成后,将反应液加入饱和氯化铵溶液(50mL)中,二氯甲烷(50mL)萃取三次,有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合24B(2.90g,产率:86%)。
第二步:将化合物24B(2.90g,10.05mmol)和3,4二氢吡喃(1.01g,12.06mmol)加入到二氯甲烷(30mL)中,加入对甲苯磺酸(96.0mg,0.50mmol),加完室温下反应2小时,TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=5/1),得到化合物24C(3.10g,产率:83%)。
第三步:将化合物24C(3.10g,8.32mmol)加入到四氢呋喃(30mL)溶液中,再加入四丁基氟化铵(16.64mL,16.64mmol,1.0mol/L四氢呋喃溶液),加完室温下反应16小时,TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=1/1),得到化合物24D(1.80g,产率:84%)。
第四步:将化合物24D(1.8g,6.97mmol)加入干燥四氢呋喃(40mL)中,再依次加入对硝基苯甲酸(2.33g,13.94mmol)和偶氮二甲酸二异丙酯(2.82g,13.94mmol),加完氮气置换三次,降温至0~5℃,最后加入三苯基膦(3.66g,13.94mmol)加完回至室温下反应6小时,TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:PET/EA=4/1),得到化合物24E(2.2g,产率:77%)。
第五步:将化合物24E(2.2g,5.40mmol)和碳酸钠(1.72g,16.20mmol)加入甲醇(40mL)中,室温下反应5小时,TLC监测反应完成后,过滤,滤液减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=1/1),得到化合物24F(1.20g,产率:86%)。
第六步:将化合物24G(1.00g,3.13mmol,参照专利WO2017223016A1的方法合成)加入干燥甲苯(30mL)中,再依次加入化合物24F(1.13g,4.38mmol)和偶氮二甲酰二哌啶(2.37g,9.39mmol),加完氮气置换三次,降温至0~5℃,最后加入三丁基膦(1.90g,9.39mmol)加完升温至60℃反应16小时,反应完成后,加水(40mL)稀释,并用乙酸乙酯(50mL)萃取三次,合并有机相经无水硫酸钠干燥后真空浓缩得粗品,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=1/2)纯化得到化合物24H(0.95g,产率:54%)。
LC-MS(ESI):m/z=560.3[M+H]+.
第七步:将化合物24H(0.95g,1.70mmol)加入到甲醇(10mL)中,再加入三氟乙酸(2mL),加完室温下反应3小时,TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:
石油醚/乙酸乙酯=1/6),得到化合24I(0.61g,产率:76%)。
LC-MS(ESI):m/z=476.2[M+H]+.
第八步:将化合物24I(0.61g,5.40mmol)和2-碘酰基苯甲酸(1.08g,3.84mmol)加入乙酸乙酯(20mL)中,升温至75℃反应6小时,TLC监测反应完成后,过滤,滤液减压浓缩,所得残余物经硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=1/5),得到化合24J(0.50g,产率:82%)。
LC-MS(ESI):m/z=474.2[M+H]+.
第九步:将化合物24J(120.0mg,0.25mmol)加入到5mL干燥甲苯中,氮气置换三次,降温至-5~0℃,缓慢滴加TEBBE试剂(1.00mL,0.50mmol,0.5mol/L的甲苯溶液),加完控温再-5~0℃下反应2小时,TLC监测反应完成后,将反应也缓慢加入到15mL饱和碳酸氢钠溶液中,并用乙酸乙酯(20mL)萃取三次,合并有机相经无水硫酸钠干燥后真空浓缩得粗品,粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=1/4)纯化得到化合物24K(26.0mg,产率:22%)。
LC-MS(ESI):m/z=472.1[M+H]+.
第十步:将24K(26.0mg,0.055mmol)溶于甲醇(2mL),四氢呋喃(2mL)和水(2mL)中,然后加入氢氧化锂(12mg,0.28mmol),常温反应3小时。反应完成后,直接加入1M稀盐酸调pH到弱酸性,然后加少量水,乙酸乙酯(20mL)萃取3次,合并有机相浓缩后送HPLC制备纯化得到化合物24(8.0mg,32%)。
LC-MS(ESI):m/z=458.3[M+H]+.
1H NMR(400MHz,CDCl3)δ8.05(d,1H),7.67(d,1H),5.73-5.49(m,2H),4.93(s,1H),4.89-4.86(m,1H),4.81(s,1H),4.18(s,3H),3.22-3.18(m,2H),2.99-2.93(m,1H),2.89(s,3H),2.67(s,3H),2.63-2.45(m,4H),2.23-2.06(m,2H),1.55-1.50(m,2H),0.89-0.83(m,3H).
实施例25
第一步:将化合物17E(610mg,2.00mmol)、2,2-二氟-3-(羟甲基)环丙烷-1-甲酸甲酯(665mg,4.00mmol,文献:Helvetica Chimica Acta,1992,vol.75,#3,p.766-772)和三丁基膦(1.21g,6.00mmol)加入反应瓶,用甲苯(50ml)溶解,然后加入偶氮二甲酰二哌啶(1.51g,6.00mmol),在50℃反应16小时。TLC监测反应完成后,冷却到室温,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=2:1),得到化合物25A(800mg,产率:88.40%)。
LC-MS(ESI):m/z=453.3[M+H]+.
第二步:将化合物25A(800mg,1.77mmol)加入反应瓶,用甲醇(50ml)溶解,然后加入4-甲基苯磺酸吡啶(490mg,1.94mmol),在60℃反应4小时。TLC监测反应完成后,冷却到室温,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=1:4),得到化合物25B(310mg,产率:47.55%)。
LC-MS(ESI):m/z=369.2[M+H]+.
第三步:将化合物25B(310mg,0.84mmol)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入吡啶(330mg,4.2mmol)和对硝基苯基氯甲酸酯(423mg,2.1mmol),室温反应16小时。TLC监
测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=1:1),得到化合物25C(130mg,产率:29.02%)。
LC-MS(ESI):m/z=534.2[M+H]+.
第四步:将化合物25C(130mg,0.24mmol)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入DIPEA(0.25ml,1.44mmol)和化合物4C(70mg,0.72mmol),室温反应2小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=1:2),得到化合物25D(115mg,产率:96.00%)。
LC-MS(ESI):m/z=492.1[M+H]+.
第五步:将化合物25D(115mg,0.23mmol)加入反应瓶,用THF:MeOH:H2O=1:1:1(9ml)溶解,然后加入氢氧化锂(22mg,0.92mmol),室温反应4小时。TLC监测反应完成后,减压浓缩,所得残余物通过C18反相柱分离得到化合物25(64mg,产率:57.29%)。
1H NMR(400MHz,DMSO-d6)δ7.88-7.83(m,1H),7.51-7.46(m,1H),5.64(s,2H),4.78(s,2H),4.33-4.26(m,1H),4.21-4.13(m,1H),4.09(s,3H),2.87-2.73(m,5H),2.71-2.53(m,5H),2.39(s,3H).
LC-MS(ESI):m/z=478.3[M+H]+.
实施例26
第一步:将化合物26A(15.0g,115.26mmol)加入反应瓶,二氯甲烷(200ml)溶解,加入三乙胺(34.99g,345.78mmol)氮气置换三次,冷却到0℃,缓慢加入叔丁基二苯基氯硅烷(38.02g,138.31mmol),加料完成后在此温度下反应4小时。TLC监测反应完成后,加水(500ml)稀释,用甲基叔丁基醚萃取两次(300ml×2),合并有机相并干燥,40℃下减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=10:1),得到化合物26B(40g,产率:94.17%)。
LC-MS(ESI):m/z=369.3[M+H]+.
第二步:将化合物26B(10g,27.13mmol)加入反应瓶,四氢呋喃(50ml)溶解,氮气置换三次,冷却到0℃,加入硼氢化锂(1.18g,54.26mmol),室温搅拌16小时。TLC监测反应完成后,加入饱和氯化铵溶液(100ml),乙酸乙酯萃取两次(50ml×2),合并有机相并干燥,45℃下浓缩,所得残余物经硅胶柱层析纯化(PE:EA=2:1),得到化合物26C(4.0g,产率:43.29%)。
LC-MS(ESI):m/z=341.2[M+H]+.
第三步:将化合物26C(2.0g,5.87mmol)加入反应瓶,用四氢呋喃(20ml)溶解,加入2-硝基苯基丝氰酸酯(4.00g,17.61mmol)和三正丁基磷(3.56g,17.61mmol),室温反应一小时。减压浓缩,二氯甲烷(20ml)溶解,冷却到0℃,加入间氯过氧苯甲酸(3.04g,17.61mmol),搅拌1小时,
减压浓缩,甲苯(20ml)溶解,加入二异丙胺(1.78g,17.61mmol),90℃搅拌16小时。TLC监测反应完成后,加入水(50ml),乙酸乙酯萃取(50ml),减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=10:1),得到化合物26D(1.2g,产率:63.35%)。
1H NMR(400MHz,CDCl3)δ7.64-7.66(m,4H),7.34-7.44(m,6H),4.74-4.76(m,2H),4.27-4.34(m,1H),2.72-2.82(m,4H),1.04(s,9H).
第四步:将化合物26D(2.0g,6.20mmol)溶解四氢呋喃(20mL)中,加入四丁基氟化铵(12.4mL,12.4mmol)室温下反应16h,原料完全消失后,浓缩,得到粗目标化合物26E(2g,粗品),直接用于下一步。
第五步:将化合物26E(500mg,5.94mmol)加入反应瓶,用二氯甲烷(15ml)溶解,加入三乙胺(1.80g,17.82mmol),对硝基苯基氯甲酸酯(1.44g,7.13mmol)在室温下反应16小时。TLC监测反应完成后,加入水(20ml),二氯甲烷萃取(20ml),减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=5:1),得到化合物26F(0.2g,产率:13.15%)。
LC-MS(ESI):m/z=250.1[M+H]+.
第六步:将化合物26F(200mg,0.80mmol)加入反应瓶,用二氯甲烷(10ml)溶解,加入三乙胺(0.24g,2.40mmol),化合物22F(0.34g,0.88mmol)在室温下反应16小时。TLC监测反应完成后,加入水(20ml),二氯甲烷萃取(20ml),减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=1:1),得到化合物26G(0.18g,产率:45.08%)。
LC-MS(ESI):m/z=498.2[M+H]+.
第七步:将化合物26G(180mg,0.27mmol)加入反应瓶,甲醇(10ml)溶解,加入一水氢氧化锂(45mg,1.08mmol),室温反应16小时。加入2N盐酸调pH=4,浓缩,粗品经柱层析纯化(洗脱剂:二氯甲烷:甲醇=10:1)得目标化合物粗品,经制备HPLC得化合物26(40mg,24.28%)。
LC-MS(ESI):m/z=456.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.85(d,1H),7.68(s,1H),7.55(d,1H),4.73-4.85(m,6H),4.06(s,3H),2.90-2.97(m,2H),2.61-2.68(m,3H),2.47(s,3H),2.00-2.07(m,1H),1.76-1.88(m,3H),1.49-1.65(m,4H).
实施例27
第一步:在250mL单口瓶中,依次将27A(2g,12.41mmol),氟氢化钾(3.88g,49.64mmol)及二氟溴甲基三甲基硅烷(5.04mg,24.82mmol)加入到二氯甲烷(20mL)和水(60mL)的混合溶剂中,氮气置换三次,室温剧烈搅拌4小时。反应完毕,用二氯甲烷萃取三次,合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩得到粗品,粗品用Biotage Isolera One(40g硅胶柱,洗脱剂:0-25% EA/PE)纯化得到化合物27B(543mg,收率20.72%)。
1H NMR(400MHz,CDCl3)δ6.41-6.01(m,1H),4.83(s,1H),3.94-3.88(m,2H),3.43-3.35(m,2H),1.45(s,9H).
第二步:将27B(535mg,2.53mmol)溶于DMF(10mL),氮气置换,冰水浴下搅拌降温至0℃,加入氢化钠(121mg,3.04mmol,60%Wt),搅拌5分钟,加入碘甲烷(538mg,3.79mmol),移除冰水浴后继续搅拌1小时。反应完毕,向反应瓶中加入冰水(30mL)淬灭,用乙酸乙酯(20mL×3)萃取,合并有机相,用饱和食盐水洗一次,无水硫酸钠干燥,浓缩后得到化合物27C(800mg)粗品,无需进一步纯化,直接进行下一步反应。
第三步:将27C(800mg,粗品)加入单口瓶中,加入二氯甲烷(3mL)溶解,加入盐酸的二氧六环溶液(10mL,4mol/L),室温搅拌1小时,反应完毕,直接减压浓缩干,得到化合物27D(288mg)粗品无需进一步纯化,直接用于下一步。
第四步:将27D(288mg)粗品加入单口瓶中,加入二氯甲烷(10mL),加入DIPEA(567mg,4.4mmol)及化合物2D(120mg,0.22mmol),室温搅拌16小时。反应完毕,减压浓缩得到粗品,粗品用Biotage Isolera One(12g硅胶柱,洗脱剂:0-3% MeOH/DCM)纯化得到化合物27E(87mg,收率73.30%)。
LC-MS(ESI):m/z=540.2[M+H]+.
第五步:将27E(87mg,0.16mmol)加入到单口瓶中,加入四氢呋喃(10mL)溶解,加入水(5mL),搅拌下加入氢氧化锂(33mg,0.80mmol),室温搅拌16小时。反应完毕,加入水(20mL),乙酸乙酯(20mL),搅拌10分钟,分出水相。有机相用水(20mL)萃取2次,合并三次水相,用盐酸(1N)调pH至弱酸性,用乙酸乙酯(20mL×3)萃取,合并有机相,用饱和食盐水洗一次,无水硫酸钠干燥,减压浓缩得到粗品,粗品用Biotage Isolera One(12g硅胶柱,洗脱剂:0-6%MeOH/DCM)纯化得到化合物27(41mg,收率51.11%)。
LC-MS(ESI):m/z=498.3[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.90-7.80(m,1H),7.56-7.46(m,1H),6.88-6.30(m,1H),5.73-5.61(m,2H),4.78(s,2H),4.09(s,3H),3.95-3.76(m,2H),3.46(s,2H),2.90-2.78(m,3H),2.63(s,1H),2.42(s,3H),2.09-1.98(m,1H),1.87-1.76(m,2H),1.70-1.46(m,4H).
实施例28
第一步:将28A(500mg,2.24mmol)溶于乙腈(8mL)中,随后加入三氟甲硫基四甲基铵盐(588mg,3.36mmol),室温反应过夜,待反应完全后,将反应液旋蒸浓缩,向残留物中加入二氯甲烷(8mL)及20%硫酸水溶液(5mL),室温搅拌2h。向反应液中缓慢加入饱和碳酸氢钠溶液淬灭反应,用乙醚(15mL×3)萃取,合并有机层,用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤后将滤液浓缩,残留物用硅胶柱层析分离提纯(石油醚:乙酸乙酯(v/v)=25:1)得到28B(251mg,46%)。
LC-MS(ESI):m/z=190.0[M+H-56]+.
以化合物28B为原料,参照实施例27的第二到五步,得到化合物28(21mg,18%)。
LC-MS(ESI):m/z=532.0[M+H]+.
1H NMR(400MHz,CDCl3)δ8.03-8.00(m,1H),7.62-7.54(m,1H),5.77-5.59(m,2H),4.81-4.78(m,1H),4.18(s,3H),3.57-3.45(m,2H),3.06-3.02(m,1H),2.96-2.85(m,5H),2.70-2.67(m,3H),2.14-1.88(m,4H),1.83-1.61(m,4H).
实施例29:
第一步:将化合物29A(15.00g,102.64mmol)溶于入甲醇(150mL)中,降温0~5℃,缓慢滴加(2mL)浓硫酸,加完回至室温搅拌17小时,反应完毕后加压浓缩,然后分批加入饱和碳酸氢钠水溶液(150mL)并用石油醚(100mL)萃取杂质两次。将水相冷却至0℃,用6N盐酸水溶液调pH=3~4,并用乙酸乙酯(100mL)萃取产物两次。将合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物29B(9.20g,产率:56%)。
第二步:将化合物29B(5.00g,31.22mmol)溶于干燥四氢呋喃(50mL)中,氮气置换三次,降温至0~5℃,缓慢滴加硼烷四氢呋喃溶液(62.44mL,62.44mmol,1.0mol/L的四氢呋喃溶液),滴加完缓慢回至室温下反应3小时,TLC监测反应完成后降温至0℃,缓慢滴加(100mL)甲醇淬灭反应,淬灭完全后减压浓缩,所得残余物正相柱纯化得到化合物29C(2.60g,产率:57%)。
第三步:将化合物29C(0.96g,6.58mmol)加入到二氯甲烷(10mL)溶液中,再加入三乙胺(1.33g,13.16mmol),加完降温至0~5℃分批次加入甲磺酸酐(1.20g,6.91mmol),加完控温0~5℃反应2小时,TLC监测反应完成后,减压浓缩,所得残余物溶于(10mL)N,N-二甲基甲酰胺中,再依次加入化合物17E(1.00g,3.29mmol)、碳酸铯(3.22g,9.87mmol),加完升温至100℃反应15小时,反应完毕后冷却至室温,加入(50mL)水并用乙酸乙酯(50mL)萃取产物两次。将合并的有机相用饱和食盐水洗,无水硫酸钠干燥,过滤,滤液浓缩后所得残余物正相柱纯化得到化合物29E(0.23g,产率:16%)。
LC-MS(ESI):m/z=433.2[M+H]+.
第四步:将化合物29E(0.23g,0.53mmol)加入到甲醇(10mL)中,再加入三氟乙酸(2mL),加完室温下反应3小时,TLC监测反应完成后,减压浓缩,所得残余物正相柱纯化得到化合29F(0.15g,产率:81%)。
LC-MS(ESI):m/z=349.1[M+H]+.
第五步:将化合物29F(0.15g,0.43mmol)加入到二氯甲烷(5mL)中,再依次加入再依次加入吡啶(0.14g,1.72mmol)、4-硝基氯甲酸苯酯(0.13g,0.65mmol),加完室温下反应3小时,TLC监测反应完成后,减压浓缩,所得残余物正相柱纯化得到化合29G(0.17g,产率:77%)。
第六步:将化合物29G(0.17g,0.33mmol)加入到四氢呋喃(5mL)中,再依次加入再依次加入三乙胺(0.17g,1.65mmol)、化合物4C(100mg,TFA盐),加完室温下反应3小时,TLC监测反应完成后,减压浓缩,所得残余物正相柱纯化得到化合物29H(0.13g,产率:83%)。
LC-MS(ESI):m/z=472.2[M+H]+.
第七步:将化合物29H(0.13g,0.27mmol)溶于甲醇(3mL),四氢呋喃(3mL)和水(3mL)中,然后加入氢氧化锂(112mg,2.71mmol),常温反应15小时。反应完成后,直接加入1M稀盐酸调pH到弱酸性,然后加少量水,乙酸乙酯(20mL)萃取3次,合并有机相浓缩后HPLC制备纯化得到化合物29(11.0mg,9%)。
LC-MS(ESI):m/z=458.3[M+H]+.
1H NMR(400MHz,DMSO-d6)δ11.99(s,1H),7.84(d,1H),7.41(d,1H),5.65(s,2H),4.79(s,2H),4.44-4.27(m,1H),4.09(s,3H),3.86(s,2H),2.77-2.67(m,7H),2.41(s,3H),2.34(s,2H),1.12(s,6H).
实施例30
第一步:将30A(400mg,1.99mmol)、三氟甲磺酸银(2.04g,7.96mmol)、SELECTFLUOR氟化剂(1.06g,2.98mmol)、氟化钾(461mg,7.96mmol)及2-氟吡啶(772mg,7.96mmol)溶解于乙酸乙酯(30mL)中,搅拌均匀,滴加三氟甲基三甲基硅(706mg,4.98mmol),室温反应36h。待反应完全后,加入60mL水,用乙酸乙酯(25mL×3)萃取,合并有机层,用饱和食盐水(40mL)洗涤,无水硫酸钠干燥,过滤后将滤液浓缩,残留物用硅胶柱层析分离提纯得到30B(276mg,52%)。
LC-MS(ESI):m/z=214.0[M+H-56]+.
以化合物30B为原料,参照实施例27的第三到五步,得到化合物30(48mg,40%)。
LC-MS(ESI):m/z=542.3[M+H]+.
1H NMR(400MHz,CDCl3)δ8.04-8.00(m,1H),7.59-7.56(m,1H),5.70-5.55(m,2H),4.80-4.75(m,1H),4.39-4.31(m,1H),4.17(s,3H),2.87(s,3H),2.67-2.59(m,4H),2.37-2.28(m,2H),2.09-2.02(m,2H),1.98-1.87(m,2H),1.82-1.50(m,5H),1.45-1.35(m,1H),0.95-0.90(m,1H).
实施例31
以31A(400mg,1.99mmol)为原料,参照实施例30的操作,合成得化合物31(44mg,51%)。
LC-MS(ESI):m/z=542.6[M+H]+.
1H NMR(400MHz,CDCl3)δ8.04-8.01(m,1H),7.60-7.57(m,1H),5.69-5.57(m,2H),4.80-4.68(m,2H),4.18(s,3H),2.91-2.83(m,4H),2.66(s,3H),2.57-2.44(m,2H),2.09-2.01(m,2H),1.98-1.88(m,2H),1.80-1.50(m,5H),1.44-1.35(m,1H),0.95-0.90(m,1H).
实施例32
第一步:将化合物25(1.34g)经手性拆分得到化合物32-1(6mg,保留时间1.07min)、32-2(10mg,保留时间1.22min)、32-3(537mg,保留时间1.46min)和32-4(502mg,保留时间1.78min)。
分析方法:仪器:SHIMADZU LC-30AD,柱:Chiral AD Column;流动相:A:CO2,B:0.05%DEA in MeOH;梯度:5-10% B in A;流速:3mL/min柱温:35℃波长:220nm.
制备方法:仪器:SFC Prep 150AP,柱:大赛璐IG(19mm×250mm);流动相:A:CO2,B:0.05%NH3·H2O in ETOH;梯度:12% B梯度洗脱流速:120mL/min,柱温:25℃波长:220nm循环时间:25min样品制备:样品浓度10mg/ml,样品用DMF溶解,用0.45μm滤头过滤,制成样品液。分离后,通过旋转蒸发仪浴温35℃下干燥馏分得到化合物32-1(6mg,保留时间1.07min)、32-2(10mg,保留时间1.22min)、32-3(537mg,保留时间1.46min)和32-4(502mg,保留时间1.78min)。
32-1:(保留时间1.07min),1H NMR(400MHz,DMSO-d6)δ7.87-7.83(m,1H),7.48-7.44(m,1H),5.64(s,2H),4.79(s,2H),4.60-4.53(m,1H),4.50-4.43(m,1H),4.09(s,3H),2.86-2.57(m,10H),2.37(s,3H).
LC-MS(ESI):m/z=478.3[M+H]+.
32-2:(保留时间1.22min),1H NMR(400MHz,DMSO-d6)δ7.87-7.84(m,1H),7.50-7.47(m,1H),5.65(s,2H),4.79(s,2H),4.58-4.52(m,1H),4.47-4.40(m,1H),4.09(s,3H),2.88-2.63(m,10H),2.37(s,3H).
LC-MS(ESI):m/z=478.2[M+H]+.
32-3:(保留时间1.46min),1H NMR(400MHz,DMSO-d6)δ7.87-7.83(m,1H),7.50-7.46(m,1H),5.64(s,2H),4.78(s,2H),4.32-4.25(m,1H),4.18-4.11(m,1H),4.09(s,3H),2.88-2.51(m,10H),2.39(s,3H).
LC-MS(ESI):m/z=478.2[M+H]+.
32-4:(保留时间1.78min),1H NMR(400MHz,DMSO-d6)δ7.87-7.83(m,1H),7.50-7.45(m,1H),5.64(s,2H),4.78(s,2H),4.31-4.24(m,1H),4.16-4.06(m,4H),2.90-2.41(m,10H),2.39(s,3H).
LC-MS(ESI):m/z=478.2[M+H]+.
实施例33
第一步:将化合物33A(600mg,2.98mmol,依照专利CN 116789556A的方法合成)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入4N盐酸二氧六环溶液(10ml),室温反应18小时。TLC监测反应完成后,减压浓缩,得到化合物33B(330mg,产率:80.44%),无需进一步纯化可以直接用于下一步反应。
LC-MS(ESI):m/z=102.2[M+H]+.
第二步:将化合物2D(250mg,0.45mmol)和化合物33B(185mg,1.35mmol)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入DIPEA(645mg,5.0mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化得到化合物33C(180mg,产率:77.30%)。
LC-MS(ESI):m/z=516.3[M+H]+.
第三步:将化合物33C(180mg,0.35mmol)加入反应瓶,用DMF(10ml)溶解,然后冷却到0℃,加入NaH(17mg,0.42mmol),维持此温度搅拌20min,再加入碘甲烷(75mg,0.52mmol),升到室温反应1小时。TLC监测反应完成后,加入饱和氯化铵溶液(20ml),然后用乙酸乙酯萃取(20ml×2),合并有机相并干燥,减压浓缩,得到化合物33D(180mg,产率:95.35%),无需进一步纯化可以直接用于下一步反应。
LC-MS(ESI):m/z=530.3[M+H]+.
第四步:将化合物33D(180mg,0.34mmol)加入反应瓶,用THF:MeOH:H2O=1:1:1(9ml)溶解,然后加入无水氢氧化锂(41mg,1.70mmol),室温下搅拌反应18小时。TLC监测反应完成后,用稀盐酸将pH调为弱酸性,乙酸乙酯(20mL×2),合并有机相,无水硫酸钠干燥,过滤,浓缩滤液,减压浓缩,所得残余物通过制备HPLC分离得到化合物33(0.13mg,产率:78.46%)。
LC-MS(ESI):m/z=484.4[M+H]+.
1H NMR(400MHz,CDCl3)δ8.09-8.08(m,1H),7.82-7.81(m,1H),5.67(s,1H),5.54-5.50(m,1H),4.86(s,1H),4.20(s,3H),3.59-3.24(m,4H),3.24-3.23(m,1H),2.95-2.88(m,4H),2.79(s,3H),2.06-2.00(m,2H),1.92-1.67(m,6H),0.49-0.43(m,4H).
实施例34
第一步:将化合物6C(5g,13.62mmol),氨基甲酸叔丁酯(3.19g,27.24mmol),碳酸铯(8.88g,
27.24mmol),甲磺酸(2-二环己基膦基-2',6'-二异丙氧基-1,1'-联苯基)(2-氨基-1,1'-联苯-2-基)钯(II)(RuPhos PD G3)(1.14g,1.36mmol)溶于1,4-二氧六环(50mL)中,后氮气置换气三次,100℃反应16小时。冷却室温,浓缩,柱层析纯化(四氢呋喃:石油醚=1%~50%)得到化合物34B(5.1g,收率:92.84%)。
LC-MS(ESI):m/z=404.2[M+H]+.
第二步:将化合物34B(3g,7.44mmol)溶于甲醇(30mL)中,再加入对甲苯磺酸(0.13g,0.74mmol),于40℃反应2小时。浓缩,柱层析纯化(四氢呋喃:石油醚=1%~50%)得到化合物34C(2.1g,收率:88.44%)。
LC-MS(ESI):m/z=320.2[M+H]+.
第三步:将化合物34C(2g,6.26mmol),吡啶(0.99g,12.52mmol)溶于二氯甲烷(15mL)中,然后再分批加入对硝基苯基氯甲酸酯(1.51g,7.51mmol),于25℃反应2小时。浓缩,柱层析纯化(四氢呋喃:石油醚=1%~50%)得到化合物34D(2.5g,收率:82.40%)。
LC-MS(ESI):m/z=485.1[M+H]+.
第四步:将化合物34D(0.2g,0.41mmol),三乙胺(0.17g,1.64mmol)溶于二氯甲烷(10mL)中,然后再加入化合物4C(0.052g,0.53mmol),于25℃反应2小时。浓缩,柱层析纯化(四氢呋喃:石油醚=1%~50%)得到化合物34E(0.15g,收率:82.11%)。
LC-MS(ESI):m/z=443.3[M+H]+.
第五步:将化合物34E(0.15g,0.34mmol)溶于二氯甲烷(3mL)中,再加入三氟乙酸(0.3mL)室温反应2小时。直接浓缩得到化合物34F用于下一步。
LC-MS(ESI):m/z=343.1[M+H]+.
第六步:将化合物34F(0.1g,0.29mmol),反式-2,2-二氟-3-(甲氧羰基)环丙烷羧酸(0.10g,0.58mmol)(文献:Helvetica Chimica Acta,1992,vol.75,#3,p.766-772),N-甲基咪唑(0.095g,1.16mmol)溶于乙腈(2mL)中,再加入四甲基氯代脲六氟磷酸酯(0.24g,0.87mmol),室温反应16小时。浓缩,柱层析纯化(四氢呋喃:石油醚=1%~50%)得到化合物34G(0.1g,收率:67.87%)。
LC-MS(ESI):m/z=505.1[M+H]+.
第七步:将化合物34G(0.1g,0.20mmol)溶于四氢呋喃(3mL),水(1mL)中,再加入一水氢氧化锂(0.034g,0.80mmol),室温反应2小时。加入甲酸调pH=4,浓缩,反相柱层析纯化(乙腈:水=3%~60%)得到化合物34(0.06g,收率:61.72%)。
LC-MS(ESI):m/z=491.3[M+H]+.
第八步:将化合物34(400mg)经手性分析显示有2个异构体分别为:P1(保留时间:2.699min,设定为化合物34-1),P2(保留时间:3.511min,设定为化合物34-2),分析方法:仪器:Waters UPC2analytical SFC(SFC-H);柱:ChiralPak IK,150×4.6mm I.D.,3μm;流动相:A for CO2and B for Ethanol(0.05%DEA);梯度:40%B梯度洗脱;流速:2.5mL/min;柱压:100bar;柱温:35℃;波长:220nm;循环时间:4min;
制备方法:仪器:WATERS150preparative SFC(SFC-26);柱:ChiralPak IH,250×30mm I.D.,10μm;流动相:A for CO2and B for Ethanol(0.1%NH3H2O);梯度:40%B梯度洗脱;流速:120mL/min;柱温:38℃;波长:220nm;循环时间:4min;样品制备:Compound was dissolved in~20ml methanol/DCM进样:每次2.2mL,得到化合物34-1(142mg),化合物34-2(194mg)。
化合物34-1:1H NMR(400MHz,DMSO-d6)δ10.05(s,1H),8.01-7.98(m,1H),7.88(d,1H),5.67(s,2H),4.79(s,2H),4.11(s,3H),3.45-3.41(m,1H),3.38-3.32(d,2H),2.89-2.73(m,6H),2.46(s,3H),2.35-3.30(m,1H).
LC-MS(ESI):m/z=491.3[M+H]+.
化合物34-2:1H NMR(400MHz,DMSO-d6)δ10.05(s,1H),8.02-7.98(m,1H),7.88(d,1H),5.67(s,2H),4.79(s,2H),4.11(s,3H),3.45-3.41(m,1H),3.38-3.32(d,2H),2.89-2.73(m,6H),2.46(s,3H),2.35-3.30(m,1H).
LC-MS(ESI):m/z=491.3[M+H]+.
实施例35
以化合物34D为原料,参照实施例34的第四到八步,得到化合物35-1(保留时间:2.609min,),化合物35-2(保留时间:3.449min),分析方法:仪器:Waters UPC2analytical SFC(SFC-H);柱:ChiralPak IK,150×4.6mm I.D.,3μm;流动相:A for CO2and B for Ethanol(0.05%DEA);梯度:40%B梯度洗脱;流速:2.5mL/min;柱压:100bar;柱温:35℃;波长:220nm;循环时间:4min;
制备方法:仪器:WATERS150preparative SFC(SFC-26);柱:ChiralPak IH,250×30mm I.D.,10μm;流动相:A for CO2and B for Ethanol(0.1%NH3H2O);梯度:40%B梯度洗脱;流速:120mL/min;柱温:38℃;波长:220nm;循环时间:4min;样品制备:Compound was dissolved in~20ml methanol/DCM进样:每次2.2mL,得到化合物35-1(17mg),化合物35-2(13mg)。
化合物35-1:1H NMR(400MHz,DMSO-d6)δ10.10(s,1H),8.01-7.87(m,1H),7.89(d,1H),5.65(s,2H),4.66(d,2H),4.11(s,3H),3.49(s,1H),3.24-3.13(m,2H),2.99-3.90(m,1H),2.80-2.66(m,4H),2.47(s,3H),2.38(s,1H),2.19(s,1H),1.72-1.41(m,1H),1.24(s,1H).
LC-MS(ESI):m/z=505.3[M+H]+.
化合物35-2:1H NMR(400MHz,DMSO-d6)δ10.10(s,1H),8.01-7.87(m,1H),7.89(d,1H),5.65(s,2H),4.66(d,2H),4.11(s,3H),3.49(s,1H),3.24-3.13(m,2H),2.99-3.90(m,1H),2.80-2.66(m,4H),2.47(s,3H),2.38(s,1H),2.19(s,1H),1.72-1.41(m,1H),1.24(s,1H).
LC-MS(ESI):m/z=505.3[M+H]+.
实施例36
第一步:将化合物36A(0.1g,0.45mmol,依据专利WO2008/141462的方法合成)加入到DMF(5mL)中,再加入化合物17E(0.14g,0.45mmol)和碳酸铯(0.44g,1.35mmol),加完50℃下反应2小时,TLC监测反应完成后,加水淬灭,乙酸乙酯(20mL)萃取3次,合并有机相浓缩后所得残余物正相柱纯化得到化合36E(120mg,产率:62%)。
LC-MS(ESI):m/z=431.2[M+H]+.
依据实施例29的第四步、第五步、第六步、第七步得到化合物36(20mg)。
LC-MS(ESI):m/z=456.2[M+H]+.
1H NMR(400MHz,CDCl3)δ=7.91(d,1H),7.09(d,1H),5.74(s,2H),5.56(s,2H),4.82(s,2H),4.12(s,3H),3.92(s,2H),2.83(s,6H),2.53(s,2H),2.48(s,3H),0.69(d,4H).
实施例37
以化合物17E为原料,参照实施例25的第一到五步,得到化合物37F(574mg,91.6%)。
化合物37F经SFC拆分后得到化合物37-1(SFC分析保留时间:2.311min,98mg)、化合物37-2(SFC分析保留时间:2.173min,112mg)、化合物37-3(SFC分析保留时间:1.763min,42.3mg)和化合物37-4(SFC分析保留时间:1.374min,39.1mg)。
SFC第一次分析方法:仪器:Waters 150Prep-SFC,柱:Chiral WHEIK column;流动相:A:CO2,B:0.1%NH3·H2O in MeOH;梯度:35% B梯度洗脱流速:120mL/min,柱温:room temperature波长:220nm循环时间:4.3min;样品制备:样品浓度10mg/mL,甲醇溶液进样:每次3mL。分离后,干燥馏分得到化合物37-1、化合物37-2。
SFC第二次分析方法:仪器:Waters 150Prep-SFC,柱:Chiral AD column;流动相:A:CO2,B:0.1%NH3·H2O in MeOH;梯度:30% B梯度洗脱流速:120mL/min,柱温:room temperature波长:220nm循环时间:8min;样品制备:样品浓度10mg/mL,甲醇溶液进样:每次3mL。分离后,干燥馏分得到化合物37-3、化合物37-4。
化合物37-1(SFC分析保留时间:2.311min):1H NMR(400MHz,DMSO-d6)δ7.86-7.79(m,1H),7.44-7.36(m,1H),5.65(s,2H),4.79(s,2H),4.45-4.37(m,1H),4.15-4.00(m,4H),2.92-2.56(m,8H),2.37(s,3H),1.83-1.68(m,2H),1.16-1.04(m,1H),1.02-0.92(m,1H).
LC-MS(ESI):m/z=442.3[M+H]+。
化合物37-2(SFC分析保留时间:2.173min):1H NMR(400MHz,DMSO-d6)δ7.86-7.79(m,1H),7.44-7.36(m,1H),5.65(s,2H),4.79(s,2H),4.45-4.37(m,1H),4.15-4.00(m,4H),2.92-2.56(m,8H),2.37(s,3H),1.83-1.68(m,2H),1.16-1.04(m,1H),1.02-0.92(m,1H).
LC-MS(ESI):m/z=442.3[M+H]+。
化合物37-3(SFC分析保留时间:1.763min):1H NMR(400MHz,DMSO-d6)δ7.86-7.79(m,1H),7.44-7.36(m,1H),5.65(s,2H),4.79(s,2H),4.45-4.37(m,1H),4.15-4.00(m,4H),2.92-2.56(m,8H),2.37(s,3H),1.83-1.68(m,2H),1.16-1.04(m,1H),1.02-0.92(m,1H).
LC-MS(ESI):m/z=442.3[M+H]+。
化合物37-4(SFC分析保留时间:1.374min):1H NMR(400MHz,DMSO-d6)δ7.86-7.79(m,1H),7.44-7.36(m,1H),5.65(s,2H),4.79(s,2H),4.45-4.37(m,1H),4.15-4.00(m,4H),2.92-2.56(m,8H),2.37(s,3H),1.83-1.68(m,2H),1.16-1.04(m,1H),1.02-0.92(m,1H).
LC-MS(ESI):m/z=442.3[M+H]+。
实施例38
第一步:将化合物24J(360.0mg,0.76mmol)加入到干燥甲苯(10mL)和N,N-二甲基甲酰胺(3mL)的混合溶剂中,再加入碘化理(407.0mg,3.04mmol),氮气置换三次后,再依次加入(三氟甲基)三甲基硅烷(540.0mg,3.80mmol)和三正丁基膦(921.2mg,4.56mmol),加完升温至45℃反应16小时,TLC监测反应完成后,将反应液缓慢加入到50mL冰水中,并用乙酸乙酯(50mL)萃取3次,合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,滤液浓缩后粗品经柱层析(洗脱剂:石油醚/乙酸乙酯=1/3)纯化得到化合物38A(90.0mg,产率:23%)。
LC-MS(ESI):m/z=508.2[M+H]+.
第二步:将38A(90.0mg,0.18mmol)溶于甲醇(3mL)、四氢呋喃(3mL)和水(3mL)的混合溶剂中,然后加入氢氧化锂(37mg,0.90mmol),常温反应6小时。反应完成后,直接加入1M稀盐酸调pH到弱酸性,然后加少量水,乙酸乙酯(20mL)萃取3次,合并有机相浓缩后送HPLC制备纯化得到化合物38(30.0mg,32%)。
LC-MS(ESI):m/z=494.2[M+H]+.
1H NMR(400MHz,CD3Cl)δ8.01(d,1H),7.84(d,1H),5.60(s,2H),4.97(s,1H),4.21(s,3H),3.23-3.19(m,2H),2.88-2.84(m,4H),2.69-2.59(m,5H),2.40-2.36(m,1H),2.28-2.24(m,2H),2.09-2.03(m,1H),1.55-1.45(m,2H),0.88-0.77(m,3H).
实施例39
以化合物30A为原料,参照实施例30的第一到四步,得到化合物39(54mg,46%)。
LC-MS(ESI):m/z=524.4[M+H]+.
1H NMR(400MHz,CDCl3)δ8.06-8.03(m,1H),7.77-7.74(m,1H),6.33-5.95(m,1H),5.62-5.45(m,2H),4.81(s,1H),4.35-4.27(m,1H),4.22-4.03(m,4H),2.91-2.79(m,4H),2.68(s,3H),2.64-2.56(m,2H),2.32-2.21(m,2H),2.12-1.95(m,2H),1.94-1.71(m,5H),1.70-1.57(m,1H).
实施例40
以31A(400mg,1.99mmol)为原料,参照实施例30的第一到四步,合成得化合物40(41mg)。
LC-MS(ESI):m/z=524.3[M+H]+.
1H NMR(400MHz,CDCl3)δ8.08-8.05(m,1H),7.87-7.84(m,1H),6.37-5.96(m,1H),5.64-5.48(m,2H),4.89-4.61(m,3H),4.19(s,3H),2.90-2.81(m,4H),2.75(s,3H),2.54-2.46(m,2H),2.46-2.37(m,2H),2.11-1.96(m,2H),1.95-1.70(m,5H),1.69-1.59(m,1H).
实施例41
第一步:以41A(890mg,5.0mmol)为原料,参考实施例30第一步的合成方法合成化合物41B(300mg,21.40%)。
第二步:室温下,将41B(300mg,1.22mmol)溶解于干燥的四氢呋喃(10mL)中,向其中加入氢氧化钯/碳(856mg,1.22mmol),盐酸(5mg,0.12mmol),氢气氛围下,室温反应16小时,TLC监测原料消失,停止反应。过滤,得到化合物41C(180mg,94.64%)。
第三步:室温下,将41C(180mg,1.15mmol)溶解于干燥的四氢呋喃(5mL)中,氮气气氛下,加入三乙胺(350mg,3.45mmol),N,N'-羰基二咪唑(186mg,1.15mmol),继续反应1小时,再向其中加入11D(534mg,1.38mmol),氮气气氛下,80℃反应16小时,TLC监测原料消失,停止反应。向反应液中加入乙酸乙酯(20mL),有机相用水(30mL×3)洗涤,饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,浓缩滤液,残余物经柱层析(PE:EA=2:1)分离纯化得到化合物41D(70mg,10.66%)。
LC-MS(ESI):m/z=570.3[M+H]+.
第四步:以41D(70mg,0.12mmol)为原料,参考实施例1第四步的合成方法合成化合物41(25mg,38.56%)。
LC-MS(ESI):m/z=528.3[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.85-7.83(d,1H),7.69(s,1H),7.51-7.49(d,1H),4.78-4.74(t,3H),4.55(s,2H),4.04(s,3H),2.83-2.80(m,2H),2.67-2.60(m,1H),2.45(s,3H),2.17-2.14(m,2H),2.05-1.99(m,1H),1.88-1.75(m,3H),1.67-1.46(m,4H).
实施例42:
以42A(890mg,5.0mmol)为原料,参考实施例41的合成路线合成化合物42(27mg,29.15%)。
LC-MS(ESI):m/z=528.3[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.85-7.83(d,1H),7.68(s,1H),7.52-7.50(d,1H),5.00-4.93(d,3H),4.78-4.76(d,4H),4.05(s,3H),2.66-2.64(m,1H),2.46(s,3H),2.05-1.97(m,2H),1.91-1.73(m,4H),1.69-1.43(d,4H).
实施例43
第一步:将化合物43A(1.5g,13.05mmol)依据专利WO2011046771的方法合成化合物43B(1.5g)。
依据实施例36的第一步和第二步得到化合物43D(0.43g)。
第四步:将化合物43D(0.1g,0.29mmol)溶于干燥的四氢呋喃(5ml)中,依次添加叠氮磷酸二苯酯(44mg,1.16mmol)和1,8-二氮杂环[5,4,0]十一烯-7(178mg,1.16mmol),室温下搅拌1小时,TLC监测反应完成后,直接浓缩后所得残余物正相柱纯化得到化合43E(90mg,产率:83%)。
LC-MS(ESI):m/z=374.2[M+H]+.
第五步:将化合物43E(90mg,0.24mmol)溶于四氢呋喃/水(3ml/1ml)中,添加三苯基
膦(94mg,0.36mmol)室温下搅拌1小时,TLC监测反应完成后,直接浓缩后所得残余物正相柱纯化得到化合43F(53mg,产率:64%)。
LC-MS(ESI):m/z=348.2[M+H]+.
以化合物43F和化合物22D为原料,依据实施例22的第四步和第五步得到化合物43(20mg)。
LC-MS(ESI):m/z=480.2[M+H]+.
1H NMR(400MHz,CDCl3)δ8.03(d,1H),7.21(d,1H),7.16(s,1H),5.03-4.95(m,1H),4.57(d,2H),4.18(s,3H),4.11(t,2H),3.06-3.00(m,2H),2.77-2.66(m,2H),2.48(s,3H),2.17(t,2H),1.35(s,6H).
实施例44
第一步:将化合物29F(85mg,0.24mmol)加入四氢呋喃(5ml)中,然后加入DPPA(180mg,0.48mmol)和DBU(73mg,0.48mmol),室温搅拌2小时,TLC监测反应完成后,加水稀释,乙酸乙酯萃取,无水硫酸钠干燥,过滤,滤液减压浓缩,所得残余物经硅胶柱层析纯化得到化合物44A(75mg,产率:82%)。
LC-MS(ESI):m/z=374.2[M+H]+.
第二步:将化合物44A(75mg,0.20mmol)加入3mL四氢呋喃和1mL水的混合溶剂中,然后加入三苯基膦(100mg,0.40mmol),氮气保护,室温搅拌12小时,TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化得到化合物44B(55mg,产率:79%)。
LC-MS(ESI):m/z=348.2[M+H]+.
第三步:将化合物44B(55mg,0.16mmol)和化合物22D(68mg,0.24mmol)加入反应瓶,用四氢呋喃(5ml)溶解,然后加入DIPEA(41mg,0.32mmol),室温反应3小时。TLC监测反应完成后,加水稀释,乙酸乙酯萃取,无水硫酸钠干燥,过滤,滤液减压浓缩,所得残余物经硅胶柱层析纯化得到化合物44C(60mg,产率:77%)。
LC-MS(ESI):m/z=494.2[M+H]+.
第四步:将化合物44C(60mg,0.12mmol)加入反应瓶,用THF:MeOH:H2O=5:1:1(5ml)溶解,然后加入一水合氢氧化锂(25mg,0.60mmol),在35℃反应16小时。TLC监测反应完成后,用1M HCl调pH至7左右,减压浓缩,所得残余物通过反相柱纯化分离得到化合物44(16mg,产率:27%)。
LC-MS(ESI):m/z=480.3[M+H]+.
1H NMR(400MHz,CD3OD)δ7.90-7.75(m,1H),7.41-7.34(m,1H),5.02-4.94(m,1H),4.75(s,2H),4.15(s,3H),3.91(s,2H),3.08-2.97(m,2H),2.78-2.62(m,2H),2.53(s,3H),2.44(s,2H),1.21(s,6H).
实施例45
第一步:将化合物45A(1.0g,5.81mmol)用THF(20ml)溶解,在0℃下加入硼烷二甲硫醚溶液(0.8ml,10M in DMS),升到室温反应16小时。TLC监测反应完成后,用甲醇淬灭反应,减压浓缩,所得残余物经硅胶柱层析纯化,得到化合物45B(0.9g,产率:97.82%)。
1H NMR(400MHz,DMSO-d6)δ4.65-4.61(m,1H),3.56(s,3H),3.39-3.36(m,2H),2.43(s,2H),1.84-1.77(m,6H).
第二步:将化合物17E(0.95g,3.12mmol)、化合物45B(0.89g,5.62mmol)和三丁基膦(1.9g,9.36mmol)加入反应瓶,用甲苯(50ml)溶解,然后加入ADDP(2.35g,9.36mmol),在55℃反应16小时。TLC监测反应完成后,冷却到室温,减压浓缩,所得残余物经硅胶柱层析纯化,得到化合物45C(1.2g,产率:86.48%)。
LC-MS(ESI):m/z=445.3[M+H]+.
第三步:将化合物45C(1.2g,2.70mmol)加入反应瓶,用甲醇(15ml)溶解,然后加入PPTS(0.68g,2.70mmol),在60℃反应4小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化,得到化合物45D(0.56g,产率:57.56%)。
LC-MS(ESI):m/z=361.2[M+H]+.
第四步:将化合物45D(0.56g,1.55mmol)加入反应瓶,用四氢呋喃(10ml)溶解,然后加入DPPA(850mg,3.10mmol)和DBU(470mg,3.10mmol),室温反应2小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化,得到化合物45E(0.55g,产率:91.84%)。
LC-MS(ESI):m/z=386.3[M+H]+.
第五步:将化合物45E(0.55g,1.43mmol)加入反应瓶,用THF:H2O=5:1(12ml)溶解,然后加入三苯基膦(750mg,2.86mmol),室温反应1小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化,得到化合物45F(0.25g,产率:48.74%)。
LC-MS(ESI):m/z=360.3[M+H]+.
第六步:将化合物45F(0.25g,0.70mmol)加入反应瓶,用二氯甲烷(10ml)溶解,然后加入DIPEA(0.36ml,2.1mmol)和化合物22D(0.24g,0.84mmol),室温反应16小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化,得到化合物45G(0.3g,产率:85.32%)。
LC-MS(ESI):m/z=506.2[M+H]+.
第七步:将化合物45G(0.3g,0.59mmol)加入反应瓶,用THF:H2O:MeOH=3:1:1(10ml)溶解,然后加入氢氧化锂(28mg,1.18mmol),室温反应3小时。TLC监测反应完成后,减压浓缩,所
得残余物经反向柱纯化,得到化合物45(0.1g,产率:34.28%)。
1H NMR(400MHz,DMSO-d6)δ7.86-7.81(m,1H),7.74-7.66(m,1H),7.48-7.43(m,1H),4.98-4.88(m,1H),4.80-4.72(m,2H),4.08(s,2H),4.04(s,3H),3.07-2.96(m,2H),2.72-2.61(m,2H),2.58(s,2H),2.43(s,3H),2.06-1.89(m,6H).
LC-MS(ESI):m/z=492.2[M+H]+.
实施例46
第一步:将化合物25B(600mg,1.63mmol)、1,8-二氮杂二环[5.4.0]十一碳-7-烯(496mg,3.26mmol),用四氢呋喃(15ml)溶解,然后加入叠氮磷酸二苯酯(897mg,3.26mmol),室温下搅拌反应4小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=2:1),得到化合物46A(430mg,产率:67.12%)。
LC-MS(ESI):m/z=394.1[M+H]+.
第二步:将化合物46A(430mg,1.09mmol)溶于四氢呋喃(10ml)和水(2ml)的混合溶剂中,然后加入三苯基膦(573mg,2.19mmol),室温下搅拌反应4小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(DCM:MeOH=10:1),得到化合物46B(200mg,产率:50.0%)。
LC-MS(ESI):m/z=368.2[M+H]+.
第三步:将化合物46B(200mg,0.54mmol)加入反应瓶,用二氯甲烷20ml)溶解,然后加入DIPEA(210mg,1.63mmol)和22D(230mg,0.81mmol),室温反应16小时。TLC监测反应完成后,减压浓缩,所得残余物经硅胶柱层析纯化(PE:EA=1:1),得到化合物46C(230mg,产率:83.03%)。
LC-MS(ESI):m/z=514.2[M+H]+.
第四步:将化合物46C(230mg,0.45mmol)加入反应瓶,用THF:MeOH:H2O=1:1:1(12ml)溶解,然后加入无水氢氧化锂(43mg,1.79mmol),室温下搅拌反应18小时。TLC监测反应完成后,用稀盐酸将PH调为弱酸性,乙酸乙酯(20mL×4)萃取,合并有机相,无水硫酸钠干燥,过滤,浓缩滤液,减压浓缩,所得残余物通过制备HPLC分离得到化合物46D(190mg,产率:85.20%)。
LC-MS(ESI):m/z=500.3[M+H]+.
第五步:化合物46D经SFC拆分后得到化合物46-1(SFC分析保留时间:2.004min,70mg)、
化合物46-2(SFC分析保留时间:2.219min,80mg)。
SFC分析方法:仪器:SHIMADZU LC-30AD SFC,柱:Chiral IK column;流动相:A:CO2,B:0.05%DEA in i-PrOH;梯度:5-40% B in A;流速:3mL/min,柱温:35℃波长:220nm。SFC制备方法:仪器:Waters 150Prep-SFC,柱:Chiral IK column;流动相:A:CO2,B:0.1%NH3·H2O in i-PrOH;梯度:30% B梯度洗脱流速:100mL/min,柱温:25℃波长:220nm循环时间:7.0min;样品制备:样品浓度8mg/mL,乙腈甲醇混合溶液进样:每次5.0mL。分离后,干燥馏分得到化合物46-1、化合物46-2。
化合物46-1(SFC分析保留时间:2.004min):1H NMR(400MHz,DMSO-d6)δ13.18(s,1H),7.86-7.84(m,1H),7.68(s,1H),7.50-7.48(m,1H),4.94-4.91(m,1H),4.77-4.76(m,2H),4.31-4.29(m,1H),4.24-4.19(m,1H),4.04(s,3H),3.02-3.00(m,2H),2.81-2.64(m,4H),2.42(s,3H).
LC-MS(ESI):m/z=500.4[M+H]+。
化合物46-2(SFC分析保留时间:2.219min):1H NMR(400MHz,DMSO-d6)δ13.18(s,1H),7.86-7.84(m,1H),7.69(s,1H),7.50-7.48(m,1H),4.95-4.91(m,1H),4.77-4.76(m,2H),4.34-4.29(m,1H),4.24-4.20(m,1H),4.04(s,3H),3.02-3.00(m,2H),2.81-2.65(m,4H),2.43(s,3H).
LC-MS(ESI):m/z=500.4[M+H]+。
实施例47
第一步:将重氮甲烷(1mol/L)的乙醚溶液(200ml)降温至0℃,加入47A(5g,51mmol)和乙酸钯(0.57g,2.5mmol),N2置换后室温反应3h。过滤,直接将滤液减压浓缩后得到47B(5g,87.5%)。
1HNMR(400MHz,MeOD)δ4.45-4.40(m,2H),2.34(t,2H),1.16-1.12(m,2H),1.07-1.03(m,2H).
第二步:将47B(5g,44.59mmol)分批加入33%HBr的乙酸溶液(40ml)中,室温反应2h。加入水(200ml),过滤,固体用水洗涤,得到47C(4g,46.47%)。
1H NMR(400MHz,DMSO-d6)δ12.23(s,1H),3.62-3.54(m,2H),2.05-1.95(m,2H),1.08-1.06(m,2H),0.86-0.84(m,2H).
第三步:将47C(2g,10.36mmol)加入甲醇(20mL)中,再加入氯化亚砜(3.70g,31.08mmol),70℃反应2h。监测反应完全,降至室温,直接减压浓缩掉甲醇,加入乙酸乙酯(30ml),用水洗涤,再用饱和氯化钠溶液洗涤,有机相减压浓缩后得到47D(2g,93.22%)。
依据实施例43的第二步,第三步,第四步,第五步,第六步和第七步得到化合物47(0.03g)。
1HNMR(400MHz,CDCl3)δ8.03(d,1H),7.35(s,1H),5.04-4.94(m,1H),4.60(s,2H),4.30-
4.26(m,2H),4.18(s,3H),3.06-3.00(m,2H),2.75-2.69(m,2H),2.58(s,3H),2.12-2.10(m,2H),1.45-1.40(m,2H),1.00-0.95(m,2H).
LC-MS(ESI):m/z=478.2[M+H]+.
实施例48
以化合物48A(580mg,1.55mmol,合成方法参考:WO2020060916)为原料,参照实施例43的第四到七步,得到化合物48E(160mg,产率:82%)。
LC-MS(ESI):m/z=506.2[M+H]+.
第五步:化合物48E经手性拆分得到化合物48-1(SFC分析保留时间:1.671min,8mg),48-2(SFC分析保留时间:1.791min,10mg),48-3(SFC分析保留时间:1.634min,6mg),48-4(SFC分析保留时间:1.708min,3mg)。SFC分析方法:仪器:SHIMADZU LC-30AD,柱:Chiral WHELK column;流动相:A:CO2,B:0.1%NH3.H2O in MeOH;梯度:35% B in A;流速:110mL/min柱温:35℃波长:220nm。SFC制备方法:仪器:Waters 150Prep-SFC,柱:Chiral WHELK column;流动相:A:CO2,B:isopropanol;梯度:33% B梯度洗脱流速:120mL/min,柱温:25℃波长:254nm循环时间:8.1min;样品制备:样品浓度2mg/mL,乙醇溶液进样:每次2mL。分离后,-80℃下冻干得到化合物48-1,48-2,48-3和48-4。
化合物48-1(SFC分析保留时间:1.671min):1H NMR(400MHz,DMSO-d6)δ12.07(s,1H),7.83(d,1H),7.69(s,1H),7.45(d,1H),4.98-4.88(m,1H),4.78-4.75(s,2H),4.63-4.54(m,1H),4.04(s,3H),3.08-2.96(m,2H),2.72-2.62(m,2H),2.57-2.52(m,1H),2.40(s,3H),2.32-2.22(m,1H),2.04-1.90(m,2H),1.85-1.48(m,7H);LC-MS(ESI):m/z=506.2[M+H]+。
化合物48-2(SFC分析保留时间:1.791min):1H NMR(400MHz,DMSO-d6)δ12.03(s,1H),7.82(d,1H),7.70(s,1H),7.48(d,1H),4.98-4.87(m,1H),4.81-4.72(m,3H),4.04(s,3H),3.07-2.97(m,2H),2.72-2.60(m,3H),2.42(s,3H),2.19-2.10(m,1H),2.05-1.91(m,3H),1.83-1.41(m,6H);LC-MS(ESI):m/z=506.2[M+H]+。
化合物48-3(SFC分析保留时间:1.634min):1H NMR(400MHz,DMSO-d6)δ12.07(s,1H),7.83(d,1H),7.69(s,1H),7.45(d,1H),4.98-4.87(m,1H),4.79-4.75(m,2H),4.63-4.53(m,1H),4.04(s,3H),3.08-2.96(m,2H),2.71-2.60(m,2H),2.57-2.51(m,1H),2.40(s,3H),2.33-2.22(m,1H),2.04-1.91(m,2H),1.85-1.47(m,7H);LC-MS(ESI):m/z=506.2[M+H]+。
化合物48-4(SFC分析保留时间:1.708min):1H NMR(400MHz,DMSO-d6)δ11.82(s,1H),7.82(d,1H),7.70(s,1H),7.48(d,1H),4.97-4.88(m,1H),4.78-4.72(m,3H),4.04(s,3H),3.07-2.97(m,2H),2.72-2.61(m,3H),2.42(s,3H),2.17-2.09(m,1H),2.05-1.91(m,3H),1.83-1.41(m,6H);LC-MS(ESI):m/z=506.2[M+H]+。
生物学测试评价
1、细胞钙流实验
1)在384孔板中用DMSO将测试化合物稀释至400X储备溶液。
2)将步骤1中的1μl化合物溶液转移至39ul测定缓冲液中,用Bravo自动化液体处理平台在384孔板中制备10X工作溶液。
3)用F12培养基(10%FBS)培养CHO-LPA1细胞。
4)当细胞达到80%融合度时,用0.25%胰蛋白酶-EDTA解离细胞。
5)测量细胞密度,并用F12(10% FBS)将细胞稀释至4x10e5/ml。
6)用multidrop自动分液器将30μl细胞分装到384孔板(corning 3764#)中,每孔12K细胞。37℃,5% CO2培养18-20小时。
7)更换为25uL无血清培养基过夜。
8)细胞板每孔加入10ul 3.5X上样染料。在37℃、5% CO2避光条件下孵育0.5-1小时。
9)孵育后将5μl步骤2中的10X工作溶液转移至细胞板中。
10)25℃避光孵育细胞板15分钟,然后读出钙信号。
11)在384孔测定板(greiner 784075#)中制备至少20μl/孔的5X激动剂(LPA)工作溶液,LPA加在1X HBSS+20mM HEPES+0.1% BSA中。该测定中使用的激动剂浓度由先前激动剂模式中的剂量反应确定。EC80在测定中用作最终激动剂浓度。
12)在室温下使用指定的设置使用FLIPR读取并保存数据。
13)通过信号值与化合物浓度作图,用GraphPad Prism软件非线性回归方法进行曲线拟合及IC50计算。
实验结果:本发明化合物在体外对LPAR 1酶活性具有显著拮抗作用,实施例化合物对LPAR 1酶活的IC50值小于100μM。IC50值用A、B、C、D等级表示,A表示0<IC50≤10nM,B表示10nM<IC50≤50nM,C表示50nM<IC50≤100nM,D表示IC50>100nM。其中,部分实施例的测试结果如表1所示。
表1本发明化合物对LPAR 1的拮抗活性
实验结论:本发明化合物,例如实施例化合物对于LPAR1受体显示出高的拮抗活性,例如化合物4、5、7、12、19的IC50为2nM。
2、小鼠药代动力学测试
2.1试验动物:雄性C57小鼠,20~25g,6只/化合物。购于成都达硕实验动物有限公司。
2.2试验设计:试验当天,将C57小鼠按体重随机分组。给药前1天禁食不禁水12~14h,给药后4h给食。
表2.给药信息
注:静脉给药溶媒:5%DMA+5%Solutol+90%Saline;灌胃给药溶媒:10% Cremophor-EL+40%PEG400+50%1XPBS(pH=7.4)。
于给药前及给药后异氟烷麻醉经眼眶取血0.06mL,置于EDTAK2离心管中,5000rpm,4℃离心10min,收集血浆。静脉组和灌胃组采血时间点均为:0,5,15,30min,1,2,4,6,8,24h。分析检测前,所有样品存于-80℃,用LC-MS/MS对样品进行定量分析。
表3.测试化合物在小鼠血浆中的药代动力学参数
-:不适用。
结论:本发明化合物例如实施例化合物在小鼠体内具有良好的药代动力学特征,比如化合物4、12、22、26、47在小鼠体内药代动力学特征优异。
3、大鼠药代动力学测试
3.1、试验动物:雄性SD大鼠,220g左右,6~8周龄,6只/化合物。购于成都达硕实验动物有限公司。
3.2、试验设计:试验当天,将SD大鼠按体重随机分组。给药前1天禁食不禁水12~14h,给药后4h给食。
表4.给药信息
注:静脉给药溶媒:5%DMA+5%Solutol+90%Saline;灌胃给药溶媒:10% Cremophor-EL+40%PEG400+50%1XPBS(pH=7.4)。
于给药前及给药后异氟烷麻醉经眼眶取血0.15mL,置于EDTAK2离心管中,5000rpm,4℃离心10min,收集血浆。分析检测前,所有样品存于-80℃,用LC-MS/MS对样品进行定量分析。
表5.测试化合物在大鼠血浆中的药代动力学参数
-:不适用。
结论:本发明化合物,例如实施例化合物22、26、29在大鼠中具有良好的药代动力学特征。
4、比格犬药代动力学测试
4.1、试验动物:雄性比格犬,8~11kg左右,6只/化合物,购于北京玛斯生物技术有限公司。
4.2、试验方法:试验当天,将比格犬按体重随机分组。给药前1天禁食不禁水12~14h,给药后4h给食。
表6.给药信息
注:静脉给药溶媒:5%DMA+5%Solutol+90%Saline;灌胃给药溶媒:10% Cremophor-EL+40%PEG400+50%1XPBS(pH=7.4)。
于给药前及给药后通过颈静脉或四肢静脉取血1mL,置于EDTAK2离心管中。5000rpm,4℃离心10min,收集血浆。分析检测前,所有样品存于-80℃,用LC-MS/MS对样品进行定量分析。
结论:本发明化合物,例如实施例化合物在比格犬中具有良好的药代动力学特征。
5、猴药代动力学测试
5.1、试验动物:雄性食蟹猴,3~5kg,3~6年龄,4只/化合物。购于苏州西山生物技术有限公司。
5.2、试验方法:试验当天,将猴按体重随机分组。给药前1天禁食不禁水14~18h,给药后4h给食。
于给药前及给药后通过四肢静脉取血1.0mL,置于EDTAK2离心管中。5000rpm,4℃离心10min,收集血浆。分析检测前,所有样品存于-80℃,用LC-MS/MS对样品进行定量分析。
结论:本发明化合物,例如实施例化合物在猴中具有良好的药代动力学特征。
6、hERG钾离子通道作用测试
实验平台:电生理手动膜片钳系统
细胞系:稳定表达hERG钾离子通道的中国仓鼠卵巢(CHO)细胞系
实验方法:稳定表达hERG钾通道的CHO(Chinese Hamster Ovary)细胞,在室温下用全细胞膜片钳技术记录hERG钾通道电流。玻璃微电极由玻璃电极毛胚(BF150-86-10,Sutter)经拉制仪拉制而成,灌注电极内液后的尖端电阻为2-5MΩ左右,将玻璃微电极插入放大器探头即可连接至膜片钳放大器。钳制电压和数据记录由pClamp 10软件通过电脑控制和记录,采样频率为10kHz,滤波频率为2kHz。在得到全细胞记录后,细胞钳制在-80mV,诱发hERG钾电流(I hERG)的步阶电压从-80mV给予一个2s的去极化电压到+20mV,再复极化到-50mV,持续1s后回到-80mV。每10s给予此电压刺激,确定hERG钾电流稳定后(至少1分钟)开始给药过程。化合物每个测试浓度至少给予1分钟,每个浓度至少测试2个细胞(n≥2)。
数据处理:数据分析处理采用pClamp 10,GraphPad Prism 5和Excel软件。不同化合物浓度对hERG钾电流(-50mV时诱发的hERG尾电流峰值)的抑制程度用以下公式计算:
Inhibition%=[1-(I/Io)]×100%
其中,Inhibition%代表化合物对hERG钾电流的抑制百分率,I和Io分别表示在加药后和加
药前hERG钾电流的幅度。
化合物IC50使用GraphPad Prism 5软件通过以下方程拟合计算得出:
Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))
其中,X为供试品检测浓度的Log值,Y为对应浓度下抑制百分率,Bottom
和Top分别为最小和最大抑制百分率。
结论:本发明化合物,例如实施例化合物对于hERG没有抑制。
7、CYP酶抑制测试
本项研究的目的是应用体外测试体系评价受试物对人肝微粒体细胞色素P450(CYP)的5种同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的影响。CYP450同工酶的特异性探针底物分别与人肝微粒体以及不同浓度的受试物共同孵育,加入还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)启动反应,在反应结束后,通过处理样品并采用液相色谱-串联质谱联用(LC-MS/MS)法定量检测特异性底物产生的代谢产物,测定CYP酶活性的变化,计算IC50值,评价受试物对各CYP酶亚型的抑制潜能。在测试条件下,孵育浓度为0~30μM。
结论:本发明化合物,例如实施例化合物对于CYP酶没有抑制。
8、肝微粒体稳定性测试
本实验采用人、犬、大鼠和小鼠五种属肝微粒体作为体外模型来评价受试物的代谢稳定性。
在37℃条件下,1μM的受试物与微粒体蛋白、辅酶NADPH共同孵育,反应至一定时间(5,10,20,30,60min)加入冰冷含内标的乙腈终止反应,采用LC-MS/MS方法检测样品中受试物浓度,以孵育体系中药物剩余率的ln值和孵育时间求得T1/2,并进一步计算肝微粒体固有清除率CLint(mic)和肝固有清除率CLint(Liver)。
结论:本发明化合物,例如实施例化合物具有良好的肝微粒体稳定性。
9、Caco2渗透性测试
试验使用单层Caco-2细胞,在96孔Transwell板中采用三平行孵育。将含有本发明化合物(2μM)或对照化合物地高辛(10μM)、纳多洛尔(2μM)和美托洛尔(2μM)的转运缓冲溶液(HBSS,10mM HEPES,pH 7.4±0.05)加入顶端侧或基底侧的给药端孔中。对应接收端孔中加入含DMSO的转运缓冲溶液。在37±1℃条件下孵育2小时后,取出细胞板并从顶端和底端各取出适量样品至新的96孔板中。随后加入含内标的乙腈沉淀蛋白。使用LC MS/MS分析样品并测定本发明化合物和对照化合物的浓度。浓度数据用于计算从单层细胞顶端侧向基底侧、以及基底侧向顶端转运的表观渗透系数,从而计算外排率。用荧光黄的渗漏评价孵育2小时后单层细胞的完整性。
表7
结论:本发明化合物,例如实施例化合物具有良好的渗透性。
10、博莱霉素(BLM)诱导的特发性肺纤维化(IPF)小鼠模型
1)筛选和分组:本项目共计使用实验动物9周雄性C57BL/6j小鼠48只。在实验开始前,
根据动物的体重,分为假手术组(组一,8只小鼠)和模型组(40只小鼠)。造模后1周,根据动物的体重,将模型组分为6组:组二至组六,每组各8只。
2)动物造模:实验第1天,用舒泰(50mg/kg)和赛拉嗪(10mg/kg)将动物麻醉。模型组小鼠在第1天气管内注射(i.t.)博莱霉素,剂量为0.66mg/kg(1U/kg),体积为50μL。假手术组组一(n=10)气管内注射生理盐水,体积为50μL。
3)受试物给药方式:实验第7天开始,组三给予化合物22,剂量为1mg/kg,给药体积为10mL/kg体重,灌胃给药,每日两次;组四给予化合物22,剂量为3mg/kg,给药体积为10mL/kg体重,灌胃给药,每日两次;组五给予BMS-986278,剂量为10mg/kg,给药体积为10mL/kg体重,灌胃给药,每日两次;组六给予尼达尼布(Nintedanib),剂量为60mg/kg,给药体积为10mL/kg体重,灌胃给药,每日一次。假手术组组一和模型组组二给予溶媒,给药体积为10mL/kg体重,灌胃给药,每日两次。
4)检测指标:研究终点时采集肺组织进行病理检测。
结果:博莱霉素(0.66mg/kg,i.t.)注射21天后,显著增加了模型小鼠肺组织的Modified Ashcroft评分,以及肺纤维化面积。与给予溶媒的模型组相比,受试物化合物22在剂量为1mg/kg和3mg/kg时,灌胃给药,每日两次,连续给药14天,在研究终点时均显著降低了模型小鼠肺组织的Modified Ashcroft评分以及肺纤维化面积,3mg/kg给药的Modified Ashcroft评分小于4分,肺纤维化面积小于20%;受试物化合物22在剂量为1mg/kg时,与10mg/kg BMS-986278和60mg/kg尼达尼布的药效相当,在剂量为3mg/kg时优于BMS-986278和尼达尼布。
Claims (14)
- 一种式(I)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,
环C选自“*”端与左侧吡啶环相连,端与L2相连;环A选自3-12元碳环基、4-12元杂环基或环A不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;RA各自独立地选自H、卤素、=O、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-(5-10元杂环基)、-(3-6元碳环)-COORa1、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、-(CH2)p-P(O)(OH)2、=CH2、=CF2、=CH-CH3或=C-(CH3)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;L1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;RL1各自独立地选自H、卤素、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;当环A选自不存在时,L1选自被一个COOH取代的-OC1-6烷基、C2-6烯基、C2-6炔基;L2选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-C(=O)N(RL31)2、-N(RL31)-C(=O)ORL32、-(CH2)pRL33、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL29)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28、RL29、RL30、RL31各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-14元杂环基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基、-(CH2)p-O-C3-10环烷基、-O-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自 卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-SCF3、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷氧基、卤代C1-4烷基、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;RL32选自-C1-4烷基-(5-10元杂芳基)、-C1-4烷基-(6-10元芳基),所述的杂芳基、芳基任选进一步被1-3个选自卤素、CN、OH、NO2、NH2、卤代C1-4烷基、-OC1-4烷基、C2-6烯基或C2-6炔基的取代基取代;RL33选自C1-4烷基、卤素、OH、NH2、CN、C2-6烯基、C2-6炔基、-C(=O)H、-C(=O)OH、C3-10环烷基、C1-4烷氧基、5-14元杂环基,所述的烷基、烷氧基、烯基、炔基、环烷基、烷氧基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、N3、C1-4烷氧基、卤代C1-4烷氧基、C3-5环烷基、4-6元杂环烷基、6-10元芳基、5-10元杂芳基的基团取代;作为选择,RL24与RL25或RL26与RL27或两个RL23和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基、乙酰基的基团取代;p各自独立地选自0、1、2、3、4。 - 根据权利要求1所述的式(I)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,具有式(I-1)的结构,其中,
L2-1选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-C(O)-N(RL29)-C(O)RL21、-(CRL21RL22)p-C(O)-N(RL29)-S(O)2RL21、-(3-6元环烷基)-C(=O)N(RL25)2、-(4-7元杂环基)-C(=O)N(RL25)2、-(C2-4烯基)-(4-7元杂环基)-N(RL25)2、-(CRL21RL22)p-SC(O)-N(RL25)2、-(CRL21RL22)pN(RL26)C(S)N(RL27)(RL28)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23,Cy选自4-7元杂环基,所述环烷基、杂环基任选被任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、C3-6环烷基、5-7元杂环基的基团取代;RL21、RL22各自独立地选自H、C1-4烷基、C2-6烯基、C2-6炔基、C3-10环烷基、5-12元杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;每个RL23各自独立地选自C1-4烷基、-(CH2)p-O-C3-6环烷基、C3-6环烷基、-O-C3-6环烷基、-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、 5-6元杂芳基,所述杂环烷基、杂芳基含有1-3个选自N、O、S、S(O)、S(O)2的杂原子;所述的烷基、杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;且当RL21、RL22同时为H,L1为O时,至少1个RL23选自-(CH2)p-(4-7元杂环烷基)、6-12元双环杂环烷基、5-6元杂芳基、 被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C1-4烷基、-O-C3-6环烷基、-(CH2)p-O-C3-6环烷基、被1-4个选自-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、取代的C3-6环烷基,所述的杂环烷基、杂芳基任选进一步被1-4个选自=O、卤素、OH、-OCF3、-OCHF2、-SCF3、NH2、CN、乙酰基、-S(O)2CH3、的基团取代;RL24各自独立地选自H、C2-6烯基、C2-6炔基,所述的烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN、C3-10环烷基、5-12元杂环基的基团取代;每个RL25、RL27、RL28各自独立地选自C1-3烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;RL26各自独立地选自C2-6烯基、C2-6炔基、C3-6环烷基,所述的烯基、炔基、环烷基任选进一步被1-4个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;RL29选自H、C1-4烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个选自卤素、OH、NH2、CN的基团取代;RL30选自6-14元双环或三环杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的杂环基任选进一步被1-4个选自卤素、CN、OH、NH2、C1-4烷基、卤代C1-4烷基的基团取代;p选自0、1、2、3、4;作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基、乙酰基的基团取代;作为选择,两个RL23和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自=O、OH、NH2、CN、乙酰基的基团取代;条件是,(1)、RL30不为(2)、所述化合物不为 - 根据权利要求2所述的式(I-1)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,其中,L2-1选自L1选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-NHC(O)-、-CH2-、-NH-、-N(CH3)-、-NHCH(CH3)-。
- 根据权利要求1所述的式(I)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,具有式(I-2)、(I-2a)、(I-2b)、(I-2c)的结构,其中,
环A1、A1b、A1c各自独立地选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;RA各自独立地选自H、=O、卤素、CN、OH、C1-6烷基、C2-6烯基、C2-6炔基、-OC1-4烷基、-(CH2)p-5-10元杂环基、-(3-6元碳环)-COORa1、-(CH2)p-COORa1、-(CH2)p-C(O)NRa1Ra2、-(CH2)p-C(O)NHC(O)Ra1、-(CH2)p-C(O)NHS(O)2Ra1、-(CH2)p-C(O)NHS(O)Ra1、-(CH2)p-S(O)2OH、-(CH2)p-S(O)2NHC(O)Ra1、-(CH2)p-P(O)(OH)2、=CH2、=CF2、=CH-CH3或=C-(CH3)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-4烷基的基团取代;且L1-1-A1、L1-1b-A1b、O-A1c不选自L1-1、L1-1b各自独立地选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;L1-1a选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;RL1各自独立地选自H、卤素、OH、C1-4烷基、卤代C1-4烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代;当环A1、A1b各自独立地选自不存在时,L1-1、L1-1b各自独立地选自被一个COOH取代的-OC1-6烷基、C2-6烯基、C2-6炔基;L2-2、L2-2c各自独立地选自-(CRL21RL22)p-OC(O)-N(RL23)2、-(CRL21RL22)pN(RL24)S(O)2N(RL25)2、-(CRL21RL22)pN(RL26)C(O)N(RL27)(RL28)、-(CRL21RL22)pN(RL29)(RL30)、-(CRL21RL22)p-OC(O)-RL23、-(CRL21RL22)p-O-RL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23;Ra1、Ra2、RL1、RL2、RL21、RL22、RL23、RL24、RL25、RL26、RL27、RL28各自独立地选自H、卤素、C1-4烷基、C2-6烯基、C2-6炔基、C1-4烷氧基、5-10元杂环烷基、-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基、-(CH2)p-OC3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、环烷基、杂环烷基任选进一步被1-4个选自卤素、=O、=CH2、=CF2、=CH-CH3、=C-(CH3)2、OH、NH2、CN、乙酰基、-S(O)2CH3、C1-4烷基、C1-4烷氧基、卤代C1-4烷基、卤代C1-4烷氧基、-SCF3、C3-10环烷基、5-12元杂环基、-C≡C-C3-10环烷基的基团取代;RL29选自H、C1-4烷基、C2-6烯基、C2-6炔基,所述的烷基、烯基、炔基任选进一步被1-4个 选自卤素、OH、NH2、CN的基团取代;RL30选自6-14元双环或三环杂环基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的杂环基任选进一步被1-4个选自卤素、CN、OH、NH2、C1-4烷基、卤代C1-4烷基的基团取代;作为选择,RL24与RL25或RL26与RL27和其所连接的原子一起形成含有1-3个选自N、O、S杂原子的5-7元杂环,所述杂环任选进一步被1-3个选自卤素、=O、OH、NH2、CN、C1-4烷基的基团取代;p各自独立地选自0、1、2、3、4;条件是:(1)、对于式(I-2),当L2-2选自时,L1-1-A1不选自(2)、对于式(I-2),当L2-2选自时,L1-1-A1不选自(3)、对于式(I-2b),L1-1b-A1b不选自(4)、对于式(I-2c),O-A1c不选自 - 根据权利要求4所述的式(I-2)、(I-2b)、(I-2c)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,其中,环A1、A1b、A1c选自3-8元单环环烷基、6-12元并环烷基、4-8元单环杂环烷基、6-12元杂并环烷基、6-10元杂螺环基、6-10元杂桥环基或不存在,所述杂环烷基、杂并环烷基、杂螺环基、杂桥环基含有1-3个选自N、O、S的杂原子,所述的环烷基、杂环烷基、杂并环烷基、杂螺环基、杂桥环基任选进一步被1-4个RA取代;RA各自独立地选自H、卤素、=O、CN、OH、C1-4烷基、C2-4烯基、C2-4炔基、-OC1-2烷基、-(CH2)p-(5-8元杂环基)、-(3-6元碳环)-COORa1、-(CH2)p-COORa1、=CH2、=CF2、=CH-CH3或=C-(CH3)2,所述杂环基含有1-3个选自N、O、S的杂原子;所述的烷基、烯基、炔基、杂环基任选进一步被1-4个选自卤素、OH、NH2、CN、-O-卤代C1-2烷基的基团取代;L1-1、L1-1b各自独立地选自键、C1-4烷基、C2-4烯基、C2-4炔基、-O-、-O-C1-4烷基-、-S-、-S-C1-4烷基-、-C(O)NRL1-、-NRL1C(O)-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;RL1各自独立地选自H、卤素、OH、C1-2烷基、卤代C1-2烷基、3-6元环烷基、-COOH,所述的烷基、环烷基任选进一步被1-4个选自卤素、OH、NH2取代。
- 根据权利要求5所述的式(I-2)、(I-2b)、(I-2c)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,其中,环A1、A1b、A1c各自独立地选自任选被1-4个RA取代的如下结构形成的基团之一:RA各自独立地选自H、C1-2烷基、卤素、CN、OH、-COOH、-CH2-COOH、-CH2CH2-COOH、=CH2、=CF2、=CH-CH3或=C-(CH3)2;L1-1、L1-1b各自独立地选自键、C1-2烷基、-O-C1-2烷基-、-S-、-O-、乙烯基、丙烯基、乙炔基、-C(O)NH-、-NHC(O)-,所述烷基任选进一步的被1-4个RL1取代;RL1各自独立地选自H、卤素、OH、C1-2烷基、3-6元环烷基;L2-2、L2-2c各自独立地选自
- 根据权利要求6所述的式(I-2)、(I-2a)、(I-2b)、(I-2c)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,其中,环A1、A1b、A1c各自独立地选自如下结构:L1-1、L1-1b各自独立地选自键、-OCH2-、-OCH2CH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-O-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-;L1-1a各自独立地选自键、-OCH2-、-S-、-OCH(CH3)-、-OCH(CF3)-、-C(=O)-、-CH2-、-CH=CH-CH2-、乙炔基、-NHCO-、-NH-、-N(CH3)-、-NHCH(CH3)-。
- 根据权利要求1所述的式(I)所示的化合物、其立体异构体、氘代物、或药学上可接受的盐,具有式(I-6)的结构,其中,
其中,L2-2选自-(CRL21RL22)p-OC(O)-N(CH3)RL23、-(CRL21RL22)p-OC(O)-NHRL23、-(CRL21RL22)p-N(RL26)C(O)O-RL23;RL21、RL22、RL26各自独立地选自H、C1-4烷基;RL23选自-(CH2)p-(4-7元杂环基)、-(CH2)p-C3-10环烷基,所述杂环基含有1-3个选自N、O、S的杂原子;所述的环烷基、杂环基进一步被1-4个选自=CH2、=CF2、=CH-CH3、=C-(CH3)2的基团取代;环A1选自3-12元碳环基、4-12元杂环基或不存在,所述杂环基含有1-3个选自N、O、S的杂原子;所述的碳环基、杂环基任选进一步被1-4个RA取代;当环A1选自不存在时,L1-1选自被一个COOH取代的-OC1-6烷基;L1-1选自键、C1-6烷基、C2-6烯基、C2-6炔基、-O-、-O-C1-6烷基-、-S-、-S-C1-6烷基-、-C(O)NRL1-、-NRL1-、-NRL1-C1-6烷基-,所述烷基、烯基、炔基任选进一步的被1-4个RL1取代;RA、RL1、p如权利要求1所述。 - 根据权利要求1所述的化合物、其立体异构体、氘代物、或药学上可接受的盐,所述化合物选自表一、表二中结构之一。
- 一种药物组合物或药物制剂,其含有权利要求1-9中任意一项所述的化合物、或其立体异构体、氘代物、或药学上可接受的盐,以及药学上可接受的载体和/或赋形剂。
- 根据权利要求10所述的药物组合物或药物制剂,包含选1-1500mg的权利要求1-9任意一项所述的化合物或者其立体异构体、氘代物、或药学上可接受的盐和载体和/或赋形剂。
- 权利要求1-9中任意一项所述的化合物、其立体异构体、氘代物、或药学上可接受的盐,或者权利要求10-11所述的组合物在制备治疗/预防LPAR1介导的疾病的药物中的用途。
- 根据权利要求12所述的用途,所述LPAR1介导的疾病选自特发性肺纤维化、进展性肺 纤维化、系统性硬化症、良性前列腺增生、多发性硬化症、神经损伤、神经痛。
- 一种用于治疗哺乳动物的疾病的方法,所述方法包括给予受试者治疗有效量的权利要求1-11任意一项所述的化合物或者其立体异构体、氘代物、或药学上可接受的盐或者权利要求10-11所述的组合物,治疗有效量优选1-1500mg,所述的疾病选自特发性肺纤维化、进展性肺纤维化、系统性硬化症、良性前列腺增生、多发性硬化症、神经损伤、神经痛。
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311157448 | 2023-09-08 | ||
CN202311157448.X | 2023-09-08 | ||
CN202311536485 | 2023-11-17 | ||
CN202311536485.1 | 2023-11-17 | ||
CN202311711346 | 2023-12-13 | ||
CN202311711346.8 | 2023-12-13 | ||
CN202410036503.8 | 2024-01-10 | ||
CN202410036503 | 2024-01-10 | ||
CN202410163449 | 2024-02-05 | ||
CN202410163449.3 | 2024-02-05 | ||
CN202410279138.3 | 2024-03-12 | ||
CN202410279138 | 2024-03-12 | ||
CN202410411109 | 2024-04-08 | ||
CN202410411109.8 | 2024-04-08 | ||
CN202410746126.7 | 2024-06-11 | ||
CN202410746126 | 2024-06-11 | ||
CN202411008547 | 2024-07-26 | ||
CN202411008547.6 | 2024-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025051267A1 true WO2025051267A1 (zh) | 2025-03-13 |
Family
ID=94922904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/117612 WO2025051267A1 (zh) | 2023-09-08 | 2024-09-06 | 一种lpar1拮抗剂及其用途 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025051267A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109963843A (zh) * | 2016-06-21 | 2019-07-02 | 百时美施贵宝公司 | 作为lpa拮抗剂的氨甲酰基氧甲基三唑环己基酸 |
CN112189010A (zh) * | 2017-12-19 | 2021-01-05 | 百时美施贵宝公司 | 作为lpa拮抗剂的三唑n-连接的氨基甲酰基环己基酸 |
US20210171500A1 (en) * | 2019-11-15 | 2021-06-10 | Gilead Sciences, Inc. | Triazole carbamate pyridyl sulfonamides as lpa receptor antagonists and uses thereof |
CN113260310A (zh) * | 2018-10-15 | 2021-08-13 | 百时美施贵宝公司 | 用于成像lpa1受体的放射性配体 |
CN113473985A (zh) * | 2018-09-18 | 2021-10-01 | 百时美施贵宝公司 | 作为lpa拮抗剂的环戊酸 |
CN114599648A (zh) * | 2019-06-18 | 2022-06-07 | 百时美施贵宝公司 | 作为lpa拮抗剂的三唑羧酸 |
WO2022232459A1 (en) * | 2021-04-30 | 2022-11-03 | Viva Star Biosciences (Suzhou) Co., Ltd. | Novel triazole-pyridine substituted pyrrolidinyl and tetrahydro-2h-pyranyl acetic acid compounds as lpa antagonists |
-
2024
- 2024-09-06 WO PCT/CN2024/117612 patent/WO2025051267A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109963843A (zh) * | 2016-06-21 | 2019-07-02 | 百时美施贵宝公司 | 作为lpa拮抗剂的氨甲酰基氧甲基三唑环己基酸 |
CN112189010A (zh) * | 2017-12-19 | 2021-01-05 | 百时美施贵宝公司 | 作为lpa拮抗剂的三唑n-连接的氨基甲酰基环己基酸 |
CN113473985A (zh) * | 2018-09-18 | 2021-10-01 | 百时美施贵宝公司 | 作为lpa拮抗剂的环戊酸 |
CN113260310A (zh) * | 2018-10-15 | 2021-08-13 | 百时美施贵宝公司 | 用于成像lpa1受体的放射性配体 |
CN114599648A (zh) * | 2019-06-18 | 2022-06-07 | 百时美施贵宝公司 | 作为lpa拮抗剂的三唑羧酸 |
US20210171500A1 (en) * | 2019-11-15 | 2021-06-10 | Gilead Sciences, Inc. | Triazole carbamate pyridyl sulfonamides as lpa receptor antagonists and uses thereof |
WO2022232459A1 (en) * | 2021-04-30 | 2022-11-03 | Viva Star Biosciences (Suzhou) Co., Ltd. | Novel triazole-pyridine substituted pyrrolidinyl and tetrahydro-2h-pyranyl acetic acid compounds as lpa antagonists |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023280280A1 (zh) | 作为KRas G12D抑制剂的稠环化合物 | |
CN111295372B (zh) | 硝羟喹啉前药及其用途 | |
WO2020042995A1 (zh) | 一种高活性sting蛋白激动剂化合物 | |
CN115785068A (zh) | Kif18a抑制剂 | |
WO2023041055A1 (zh) | Kif18a抑制剂 | |
WO2021233427A1 (zh) | 并环化合物及其制备方法、药物组合物和应用 | |
CN115772159A (zh) | Kif18a抑制剂 | |
WO2021244634A1 (zh) | 咪唑并吡啶类化合物及其用途 | |
WO2022135390A1 (zh) | 己酮糖激酶抑制剂及其用途 | |
AU2019311121B2 (en) | Fused ring derivative used as FGFR4 inhibitor | |
CN111630047A (zh) | 含有羧酸基团的苯并氮杂环类化合物及其制备方法和用途 | |
CN115109061A (zh) | 三环化合物 | |
TW202346293A (zh) | 含氮雜環衍生物及其组合物和藥學上的應用 | |
WO2025051267A1 (zh) | 一种lpar1拮抗剂及其用途 | |
CN119110795A (zh) | 用于治疗与lpa受体活性相关的病症的化合物和组合物 | |
WO2023116763A1 (zh) | 一种哒嗪类化合物、其药物组合物及应用 | |
CN118119622A (zh) | 作为shp2抑制剂的稠环化合物 | |
WO2022161166A1 (zh) | 靶向嵌合化合物、含其的药物组合物及其制备方法和用途 | |
CN117479934A (zh) | 用于治疗肾纤维化的噁二唑基二氢吡喃并[2,3-b]吡啶的HIPK2抑制剂 | |
WO2021047406A1 (zh) | 一种三并环类化合物,包含其的药物组合物,其制备方法及其用途 | |
WO2023284837A1 (zh) | 芳氨基衍生物雌激素受体调节剂及其用途 | |
WO2024193464A1 (zh) | 一种含氮三并环衍生物及其在医药上的应用 | |
WO2025051266A1 (zh) | 杂芳环衍生物的lpar1拮抗剂及其用途 | |
WO2024012570A1 (zh) | 一种含氮杂环衍生物及其组合物和药学上的应用 | |
CN118515648A (zh) | 一种雄激素受体降解剂 |