[go: up one dir, main page]

WO2025047871A1 - Underlayer film material for self-assembled materials - Google Patents

Underlayer film material for self-assembled materials Download PDF

Info

Publication number
WO2025047871A1
WO2025047871A1 PCT/JP2024/030954 JP2024030954W WO2025047871A1 WO 2025047871 A1 WO2025047871 A1 WO 2025047871A1 JP 2024030954 W JP2024030954 W JP 2024030954W WO 2025047871 A1 WO2025047871 A1 WO 2025047871A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
underlayer film
film
forming
polymer
Prior art date
Application number
PCT/JP2024/030954
Other languages
French (fr)
Japanese (ja)
Inventor
知忠 広原
裕斗 緒方
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2025047871A1 publication Critical patent/WO2025047871A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a composition for forming an underlayer film used to form an underlayer film of a self-assembled film, an underlayer film, and a method for manufacturing a semiconductor device using the composition and the underlayer film.
  • a pattern formation method has been proposed in which a composition for forming an underlayer film is applied onto a substrate to form an underlayer film made of the composition, a self-assembled film containing a block copolymer in which two or more polymers are bonded is formed on the surface of the underlayer film, the block copolymer in the self-assembled film is phase-separated, and at least one of the phases of the polymers constituting the block copolymer is selectively removed.
  • Patent Document 1 discloses a composition for forming an underlayer film of a self-assembled film, which contains a polymer that has 20 mol % or more of unit structures of aromatic vinyl compounds, such as styrene, vinylnaphthalene, acenaphthylene, and vinylcarbazole, which may be substituted, per total unit structure of the polymer, and has 1 mol % or more of unit structures of polycyclic aromatic vinyl compounds per total unit structure of the aromatic vinyl compounds.
  • aromatic vinyl compounds such as styrene, vinylnaphthalene, acenaphthylene, and vinylcarbazole
  • the present invention provides a composition for forming an underlayer film that has good film-forming properties as an underlayer film for a self-assembled film and can form an underlayer that can form a vertical alignment in the self-assembled film.
  • the present invention also provides an underlayer film using the composition for forming an underlayer film, and a method for manufacturing a semiconductor device using the underlayer film.
  • a composition for forming an underlayer film for forming an underlayer film of a self-assembled film comprising: Contains a polymer, The polymer has a unit structure (A) having an alicyclic hydrocarbon group having a reactive group. Composition for forming a lower layer film.
  • Ar 11 represents an aromatic group which may be substituted.
  • Ar 11 represents naphthalene, anthracene, phenanthrene, pyrene, triphenylene, chrysene, naphthacene, biphenylene, fluorene, or carbazole, which may be substituted, or benzene having one or more hydrocarbon groups having 1 to 6 carbon atoms as a substituent.
  • [5] The composition for forming an underlayer film according to any one of [1] to [4], wherein the polymer further has a unit structure (C) having a monocyclic aromatic structure.
  • the two or more R 22 may be the same or different.
  • the unit structure (D) is a unit structure represented by the following formula (D-1): (In formula (D-1), R 31 represents a hydrogen atom or a methyl group. X 31 represents an ester group or an amide group.
  • composition for forming an underlayer film according to any one of [1] to [13] which is a composition for forming an underlayer film that is used as an underlayer film of a resist film, which is a photoresist film or an electron beam resist film, and the self-assembled film in lithography using the self-assembled film.
  • Y 1 represents a single bond or a divalent alkylene group having 1 to 6 carbon atoms.
  • the divalent alkylene group having 1 to 6 carbon atoms include a methylene group, an ethylene group, a propylene group, a trimethylene group, a butylene group, a pentylene group, and a hexylene group.
  • X 1 is an ester group and Y 1 is a single bond.
  • Cy represents an alicyclic hydrocarbon group having a reactive group.
  • the reactive group in Cy is preferably a hydroxy group, and the alicyclic hydrocarbon group is preferably an adamantyl group.
  • Examples of the unit structure represented by formula (A-1) include the following:
  • the unit structure (A) in the polymer may be of one or more types, but preferably is of one or two types.
  • the polymer of the present invention may have a unit structure other than the unit structure (A). From the viewpoint of suitably obtaining the effects of the present invention, such a unit structure may be a unit structure represented by the following formula (B-1).
  • R 11 represents a hydrogen atom or a methyl group.
  • Ar 11 represents an aromatic group which may be substituted.
  • Ar 11 may be substituted naphthalene, anthracene, phenanthrene, pyrene, triphenylene, chrysene, naphthacene, biphenylene, fluorene, carbazole, or the like.
  • substituents that Ar 11 may have include a halogen atom, a hydroxy group, an alkyl group, an alkoxy group, a thiol group, a cyano group, a carboxy group, an amino group, an amido group, an alkoxycarbonyl group, and a thioalkyl group.
  • Ar 11 may be benzene having one or more substituents of a hydrocarbon group having 1 to 6 carbon atoms.
  • the hydrocarbon group in Ar 11 may be linear, branched, or cyclic, and is preferably branched.
  • the hydrocarbon group in Ar 11 is more preferably a t-butyl group.
  • Ar 11 may have one or more hydrocarbon groups.
  • Ar 11 preferably has 6 to 20 carbon atoms, and more preferably has 6 to 14 carbon atoms.
  • Examples of the unit structure represented by formula (B-1) include the following:
  • the unit structure (B-1) in the polymer may be of one or more types, but preferably is of one or two types.
  • the unit structure (C) is not particularly limited, but from the viewpoint of optimally obtaining the effects of the present invention, the unit structure represented by the following formula (C-1) is preferred.
  • R 21 represents a hydrogen atom or a methyl group.
  • X 21 represents an ester group or an amide group.
  • Y 21 represents a single bond or an alkylene group having 1 to 6 carbon atoms.
  • Z 21 represents a single bond or an ether group.
  • Ar 21 represents benzene, naphthalene or anthracene which may be substituted.
  • R 22 represents a halogen atom or an organic group having 1 to 10 carbon atoms which may be substituted.
  • n represents an integer of 0 to 5. When there are two or more R 22 , the two or more R 22 may be the same or different.
  • X21 is preferably an ester group.
  • the organic group having 1 to 10 carbon atoms which may be substituted for R 22 is preferably an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom, or an acyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • An example of the acyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom is a benzoyl group.
  • Z 21 represents a single bond.
  • the unit structure represented by formula (C-1) preferably has 9 to 19 carbon atoms.
  • Examples of the unit structure represented by formula (C-1) include the following:
  • the vinyl polymer may contain one or more types of unit structure (C), but preferably one or two types.
  • the polymer may have a unit structure other than the unit structure (A), the unit structure (B) and the unit structure (C). From the viewpoint of suitably obtaining the effects of the present invention, such a unit structure may be a unit structure (D) having a hydrocarbon group (excluding alicyclic hydrocarbon groups) having a reactive group.
  • the unit structure (D) is a unit structure different from the unit structures (A), (B) and (C). For example, the unit structure (D) does not have an alicyclic hydrocarbon group having a reactive group which the unit structure (A) has.
  • the unit structure (D) is not particularly limited, but from the viewpoint of optimally obtaining the effects of the present invention, the unit structure represented by the following formula (D-1) is preferred.
  • R 31 represents a hydrogen atom or a methyl group.
  • X 31 represents an ester group or an amide group.
  • R 32 represents a hydrocarbon group having 1 to 12 carbon atoms (excluding alicyclic hydrocarbon groups) having a reactive group.
  • Examples of the hydrocarbon group having 1 to 12 carbon atoms contained in the structural unit (D-1) include alkyl groups having 1 to 12 carbon atoms. In these alkyl groups, some of the hydrogen atoms may be substituted with a monocyclic aromatic hydrocarbon ring such as a benzene ring.
  • Examples of reactive groups contained in the unit structure (D-1) include a hydroxy group, an epoxy group, an acyl group, an acetyl group, a formyl group, a benzoyl group, a carboxy group, a carbonyl group, an amino group, an imino group, a cyano group, an azo group, an azido group, a thiol group, a sulfo group, and an allyl group.
  • a hydroxy group is preferred.
  • the number of reactive groups per hydrocarbon group may be one or more, and it is preferred that the number of reactive groups per hydrocarbon group is one.
  • Examples of the unit structure represented by formula (D-1) include the following:
  • the molar ratio of the unit structure (A) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably less than 60 mol%, more preferably 50 mol% or less, and particularly preferably 45 mol% or less.
  • the molar ratio of the unit structure (A) to all unit structures of the polymer is preferably 5 mol % or more, more preferably 10 mol % or more, and particularly preferably 15 mol % or more.
  • the molar ratio of the unit structure (B-1) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 45 mol % or more, more preferably 50 mol % or more, and particularly preferably 55 mol % or more.
  • the molar ratio of the unit structure (B-1) to all unit structures of the vinyl polymer is preferably 80 mol % or less, more preferably 70 mol % or less, and particularly preferably 60 mol % or less.
  • the molar ratio of the unit structure (C) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 5 mol % or more, more preferably 15 mol % or more, and particularly preferably 20 mol % or more.
  • the molar ratio of the unit structure (C) to all unit structures of the polymer is preferably 50 mol % or less, more preferably 40 mol % or less, and particularly preferably 30 mol % or less.
  • the molar ratio of the unit structure (D) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 5 mol % or more, more preferably 10 mol % or more, and particularly preferably 15 mol % or more.
  • the molar ratio of the unit structure (D) to all unit structures of the polymer is preferably 50 mol % or less, more preferably 40 mol % or less, particularly preferably 30 mol % or less.
  • the molar ratio of unit structure (A) to unit structure (B-1) in the polymer (unit structure (B-1)/unit structure (A)) is not particularly limited, but is preferably 1 to 9, and more preferably 1.5 to 5.
  • the distribution of unit structures in the polymer is not particularly limited.
  • the polymer may be a block copolymer or a random copolymer.
  • the molecular weight of the polymer is not particularly limited, but the weight average molecular weight determined by gel permeation chromatography (hereinafter sometimes abbreviated as GPC) is preferably 1,500 to 100,000, and more preferably 2,000 to 50,000.
  • the molecular weight of the polymer can be measured, for example, using a GPC apparatus (EcoSEC, HLC-8320GPC, manufactured by Tosoh Corporation) and a GPC column (Shodex [registered trademark] Asahipak [registered trademark], manufactured by Showa Denko K.K.), setting the column temperature to 40° C., using dimethylformamide as an eluent (elution solvent), setting the flow rate (flow velocity) to 0.6 mL/min, and using polystyrene (manufactured by Tosoh Corporation) as a standard sample.
  • GPC weight average molecular weight determined by gel permeation chromatography
  • a known polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization can be used.
  • Various known techniques such as solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization can also be used.
  • the polymerization initiator used during polymerization is not particularly limited, but examples thereof include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2 , 2'-azobis(isobutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl)azo]formamide, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane], and 2,2'-azobis(2-methylpropionamidine)
  • the solvent used during polymerization is not particularly limited, but examples include dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-
  • the reaction temperature is not particularly limited, but may be, for example, 20°C to 150°C.
  • the reaction time is not particularly limited, but may be, for example, 1 hour to 72 hours.
  • the obtained solution containing the polymer can be used as is for preparing a composition for forming an underlayer film.
  • the polymer can also be recovered and used after being precipitated and isolated in a poor solvent such as methanol, ethanol, isopropanol, or water, or a mixture thereof.
  • the content of the specific polymer in the composition for forming an underlayer film is not particularly limited, but from the viewpoint of solubility, it is preferably 0.1% by mass to 50% by mass, and more preferably 0.1% by mass to 10% by mass, based on the entire composition for forming an underlayer film.
  • the content of the specific polymer in the underlayer film-forming composition is preferably 50% by mass to 95% by mass, more preferably 55% by mass to 90% by mass, and particularly preferably 60% by mass to 85% by mass, based on the film-constituting components.
  • the film constituent components refer to the components contained in the composition other than the solvent.
  • the composition for forming the underlayer film preferably contains a crosslinking agent.
  • the crosslinking agent has, for example, a functional group capable of reacting with the reactive group contained in the unit structure (A).
  • the number of the functional groups in the crosslinking agent is not particularly limited, and may be one, or two or more.
  • the functional group capable of reacting with the reactive group possessed by the unit structure (A) is not particularly limited, and examples thereof include a hydroxy group, an epoxy group, an acyl group, an acetyl group, a formyl group, a benzoyl group, a carboxy group, a carbonyl group, an amino group, an imino group, a cyano group, an azo group, an azido group, a thiol group, a sulfo group, an allyl group, and a structure represented by the following formula (E).
  • R 101 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxyalkyl group having 2 to 6 carbon atoms. * represents a bond.
  • the bond is, for example, bonded to a nitrogen atom or a carbon atom constituting an aromatic hydrocarbon ring.
  • a functional group capable of reacting with the reactive group of the unit structure (A) may be, for example, a structure represented by formula (E).
  • examples of functional groups that can react with the reactive group of the unit structure (A) include a carboxy group, an amino group, and a thiol group.
  • crosslinking agents include compounds having two or more structures represented by the following formula (E):
  • R 101 is preferably a hydrogen atom, a methyl group, an ethyl group or a group represented by the following structure.
  • R 102 represents a hydrogen atom, a methyl group, or an ethyl group. * represents a bond.
  • Preferred crosslinking agents are melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, and compounds having a phenolic hydroxyl group. These can be used alone or in combination of two or more.
  • the melamine compound is not particularly limited as long as it has a group capable of reacting with the reactive group (e.g., hydroxy group) of the unit structure (A).
  • the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are acyloxymethylated or a mixture thereof, and the like.
  • the guanamine compound is not particularly limited as long as it has a group capable of reacting with the reactive group (for example, a hydroxyl group) possessed by the unit structure (A).
  • the guanamine compound include tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which one to four methylol groups of tetramethylolguanamine are methoxymethylated or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine, a compound in which one to four methylol groups of tetramethylolguanamine are acyloxymethylated or a mixture thereof, and the like.
  • the glycoluril compound is not particularly limited as long as it has a group capable of reacting with the reactive group (for example, a hydroxyl group) of the unit structure (A).
  • glycoluril compounds include tetramethylol glycoluril, tetramethoxy glycoluril, tetramethoxymethyl glycoluril, compounds in which one to four methylol groups of tetramethylol glycoluril are methoxymethylated or mixtures thereof, and compounds in which one to four methylol groups of tetramethylol glycoluril are acyloxymethylated or mixtures thereof.
  • the glycoluril compound may be, for example, a glycoluril derivative represented by the following formula (1E).
  • the four R 1s each independently represent a methyl group or an ethyl group
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
  • glycoluril derivative represented by formula (1E) examples include compounds represented by the following formulas (1E-1) to (1E-6).
  • the glycoluril derivative represented by formula (1E) can be obtained, for example, by reacting a glycoluril derivative represented by the following formula (2E) with at least one compound represented by the following formula (3d).
  • R2 and R3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group, and R4 each independently represent an alkyl group having 1 to 4 carbon atoms.
  • R 1 represents a methyl group or an ethyl group.
  • glycoluril derivative represented by formula (2E) examples include compounds represented by the following formulae (2E-1) to (2E-4).
  • Examples of the compound represented by formula (3d) include compounds represented by the following formulae (3d-1) and (3d-2).
  • the urea compound is not particularly limited as long as it has a group capable of reacting with the reactive group (for example, a hydroxyl group) of the unit structure (A).
  • the urea compound include tetramethylol urea, tetramethoxymethyl urea, tetramethylol urea compounds in which one to four methylol groups are methoxymethylated, or mixtures thereof, and tetramethoxyethyl urea.
  • Examples of the compound having a phenolic hydroxy group include compounds represented by the following formula (111) or (112).
  • Q2 represents a single bond or an m2-valent organic group.
  • R 8 , R 9 , R 11 and R 12 each represent a hydrogen atom or a methyl group.
  • R7 and R10 each represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 40 carbon atoms.
  • n9 is an integer satisfying 1 ⁇ n9 ⁇ 3, n10 is an integer satisfying 2 ⁇ n10 ⁇ 5, n11 is an integer satisfying 0 ⁇ n11 ⁇ 3, n12 is an integer satisfying 0 ⁇ n12 ⁇ 3, and 3 ⁇ ( n9 + n10 + n11 + n12 ) ⁇ 6.
  • n13 is an integer satisfying 1 ⁇ n13 ⁇ 3, n14 is an integer satisfying 1 ⁇ n14 ⁇ 4, n15 is an integer satisfying 0 ⁇ n15 ⁇ 3, n16 is an integer satisfying 0 ⁇ n16 ⁇ 3, and 2 ⁇ ( n13 + n14 + n15 + n16 ) ⁇ 5.
  • m2 represents an integer from 2 to 10.
  • the m2-valent organic group for Q2 includes, for example, an m2-valent organic group having 1 to 4 carbon atoms.
  • Examples of the compound represented by formula (111) or formula (112) include the following compounds.
  • the above compound is available as a product of Asahi Yukizai Kogyo Co., Ltd. and Honshu Chemical Industry Co., Ltd.
  • An example of the product is TMOM-BP, a product name of Asahi Yukizai Kogyo Co., Ltd.
  • glycoluril compounds are preferred, specifically tetramethylol glycoluril, tetramethoxy glycoluril, tetramethoxymethyl glycoluril, a compound in which one to four methylol groups of tetramethylol glycoluril are methoxymethylated or a mixture thereof, and a compound in which one to four methylol groups of tetramethylol glycoluril are acyloxymethylated or a mixture thereof, with tetramethoxymethyl glycoluril being preferred.
  • the molecular weight of the crosslinking agent is not particularly limited, but is preferably 1000 or less.
  • the content of the crosslinking agent in the composition for forming the underlayer film is not particularly limited, but is preferably 5% to 60% by mass of the specific polymer, more preferably 10% to 55% by mass, and particularly preferably 20% to 50% by mass.
  • the curing catalyst contained as an optional component in the underlayer film-forming composition may be either a thermal acid generator or a photoacid generator, but it is preferable to use a thermal acid generator.
  • thermal acid generators include sulfonic acid compounds and carboxylic acid compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonate (pyridinium p-toluenesulfonic acid), pyridinium phenolsulfonic acid, pyridinium p-hydroxybenzenesulfonic acid (pyridinium p-phenolsulfonate salt), pyridinium trifluoromethanesulfonic acid, salicylic acid, camphorsulfonic acid, 5-sulfosalicylic acid, 4-chlorobenzenesulfonic acid, 4-hydroxybenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, citric acid, benzoic acid, hydroxybenzoic acid, N-methylmorpholine p-toluenesulfonic acid, N-
  • photoacid generators examples include onium salt compounds, sulfonimide compounds, and disulfonyldiazomethane compounds.
  • onium salt compounds include iodonium salt compounds such as diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoronormal butanesulfonate, diphenyliodonium perfluoronormal octanesulfonate, diphenyliodonium camphorsulfonate, bis(4-tert-butylphenyl)iodonium camphorsulfonate, and bis(4-tert-butylphenyl)iodonium trifluoromethanesulfonate, as well as sulfonium salt compounds such as triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoronormal butanesulfonate, triphenylsulfonium camphorsulfonate, and triphenylsulfon
  • sulfonimide compounds include N-(trifluoromethanesulfonyloxy)succinimide, N-(nonafluoronormalbutanesulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide, and N-(trifluoromethanesulfonyloxy)naphthalimide.
  • disulfonyldiazomethane compounds include bis(trifluoromethylsulfonyl)diazomethane, bis(cyclohexylsulfonyl)diazomethane, bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, bis(2,4-dimethylbenzenesulfonyl)diazomethane, and methylsulfonyl-p-toluenesulfonyldiazomethane.
  • the content of the curing catalyst relative to the crosslinking agent is, for example, 0.1% by mass to 50% by mass, and preferably 1% by mass to 30% by mass.
  • a surfactant may be further added to the underlayer film-forming composition in order to prevent pinholes, striations, and the like from occurring and to further improve the coatability against surface unevenness.
  • surfactant examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene alkylaryl ethers such as polyoxyethylene octylphenol ether and polyoxyethylene nonylphenol ether; polyoxyethylene-polyoxypropylene block copolymers; sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and sorbitan tristearate; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan tristearate, and the like; nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters, such as polyoxyethylene sorbitan
  • the amount of these surfactants to be added is not particularly limited, but is usually 2.0% by mass or less, and preferably 1.0% by mass or less, based on the composition for forming the underlayer film. These surfactants may be added alone or in combination of two or more kinds.
  • the underlayer film-forming composition may contain a solvent.
  • the solvent is preferably an organic solvent generally used in chemicals for semiconductor lithography processes, specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, cyclohexane ...
  • Examples of the solvent include heptanone, 4-methyl-2-pentanol, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate, ethyl ethoxyacetate, 2-hydroxyethyl acetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, 2-heptanone, methoxycyclopentane, anisole, ⁇ -butyrolactone, N-methylpyrrolidone, N,N-dimethylformamide, and N,N-dimethylacetamide. These solvents can be used alone or in combination of two or more.
  • the content of the solvent in the composition for forming the underlayer film is not particularly limited, but is preferably 80% by mass to 99.99% by mass, more preferably 90% by mass to 99.95% by mass, and particularly preferably 95% by mass to 99.9% by mass.
  • the underlayer film of the present invention is a fired product of a coating film of the above-mentioned composition for forming an underlayer film.
  • the underlayer film of the present invention is used as an underlayer film for a self-assembled monolayer.
  • the underlayer film of the present invention may be used as an underlayer film for a resist film in lithography using a resist film, either a photoresist film or an electron beam resist film, and a self-assembled film, and then may be used as an underlayer film for the self-assembled film.
  • the underlayer film of the present invention can be produced, for example, by applying an underlayer film-forming composition onto a semiconductor substrate and baking it.
  • Semiconductor substrates onto which the underlayer film forming composition of the present invention can be applied include, for example, silicon wafers, germanium wafers, and compound semiconductor wafers such as gallium arsenide, indium phosphide, gallium nitride, indium nitride, and aluminum nitride.
  • the inorganic film is formed by, for example, ALD (atomic layer deposition), CVD (chemical vapor deposition), reactive sputtering, ion plating, vacuum deposition, or spin coating (spin-on glass: SOG).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • reactive sputtering ion plating
  • vacuum deposition vacuum deposition
  • spin coating spin-on glass: SOG.
  • the inorganic film include polysilicon film, silicon oxide film, silicon nitride film, BPSG (Boro-Phospho Silicate Glass) film, titanium nitride film, titanium nitride oxide film, tungsten film, gallium nitride film, and gallium arsenide film.
  • the semiconductor substrate may have a silicon- and organic group-containing film.
  • the silicon- and organic group-containing film is a film formed from a hydrolysis condensation product of a hydrolyzable silane (also called an organosilicon compound) having an organic group.
  • the silicon- and organic group-containing film contains, for example, a hydrolysis condensation product of a hydrolyzable silane containing a compound represented by the following formula (A).
  • R a represents an alkyl group, an aryl group, a halogenated alkyl group, a halogenated aryl group, an alkoxyaryl group, an alkenyl group, an organic group having an epoxy group, an organic group having an acryloyl group, an organic group having a methacryloyl group, an organic group having a mercapto group, or an organic group having a cyano group;
  • R b represents an alkoxy group, an acyloxy group, or a halogen atom; and
  • x represents an integer of 0 to 3.
  • the silicon and organic group-containing film can be formed, for example, by a composition for forming a silicon-containing resist underlayer film.
  • a composition for forming a silicon-containing resist underlayer film include the silicon-containing resist underlayer film-forming composition described below. Japanese Patent Publication No.
  • the composition for forming the underlayer film of the present invention is applied onto such a semiconductor substrate by a suitable application method such as a spinner or coater.
  • the composition is then baked using a heating means such as a hot plate to form a resist underlayer film.
  • the baking conditions are appropriately selected from a baking temperature of 100°C to 400°C and a baking time of 0.3 minutes to 60 minutes.
  • the baking temperature is 120°C to 350°C
  • the baking time is 0.5 minutes to 30 minutes
  • the baking temperature is 150°C to 300°C
  • the baking time is 0.8 minutes to 10 minutes.
  • the thickness of the underlayer film is preferably less than 10 nm, more preferably 9 nm or less, even more preferably 8 nm or less, and particularly preferably 7 nm or less.
  • the thickness of the underlayer film may be 1 nm or more, 2 nm or more, or 3 nm or more.
  • the thickness of the resist underlayer film is reduced, it becomes difficult to obtain a film with a flat surface. If the surface is not flat, the thickness of the resist film formed on the underlayer film will vary greatly, resulting in increased roughness of the resist pattern.
  • the underlayer film forming composition of the present invention contains the above-mentioned vinyl polymer, so that an underlayer film having excellent adhesion to a substrate and excellent film forming properties tends to be obtained. Therefore, even if the underlayer film has a thickness of less than 10 nm, it is presumed that a film having a flat surface can be formed, and the roughness (LWR and CDU) of the resist pattern can be improved.
  • LWR Line width roughness
  • CDU Cross Dimension Uniformity, CD uniformity
  • the CDU can be evaluated, for example, by a method similar to the method described in JP 2020-003678 A (paragraph [0386] Evaluation of in-plane uniformity (CDU) of pattern dimensions).
  • the brush layer when the brush layer is formed in the gaps of the pattern of the patterned underlayer film, the brush layer becomes a thin layer (for example, about 1 nm).
  • the underlayer film In order to reduce the difference in thickness from the brush layer, it is preferable that the underlayer film has a thin thickness.
  • the thickness of the underlayer film is preferably less than 10 nm.
  • the thickness of the underlayer film is preferably less than 10 nm.
  • the method for measuring the thickness of the underlayer film is as follows.
  • One embodiment of the semiconductor device of the present invention includes steps I and II.
  • Step I A step of forming an underlayer film on a semiconductor substrate using the composition for forming an underlayer film of the present invention.
  • Step II A step of forming a self-assembled film on the underlayer film.
  • Another embodiment of the method for manufacturing a semiconductor device of the present invention includes the first to fifth steps.
  • - First step a step of forming an underlayer film on a semiconductor substrate using the composition for forming an underlayer film of the present invention.
  • Second step a step of forming a resist film, either a photoresist film or an electron beam resist film, on the underlayer film.
  • Third step a step of irradiating the resist film with light or an electron beam, and then developing the resist film to obtain a resist pattern.
  • - Fourth step a step of etching the underlayer film using the resist pattern as a mask, to form a patterned underlayer film.
  • Fifth step a step of forming a self-assembled film on the patterned underlayer film.
  • Another embodiment of the method for manufacturing a semiconductor device of the present invention including the first to fifth steps may further include a sixth step.
  • Sixth step A step of forming a brush layer in gaps in the pattern of the patterned underlayer film. The sixth step is carried out between the fourth and fifth steps.
  • the first and I steps are steps of forming an underlayer film on a semiconductor substrate using the composition for forming an underlayer film of the present invention.
  • the method for forming the underlayer film is not particularly limited, but may be, for example, the above-mentioned method. That is, the underlayer film can be produced, for example, by applying the composition for forming an underlayer film on a semiconductor substrate and baking it.
  • the thickness of the underlayer film is preferably less than 10 nm, more preferably 9 nm or less, even more preferably 8 nm or less, and particularly preferably 7 nm or less.
  • the thickness of the underlayer film may be 1 nm or more, 2 nm or more, or 3 nm or more.
  • the second step is a step of forming a resist film, which is either a photoresist film or an electron beam resist film, on the underlayer film.
  • the third step is a step of irradiating the resist film with light or electron beams, and then developing the resist film to obtain a resist pattern.
  • the fourth step is a step of etching the underlayer film using the resist pattern as a mask to form a patterned underlayer film.
  • the thickness of the resist film formed is not particularly limited, but is preferably 200 nm or less, more preferably 150 nm or less, even more preferably 100 nm or less, and particularly preferably 80 nm or less.
  • the thickness of the resist film is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 30 nm or more.
  • photoresists include positive photoresists made of novolac resins and 1,2-naphthoquinone diazide sulfonic acid esters, chemically amplified photoresists made of a binder having a group that decomposes with acid to increase the alkaline dissolution rate and a photoacid generator, chemically amplified photoresists made of a low molecular compound that decomposes with acid to increase the alkaline dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, chemically amplified photoresists made of a binder having a group that decomposes with acid to increase the alkaline dissolution rate of the photoresist, a low molecular compound that decomposes with acid to increase the alkaline dissolution rate of the photoresist, and a photoacid generator, and resists containing metal elements.
  • V146G (trade name) manufactured by JSR Corporation, APEX-E (trade name) manufactured by Shipley, PAR710 (trade name) manufactured by Sumitomo Chemical Co., Ltd., and AR2772 and SEPR430 (trade names) manufactured by Shin-Etsu Chemical Co., Ltd. may be mentioned.
  • resist compositions include the following compositions:
  • An actinic ray-sensitive or radiation-sensitive resin composition comprising: resin A having a repeating unit having an acid-decomposable group in which a polar group is protected with a protecting group that is cleaved by the action of an acid; and a compound represented by the following general formula (21).
  • m represents an integer of 1 to 6.
  • R 1 and R 2 each independently represent a fluorine atom or a perfluoroalkyl group.
  • L 1 represents —O—, —S—, —COO—, —SO 2 — or —SO 3 —.
  • L2 represents an alkylene group which may have a substituent or a single bond.
  • W 1 represents a cyclic organic group which may have a substituent.
  • M + represents a cation.
  • a metal-containing film-forming composition for extreme ultraviolet or electron beam lithography comprising a compound having a metal-oxygen covalent bond and a solvent, the metal element constituting the compound belonging to Periods 3 to 7 of Groups 3 to 15 of the periodic table.
  • a radiation-sensitive resin composition comprising a polymer having a first structural unit represented by the following formula (31) and a second structural unit represented by the following formula (32) containing an acid-dissociable group, and an acid generator.
  • Ar is a group obtained by removing (n+1) hydrogen atoms from an arene having 6 to 20 carbon atoms.
  • R 1 is a hydroxy group, a sulfanyl group, or a monovalent organic group having 1 to 20 carbon atoms.
  • n is an integer from 0 to 11. When n is 2 or more, multiple R 1s are the same or different.
  • R 2 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
  • R 3 is a monovalent group having 1 to 20 carbon atoms containing the above-mentioned acid dissociable group.
  • Z is a single bond, an oxygen atom, or a sulfur atom.
  • R 4 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
  • R 2 represents an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, a hydrogen atom or a halogen atom
  • X 1 represents a single bond, -CO-O-* or -CO-NR 4 -*
  • * represents a bond to -Ar
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Ar represents an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have one or more groups selected from the group consisting of a hydroxyl group and a carboxyl group.
  • resist films examples include:
  • R A is each independently a hydrogen atom or a methyl group.
  • R 1 and R 2 are each independently a tertiary alkyl group having 4 to 6 carbon atoms.
  • R 3 is each independently a fluorine atom or a methyl group.
  • m is an integer of 0 to 4.
  • X 1 is a single bond, a phenylene group or a naphthylene group, or a linking group having 1 to 12 carbon atoms containing at least one selected from an ester bond, a lactone ring, a phenylene group, and a naphthylene group.
  • X 2 is a single bond, an ester bond, or an amide bond.
  • resist materials examples include:
  • R A is a hydrogen atom or a methyl group.
  • X 1 is a single bond or an ester group.
  • X 2 is a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or an arylene group having 6 to 10 carbon atoms, a part of the methylene groups constituting the alkylene group may be substituted with an ether group, an ester group or a lactone ring-containing group, and at least one hydrogen atom contained in X 2 is substituted with a bromine atom.
  • X 3 is a single bond, an ether group, an ester group, or a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms, a part of the methylene groups constituting the alkylene group may be substituted with an ether group or an ester group.
  • Rf 1 to Rf 4 are each independently a hydrogen atom, a fluorine atom or a trifluoromethyl group, and at least one of them is a fluorine atom or a trifluoromethyl group. 2 may combine to form a carbonyl group.
  • R 1 to R 5 are each independently a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, or an aryloxyalkyl group having 7 to 12 carbon atoms, some or all of the hydrogen atoms of these groups may be substituted with a hydroxy group, a carboxy group, a halogen atom, an oxo group, a cyano group, an amide group, a nitro group, a sultone group, a sulfone group, or a sulfonium salt-containing group, and some of the methylene groups constituting these groups may be substituted with an ether group, an ester group, a carbonyl group, a carbonate group
  • a resist material comprising a base resin containing a polymer containing a repeating unit represented by the following formula (a):
  • R A is a hydrogen atom or a methyl group.
  • R 1 is a hydrogen atom or an acid labile group.
  • R 2 is a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, or a halogen atom other than bromine.
  • X 1 is a single bond, a phenylene group, or a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms which may contain an ester group or a lactone ring.
  • X 2 is -O-, -O-CH 2 - or -NH-.
  • m is an integer of 1 to 4.
  • u is an integer of 0 to 3, with the proviso that m+u is an integer of 1 to 4.
  • a resist composition which generates an acid upon exposure and changes its solubility in a developer by the action of the acid
  • the composition contains a base component (A) whose solubility in a developer changes under the action of an acid, and a fluorine additive component (F) that is decomposable in an alkaline developer
  • the fluorine additive component (F) is a resist composition containing a fluorine resin component (F1) having a structural unit (f1) containing a base dissociable group, and a structural unit (f2) containing a group represented by the following general formula (f2-r-1):
  • Rf 21 each independently represents a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, or a cyano group.
  • n′′ is an integer of 0 to 2. * represents a bond.
  • the structural unit (f1) includes a structural unit represented by the following general formula (f1-1) or a structural unit represented by the following general formula (f1-2).
  • R is each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a halogenated alkyl group having 1 to 5 carbon atoms.
  • X is a divalent linking group having no acid dissociable site.
  • a aryl is a divalent aromatic cyclic group which may have a substituent.
  • X 01 is a single bond or a divalent linking group.
  • R 2 is each independently an organic group having a fluorine atom.
  • coatings examples include the following:
  • a coating comprising a metal oxo-hydroxo network with organic ligands via metal carbon bonds and/or metal carboxylate bonds.
  • RzSnO (2-(z/2)-(x/2)) (OH) x , where 0 ⁇ z ⁇ 2 and 0 ⁇ (
  • a coating solution comprising an organic solvent and a first organometallic compound having the formula RSnO (3/2-x/2) (OH) x , where 0 ⁇ x ⁇ 3, wherein the solution contains from about 0.0025M to about 1.5M tin, and R is an alkyl or cycloalkyl group having 3 to 31 carbon atoms, the alkyl or cycloalkyl group being bonded to the tin at a secondary or tertiary carbon atom.
  • An aqueous inorganic pattern forming precursor solution comprising water, a mixture of metal suboxide cations, polyatomic inorganic anions, and a radiation sensitive ligand comprising a peroxide group.
  • Irradiation with light or electron beams is carried out, for example, through a mask (reticle) for forming a predetermined pattern.
  • the wavelength of the light is not particularly limited.
  • the underlayer film of the present invention is suitably applied for EB (electron beam) or EUV (extreme ultraviolet: 13.5 nm) irradiation, but is more preferably applied for EUV (extreme ultraviolet) exposure.
  • the EB irradiation energy and the EUV exposure dose are not particularly limited.
  • baking Post Exposure Bake
  • the baking temperature is not particularly limited, but is preferably from 60°C to 150°C, more preferably from 70°C to 120°C, and particularly preferably from 75°C to 110°C.
  • the baking time is not particularly limited, but is preferably from 1 second to 10 minutes, more preferably from 10 seconds to 5 minutes, and particularly preferably from 30 seconds to 3 minutes.
  • an alkaline developer is used.
  • the development temperature is, for example, from 5°C to 50°C.
  • the development time may be, for example, from 10 seconds to 300 seconds.
  • alkaline developer for example, aqueous solutions of alkalis such as inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia water, primary amines such as ethylamine and n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, quaternary ammonium salts such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and choline, and cyclic amines such as pyrrole and piperidine can be used.
  • alkalis
  • an appropriate amount of alcohols such as isopropyl alcohol and a nonionic surfactant can be added to the aqueous solution of the above-mentioned alkalis.
  • preferred developers are aqueous solutions of quaternary ammonium salts, more preferably aqueous solutions of tetramethylammonium hydroxide and aqueous solutions of choline.
  • surfactants and the like can be added to these developers.
  • a method can also be used in which development is performed with an organic solvent such as butyl acetate instead of an alkaline developer to develop the parts of the photoresist where the alkaline dissolution rate is not improved.
  • the type of resist pattern to be formed is not particularly limited, and may be a line pattern or a hole pattern.
  • the line width is not particularly limited and may be, for example, 30 nm to 200 nm.
  • the diameter of the holes is, for example, 30 nm to 200 nm.
  • the underlayer film is etched using the formed resist pattern as a mask.
  • the etching may be dry etching or wet etching, but dry etching is preferred.
  • a step of removing the resist pattern may be included.
  • the resist pattern is removed by, for example, etching, which may be dry etching or wet etching.
  • the resist pattern is usually removed before the fifth step.
  • Step 5 and Step II> The fifth step is to form a self-assembled film on the patterned underlayer film.
  • Step II is a step of forming a self-assembled film on the underlayer film.
  • the self-assembled film can be formed, for example, by applying a composition for forming a self-assembled film and drying it.
  • the self-assembled monolayer is, for example, a membrane that includes a block copolymer.
  • the thickness of the self-assembled film is not particularly limited, but is preferably 10 nm to 100 nm, more preferably 30 nm to 80 nm, and particularly preferably 40 nm to 60 nm.
  • the self-assembled film-forming composition contains, for example, a block copolymer.
  • the self-assembled film-forming composition usually contains a solvent.
  • the self-assembled film-forming composition may have a solids content of 0.1 to 10 mass %, or 0.1 to 5 mass %, or 0.1 to 3 mass %.
  • the solids content is the percentage remaining after excluding the solvent from the film-forming composition.
  • the proportion of the block copolymer in the solid content can be 30 to 100% by weight, or 50 to 100% by weight, or 50 to 90% by weight, or 50 to 80% by weight.
  • the number of types of blocks present in the block copolymer may be 2 or 3 or more, and the number of blocks present in the block copolymer may be 2 or 3 or more.
  • Block polymers include combinations such as AB, ABAB, ABA, and ABC.
  • a method for synthesizing a block copolymer there is living radical polymerization and living cationic polymerization, in which the polymerization process consists only of an initiation reaction and a propagation reaction, and does not involve side reactions that deactivate the propagation end. The propagation end can maintain the propagation active reaction during the polymerization reaction.
  • a polymer (PA) with a uniform length can be obtained.
  • the propagation end of this polymer (PA) can be utilized to polymerize the monomer (mb) and form a block copolymer (AB).
  • the molar ratio of the polymer chain (PA) to the polymer chain (PB) can be 1:9 to 9:1, preferably 3:7 to 7:3.
  • the volume ratio of the block copolymers is, for example, 30:70 to 70:30.
  • the homopolymer PA or PB is a polymer of a polymerizable compound having at least one radically polymerizable reactive group (vinyl group or vinyl-group-containing organic group).
  • the weight average molecular weight Mw of the block copolymer is preferably 1,000 to 100,000, or 5,000 to 100,000. When it is 1,000 or more, the coating property onto the base substrate is excellent, and when it is 100,000 or less, the solubility in the solvent is excellent.
  • the polydispersity (Mw/Mn) of the block copolymer is preferably from 1.00 to 1.50, more preferably from 1.00 to 1.20.
  • the block copolymer used in the present invention may be any known one.
  • a block copolymer for example, a combination of a silicon-containing polymer chain and a non-silicon-containing polymer chain is preferable because, for example, the difference in dry etching rate can be made large.
  • the silicon-containing polymer chain include silylated polystyrene derivatives, etc.
  • silylated polystyrene derivatives examples include polysilanes (e.g., polydihexylsilane, etc.), polysiloxanes (e.g., polydimethylsiloxane, etc.), poly(trimethylsilylstyrene), poly(pentamethyldisilylstyrene), etc.
  • the silylated polystyrene derivative is preferably poly(4-trimethylsilylstyrene) or poly(4-pentamethyldisilylstyrene) having a substituent at the 4-position.
  • a preferred example of the block copolymer is a block copolymer obtained by combining a non-silicon-containing polymer having styrene, which may be substituted with an organic group, as a constituent unit or a non-silicon-containing polymer having a structure derived from lactide as a constituent unit, with a silicon-containing polymer having styrene, which is substituted with a silicon-containing group, as a constituent unit.
  • a combination of a silylated polystyrene derivative and a polystyrene derivative, or a combination of a silylated polystyrene derivative and a polylactide is preferred.
  • a combination of a silylated polystyrene derivative having a substituent at the 4-position and a polystyrene derivative having a substituent at the 4-position, or a combination of a silylated polystyrene derivative having a substituent at the 4-position and polylactide is preferred.
  • More preferred specific examples of the block copolymer include a combination of poly(trimethylsilylstyrene) and polymethoxystyrene, a combination of polystyrene and poly(trimethylsilylstyrene), and a combination of poly(trimethylsilylstyrene) and poly(D,L-lactide).
  • block copolymer More preferred specific examples of the block copolymer include a combination of poly(4-trimethylsilylstyrene) and poly(4-methoxystyrene), a combination of polystyrene and poly(4-trimethylsilylstyrene), and a combination of poly(4-trimethylsilylstyrene) and poly(D,L-lactide). Most preferred examples of the block copolymer include poly(4-methoxystyrene)/poly(4-trimethylsilylstyrene) block copolymer and polystyrene/poly(4-trimethylsilylstyrene) block copolymer. The entire disclosure of WO2018/135456 is incorporated herein by reference.
  • the block copolymer may be a block copolymer formed by combining a non-silicon-containing polymer with a silicon-containing polymer having a structural unit of styrene substituted with a silicon-containing group, and the non-silicon-containing polymer may be a block copolymer containing a unit structure represented by the following formula (1-1c) or formula (1-2c).
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
  • R 3 to R 5 each independently represent a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cyano group, an amino group, an amido group, or a carbonyl group.
  • the silicon-containing group may contain one silicon atom.
  • the silicon-containing polymer may contain a unit structure represented by the following formula (2c):
  • R 6 to R 8 each independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 40 carbon atoms.
  • block copolymer the block copolymers described in JP-T-2019-507815, including the following [BCP11] to [BCP14], may be used.
  • the entire disclosure of JP-T-2019-507815 is incorporated herein by reference.
  • [BCP11] Block copolymer containing 5-vinylbenzo[d][1,3]dioxole.
  • [BCP12] The block copolymer according to [BCP11], wherein the block copolymer further comprises a silicon-containing block.
  • block copolymer according to [BCP12] wherein the block copolymer further contains pentamethyldisilylstyrene.
  • Me represents a methyl group.
  • the silicon-containing polymer or silicon-containing block is poly(4-trimethylsilylstyrene) derived from 4-trimethylsilylstyrene.
  • the silicon-containing polymer or silicon-containing block is poly(pentamethyldisilylstyrene) derived from pentamethyldisilylstyrene.
  • the aryl group having 6 to 40 carbon atoms means a monovalent group of a monocyclic or polycyclic aromatic hydrocarbon having 6 to 40 carbon atoms, and specific examples include a phenyl group, a naphthyl group, and an anthryl group.
  • block copolymers consisting of combinations of the monomers listed below may be used: styrene, methyl methacrylate, dimethylsiloxane, propylene oxide, ethylene oxide, vinylpyridine, vinylnaphthalene, D,L-lactide, methoxystyrene, methylenedioxystyrene, trimethylsilylstyrene, pentamethyldisilylstyrene.
  • Useful block copolymers contain at least two blocks and may be diblock, triblock, tetrablock, etc. copolymers having distinct blocks, each of which may be a homopolymer or a random or alternating copolymer.
  • Typical block copolymers include polystyrene-b-polyvinylpyridine, polystyrene-b-polybutadiene, polystyrene-b-polyisoprene, polystyrene-b-polymethylmethacrylate, polystyrene-b-polyalkenyl aromatic, polyisoprene-b-polyethylene oxide, polystyrene-b-poly(ethylene-propylene), polyethylene oxide-b-polycaprolactone, polybutadiene-b-polyethylene oxide, polystyrene-b-poly(t-butyl (meth)acrylate), polymethylmethacrylate-b-poly(t-butyl methacrylate), polyethylene oxide-b-polypropylene oxide, polystyrene-b-polytetrafluoroethylene
  • block copolymer include hydrofuran, polystyrene-b-polyisopren
  • block copolymers consisting of a combination of the organic polymers and/or metal-containing polymers described below.
  • Typical organic polymers include poly(9,9-bis(6'-N,N,N-trimethylammonium)-hexyl)-fluorenephenylene) (PEP), poly(4-vinylpyridine) (4PVP), hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), poly(ethylene oxide)-poly(propylene oxide) diblock or multiblock copolymers, polyvinyl alcohol (PVA), poly(ethylene-vinyl alcohol) (PEVA), polyacrylic acid (PAA), polylactic acid (PLA), poly(ethyloxazoline), poly(alkyl acrylate), polyacrylonitrile (PAA), poly(ethyl oxazoline), poly(alkyl acrylate), poly(acrylonitrile), poly(ethyl oxazoline ...
  • polyvinyl amide examples include, but are not limited to, poly(N-alkylacrylamide), poly(N,N-dialkylacrylamide), polypropylene glycol (PPG), polypropylene oxide (PPO), partially or fully hydrogenated poly(vinyl alcohol), dextran, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyisoprene (PI), polychloroprene (CR), polyvinyl ether (PVE), polyvinyl acetate (PVA), polyvinyl chloride (PVC), polyurethane (PU), polyacrylate, polymethacrylate, oligosaccharides, or polysaccharides.
  • Metal-containing polymers include, but are not limited to, silicon-containing polymers (e.g., polydimethylsiloxane (PDMS), polyhedral silsesquioxane (POSS), or poly(trimethylsilylstyrene) (PTMSS)) or polymers containing silicon and iron (e.g., poly(ferrocenyldimethylsilane) (PFS)).
  • silicon-containing polymers e.g., polydimethylsiloxane (PDMS), polyhedral silsesquioxane (POSS), or poly(trimethylsilylstyrene) (PTMSS)
  • PTMSS poly(trimethylsilylstyrene)
  • PFS poly(ferrocenyldimethylsilane)
  • Typical block copolymers include, but are not limited to, diblock copolymers [e.g., polystyrene-b-polydimethylsiloxane (PS-PDMS), poly(2-vinylpropylene)-b-polydimethylsiloxane (P2VP-PDMS), polystyrene-b-poly(ferrocenyldimethylsilane) (PS-PFS), or polystyrene-b-polyDL-lactic acid (PS-PLA)] or triblock copolymers [e.g., polystyrene-b-poly(ferrocenyldimethylsilane)-b-poly(2-vinylpyridine) (PS-PFS-P2VP), polyisoprene-b-polystyrene-b-poly(ferrocenyldimethylsilane) (PI-PS-PFS), or polystyrene-b-poly(ferrocen
  • the PS-PTMSS-PS block copolymer comprises a poly(trimethylsilylstyrene) polymer block composed of two chains of PTMSS connected by a linker containing four styrene units.
  • Modified versions of block copolymers such as those disclosed in U.S. Patent Application Publication No. 2012/0046415 are also contemplated.
  • block copolymers include, for example, block copolymers in which a polymer having styrene or a derivative thereof as a constituent unit is bonded to a polymer having (meth)acrylic acid ester as a constituent unit, block copolymers in which a polymer having styrene or a derivative thereof as a constituent unit is bonded to a polymer having siloxane or a derivative thereof as a constituent unit, and block copolymers in which a polymer having alkylene oxide as a constituent unit is bonded to a polymer having (meth)acrylic acid ester as a constituent unit.
  • (meth)acrylic acid ester refers to either or both of an acrylic acid ester having a hydrogen atom bonded to the ⁇ -position and a methacrylic acid ester having a methyl group bonded to the ⁇ -position.
  • (Meth)acrylic acid esters include, for example, those in which a substituent such as an alkyl group or a hydroxyalkyl group is bonded to a carbon atom of (meth)acrylic acid.
  • a substituent such as an alkyl group or a hydroxyalkyl group is bonded to a carbon atom of (meth)acrylic acid.
  • alkyl group used as a substituent include linear, branched, or cyclic alkyl groups having 1 to 10 carbon atoms.
  • (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, benzyl (meth)acrylate, anthracene (meth)acrylate, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethane (meth)acrylate, and propyltrimethoxysilane (meth)acrylate.
  • styrene derivatives include ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-t-butylstyrene, 4-n-octylstyrene, 2,4,6-trimethylstyrene, 4-methoxystyrene, 4-t-butoxystyrene, 4-hydroxystyrene, 4-nitrostyrene, 3-nitrostyrene, 4-chlorostyrene, 4-fluorostyrene, 4-acetoxyvinylstyrene, vinylcyclohexane, 4-vinylbenzyl chloride, 1-vinylnaphthalene, 4-vinylbiphenyl, 1-vinyl-2-pyrrolidone, 9-vinylanthracene, and vinylpyridine.
  • siloxane derivatives include dimethylsiloxane, diethylsiloxane, diphenylsiloxane, and methylphenylsiloxane.
  • alkylene oxide examples include ethylene oxide, propylene oxide, isopropylene oxide, butylene oxide, and the like.
  • block copolymer examples include polystyrene/poly(methyl methacrylate) block copolymer, styrene-polyethyl methacrylate block copolymer, styrene-(poly-t-butyl methacrylate) block copolymer, styrene-polymethacrylic acid block copolymer, styrene-polymethyl acrylate block copolymer, styrene-polyethyl acrylate block copolymer, styrene-(poly-t-butyl acrylate) block copolymer, and styrene-polyacrylic acid block copolymer.
  • the entire disclosure of WO2022/039187 is incorporated herein by reference.
  • solvent used in the self-assembled film-forming composition examples include the following organic solvents.
  • Aliphatic hydrocarbon solvents such as n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane, cyclohexane, and methylcyclohexane.
  • Aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene, and trimethylbenzene.
  • Polyhydric alcohol solvents such as ethylene glycol, propylene glycol, 1,3-butylene glycol, pentanediol-2,4, 2-methylpentanediol-2,4, hexanediol-2,5, heptanediol-2,4, 2-ethylhexanediol-1,3, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, and glycerin.
  • Polyhydric alcohol solvents such as ethylene glycol, propylene glycol, 1,3-butylene glycol, pentanediol-2,4, 2-methylpentanediol-2,4, hexanediol-2,5, heptanediol-2,4, 2-ethylhexanediol-1,3, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, and glycerin.
  • Ketone solvents such as acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, diethyl ketone, methyl i-butyl ketone, methyl n-pentyl ketone, ethyl n-butyl ketone, methyl n-hexyl ketone, di-i-butyl ketone, trimethylnonanone, cyclohexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, diacetone alcohol, acetophenone, and fenchone.
  • Nitrogen-containing solvents such as N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropionamide, and N-methylpyrrolidone
  • Sulfur-containing solvents such as dimethyl sulfide, diethyl sulfide, thiophene, tetrahydrothiophene, dimethyl sulfoxide, sulfolane, and 1,3-propane sultone
  • propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate are preferred in terms of storage stability of the solution of the composition.
  • the solvent contained in the composition for forming a self-assembled film may be a combination of a low-boiling point solvent (A) having a boiling point of 160°C or less and a high-boiling point solvent (B) having a boiling point of 170°C or more, as described in WO2018/135456.
  • A low-boiling point solvent
  • B high-boiling point solvent
  • low-boiling point solvents (A) with a boiling point of 160°C or less include propylene glycol monomethyl ether acetate (boiling point: 146°C), n-butyl acetate (boiling point: 126°C), and methyl isobutyl ketone (boiling point: 116°C).
  • Preferred examples of high boiling point solvents (B) with a boiling point of 170°C or higher include N-methylpyrrolidone (boiling point: 204°C), diethylene glycol monomethyl ether (boiling point: 193°C), N,N-dimethylisobutyramide (boiling point: 175°C), 3-methoxy-N,N-dimethylpropanamide (boiling point: 215°C), and ⁇ -butyrolactone (boiling point: 204°C).
  • Two or more low boiling point solvents (A) and two or more high boiling point solvents (B) can be selected and mixed for use.
  • the composition contains 0.3 to 2.0% by weight of the high boiling point solvent (B) relative to the total amount of the solvent contained in the composition, and most preferably contains 0.5 to 1.5% by weight of the high boiling point solvent (B).
  • B high boiling point solvent
  • Phase separation of self-assembled monolayers can be achieved by treatments that result in rearrangement of the self-assembled monolayer, such as ultrasonication, solvent treatment, thermal annealing, etc.
  • the thermal annealing can be carried out in the air or in an inert gas under normal pressure, reduced pressure or pressurized conditions.
  • the conditions for the thermal annealing are not particularly limited, but are preferably 180° C. to 300° C., more preferably 210° C. to 280° C., and particularly preferably 230° C. to 270° C. in air.
  • the treatment time is not particularly limited, but is usually from 1 to 30 minutes, preferably from 3 to 10 minutes.
  • domains are formed that are oriented substantially perpendicular to the substrate or the surface of the underlying film.
  • the domains may be, for example, lamellar, spherical, cylindrical, etc.
  • the domain spacing is, for example, 50 nm or less.
  • ⁇ Patterning of self-assembled monolayers>> By selectively removing parts of the phase-separated self-assembled monolayer, a pattern corresponding to the morphology of the domains can be obtained.
  • Examples of a method for selectively removing a portion of a phase-separated self-assembled film include a method of subjecting the phase-separated self-assembled film to an oxygen plasma treatment or a hydrogen plasma treatment.
  • the sixth step is to form a brush layer in the gaps in the pattern of the patterned underlayer film.
  • the sixth step is carried out between the fourth and fifth steps.
  • the method for forming the brush layer is not particularly limited, but an example is a method in which a composition for forming the brush layer is applied and dried.
  • the brush layer forming composition contains, for example, a brush polymer and a solvent.
  • the brush layer-forming composition is, for example, a composition containing polymer chains capable of directly bonding to the surface of a substrate.
  • a film or layer in which polymer chains are arranged in a brush shape on a substrate is sometimes called a brush layer.
  • the brush layer-forming composition is, for example, an underlayer film-forming composition for forming an underlayer film of a layer containing a block copolymer.
  • the film formed from the brush layer forming composition plays the role of, for example, a guide that controls the position where a polymer phase is formed by self-organization.
  • the film formed from the brush layer forming composition has an uneven structure, and is the side wall of a recess in a physical guide (grapho-epitaxy) for forming a microphase separation pattern in the recess.
  • the film formed from the brush layer forming composition is a chemical guide (chemical-epitaxy) that is formed under a self-organizing material and controls the position where a microphase separation pattern is formed based on the difference in surface energy.
  • a brush polymer is a polymer having a neutral wetting bottom surface as described in JP-T-2011-515537.
  • examples of such polymers include the random copolymer described in claim 15 of JP-T-2011-515537 and the grafted blend of multiple homopolymers described in claim 16. The contents of JP-T-2011-515537 are incorporated herein by reference to the same extent as if expressly set forth in its entirety.
  • JP-T-2011-518652 Another example of a brush polymer is the random copolymer described in JP-T-2011-518652.
  • One example of the random copolymer described in JP-T-2011-518652 is the photocrosslinkable random PS-r-PMMA described in paragraph [0028].
  • the contents of JP-T-2011-518652 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • a brush polymer is a resin in which 20 mol % to 80 mol % of the total constituent units are derived from aromatic ring-containing monomers.
  • a resin is, for example, the resin component contained in the primer described in WO 2012/036121.
  • the contents of WO 2012/036121 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • JP 2013-166934 A Another example of a brush polymer is the random copolymer described in claim 1 of JP 2013-166934 A.
  • the contents of JP 2013-166934 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • a brush polymer is a polymer having 0.2 mol % or more of a polycyclic aromatic vinyl compound unit structure per total unit structure.
  • a polymer is, for example, a polymer contained in the underlayer film-forming composition described in WO 2014/097993. The contents of WO 2014/097993 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • JP 2015-130496 A e.g., poly(alkyl acrylate) having a functional group capable of reacting with a semiconductor substrate.
  • JP 2015-130496 A e.g., poly(alkyl acrylate) having a functional group capable of reacting with a semiconductor substrate.
  • the contents of JP 2015-130496 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • JP 2016-148024 A Another example of a brush polymer is the addition polymer described in claim 1 of JP 2016-148024 A.
  • the contents of JP 2016-148024 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • a brush polymer is, for example, the polymer contained in the pinning material described in claim 1 of JP-T-2016-528713.
  • a polymer is, for example, the polymer described in claim 3 of JP-T-2016-528713.
  • the contents of JP-T-2016-528713 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • a brush polymer is, for example, an acid-sensitive copolymer containing an acid-decomposable group, an attachment group, and a functional group, as described in claim 1 of JP 2018-139007 A.
  • the contents of JP 2018-139007 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • a brush polymer is the hydrophobic polymer brush precursor described in claim 1 of JP2018-503241A.
  • the contents of JP2018-503241A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.
  • the brush polymer preferably has functional groups capable of bonding to a substrate.
  • functional groups capable of bonding to a substrate include hydroxyl groups, amino groups, and sulfonic acid groups.
  • the brush polymer may have a functional group capable of bonding to a substrate at the end of the polymer chain or at a location other than the end of the polymer chain.
  • the method for introducing a functional group capable of bonding to a substrate into the end of a polymer chain is not particularly limited, and examples of the method include, in the case of an addition polymerization type polymer, a method in which a compound having a functional group capable of bonding to a substrate is used as a polymerization initiator or a chain transfer agent.
  • the brush polymer is preferably an addition polymerization type polymer.
  • the addition polymerization type polymer can be obtained, for example, by polymerizing one or more types of radically polymerizable monomers.
  • the radical polymerizable monomer is not particularly limited, but examples thereof include (meth)acrylic compounds and aromatic group-containing vinyl compounds.
  • (meth)acrylic compounds include (meth)acrylic acid, (meth)acrylic acid esters, etc.
  • (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, etc.
  • aromatic group-containing vinyl compounds examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-t-butylstyrene, 4-n-octylstyrene, 2,4,6-trimethylstyrene, 4-methoxystyrene, 4-t-butoxystyrene, 4-hydroxystyrene, 4-nitrostyrene, 3-nitrostyrene, 4-chlorostyrene, 4-fluorostyrene, 4-acetoxyvinylstyrene, vinylcyclohexane, 4-vinylbenzyl chloride, 1-vinylnaphthalene, 4-vinylbiphenyl, 1-vinyl-2-pyrrolidone, 9-vinylanthracene, and vinylpyridine.
  • the brush polymer is preferably a polymer (P) containing the following structural units (A) and (B), in that a microphase-separated structure of the block copolymer can be induced perpendicular to the substrate.
  • Structural unit (A) A structural unit derived from a (meth)acrylic compound having a (meth)acryloyl group and a functional group capable of bonding to a substrate.
  • Structural unit (B) A structural unit derived from an aromatic group-containing vinyl compound.
  • the molar ratio of the structural unit (A) to all structural units in the polymer (P) is more than 0% and 5% or less.
  • the molar ratio of the structural unit (A) to the total structural units in the polymer (P) is more than 0% and not more than 5%.
  • a film can be formed that induces a microphase-separated structure of the block copolymer perpendicular to the substrate. If the molar ratio of the structural unit (A) to the total structural units in the polymer (P) exceeds 5%, the arrangement of the microphase-separated structure of the block copolymer becomes disordered, and the microphase-separated structure of the block copolymer cannot be induced perpendicular to the substrate.
  • the polymer (P) is not particularly limited as long as it contains the structural units (A) and (B), but is preferably an addition polymer obtained by polymerization of a compound having a polymerizable unsaturated group.
  • the polymerizable unsaturated group include ethylenically unsaturated groups.
  • the ethylenically unsaturated group include vinyl groups, allyl groups, propargyl groups, butenyl groups, ethynyl groups, phenylethynyl groups, maleimide groups, nadimide groups, and (meth)acryloyl groups.
  • the polymer (P) is, for example, a random copolymer.
  • the polymer (P) may contain structural units other than the structural units (A) and (B).
  • the structural unit (A) is a structural unit derived from a (meth)acrylic compound.
  • the (meth)acrylic compound has a (meth)acryloyl group.
  • the (meth)acrylic compound has a functional group capable of bonding to a substrate.
  • the term "(meth)acryloyl group” refers to both an acryloyl group and a methacryloyl group.
  • the acryloyl group refers to a group represented by CH 2 ⁇ CH--CO--
  • the methacryloyl group refers to a group represented by CH 2 ⁇ C(CH 3 )--CO--.
  • the functional group capable of bonding to the substrate is not particularly limited, but examples thereof include a hydroxy group, an amino group, and a sulfonic acid group.
  • the number of functional groups capable of bonding to a substrate in the structural unit (A) may be one or may be two or more, but is preferably one.
  • the (meth)acrylic compound may have one (meth)acryloyl group or two or more (meth)acryloyl groups, but preferably has one (meth)acryloyl group.
  • Structural unit (A) is a structural unit different from structural unit (B). Therefore, structural unit (B) does not have an aromatic ring.
  • the structural unit (A) in the polymer (P) may be of one type or of two or more types.
  • the structural unit (A) preferably contains a structural unit (A-1) represented by the following formula (1):
  • X represents -O- or -NH-.
  • Y represents a hydroxy group, an amino group, or a sulfonic acid group.
  • R1 represents an alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom.
  • R2 represents a hydrogen atom or a methyl group.
  • the amino group is preferably a primary amino group or a secondary amino group.
  • a primary amino group refers to a monovalent functional group (—NH 2 ) formed by removing a hydrogen atom from ammonia.
  • the secondary amino group refers to a monovalent functional group (-NHR (wherein R represents an organic group) formed by removing a hydrogen atom from a primary amine.
  • R represents, for example, an alkyl group having 1 to 6 carbon atoms.
  • the alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom may be linear, branched, or cyclic.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the number of halogen atoms in the alkylene group having 1 to 10 carbon atoms substituted with a halogen atom may be one or two or more.
  • the alkylene group having 1 to 10 carbon atoms may be a straight-chain or branched alkylene group, and examples thereof include a methylene group, an ethylene group, a 1,3-propylene group (a trimethylene group), a 1-methylethylene group (a 1,2-propylene group), a 1,4-butylene group, a 1-ethylethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a 1,5-pentylene group, a 1-methylbutylene group, a 2-methylbutylene group, a 1,1-dimethylpropylene group, a 1,2-dimethylpropylene group, a 1-ethylpropylene group, a 2-ethylpropylene group, a 1,6-hexylene group, a 1,4-cyclohexylene group, a 1,8-octylene group, a 2-ethyloctylene group, a 1,9-nonylene group, and a 1,10
  • the molar ratio of structural unit (A) to all structural units in polymer (P) is more than 0% and not more than 5%, preferably 0.1% to 5%, more preferably 0.3% to 4.5%, and particularly preferably 0.5% to 4.0%.
  • An example of a (meth)acrylic compound is a compound represented by the following formula (1-1):
  • X represents -O- or -NH-.
  • Y represents a hydroxy group, an amino group, or a sulfonic acid group.
  • R1 represents an alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom.
  • R2 represents a hydrogen atom or a methyl group.
  • Examples of (meth)acrylic compounds include hydroxyl group-containing (meth)acrylates, amino group-containing (meth)acrylates, sulfonic acid group-containing (meth)acrylates, hydroxyl group-containing (meth)acrylamides, and sulfonic acid group-containing (meth)acrylamides.
  • hydroxy group-containing (meth)acrylates examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, and 1,4-cyclohexanedimethanol mono(meth)acrylate.
  • Examples of the amino group-containing (meth)acrylate include primary amino group-containing (meth)acrylate and secondary amino group-containing (meth)acrylate.
  • Examples of the primary amino group-containing (meth)acrylate include aminomethyl (meth)acrylate and aminoethyl (meth)acrylate.
  • Examples of the secondary amino group-containing (meth)acrylate include t-butylaminoethyl (meth)acrylate and t-butylaminopropyl (meth)acrylate.
  • sulfonic acid group-containing (meth)acrylates examples include 2-sulfoethyl (meth)acrylate and 3-sulfopropyl (meth)acrylate.
  • hydroxy group-containing (meth)acrylamides include N-(hydroxymethyl)(meth)acrylamide, N-(2-hydroxyethyl)(meth)acrylamide, and N-(4-hydroxybutyl)(meth)acrylamide.
  • the structural unit (B) is a structural unit derived from an aromatic group-containing vinyl compound.
  • the aromatic ring contained in the aromatic group-containing vinyl compound may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring, with an aromatic hydrocarbon ring being preferred.
  • Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring.
  • Aromatic group-containing vinyl compounds for example, do not have functional groups capable of bonding to a substrate.
  • the aromatic group-containing vinyl compound does not have, for example, a hydroxy group, an amino group, or a sulfonic acid group.
  • the structural unit (B) does not have, for example, a functional group capable of bonding to a substrate.
  • the structural unit (B) does not have, for example, a hydroxy group, an amino group, or a sulfonic acid group.
  • the structural unit (B) in the polymer (P) may be of one type or of two or more types.
  • the structural unit (B) preferably contains a structural unit (B-1) represented by the following formula (2).
  • the structural unit (B) preferably contains a structural unit (B-2) represented by the following formula (3).
  • n Y's each independently represent a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, or a thioalkyl group, and n represents an integer of 0 to 7.
  • R 3 to R 5 each independently represent a hydrogen atom or a tert-butyl group, provided that one or two of R 3 to R 5 represent a tert-butyl group.
  • halogen atom for Y in formula (2) examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group for Y in formula (2) is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, still more preferably an alkyl group having 1 to 6 carbon atoms, and particularly preferably an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic.
  • the alkoxy group for Y in formula (2) is preferably an alkoxy group having 1 to 15 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, even more preferably an alkoxy group having 1 to 6 carbon atoms, and particularly preferably an alkoxy group having 1 to 3 carbon atoms.
  • the alkyl group in the alkoxy group may be linear, branched, or cyclic.
  • the alkoxycarbonyl group for Y in formula (2) is preferably an alkoxycarbonyl group having 2 to 15 carbon atoms, more preferably an alkoxycarbonyl group having 2 to 10 carbon atoms, even more preferably an alkoxycarbonyl group having 2 to 6 carbon atoms, and particularly preferably an alkoxycarbonyl group having 2 to 3 carbon atoms.
  • the alkyl group in the alkoxycarbonyl group may be linear, branched, or cyclic.
  • Examples of the thioalkyl group for Y in formula (2) include the above alkoxy groups in which --O-- is replaced with --S--.
  • the molar ratio of structural unit (B) to all structural units in polymer (P) is not particularly limited, but is preferably 80% or more and less than 100%, more preferably 90% or more and less than 100%, and particularly preferably more than 95% and less than 100%.
  • the molar ratio of structural unit (A) to structural unit (B) in polymer (P) is not particularly limited, but is preferably 1:200 to 1:10, and more preferably 1:150 to 1:20.
  • polymer (P) contains structural unit (B-1) represented by formula (2)
  • the molar ratio of structural unit (A) to structural unit (B-1) in polymer (P) is not particularly limited, but is preferably 1:100 to 1:5, and more preferably 1:75 to 1:10.
  • polymer (P) contains structural unit (B-2) represented by formula (3)
  • the molar ratio of structural unit (A) to structural unit (B-2) in polymer (P) is not particularly limited, but is preferably 1:100 to 1:5, and more preferably 1:75 to 1:10.
  • the molar ratio of structural unit (B-1) to structural unit (B-2) in polymer (P) is not particularly limited, but is preferably 1.0:0.1 to 0.1:1.0, more preferably 1.0:0.5 to 0.5:1.0, and particularly preferably 1.0:0.7 to 0.7:1.0.
  • aromatic group-containing vinyl compounds examples include compounds represented by the following formula (2-1) and compounds represented by the following formula (3-1).
  • n Y's each independently represent a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, or a thioalkyl group, and n represents an integer of 0 to 7.
  • R 3 to R 5 each independently represent a hydrogen atom or a tert-butyl group, provided that one or two of R 3 to R 5 represent a tert-butyl group.
  • the weight average molecular weight of the brush polymer measured by gel permeation chromatography is not particularly limited, but is, for example, 1,000 to 50,000, and preferably 2,000 to 20,000, in terms of polystyrene.
  • the method for producing the brush polymer is not particularly limited.
  • the brush polymer when it is an addition polymerization type polymer, it can be produced by polymerizing monomers by a conventional method, such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization.
  • Solution polymerization is particularly preferred, and in this case, for example, the desired monomers can be added to a solvent to which a polymerization initiator has been added, and polymerization can be carried out.
  • the brush polymer when it is an addition polymerization type random copolymer, it can be produced by copolymerizing various monomers in an appropriate molar ratio by a conventional method, such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization.
  • a conventional method such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization.
  • An example of such polymerization is radical polymerization.
  • the method for producing the brush polymer may be a polymerization method other than radical polymerization, for example, a production method based on ionic (anionic or cationic) addition polymerization, polycondensation, or polyaddition reaction.
  • the polymer (P) can be produced, for example, by solution polymerization of a monomer mixture containing a (meth)acrylic compound having a (meth)acryloyl group and a functional group capable of bonding to a substrate, and an aromatic group-containing vinyl compound.
  • polymerization initiator an organic peroxide or a diazo compound can be used.
  • Examples of the organic peroxide include diacyl peroxides, peroxydicarbonates, peroxy esters, and peroxysulfonates.
  • Examples of the diacyl peroxides include diacetyl peroxide, diisobutyl peroxide, didecanoyl peroxide, benzoyl peroxide, and succinic acid peroxide.
  • Examples of peroxydicarbonates include diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diallyl peroxydicarbonate.
  • peroxyesters examples include tert-butyl peroxyisobutyrate, tert-butyl neodecanate, and cumene peroxy neodecanate.
  • sulfonate peroxide examples include acetylcyclohexylsulfonyl peroxide.
  • diazo compounds examples include 2,2'-azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(4-methoxy-2,4-dimethoxyvaleronitrile), and 2,2'-azobis(2-cyclopropylpropionitrile).
  • polymerization initiators are preferably benzoyl peroxide and 2,2'-azobisisobutyronitrile, and more preferably 2,2'-azobisisobutyronitrile.
  • the amount of polymerization initiator used is, for example, 0.0001 to 0.2 equivalents relative to the total amount of monomers used, and preferably 0.0005 to 0.1 equivalents.
  • the solvent used in the polymerization is not particularly limited as long as it is a solvent that is not involved in the polymerization reaction and is compatible with the resulting brush polymer, and examples of the solvent include aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, ketones, ethers, esters, amides, sulfoxides, alcohols, and polyhydric alcohol derivatives.
  • aromatic hydrocarbons include benzene, toluene, and xylene.
  • An example of the alicyclic hydrocarbons is cyclohexane.
  • Examples of the aliphatic hydrocarbons include n-hexane and n-octane.
  • ketones include acetone, methyl ethyl ketone, and cyclohexanone.
  • the ethers include tetrahydrofuran and dioxane.
  • the esters include ethyl acetate and butyl acetate.
  • the amides include N,N-dimethylformamide and N,N-dimethylacetamide.
  • the sulfoxides include, for example, dimethyl sulfoxide.
  • the alcohols include methanol and ethanol.
  • polyhydric alcohol derivatives include ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate. These may be used alone or in combination of two or more.
  • the polymerization temperature is not particularly limited as long as it is within a temperature range in which side reactions such as transfer reactions and termination reactions do not occur and the monomer is consumed to complete the polymerization, but it is preferably carried out within a temperature range of ⁇ 100° C. or higher and the boiling point of the solvent or lower.
  • the concentration of the monomer in the solvent is not particularly limited, but is usually 1 to 40% by weight, and preferably 10 to 30% by weight.
  • the polymerization reaction time can be appropriately selected, but is usually within the range of 2 to 50 hours.
  • the solvent contained in the brush layer forming composition is not particularly limited as long as it is a solvent that dissolves the brush polymer.
  • the solvent include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monopropyl ether, methyl ethyl ketone, ethyl lactate, cyclohexanone, N,N-2-trimethylpropionamide, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, methyl 2-hydroxyisobutyrate, and ethyl 3-ethoxypropionate. These may be used alone or in combination of two or more.
  • the solvent content in the brush layer forming composition is not particularly limited, but is, for example, 90% by mass or more and 99.9% by mass or less.
  • the brush layer forming composition preferably does not contain a crosslinking agent.
  • the film obtained from the brush layer forming composition becomes a film that is not dissolved in the solvent contained in the self-assembled film forming composition containing the block copolymer. Therefore, the brush layer forming composition does not need to contain a crosslinking agent.
  • "not containing a crosslinking agent” may also include a case where the crosslinking agent is contained in such a small amount that the crosslinking agent does not sufficiently function as a crosslinking agent.
  • the content of the crosslinking agent in the brush layer forming composition is preferably less than 0.1% by mass, more preferably 0.01% by mass or less, and particularly preferably 0.001% by mass or less, relative to the brush polymer.
  • cross-linking agents include nitrogen-containing compounds having two to four nitrogen atoms substituted with methylol groups or alkoxymethyl groups.
  • crosslinking agents examples include hexamethoxymethylmelamine, tetramethoxymethylglycoluril, tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, 1,3,4,6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea, and 1,1,3,3-tetrakis(methoxymethyl)urea.
  • the brush layer forming composition may contain a surfactant, which is an additive for improving the coatability onto the substrate.
  • a surfactant known surfactants such as nonionic surfactants and fluorine-based surfactants can be used.
  • the content of the surfactant in the brush layer forming composition is, for example, 0.1% by mass to 5% by mass relative to the brush polymer.
  • the solid content includes the brush polymer and additives that are added as necessary.
  • the concentration of solids in the brush layer forming composition is not particularly limited, but is, for example, 0.1% by mass to 15% by mass, and preferably 0.1% by mass to 10% by mass.
  • FIG. 1A to 1I are schematic cross-sectional views for explaining an example of a method for manufacturing a semiconductor device according to the present invention.
  • An underlayer film 2 is formed on a semiconductor substrate 1 using a composition for forming an underlayer film of the present invention (FIG. 1A).
  • a resist film 3 is formed on the underlayer film 2 (FIG. 1B).
  • the resist film 3 is irradiated with light or electron beams, and then developed to obtain a resist pattern (patterned resist film 3) (FIG. 1C).
  • the underlayer film 2 is etched using the resist pattern (patterned resist film 3) as a mask to form a patterned underlayer film 2 (FIG. 1D).
  • the resist pattern (patterned resist film 3) is removed (FIG. 1E).
  • a brush layer forming composition is applied onto the semiconductor substrate 1 and the patterned underlayer film 2 to form a brush layer 4 (FIG. 1F).
  • a part of the brush layer 4 is removed, and the brush layer 4 is formed in the gaps in the pattern of the patterned underlayer film 2 (FIG. 1G).
  • a self-assembled film 5 is formed on the patterned underlayer film 2 and brush layer 4.
  • the self-assembled film 5 is, for example, a film of a block copolymer having an A block and a B block.
  • a microphase-separated structure having domains 5a of the A block and domains 5b of the B block is obtained ( FIG. 1H ).
  • a pattern according to the morphology of the microphase-separated domain can be obtained (FIG. 1I).
  • further steps include processing the semiconductor substrate using a pattern corresponding to the morphology of the microphase-separated domain as a mask, or using the underlayer film 2 and brush layer 4 to which the pattern has been transferred as masks.
  • the weight average molecular weights of the polymers shown in the following Synthesis Example 1 and Comparative Synthesis Example 1 in this specification are the results of measurement by gel permeation chromatography (hereinafter abbreviated as GPC).
  • GPC gel permeation chromatography
  • a GPC device manufactured by Tosoh Corporation was used, and the measurement conditions etc. are as follows.
  • Solvent N,N-dimethylformamide (DMF)
  • Flow rate 0.6 ml/min.
  • Standard sample polystyrene (manufactured by Tosoh Corporation)
  • the resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 1.
  • the weight average molecular weight Mw measured by GPC in terms of polystyrene was 8,100.
  • the structure present in polymer 1 is shown in the following formula.
  • ⁇ Synthesis Example 2> 2.13 g of 2-vinylnaphthalene (molar ratio to the entire polymer 2: 60%), 1.09 g of 3-hydroxy-1-methacryloyloxyadamantane (molar ratio to the entire polymer 2: 20%), 0.66 g of 2-hydroxypropyl methacrylate (molar ratio to the entire polymer 2: 20%), and 0.12 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours.
  • the resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 2.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 7,100.
  • the structure present in polymer 2 is shown in the following formula.
  • the resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 5.
  • the weight average molecular weight Mw measured by GPC in terms of polystyrene was 7,700.
  • the structure present in polymer 5 is shown in the following formula.
  • the resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 6.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 7,600.
  • the structure present in polymer 6 is shown in the following formula.
  • the obtained reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 7.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 6,800.
  • the structure present in polymer 7 is shown in the following formula.
  • the resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 8.
  • the weight average molecular weight Mw measured by GPC in terms of polystyrene was 7,100.
  • the structure present in polymer 8 is shown in the following formula.
  • PL-LI Tetramethoxymethylglycoluril (manufactured by Nippon Cytec Industries Co., Ltd.)
  • PyPTS Pyridinium-p-toluenesulfonic acid
  • PGMEA Propylene glycol monomethyl ether acetate
  • PGME Propylene glycol monomethyl ether
  • the composition for forming the underlayer film for the self-assembled film was applied onto a silicon wafer using a spinner.
  • the silicon wafer was baked on a hot plate at 240°C for 60 seconds to obtain an underlayer film with a thickness of 8 nm.
  • a self-assembled film (block copolymer) solution was spin-coated onto the underlayer film and heated at 90°C for 60 seconds to form a self-assembled film.
  • the laminated film was baked on a hot plate in an N2 atmosphere at 260°C for 900 seconds to allow self-organization (microphase separation) to proceed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a composition for forming an underlayer film for the formation of an underlayer film of a self-assembled film, the composition containing a polymer which has a unit structure (A) that has an alicyclic hydrocarbon group having a reactive group.

Description

自己組織化材料のための下層膜材料Underlayer materials for self-organizing materials

 本発明は、自己組織化膜の下層膜を形成するために用いられる下層膜形成用組成物及び下層膜、並びにそれらを用いた半導体素子の製造方法に関する。 The present invention relates to a composition for forming an underlayer film used to form an underlayer film of a self-assembled film, an underlayer film, and a method for manufacturing a semiconductor device using the composition and the underlayer film.

 近年、大規模集積回路(LSI)のさらなる微細化に伴い、より繊細な構造体を加工する技術が求められている。このような要望に対して、互いに非相溶性のポリマー同士を結合させたブロックコポリマーの自己組織化により形成される相分離構造を利用して、より微細なパターンを形成する試みが始まっている。例えば、基板上に下層膜形成用組成物を塗布し、当該組成物からなる下層膜を形成し、二種以上のポリマーが結合したブロックコポリマーを含む自己組織化膜を下層膜表面に形成し、自己組織化膜中のブロックコポリマーを相分離させ、ブロックコポリマーを構成するポリマーの少なくとも一種のポリマーの相を選択的に除去することによるパターン形成方法が提案されている。 In recent years, with the further miniaturization of large-scale integrated circuits (LSIs), there is a demand for technology to process even more delicate structures. In response to this demand, attempts have been made to form finer patterns by utilizing a phase-separated structure formed by the self-organization of a block copolymer in which incompatible polymers are bonded together. For example, a pattern formation method has been proposed in which a composition for forming an underlayer film is applied onto a substrate to form an underlayer film made of the composition, a self-assembled film containing a block copolymer in which two or more polymers are bonded is formed on the surface of the underlayer film, the block copolymer in the self-assembled film is phase-separated, and at least one of the phases of the polymers constituting the block copolymer is selectively removed.

 特許文献1には、ポリマーの全単位構造あたり置換されていてもよいスチレン、ビニルナフタレン、アセナフチレン、ビニルカルバゾール等の芳香族ビニル化合物の単位構造を20モル%以上有し、且つ該芳香族ビニル化合物の全単位構造あたり多環芳香族ビニル化合物の単位構造を1モル%以上有するポリマーを含む自己組織化膜の下層膜形成用組成物が開示されている。 Patent Document 1 discloses a composition for forming an underlayer film of a self-assembled film, which contains a polymer that has 20 mol % or more of unit structures of aromatic vinyl compounds, such as styrene, vinylnaphthalene, acenaphthylene, and vinylcarbazole, which may be substituted, per total unit structure of the polymer, and has 1 mol % or more of unit structures of polycyclic aromatic vinyl compounds per total unit structure of the aromatic vinyl compounds.

国際公開第2014/097993号パンフレットInternational Publication No. 2014/097993

 自己組織化膜の下層膜としては、自己組織化膜を用いた微細パターンの形成を可能にするために、より所望の垂直パターンに配向させやすい(自己組織化膜に垂直配向を形成できる)下地膜が求められている。 As the underlayer for the self-assembled film, there is a demand for a base film that is easier to orient in the desired vertical pattern (capable of forming vertical orientation in the self-assembled film) in order to enable the formation of fine patterns using the self-assembled film.

 本発明は、自己組織化膜の下層膜として良好な成膜性を有するとともに、自己組織化膜に垂直配向を形成できる下地層を形成できる下層膜形成用組成物を提供する。また、本発明は当該下層膜形成用組成物を用いた下層膜、及び、当該下層膜を用いた半導体素子の製造方法を提供する。 The present invention provides a composition for forming an underlayer film that has good film-forming properties as an underlayer film for a self-assembled film and can form an underlayer that can form a vertical alignment in the self-assembled film. The present invention also provides an underlayer film using the composition for forming an underlayer film, and a method for manufacturing a semiconductor device using the underlayer film.

 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。
 すなわち、本発明は以下を包含する。
 [1] 自己組織化膜の下層膜を形成するための下層膜形成用組成物であって、
 ポリマーを含有し、
 前記ポリマーが、反応性基を有する脂環式炭化水素基を有する単位構造(A)を有する、
下層膜形成用組成物。
 [2] 前記単位構造(A)が、下記式(A-1)で表される単位構造である、[1]に記載の下層膜形成用組成物。

Figure JPOXMLDOC01-appb-C000005
(式(A-1)中、Rは、水素原子又はメチル基を表す。Xは、単結合、エステル基又はアミド基を表す。Yは、単結合、又は炭素原子数1~6のアルキレン基を表す。Cyは、反応性基を有する脂環式炭化水素基を表す。)
 [3] 前記ポリマーが、下記式(B-1)で表される単位構造を更に有する、[1]または[2]に記載の下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000006
(式(B-1)中、R11は、水素原子又はメチル基を表す。Ar11は、置換されていてもよい芳香族基を表す。)
 [4] 前記式(B-1)中、Ar11は、置換されていてもよい、ナフタレン、アントラセン、フェナントレン、ピレン、トリフェニレン、クリセン、ナフタセン、ビフェニレン、フルオレン、若しくはカルバゾール、又は炭素原子数1~6の炭化水素基を1以上置換基として有するベンゼンを表す、[3]に記載の下層膜形成用組成物。
 [5] 前記ポリマーが、単環芳香族構造を有する単位構造(C)を更に有する、[1]から[4]のいずれかに記載の下層膜形成用組成物。
 [6] 前記単位構造(C)が、下記式(C-1)で表される単位構造である、[5]に記載の下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000007
(式(C-1)中、R21は、水素原子又はメチル基を表す。X21は、エステル基又はアミド基を表す。Y21は、単結合、又は炭素原子数1~6のアルキレン基を表す。Z21は、単結合、又はエーテル基を表す。Ar21は、置換されていてもよい、ベンゼン、ナフタレン又はアントラセンを表す。R22は、ハロゲン原子、又は置換されていてもよい炭素原子数1~10の有機基を表す。nは、0~5の整数を表す。R22が2つ以上の時、2つ以上のR22は同じであってもよいし異なっていてもよい。)
 [7] 前記ポリマーが、反応性基を有する炭化水素基(但し、脂環式炭化水素基を除く。)を有する単位構造(D)を更に有する、[1]から[6]のいずれかに記載の下層膜形成用組成物。
 [8] 前記単位構造(D)が、下記式(D-1)で表される単位構造である、[7]に記載の下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000008
(式(D-1)中、R31は、水素原子又はメチル基を表す。X31は、エステル基又はアミド基を表す。R32は、反応性基を有する炭素原子数1~12の炭化水素基(但し、脂環式炭化水素基を除く。)を表す。)
 [9] 前記ポリマーの全単位構造に対する前記単位構造(A)のモル割合が、60モル%未満である、[1]から[8]のいずれかに記載の下層膜形成用組成物。
 [10] 前記ポリマーの全単位構造に対する前記単位構造(B-1)のモル割合が、45モル%~80モル%である、[3]から[9]のいずれかに記載の下層膜形成用組成物。
 [11] 架橋剤を更に含有し、前記架橋剤の含有量が、前記ポリマーの20質量%~50質量%である、[1]から[10]のいずれかに記載の下層膜形成用組成物。
 [12] 前記自己組織化膜が、ブロックコポリマーを含む膜である、[1]から[11]のいずれかに記載の下層膜形成用組成物。
 [13] フォトレジスト膜及び電子線レジスト膜のいずれかのレジスト膜と前記自己組織化膜とを用いたリソグラフィーにおいて、前記レジスト膜の下層膜として用いられた後に、更に前記自己組織化膜の下層膜として用いられる下層膜を形成するための組成物である、[1]から[13]のいずれかに記載の下層膜形成用組成物。
 [14] [1]から[13]のいずれかに記載の下層膜形成用組成物の塗布膜の焼成物である、下層膜。
 [15] 前記下層膜の膜厚が10nm未満である、[14]に記載の下層膜。
 [16] 半導体基板の上に、[1]から[13]のいずれかに記載の下層膜形成用組成物を用いて、下層膜を形成する工程と、
 前記下層膜の上に、自己組織化膜を形成する工程と、
を含む、半導体素子の製造方法。
 [17] 前記自己組織化膜を形成する工程において、前記自己組織化膜が、パターン化された前記下層膜の上に形成され、
 更に、
 前記下層膜の上に、フォトレジスト膜及び電子線レジスト膜のいずれかのレジスト膜を形成する工程と、
 前記レジスト膜に光照射又は電子線照射を行い、次いで、前記レジスト膜を現像し、レジストパターンを得る工程と、
 前記レジストパターンをマスクに用いて前記下層膜をエッチングし、前記パターン化された下層膜を形成する工程と、
 を含む、[16]に記載の半導体素子の製造方法。
 [18] 前記パターン化された下層膜を形成する工程と前記自己組織化膜を形成する工程との間に、前記パターン化された下層膜のパターンの隙間にブラシ層を形成する工程を更に含む、[17]に記載の半導体素子の製造方法。
 [19] 前記自己組織化膜が、ブロックコポリマーを含む膜である、[16]から[18]のいずれかに記載の半導体素子の製造方法。
 [20] 前記パターン化された下層膜を形成する工程の後に、前記レジストパターンを除去する工程を更に含む、[17]から[19]のいずれかに記載の半導体素子の製造方法。 Means for Solving the Problems The present inventors have conducted extensive research to solve the above problems, and as a result have found that the above problems can be solved, and have completed the present invention having the following gist.
That is, the present invention includes the following.
[1] A composition for forming an underlayer film for forming an underlayer film of a self-assembled film, comprising:
Contains a polymer,
The polymer has a unit structure (A) having an alicyclic hydrocarbon group having a reactive group.
Composition for forming a lower layer film.
[2] The composition for forming an underlayer film according to [1], wherein the unit structure (A) is a unit structure represented by the following formula (A-1):
Figure JPOXMLDOC01-appb-C000005
(In formula (A-1), R 1 represents a hydrogen atom or a methyl group; X 1 represents a single bond, an ester group or an amide group; Y 1 represents a single bond or an alkylene group having 1 to 6 carbon atoms; and Cy represents an alicyclic hydrocarbon group having a reactive group.)
[3] The composition for forming an underlayer film according to [1] or [2], wherein the polymer further has a unit structure represented by the following formula (B-1):
Figure JPOXMLDOC01-appb-C000006
(In formula (B-1), R 11 represents a hydrogen atom or a methyl group. Ar 11 represents an aromatic group which may be substituted.)
[4] In the formula (B-1), Ar 11 represents naphthalene, anthracene, phenanthrene, pyrene, triphenylene, chrysene, naphthacene, biphenylene, fluorene, or carbazole, which may be substituted, or benzene having one or more hydrocarbon groups having 1 to 6 carbon atoms as a substituent. The composition for forming an underlayer film according to [3].
[5] The composition for forming an underlayer film according to any one of [1] to [4], wherein the polymer further has a unit structure (C) having a monocyclic aromatic structure.
[6] The composition for forming an underlayer film according to [5], wherein the unit structure (C) is a unit structure represented by the following formula (C-1):
Figure JPOXMLDOC01-appb-C000007
(In formula (C-1), R 21 represents a hydrogen atom or a methyl group. X 21 represents an ester group or an amide group. Y 21 represents a single bond or an alkylene group having 1 to 6 carbon atoms. Z 21 represents a single bond or an ether group. Ar 21 represents benzene, naphthalene or anthracene which may be substituted. R 22 represents a halogen atom or an organic group having 1 to 10 carbon atoms which may be substituted. n represents an integer of 0 to 5. When there are two or more R 22 , the two or more R 22 may be the same or different.)
[7] The composition for forming an underlayer film according to any one of [1] to [6], wherein the polymer further has a unit structure (D) having a hydrocarbon group (excluding an alicyclic hydrocarbon group) having a reactive group.
[8] The composition for forming an underlayer film according to [7], wherein the unit structure (D) is a unit structure represented by the following formula (D-1):
Figure JPOXMLDOC01-appb-C000008
(In formula (D-1), R 31 represents a hydrogen atom or a methyl group. X 31 represents an ester group or an amide group. R 32 represents a hydrocarbon group having 1 to 12 carbon atoms (excluding alicyclic hydrocarbon groups) having a reactive group.)
[9] The composition for forming an underlayer film according to any one of [1] to [8], wherein a molar ratio of the unit structure (A) to all unit structures of the polymer is less than 60 mol %.
[10] The composition for forming an underlayer film according to any one of [3] to [9], wherein the molar ratio of the unit structure (B-1) to all unit structures of the polymer is 45 mol % to 80 mol %.
[11] The composition for forming an underlayer film according to any one of [1] to [10], further comprising a crosslinking agent, the content of the crosslinking agent being 20% by mass to 50% by mass of the polymer.
[12] The composition for forming an underlayer film according to any one of [1] to [11], wherein the self-assembled film is a film containing a block copolymer.
[13] The composition for forming an underlayer film according to any one of [1] to [13], which is a composition for forming an underlayer film that is used as an underlayer film of a resist film, which is a photoresist film or an electron beam resist film, and the self-assembled film in lithography using the self-assembled film.
[14] An underlayer film, which is a fired product of a coating film of the composition for forming an underlayer film according to any one of [1] to [13].
[15] The underlayer film according to [14], wherein the underlayer film has a thickness of less than 10 nm.
[16] A step of forming an underlayer film on a semiconductor substrate using the composition for forming an underlayer film according to any one of [1] to [13];
forming a self-assembled film on the underlayer film;
A method for manufacturing a semiconductor device, comprising:
[17] In the step of forming a self-assembled film, the self-assembled film is formed on a patterned underlayer film,
Furthermore,
forming a resist film, which is either a photoresist film or an electron beam resist film, on the underlayer film;
a step of irradiating the resist film with light or electron beam and then developing the resist film to obtain a resist pattern;
etching the underlayer film using the resist pattern as a mask to form the patterned underlayer film;
The method for manufacturing a semiconductor element according to [16],
[18] The method for manufacturing a semiconductor element according to [17], further comprising the step of forming a brush layer in gaps in the pattern of the patterned underlayer film between the step of forming the patterned underlayer film and the step of forming the self-assembled film.
[19] The method for producing a semiconductor device according to any one of [16] to [18], wherein the self-assembled film is a film containing a block copolymer.
[20] The method for manufacturing a semiconductor device according to any one of [17] to [19], further comprising the step of removing the resist pattern after the step of forming the patterned underlayer film.

 本発明によれば、自己組織化膜の下層膜として良好な成膜性を有するとともに、垂直配列性の良好な自己組織化膜が形成可能となる下層膜形成用組成物を提供できる。また、本発明は当該下層膜形成用組成物を用いた下層膜、及び、当該下層膜を用いた半導体素子の製造方法を提供できる。 The present invention can provide a composition for forming an underlayer film that has good film-forming properties as an underlayer film for a self-assembled film and can form a self-assembled film with good vertical alignment. The present invention can also provide an underlayer film using the composition for forming an underlayer film, and a method for manufacturing a semiconductor device using the underlayer film.

図1Aは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その1)。FIG. 1A is a schematic cross-sectional view for explaining one example of a method for manufacturing a semiconductor element according to the present invention (part 1). 図1Bは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その2)。FIG. 1B is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (part 2). 図1Cは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その3)。FIG. 1C is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (part 3). 図1Dは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その4)。FIG. 1D is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (part 4). 図1Eは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その5)。FIG. 1E is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (part 5). 図1Fは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その6)。FIG. 1F is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (part 6). 図1Gは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その7)。FIG. 1G is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (part 7). 図1Hは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その8)。FIG. 1H is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (part 8). 図1Iは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である(その9)。FIG. 1I is a schematic cross-sectional view for explaining one example of the method for manufacturing a semiconductor element of the present invention (No. 9). 図2は、実施例1の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 2 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of the self-assembled film formed on the underlayer film formed from the underlayer film-forming composition of Example 1. 図3は、実施例2の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 3 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of the self-assembled film formed on the underlayer film formed from the underlayer film-forming composition of Example 2. 図4は、実施例3の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 4 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of the self-assembled film formed on the underlayer film formed from the underlayer film-forming composition of Example 3. 図5は、実施例4の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 5 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of the self-assembled film formed on the underlayer film formed from the underlayer film-forming composition of Example 4. 図6は、実施例5の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 6 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of the self-assembled film formed on the underlayer film formed from the underlayer film-forming composition of Example 5. 図7は、実施例6の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 7 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of the self-assembled film formed on the underlayer film formed from the underlayer film-forming composition of Example 6. 図8は、実施例7の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 8 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of the self-assembled film formed on the underlayer film formed from the underlayer film-forming composition of Example 7. 図9は、比較例1の下層膜形成用組成物から形成された下層膜上に形成された自己組織化膜のミクロ相分離構造の電子顕微鏡(SEM)写真である。FIG. 9 is a scanning electron microscope (SEM) photograph of the microphase-separated structure of a self-assembled film formed on an underlayer film formed from the underlayer film-forming composition of Comparative Example 1.

(下層膜形成用組成物)
 本発明の下層膜形成用組成物は、自己組織化膜の下層膜を形成するための下層膜形成用組成物である。
 下層膜形成用組成物は、ポリマーを含有する。
 ポリマーは、反応性基を有する脂環式炭化水素基を有する単位構造(A)を有する。
(Composition for forming lower layer film)
The composition for forming an underlayer film of the present invention is a composition for forming an underlayer film for forming an underlayer film of a self-assembled film.
The underlayer film-forming composition contains a polymer.
The polymer has a unit structure (A) having an alicyclic hydrocarbon group having a reactive group.

 下層膜形成用組成物がポリマーを含有し、ポリマーが反応性基を有する脂環式炭化水素基を有する単位構造(A)を有することにより、自己組織化膜の下層膜として、自己組織化膜に垂直配列を形成できる下層膜が形成できる。 The composition for forming the underlayer film contains a polymer, and the polymer has a unit structure (A) having an alicyclic hydrocarbon group having a reactive group, so that an underlayer film that can form a vertical arrangement in the self-assembled film can be formed as the underlayer film of the self-assembled film.

<ポリマー>
 ポリマーは、反応性基を有する脂環式炭化水素基を有する単位構造(A)を有する。以下、このポリマーを「特定のポリマー」と称することがある。
<Polymer>
The polymer has a unit structure (A) having an alicyclic hydrocarbon group having a reactive group. Hereinafter, this polymer may be referred to as a "specific polymer."

<<単位構造(A)>>
 単位構造(A)は、反応性基を有する脂環式炭化水素基を有する単位構造である。
 単位構造(A)が有する脂環式炭化水素基としては、例えば、シクロヘキシル基、イソボルニル基、ジシクロペンタニル基、アダマンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基等が挙げられ、シクロヘキシル基、イソボルニル基、ジシクロペンタニル基、アダマンチル基が好ましい。また、脂環式炭化水素基は、反応性基以外の置換基を有していてもよい。
 脂環式炭化水素基としては、炭素原子数が7~14であると好ましく、8~12であるとより好ましい。
<<Unit structure (A)>>
The unit structure (A) is a unit structure having an alicyclic hydrocarbon group having a reactive group.
Examples of the alicyclic hydrocarbon group contained in the unit structure (A) include a cyclohexyl group, an isobornyl group, a dicyclopentanyl group, an adamantyl group, a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group, and the like, with a cyclohexyl group, an isobornyl group, a dicyclopentanyl group, and an adamantyl group being preferred. The alicyclic hydrocarbon group may have a substituent other than the reactive group.
The alicyclic hydrocarbon group preferably has 7 to 14 carbon atoms, and more preferably has 8 to 12 carbon atoms.

 単位構造(A)が有する反応性基としては、例えば、ヒドロキシ基、エポキシ基、アシル基、アセチル基、ホルミル基、ベンゾイル基、カルボキシ基、カルボニル基、アミノ基、イミノ基、シアノ基、アゾ基、アジ基、チオール基、スルホ基及びアリル基などが挙げられる。これらの反応性基の中でもヒドロキシ基が好ましい。反応性基は、脂環式炭化水素基に対して、1または2以上有していればよく、脂環式炭化水素に対して1有することが好ましい。 Examples of reactive groups possessed by the unit structure (A) include hydroxyl groups, epoxy groups, acyl groups, acetyl groups, formyl groups, benzoyl groups, carboxyl groups, carbonyl groups, amino groups, imino groups, cyano groups, azo groups, azido groups, thiol groups, sulfo groups, and allyl groups. Among these reactive groups, hydroxyl groups are preferred. There may be one or more reactive groups per alicyclic hydrocarbon group, and it is preferred that there is one reactive group per alicyclic hydrocarbon group.

 単位構造(A)としては、特に制限されないが、本発明の効果を好適に得る観点から、下記式(A-1)で表される単位構造が好ましい。 The unit structure (A) is not particularly limited, but from the viewpoint of optimally obtaining the effects of the present invention, the unit structure represented by the following formula (A-1) is preferred.

Figure JPOXMLDOC01-appb-C000009
(式(A-1)中、Rは、水素原子又はメチル基を表す。Xは、単結合、エステル基又はアミド基を表す。Yは、単結合、又は炭素原子数1~6のアルキレン基を表す。Cyは、反応性基を有する脂環式炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000009
(In formula (A-1), R 1 represents a hydrogen atom or a methyl group; X 1 represents a single bond, an ester group or an amide group; Y 1 represents a single bond or an alkylene group having 1 to 6 carbon atoms; and Cy represents an alicyclic hydrocarbon group having a reactive group.)

 式(A-1)中、Yは、単結合、又は炭素原子数1~6の2価のアルキレン基を表す。
 炭素原子数1~6の2価のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、ブチレン基、ペンチレン基、へキシレン基などが挙げられる。
 式(A-1)中、Xはエステル基、Yは単結合であることが好ましい。
In formula (A-1), Y 1 represents a single bond or a divalent alkylene group having 1 to 6 carbon atoms.
Examples of the divalent alkylene group having 1 to 6 carbon atoms include a methylene group, an ethylene group, a propylene group, a trimethylene group, a butylene group, a pentylene group, and a hexylene group.
In formula (A-1), it is preferable that X 1 is an ester group and Y 1 is a single bond.

 Cyは、反応性基を有する脂環式炭化水素基を表す。
 Cyにおける反応性基は、ヒドロキシ基が好ましく、脂環式炭化水素基は、アダマンチル基が好ましい。
Cy represents an alicyclic hydrocarbon group having a reactive group.
The reactive group in Cy is preferably a hydroxy group, and the alicyclic hydrocarbon group is preferably an adamantyl group.

 式(A-1)で表される単位構造としては、例えば、以下が挙げられる。 Examples of the unit structure represented by formula (A-1) include the following:

 ポリマー中の単位構造(A)は、1種類又は2種類以上でよいが、好ましくは1種類又は2種類である。 The unit structure (A) in the polymer may be of one or more types, but preferably is of one or two types.

<<単位構造(B)>>
 本発明のポリマーは、単位構造(A)以外の単位構造を有していてもよい。そのような単位構造としては、本発明の効果を好適に得る観点から、下記式(B-1)で表される単位構造が挙げられる。
<<Unit structure (B)>>
The polymer of the present invention may have a unit structure other than the unit structure (A). From the viewpoint of suitably obtaining the effects of the present invention, such a unit structure may be a unit structure represented by the following formula (B-1).

Figure JPOXMLDOC01-appb-C000011
(式(B-1)中、R11は、水素原子又はメチル基を表す。Ar11は、置換されていてもよい芳香族基を表す。)
Figure JPOXMLDOC01-appb-C000011
(In formula (B-1), R 11 represents a hydrogen atom or a methyl group. Ar 11 represents an aromatic group which may be substituted.)

 式(B-1)中、Ar11としては、置換されていてもよい、ナフタレン、アントラセン、フェナントレン、ピレン、トリフェニレン、クリセン、ナフタセン、ビフェニレン、フルオレン、若しくはカルバゾールなどが挙げられる。
 Ar11が有していてもよい置換基としては、例えば、ハロゲン原子、ヒドロキシ基、アルキル基、アルコキシ基、チオール基、シアノ基、カルボキシ基、アミノ基、アミド基、アルコキシカルボニル基、チオアルキル基などが挙げられる。
 式(B-1)中におけるAr11は、炭素原子数1~6の炭化水素基を1以上置換基として有するベンゼンであってもよい。Ar11における炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、分岐鎖状が好ましい。Ar11における炭化水素基としては、t-ブチル基が更に好ましい。
 Ar11における炭化水素基は、1又は2以上有していれば良い。
 式(B-1)中におけるAr11は、炭素原子数が6~20であると好ましく、6~14であるとより好ましい。
In formula (B-1), Ar 11 may be substituted naphthalene, anthracene, phenanthrene, pyrene, triphenylene, chrysene, naphthacene, biphenylene, fluorene, carbazole, or the like.
Examples of the substituent that Ar 11 may have include a halogen atom, a hydroxy group, an alkyl group, an alkoxy group, a thiol group, a cyano group, a carboxy group, an amino group, an amido group, an alkoxycarbonyl group, and a thioalkyl group.
In formula (B-1), Ar 11 may be benzene having one or more substituents of a hydrocarbon group having 1 to 6 carbon atoms. The hydrocarbon group in Ar 11 may be linear, branched, or cyclic, and is preferably branched. The hydrocarbon group in Ar 11 is more preferably a t-butyl group.
Ar 11 may have one or more hydrocarbon groups.
In formula (B-1), Ar 11 preferably has 6 to 20 carbon atoms, and more preferably has 6 to 14 carbon atoms.

 式(B-1)で表される単位構造としては、例えば、以下が挙げられる。 Examples of the unit structure represented by formula (B-1) include the following:

Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 

 ポリマー中の単位構造(B-1)は1種類又は2種類以上でよいが、好ましくは1種類又は2種類である。 The unit structure (B-1) in the polymer may be of one or more types, but preferably is of one or two types.

<<単位構造(C)>>
 ポリマーは、単位構造(A)及び単位構造(B)以外の単位構造を有していてもよい。そのような単位構造として、本発明の効果を好適に得る観点から、単環芳香族構造を有する単位構造(C)が挙げられる。
 なお、単位構造(C)は、単位構造(A)及び単位構造(B)とは異なる単位構造である。
 例えば、単位構造(C)は、単位構造(A)が有する反応性基を有する脂環式炭化水素基を有しない。また、単位構造(C)は、単位構造(B)が有する炭素原子数1~6の炭化水素基を1以上置換基として有するベンゼンを有しない。
<<Unit Structure (C)>>
The polymer may have a unit structure other than the unit structure (A) and the unit structure (B). From the viewpoint of suitably obtaining the effects of the present invention, an example of such a unit structure is a unit structure (C) having a monocyclic aromatic structure.
The unit structure (C) is a unit structure different from the unit structures (A) and (B).
For example, the unit structure (C) does not have an alicyclic hydrocarbon group having a reactive group, which the unit structure (A) has. In addition, the unit structure (C) does not have a benzene having one or more hydrocarbon groups having 1 to 6 carbon atoms as a substituent, which the unit structure (B) has.

 単位構造(C)としては、特に制限されないが、本発明の効果を好適に得る観点から、下記式(C-1)で表される単位構造が好ましい。 The unit structure (C) is not particularly limited, but from the viewpoint of optimally obtaining the effects of the present invention, the unit structure represented by the following formula (C-1) is preferred.

Figure JPOXMLDOC01-appb-C000015
(式(C-1)中、R21は、水素原子又はメチル基を表す。X21は、エステル基又はアミド基を表す。Y21は、単結合、又は炭素原子数1~6のアルキレン基を表す。Z21は、単結合、又はエーテル基を表す。Ar21は、置換されていてもよい、ベンゼン、ナフタレン又はアントラセンを表す。R22は、ハロゲン原子、又は置換されていてもよい炭素原子数1~10の有機基を表す。nは、0~5の整数を表す。R22が2つ以上の時、2つ以上のR22は同じであってもよいし異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000015
(In formula (C-1), R 21 represents a hydrogen atom or a methyl group. X 21 represents an ester group or an amide group. Y 21 represents a single bond or an alkylene group having 1 to 6 carbon atoms. Z 21 represents a single bond or an ether group. Ar 21 represents benzene, naphthalene or anthracene which may be substituted. R 22 represents a halogen atom or an organic group having 1 to 10 carbon atoms which may be substituted. n represents an integer of 0 to 5. When there are two or more R 22 , the two or more R 22 may be the same or different.)

 X21は、エステル基であると好ましい。
 R22における置換されていてもよい炭素原子数1~10の有機基は、ハロゲン原子で置換されていてもよい炭素原子数1~6のアルキル基、ハロゲン原子で置換されていてもよい炭素原子数1~6のアルコキシ基、又はハロゲン原子で置換されていてもよい炭素原子数2~10のアシル基であると好ましい。
 ハロゲン原子で置換されていてもよい炭素原子数2~10のアシル基としては、例えば、ベンゾイル基が挙げられる。
 通常、Y21が単結合の場合、Z21は単結合を表す。
X21 is preferably an ester group.
The organic group having 1 to 10 carbon atoms which may be substituted for R 22 is preferably an alkyl group having 1 to 6 carbon atoms which may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom, or an acyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
An example of the acyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom is a benzoyl group.
Usually, when Y 21 represents a single bond, Z 21 represents a single bond.

 式(C-1)で表される単位構造は、炭素原子数が9~19であると好ましい。 The unit structure represented by formula (C-1) preferably has 9 to 19 carbon atoms.

 式(C-1)で表される単位構造としては、例えば、以下が挙げられる。 Examples of the unit structure represented by formula (C-1) include the following:

Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016

 ビニルポリマー中の単位構造(C)は、1種類又は2種類以上でよいが、好ましくは1種類又は2種類である。 The vinyl polymer may contain one or more types of unit structure (C), but preferably one or two types.

<<単位構造(D)>>
 ポリマーは、単位構造(A)、単位構造(B)及び単位構造(C)以外の単位構造を有していてもよい。そのような単位構造として、本発明の効果を好適に得る観点から、反応性基を有する炭化水素基(但し、脂環式炭化水素基を除く。)を有する単位構造(D)が挙げられる。
 なお、単位構造(D)は、単位構造(A)、単位構造(B)及び単位構造(C)とは異なる単位構造である。
 例えば、単位構造(D)は、単位構造(A)が有する反応性基を有する脂環式炭化水素基を有しない。
<<Unit structure (D)>>
The polymer may have a unit structure other than the unit structure (A), the unit structure (B) and the unit structure (C). From the viewpoint of suitably obtaining the effects of the present invention, such a unit structure may be a unit structure (D) having a hydrocarbon group (excluding alicyclic hydrocarbon groups) having a reactive group.
The unit structure (D) is a unit structure different from the unit structures (A), (B) and (C).
For example, the unit structure (D) does not have an alicyclic hydrocarbon group having a reactive group which the unit structure (A) has.

 単位構造(D)としては、特に制限されないが、本発明の効果を好適に得る観点から、下記式(D-1)で表される単位構造が好ましい。 The unit structure (D) is not particularly limited, but from the viewpoint of optimally obtaining the effects of the present invention, the unit structure represented by the following formula (D-1) is preferred.

Figure JPOXMLDOC01-appb-C000017
(式(D-1)中、R31は、水素原子又はメチル基を表す。X31は、エステル基又はアミド基を表す。R32は、反応性基を有する炭素原子数1~12の炭化水素基(但し、脂環式炭化水素基を除く。)を表す。)
Figure JPOXMLDOC01-appb-C000017
(In formula (D-1), R 31 represents a hydrogen atom or a methyl group. X 31 represents an ester group or an amide group. R 32 represents a hydrocarbon group having 1 to 12 carbon atoms (excluding alicyclic hydrocarbon groups) having a reactive group.)

 単位構造(D-1)が有する炭素原子数1~12の炭化水素基としては、例えば、炭素原子数1~12のアルキル基などが挙げられる。
 これらのアルキル基は、一部の水素原子がベンゼン環など単環の芳香族炭化水素環で置換されていてもよい。
 単位構造(D-1)が有する反応性基としては、例えば、ヒドロキシ基、エポキシ基、アシル基、アセチル基、ホルミル基、ベンゾイル基、カルボキシ基、カルボニル基、アミノ基、イミノ基、シアノ基、アゾ基、アジ基、チオール基、スルホ基及びアリル基などが挙げられる。これらの反応性基の中でもヒドロキシ基が好ましい。反応性基は、炭化水素基に対して、1または2以上有していればよく、炭化水素基に対して1有することが好ましい。
Examples of the hydrocarbon group having 1 to 12 carbon atoms contained in the structural unit (D-1) include alkyl groups having 1 to 12 carbon atoms.
In these alkyl groups, some of the hydrogen atoms may be substituted with a monocyclic aromatic hydrocarbon ring such as a benzene ring.
Examples of reactive groups contained in the unit structure (D-1) include a hydroxy group, an epoxy group, an acyl group, an acetyl group, a formyl group, a benzoyl group, a carboxy group, a carbonyl group, an amino group, an imino group, a cyano group, an azo group, an azido group, a thiol group, a sulfo group, and an allyl group. Among these reactive groups, a hydroxy group is preferred. The number of reactive groups per hydrocarbon group may be one or more, and it is preferred that the number of reactive groups per hydrocarbon group is one.

 式(D-1)で表される単位構造としては、例えば、以下が挙げられる。 Examples of the unit structure represented by formula (D-1) include the following:

Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018

 ポリマーの全単位構造に対する単位構造(A)のモル割合は、特に制限されないが、本発明の効果を好適に得る観点から、60モル%未満が好ましく、50モル%以下がより好ましく、45モル%以下が特に好ましい。
 ポリマーの全単位構造に対する単位構造(A)のモル割合は、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が特に好ましい。
The molar ratio of the unit structure (A) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably less than 60 mol%, more preferably 50 mol% or less, and particularly preferably 45 mol% or less.
The molar ratio of the unit structure (A) to all unit structures of the polymer is preferably 5 mol % or more, more preferably 10 mol % or more, and particularly preferably 15 mol % or more.

 ポリマーの全単位構造に対する単位構造(B-1)のモル割合は、特に制限されないが、本発明の効果を好適に得る観点から、45モル%以上が好ましく、50モル%以上がより好ましく、55モル%以上が特に好ましい。
 ビニルポリマーの全単位構造に対する単位構造(B-1)のモル割合は、80モル%以下が好ましく、70モル%以下がより好ましく、60モル%以下が特に好ましい。
The molar ratio of the unit structure (B-1) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 45 mol % or more, more preferably 50 mol % or more, and particularly preferably 55 mol % or more.
The molar ratio of the unit structure (B-1) to all unit structures of the vinyl polymer is preferably 80 mol % or less, more preferably 70 mol % or less, and particularly preferably 60 mol % or less.

 ポリマーが単位構造(C)を有する場合、ポリマーの全単位構造に対する単位構造(C)のモル割合は、特に制限されないが、本発明の効果を好適に得る観点から、5モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上が特に好ましい。
 ポリマーの全単位構造に対する単位構造(C)のモル割合は、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が特に好ましい。
When the polymer has the unit structure (C), the molar ratio of the unit structure (C) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 5 mol % or more, more preferably 15 mol % or more, and particularly preferably 20 mol % or more.
The molar ratio of the unit structure (C) to all unit structures of the polymer is preferably 50 mol % or less, more preferably 40 mol % or less, and particularly preferably 30 mol % or less.

 ポリマーが単位構造(D)を有する場合、ポリマーの全単位構造に対する単位構造(D)のモル割合は、特に制限されないが、本発明の効果を好適に得る観点から、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が特に好ましい。
 ポリマーの全単位構造に対する単位構造(D)のモル割合は、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が特に好ましい。
When the polymer has the unit structure (D), the molar ratio of the unit structure (D) to all unit structures of the polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 5 mol % or more, more preferably 10 mol % or more, and particularly preferably 15 mol % or more.
The molar ratio of the unit structure (D) to all unit structures of the polymer is preferably 50 mol % or less, more preferably 40 mol % or less, particularly preferably 30 mol % or less.

 ポリマーにおける単位構造(A)と単位構造(B-1)とのモル比率(単位構造(B-1)/単位構造(A))としては、特に制限されないが、1~9が好ましく、1.5~5がより好ましい。 The molar ratio of unit structure (A) to unit structure (B-1) in the polymer (unit structure (B-1)/unit structure (A)) is not particularly limited, but is preferably 1 to 9, and more preferably 1.5 to 5.

 ポリマーにおける単位構造の分布は特に制限されない。ポリマーは、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。 The distribution of unit structures in the polymer is not particularly limited. The polymer may be a block copolymer or a random copolymer.

 ポリマーの分子量としては、特に制限されないが、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称することがある)による重量平均分子量が、1,500~100,000であることが好ましく、2,000~50,000であることがより好ましい。
 ポリマーの分子量は、例えば、GPC装置(東ソー(株)製EcoSEC,HLC-8320GPC)及びGPCカラム(昭和電工(株)製Shodex[登録商標]Asahipak[登録商標])を用い、カラム温度を40℃とし、溶離液(溶出溶媒)としてジメチルホルムアミドを用い、流量(流速)を0.6mL/分とし、標準試料としてポリスチレン(東ソー(株)製)を用いて、測定することができる。
The molecular weight of the polymer is not particularly limited, but the weight average molecular weight determined by gel permeation chromatography (hereinafter sometimes abbreviated as GPC) is preferably 1,500 to 100,000, and more preferably 2,000 to 50,000.
The molecular weight of the polymer can be measured, for example, using a GPC apparatus (EcoSEC, HLC-8320GPC, manufactured by Tosoh Corporation) and a GPC column (Shodex [registered trademark] Asahipak [registered trademark], manufactured by Showa Denko K.K.), setting the column temperature to 40° C., using dimethylformamide as an eluent (elution solvent), setting the flow rate (flow velocity) to 0.6 mL/min, and using polystyrene (manufactured by Tosoh Corporation) as a standard sample.

<<ポリマーの製造方法>>
 特定のポリマーの製造方法としては、特に制限されないが、例えば、単位構造(A)を与えるモノマーが有する炭素間二重結合と、任意の単位構造(B)を与えるモノマーが有する炭素間二重結合と、任意の単位構造(C)を与えるモノマーが有する炭素間二重結合と、任意の単位構造(D)を与えるモノマーが有する炭素間二重結合とを反応させることにより、本実施形態の特定のポリマーを得ることができる。
<<Polymer manufacturing method>>
The method for producing the specific polymer is not particularly limited, but for example, the specific polymer of the present embodiment can be obtained by reacting a carbon-carbon double bond of a monomer that provides unit structure (A), a carbon-carbon double bond of a monomer that provides any unit structure (B), a carbon-carbon double bond of a monomer that provides any unit structure (C), and a carbon-carbon double bond of a monomer that provides any unit structure (D).

 特定のポリマーの重合方法としては、ラジカル重合、アニオン重合、カチオン重合などの公知の重合方法を用いることができる。溶液重合、懸濁重合、乳化重合、塊状重合など種々の公知技術を用いることができる。  As a polymerization method for a specific polymer, a known polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization can be used. Various known techniques such as solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization can also be used.

 重合時に使用される重合開始剤としては、特に制限されないが、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、及び2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩等が用いられる。 The polymerization initiator used during polymerization is not particularly limited, but examples thereof include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2 , 2'-azobis(isobutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl)azo]formamide, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane], and 2,2'-azobis(2-methylpropionamidine)dihydrochloride are used.

 重合時に用いられる溶媒としては、特に制限されないが、例えば、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2ーヒドロキシー3ーメチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等を用いることができる。これらは単独でも、混合して使用しても良い。  The solvent used during polymerization is not particularly limited, but examples include dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, and butyl lactate. These may be used alone or in combination.

 反応温度としては、特に制限されないが、例えば、20℃~150℃が挙げられる。
 反応時間としては、特に制限されないが、例えば、1時間~72時間が挙げられる。
The reaction temperature is not particularly limited, but may be, for example, 20°C to 150°C.
The reaction time is not particularly limited, but may be, for example, 1 hour to 72 hours.

 得られたポリマーを含む溶液は、下層膜形成用組成物の調製にそのまま用いることもできる。また、ポリマーをメタノール、エタノール、イソプロパノール、水等の貧溶剤、もしくはそれらの混合溶媒に沈殿単離させて回収して用いることもできる。 The obtained solution containing the polymer can be used as is for preparing a composition for forming an underlayer film. The polymer can also be recovered and used after being precipitated and isolated in a poor solvent such as methanol, ethanol, isopropanol, or water, or a mixture thereof.

 下層膜形成用組成物における特定のポリマーの含有量としては、特に制限されないが、溶解性の観点から、下層膜形成用組成物全体に対して、0.1質量%~50質量%が好ましく、0.1質量%~10質量%がより好ましい。
 また、下層膜形成用組成物における特定のポリマーの含有量としては、膜構成成分に対して50質量%~95質量%が好ましく、55質量%~90質量%がより好ましく、60質量%~85質量%が特に好ましい。
 膜構成成分とは、組成物に含まれる溶剤以外の成分を意味する。
The content of the specific polymer in the composition for forming an underlayer film is not particularly limited, but from the viewpoint of solubility, it is preferably 0.1% by mass to 50% by mass, and more preferably 0.1% by mass to 10% by mass, based on the entire composition for forming an underlayer film.
The content of the specific polymer in the underlayer film-forming composition is preferably 50% by mass to 95% by mass, more preferably 55% by mass to 90% by mass, and particularly preferably 60% by mass to 85% by mass, based on the film-constituting components.
The film constituent components refer to the components contained in the composition other than the solvent.

<架橋剤>
 下層膜形成用組成物は、架橋剤を含有することが好ましい。
 架橋剤は、例えば、単位構造(A)が有する反応性基と反応可能な官能基を有する。
 架橋剤における当該官能基の数は、特に制限されず、1つであってもよいし、2つ以上であってもよい。
<Crosslinking Agent>
The composition for forming the underlayer film preferably contains a crosslinking agent.
The crosslinking agent has, for example, a functional group capable of reacting with the reactive group contained in the unit structure (A).
The number of the functional groups in the crosslinking agent is not particularly limited, and may be one, or two or more.

 単位構造(A)が有する反応性基と反応可能な官能基としては、特に制限されず、例えば、ヒドロキシ基、エポキシ基、アシル基、アセチル基、ホルミル基、ベンゾイル基、カルボキシ基、カルボニル基、アミノ基、イミノ基、シアノ基、アゾ基、アジ基、チオール基、スルホ基、アリル基、下記式(E)で表される構造などが挙げられる。

Figure JPOXMLDOC01-appb-C000019
(式(E)中、R101は、水素原子、炭素原子数1~4のアルキル基、又は炭素原子数2~6のアルコキシアルキル基を表す。*は、結合手を表す。)
 結合手は、例えば、窒素原子、芳香族炭化水素環を構成する炭素原子などに結合している。 The functional group capable of reacting with the reactive group possessed by the unit structure (A) is not particularly limited, and examples thereof include a hydroxy group, an epoxy group, an acyl group, an acetyl group, a formyl group, a benzoyl group, a carboxy group, a carbonyl group, an amino group, an imino group, a cyano group, an azo group, an azido group, a thiol group, a sulfo group, an allyl group, and a structure represented by the following formula (E).
Figure JPOXMLDOC01-appb-C000019
(In formula (E), R 101 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxyalkyl group having 2 to 6 carbon atoms. * represents a bond.)
The bond is, for example, bonded to a nitrogen atom or a carbon atom constituting an aromatic hydrocarbon ring.

 単位構造(A)が有する反応性基がヒドロキシ基、チオール基の場合、例えば、単位構造(A)が有する反応性基と反応可能な官能基としては、例えば、式(E)で表される構造が挙げられる。 When the reactive group of the unit structure (A) is a hydroxyl group or a thiol group, for example, a functional group capable of reacting with the reactive group of the unit structure (A) may be, for example, a structure represented by formula (E).

 単位構造(A)が有する反応性基がエポキシ基の場合、例えば、単位構造(A)が有する反応性基と反応可能な官能基としては、例えば、カルボキシ基、アミノ基、チオール基などが挙げられる。 When the reactive group of the unit structure (A) is an epoxy group, examples of functional groups that can react with the reactive group of the unit structure (A) include a carboxy group, an amino group, and a thiol group.

 架橋剤としては、例えば、下記式(E)で表される構造を2つ以上有する化合物が挙げられる。 Examples of crosslinking agents include compounds having two or more structures represented by the following formula (E):

 R101としては、水素原子、メチル基、エチル基又は下記構造で表される基が好ましい。

Figure JPOXMLDOC01-appb-C000020
(構造中、R102は、水素原子、メチル基、又はエチル基を表す。*は、結合手を表す。) R 101 is preferably a hydrogen atom, a methyl group, an ethyl group or a group represented by the following structure.
Figure JPOXMLDOC01-appb-C000020
(In the structure, R 102 represents a hydrogen atom, a methyl group, or an ethyl group. * represents a bond.)

 架橋剤としては、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、フェノール性ヒドロキシ基を有する化合物が好ましい。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。 Preferred crosslinking agents are melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, and compounds having a phenolic hydroxyl group. These can be used alone or in combination of two or more.

 メラミン化合物としては、単位構造(A)が有する反応性基(例えば、ヒドロキシ基)と反応することができる基を有するメラミン化合物であれば、特に限定されない。
 メラミン化合物としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1乃至6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1乃至6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
The melamine compound is not particularly limited as long as it has a group capable of reacting with the reactive group (e.g., hydroxy group) of the unit structure (A).
Examples of the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are acyloxymethylated or a mixture thereof, and the like.

 グアナミン化合物としては、単位構造(A)が有する反応性基(例えば、ヒドロキシ基)と反応することができる基を有するグアナミン化合物であれば、特に限定されない。
 グアナミン化合物としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1乃至4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1乃至4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。
The guanamine compound is not particularly limited as long as it has a group capable of reacting with the reactive group (for example, a hydroxyl group) possessed by the unit structure (A).
Examples of the guanamine compound include tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which one to four methylol groups of tetramethylolguanamine are methoxymethylated or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine, a compound in which one to four methylol groups of tetramethylolguanamine are acyloxymethylated or a mixture thereof, and the like.

 グリコールウリル化合物としては、単位構造(A)が有する反応性基(例えば、ヒドロキシ基)と反応することができる基を有するグリコールウリル化合物であれば、特に限定されない。
 グリコールウリル化合物としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1乃至4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1乃至4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
The glycoluril compound is not particularly limited as long as it has a group capable of reacting with the reactive group (for example, a hydroxyl group) of the unit structure (A).
Examples of glycoluril compounds include tetramethylol glycoluril, tetramethoxy glycoluril, tetramethoxymethyl glycoluril, compounds in which one to four methylol groups of tetramethylol glycoluril are methoxymethylated or mixtures thereof, and compounds in which one to four methylol groups of tetramethylol glycoluril are acyloxymethylated or mixtures thereof.

 また、グリコールウリル化合物としては、例えば、下記式(1E)で表されるグリコールウリル誘導体であってもよい。

Figure JPOXMLDOC01-appb-C000021
(式(1E)中、4つのRはそれぞれ独立にメチル基又はエチル基を表し、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、又はフェニル基を表す。) The glycoluril compound may be, for example, a glycoluril derivative represented by the following formula (1E).
Figure JPOXMLDOC01-appb-C000021
(In formula (1E), the four R 1s each independently represent a methyl group or an ethyl group, and R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.)

 前記式(1E)で表されるグリコールウリル誘導体として、例えば、下記式(1E-1)~式(1E-6)で表される化合物が挙げられる。

Figure JPOXMLDOC01-appb-C000022
Examples of the glycoluril derivative represented by formula (1E) include compounds represented by the following formulas (1E-1) to (1E-6).
Figure JPOXMLDOC01-appb-C000022

 式(1E)で表されるグリコールウリル誘導体は、例えば、下記式(2E)で表されるグリコールウリル誘導体と、下記式(3d)で表される少なくとも1種の化合物とを反応させることで得られる。 The glycoluril derivative represented by formula (1E) can be obtained, for example, by reacting a glycoluril derivative represented by the following formula (2E) with at least one compound represented by the following formula (3d).

Figure JPOXMLDOC01-appb-C000023
(式(2E)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、又はフェニル基を表し、Rはそれぞれ独立に炭素原子数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000023
(In formula (2E), R2 and R3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group, and R4 each independently represent an alkyl group having 1 to 4 carbon atoms.)

Figure JPOXMLDOC01-appb-C000024
(式(3d)中、Rはメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000024
(In formula (3d), R 1 represents a methyl group or an ethyl group.)

 前記式(2E)で表されるグリコールウリル誘導体として、例えば、下記式(2E-1)~式(2E-4)で表される化合物が挙げられる。さらに前記式(3d)で表される化合物として、例えば下記式(3d-1)及び式(3d-2)で表される化合物が挙げられる。

Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Examples of the glycoluril derivative represented by formula (2E) include compounds represented by the following formulae (2E-1) to (2E-4). Examples of the compound represented by formula (3d) include compounds represented by the following formulae (3d-1) and (3d-2).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026

 ウレア化合物としては、単位構造(A)が有する反応性基(例えば、ヒドロキシ基)と反応することができる基を有するウレア化合物であれば、特に限定されない。
 ウレア化合物としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1乃至4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
The urea compound is not particularly limited as long as it has a group capable of reacting with the reactive group (for example, a hydroxyl group) of the unit structure (A).
Examples of the urea compound include tetramethylol urea, tetramethoxymethyl urea, tetramethylol urea compounds in which one to four methylol groups are methoxymethylated, or mixtures thereof, and tetramethoxyethyl urea.

 フェノール性ヒドロキシ基を有する化合物としては、例えば、下記式(111)又は式(112)で表される化合物が挙げられる。

Figure JPOXMLDOC01-appb-C000027
(式(111)及び式(112)中、Qは単結合又はm2価の有機基を示す。
 R、R、R11及びR12はそれぞれ水素原子又はメチル基を示す。
 R及びR10はそれぞれ炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至40のアリール基を示す。
 nは1≦n≦3の整数、n10は2≦n10≦5の整数、n11は0≦n11≦3の整数、n12は0≦n12≦3の整数、3≦(n+n10+n11+n12)≦6の整数を示す。
 n13は1≦n13≦3の整数、n14は1≦n14≦4の整数、n15は0≦n15≦3の整数、n16は0≦n16≦3の整数、2≦(n13+n14+n15+n16)≦5の整数を示す。
 m2は2乃至10の整数を示す。)
 Qにおけるm2価の有機基としては、例えば、炭素原子数1~4のm2価の有機基が挙げられる。 Examples of the compound having a phenolic hydroxy group include compounds represented by the following formula (111) or (112).
Figure JPOXMLDOC01-appb-C000027
In formulae (111) and (112), Q2 represents a single bond or an m2-valent organic group.
R 8 , R 9 , R 11 and R 12 each represent a hydrogen atom or a methyl group.
R7 and R10 each represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 40 carbon atoms.
n9 is an integer satisfying 1≦ n9 ≦3, n10 is an integer satisfying 2≦ n10 ≦5, n11 is an integer satisfying 0≦ n11 ≦3, n12 is an integer satisfying 0≦ n12 ≦3, and 3≦( n9 + n10 + n11 + n12 )≦6.
n13 is an integer satisfying 1≦ n13 ≦3, n14 is an integer satisfying 1≦ n14 ≦4, n15 is an integer satisfying 0≦ n15 ≦3, n16 is an integer satisfying 0≦ n16 ≦3, and 2≦( n13 + n14 + n15 + n16 )≦5.
m2 represents an integer from 2 to 10.
The m2-valent organic group for Q2 includes, for example, an m2-valent organic group having 1 to 4 carbon atoms.

 式(111)又は式(112)で表される化合物としては、例えば、以下の化合物が挙げられる。

Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 上記化合物は旭有機材工業(株)、本州化学工業(株)の製品として入手することができる。製品としては、例えば、旭有機材工業(株)の商品名TMOM-BPが挙げられる。 Examples of the compound represented by formula (111) or formula (112) include the following compounds.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
The above compound is available as a product of Asahi Yukizai Kogyo Co., Ltd. and Honshu Chemical Industry Co., Ltd. An example of the product is TMOM-BP, a product name of Asahi Yukizai Kogyo Co., Ltd.

 これらの中でも、グリコールウリル化合物が好ましく、具体的にはテトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1乃至4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1乃至4個がアシロキシメチル化した化合物又はその混合物が好ましく、テトラメトキシメチルグリコールウリルが好ましい。 Among these, glycoluril compounds are preferred, specifically tetramethylol glycoluril, tetramethoxy glycoluril, tetramethoxymethyl glycoluril, a compound in which one to four methylol groups of tetramethylol glycoluril are methoxymethylated or a mixture thereof, and a compound in which one to four methylol groups of tetramethylol glycoluril are acyloxymethylated or a mixture thereof, with tetramethoxymethyl glycoluril being preferred.

 架橋剤の分子量としては、特に制限されないが、1000以下が好ましい。 The molecular weight of the crosslinking agent is not particularly limited, but is preferably 1000 or less.

 下層膜形成用組成物における架橋剤の含有量としては、特に制限されないが、特定のポリマーの5質量%~60質量%が好ましく、10質量%~55質量%がより好ましく、20質量%~50質量%が特に好ましい。 The content of the crosslinking agent in the composition for forming the underlayer film is not particularly limited, but is preferably 5% to 60% by mass of the specific polymer, more preferably 10% to 55% by mass, and particularly preferably 20% to 50% by mass.

<硬化触媒>
 下層膜形成用組成物に任意成分として含まれる硬化触媒は、熱酸発生剤、光酸発生剤何れも使用することができるが、熱酸発生剤を使用することが好ましい。
<Curing catalyst>
The curing catalyst contained as an optional component in the underlayer film-forming composition may be either a thermal acid generator or a photoacid generator, but it is preferable to use a thermal acid generator.

 熱酸発生剤としては、例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウム-p-トルエンスルホネート(ピリジニウム-p-トルエンスルホン酸)、ピリジニウムフェノールスルホン酸、ピリジニウム-p-ヒドロキシベンゼンスルホン酸(p-フェノールスルホン酸ピリジニウム塩)、ピリジニウム-トリフルオロメタンスルホン酸、サリチル酸、カンファースルホン酸、5-スルホサリチル酸、4-クロロベンゼンスルホン酸、4-ヒドロキシベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、クエン酸、安息香酸、ヒドロキシ安息香酸、N-メチルモルホリン-p-トルエンスルホン酸、N-メチルモルホリン-p-ヒドロキシベンゼンスルホン酸、N-メチルモルホリン-5-スルホサリチル酸等のスルホン酸化合物及びカルボン酸化合物が挙げられる。 Examples of thermal acid generators include sulfonic acid compounds and carboxylic acid compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonate (pyridinium p-toluenesulfonic acid), pyridinium phenolsulfonic acid, pyridinium p-hydroxybenzenesulfonic acid (pyridinium p-phenolsulfonate salt), pyridinium trifluoromethanesulfonic acid, salicylic acid, camphorsulfonic acid, 5-sulfosalicylic acid, 4-chlorobenzenesulfonic acid, 4-hydroxybenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, citric acid, benzoic acid, hydroxybenzoic acid, N-methylmorpholine p-toluenesulfonic acid, N-methylmorpholine p-hydroxybenzenesulfonic acid, and N-methylmorpholine 5-sulfosalicylic acid.

 光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、及びジスルホニルジアゾメタン化合物等が挙げられる。 Examples of photoacid generators include onium salt compounds, sulfonimide compounds, and disulfonyldiazomethane compounds.

 オニウム塩化合物としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロノルマルブタンスルホネート、ジフェニルヨードニウムパーフルオロノルマルオクタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムカンファースルホネート及びビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩化合物、及びトリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムノナフルオロノルマルブタンスルホネート、トリフェニルスルホニウムカンファースルホネート及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩化合物等が挙げられる。 Examples of onium salt compounds include iodonium salt compounds such as diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoronormal butanesulfonate, diphenyliodonium perfluoronormal octanesulfonate, diphenyliodonium camphorsulfonate, bis(4-tert-butylphenyl)iodonium camphorsulfonate, and bis(4-tert-butylphenyl)iodonium trifluoromethanesulfonate, as well as sulfonium salt compounds such as triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoronormal butanesulfonate, triphenylsulfonium camphorsulfonate, and triphenylsulfonium trifluoromethanesulfonate.

 スルホンイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)スクシンイミド、N-(ノナフルオロノルマルブタンスルホニルオキシ)スクシンイミド、N-(カンファースルホニルオキシ)スクシンイミド及びN-(トリフルオロメタンスルホニルオキシ)ナフタルイミド等が挙げられる。 Examples of sulfonimide compounds include N-(trifluoromethanesulfonyloxy)succinimide, N-(nonafluoronormalbutanesulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide, and N-(trifluoromethanesulfonyloxy)naphthalimide.

 ジスルホニルジアゾメタン化合物としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルベンゼンスルホニル)ジアゾメタン、及びメチルスルホニル-p-トルエンスルホニルジアゾメタン等が挙げられる。 Examples of disulfonyldiazomethane compounds include bis(trifluoromethylsulfonyl)diazomethane, bis(cyclohexylsulfonyl)diazomethane, bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, bis(2,4-dimethylbenzenesulfonyl)diazomethane, and methylsulfonyl-p-toluenesulfonyldiazomethane.

 硬化触媒は一種のみを使用することができ、または二種以上を組み合わせて使用することができる。  Only one type of curing catalyst can be used, or two or more types can be used in combination.

 硬化触媒が使用される場合、当該硬化触媒の含有割合は、架橋剤に対し、例えば0.1質量%~50質量%であり、好ましくは、1質量%~30質量%である。 When a curing catalyst is used, the content of the curing catalyst relative to the crosslinking agent is, for example, 0.1% by mass to 50% by mass, and preferably 1% by mass to 30% by mass.

<その他の成分>
 下層膜形成用組成物には、ピンホールやストリエーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、さらに界面活性剤を添加することができる。
<Other ingredients>
A surfactant may be further added to the underlayer film-forming composition in order to prevent pinholes, striations, and the like from occurring and to further improve the coatability against surface unevenness.

 界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップEF301、EF303、EF352((株)トーケムプロダクツ製、商品名)、メガファックF171、F173、R-30(DIC(株)製、商品名)、フロラードFC430、FC431(住友スリーエム(株)製、商品名)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGC(株)製、商品名)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等を挙げることができる。
 これらの界面活性剤の配合量は、特に制限されないが、下層膜形成用組成物に対して通常2.0質量%以下、好ましくは1.0質量%以下である。
 これらの界面活性剤は単独で添加してもよいし、また2種以上の組合せで添加することもできる。
Examples of the surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene alkylaryl ethers such as polyoxyethylene octylphenol ether and polyoxyethylene nonylphenol ether; polyoxyethylene-polyoxypropylene block copolymers; sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and sorbitan tristearate; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan tristearate, and the like; nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters, such as polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, and polyoxyethylene sorbitan tristearate; fluorosurfactants, such as EFTOP EF301, EF303, and EF352 (manufactured by Tochem Products Co., Ltd., trade names), Megafac F171, F173, and R-30 (manufactured by DIC Corporation, trade names), Fluorad FC430 and FC431 (manufactured by Sumitomo 3M Limited, trade names), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, and SC106 (manufactured by AGC Corporation, trade names); and organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.).
The amount of these surfactants to be added is not particularly limited, but is usually 2.0% by mass or less, and preferably 1.0% by mass or less, based on the composition for forming the underlayer film.
These surfactants may be added alone or in combination of two or more kinds.

<溶剤>
 下層膜形成用組成物は、溶剤を含有していてもよい。
 溶剤としては、一般的に半導体リソグラフィー工程用薬液に用いられる有機溶剤が好ましい。具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、4-メチル-2-ペンタノール、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、エトキシ酢酸エチル、酢酸2-ヒドロキシエチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、メトキシシクロペンタン、アニソール、γ-ブチロラクトン、N-メチルピロリドン、N,N-ジメチルホルムアミド、及びN,N-ジメチルアセトアミドが挙げられる。これらの溶剤は、単独で又は2種以上を組み合わせて用いることができる。
<Solvent>
The underlayer film-forming composition may contain a solvent.
The solvent is preferably an organic solvent generally used in chemicals for semiconductor lithography processes, specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, cyclohexane ... Examples of the solvent include heptanone, 4-methyl-2-pentanol, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate, ethyl ethoxyacetate, 2-hydroxyethyl acetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, 2-heptanone, methoxycyclopentane, anisole, γ-butyrolactone, N-methylpyrrolidone, N,N-dimethylformamide, and N,N-dimethylacetamide. These solvents can be used alone or in combination of two or more.

 これらの溶剤の中でプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノンが好ましい。特に溶剤は、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノメチルエーテルアセテートが好ましい。 Among these solvents, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, and cyclohexanone are preferred. In particular, the solvents propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are preferred.

 下層膜形成用組成物における溶剤の含有量としては、特に制限されないが、80質量%~99.99質量%が好ましく、90質量%~99.95質量%がより好ましく、95質量%~99.9質量%が特に好ましい。 The content of the solvent in the composition for forming the underlayer film is not particularly limited, but is preferably 80% by mass to 99.99% by mass, more preferably 90% by mass to 99.95% by mass, and particularly preferably 95% by mass to 99.9% by mass.

(下層膜)
 本発明の下層膜は、上述した下層膜形成用組成物の塗布膜の焼成物である。
 本発明の下層膜は、自己組織化膜の下層膜として用いられる。
 本発明の下層膜は、フォトレジスト膜及び電子線レジスト膜のいずれかのレジスト膜と自己組織化膜とを用いたリソグラフィーにおいて、レジスト膜の下層膜として用いられた後に、更に自己組織化膜の下層膜として用いられるものとしてもよい。
(Underlying membrane)
The underlayer film of the present invention is a fired product of a coating film of the above-mentioned composition for forming an underlayer film.
The underlayer film of the present invention is used as an underlayer film for a self-assembled monolayer.
The underlayer film of the present invention may be used as an underlayer film for a resist film in lithography using a resist film, either a photoresist film or an electron beam resist film, and a self-assembled film, and then may be used as an underlayer film for the self-assembled film.

 本発明の下層膜は、例えば、下層膜形成用組成物を半導体基板上に塗布し、焼成することにより製造することができる。 The underlayer film of the present invention can be produced, for example, by applying an underlayer film-forming composition onto a semiconductor substrate and baking it.

 本発明の下層膜形成用組成物が塗布される半導体基板としては、例えば、シリコンウエハ、ゲルマニウムウエハ、及びヒ化ガリウム、リン化インジウム、窒化ガリウム、窒化インジウム、窒化アルミニウム等の化合物半導体ウエハが挙げられる。 Semiconductor substrates onto which the underlayer film forming composition of the present invention can be applied include, for example, silicon wafers, germanium wafers, and compound semiconductor wafers such as gallium arsenide, indium phosphide, gallium nitride, indium nitride, and aluminum nitride.

 表面に無機膜が形成された半導体基板を用いる場合、当該無機膜は、例えば、ALD(原子層堆積)法、CVD(化学気相堆積)法、反応性スパッタ法、イオンプレーティング法、真空蒸着法、スピンコーティング法(スピンオングラス:SOG)により形成される。上記無機膜として、例えば、ポリシリコン膜、酸化ケイ素膜、窒化珪素膜、BPSG(Boro-Phospho Silicate Glass)膜、窒化チタン膜、窒化酸化チタン膜、タングステン膜、窒化ガリウム膜、及びヒ化ガリウム膜が挙げられる。 When using a semiconductor substrate with an inorganic film formed on its surface, the inorganic film is formed by, for example, ALD (atomic layer deposition), CVD (chemical vapor deposition), reactive sputtering, ion plating, vacuum deposition, or spin coating (spin-on glass: SOG). Examples of the inorganic film include polysilicon film, silicon oxide film, silicon nitride film, BPSG (Boro-Phospho Silicate Glass) film, titanium nitride film, titanium nitride oxide film, tungsten film, gallium nitride film, and gallium arsenide film.

 半導体基板は、ケイ素及び有機基含有膜を有していてもよい。ケイ素及び有機基含有膜とは、有機基を有する加水分解性シラン(有機ケイ素化合物ともいう)の加水分解縮合物により形成される膜である。ケイ素及び有機基含有膜は、例えば、下記式(A)で表される化合物を含む加水分解性シランの加水分解縮合物を含む。 The semiconductor substrate may have a silicon- and organic group-containing film. The silicon- and organic group-containing film is a film formed from a hydrolysis condensation product of a hydrolyzable silane (also called an organosilicon compound) having an organic group. The silicon- and organic group-containing film contains, for example, a hydrolysis condensation product of a hydrolyzable silane containing a compound represented by the following formula (A).

Figure JPOXMLDOC01-appb-C000030
(式(A)中、Rはアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルコキシアリール基、アルケニル基、エポキシ基を有する有機基、アクリロイル基を有する有機基、メタクリロイル基を有する有機基、メルカプト基を有する有機基、又はシアノ基を有する有機基を表し、Rはアルコキシ基、アシルオキシ基、又はハロゲン原子を表し、xは0~3の整数を示す。)
Figure JPOXMLDOC01-appb-C000030
(In formula (A), R a represents an alkyl group, an aryl group, a halogenated alkyl group, a halogenated aryl group, an alkoxyaryl group, an alkenyl group, an organic group having an epoxy group, an organic group having an acryloyl group, an organic group having a methacryloyl group, an organic group having a mercapto group, or an organic group having a cyano group; R b represents an alkoxy group, an acyloxy group, or a halogen atom; and x represents an integer of 0 to 3.)

 ケイ素及び有機基含有膜は、例えば、シリコン含有レジスト下層膜形成用組成物により形成することができる。そのようなシリコン含有レジスト下層膜形成用組成物としては、例えば、以下に記載のシリコン含有レジスト下層膜形成組成物が挙げられる。
 特開2020-076999号公報、WO2019/181873号パンフレット、WO2019/082934号パンフレット、WO2019/009413号パンフレット、WO2018/181989号パンフレット、WO2018/079599号パンフレット、WO2016/080217号パンフレット、WO2016/009965号パンフレット、WO2016/009939号パンフレット、WO2015/194555号パンフレット、WO2014/098076号パンフレット、WO2014/069329号パンフレット、WO2014/046055号パンフレット、WO2013/191203号パンフレット、WO2013/115032号パンフレット、WO2013/022099号パンフレット、WO2012/102261号パンフレット、WO2012/053600号パンフレット、WO2012/039337号パンフレット、WO2011/105368号パンフレット、WO2011/102470号パンフレット、WO2011/033965号パンフレット、WO2010/140551号パンフレット、WO2010/071155号パンフレット、WO2010/021290号パンフレット、WO2009/104552号パンフレット、WO2009/088039号パンフレット、WO2009/069712号パンフレット
The silicon and organic group-containing film can be formed, for example, by a composition for forming a silicon-containing resist underlayer film. Examples of such a composition for forming a silicon-containing resist underlayer film include the silicon-containing resist underlayer film-forming composition described below.
Japanese Patent Publication No. 2020-076999, WO2019/181873, WO2019/082934, WO2019/009413, WO2018/181989, WO2018/079599, WO2016/080217, WO2016/009965, WO2016/009939, WO2015/194555, WO2014/098076, WO2014/069329, WO2014/046055, WO2013/191203, WO2013/115032 pamphlet, WO2013/022099 pamphlet, WO2012/102261 pamphlet, WO2012/053600 pamphlet, WO2012/039337 pamphlet, WO2011/105368 pamphlet, WO2011/102470 pamphlet, WO2011/033965 pamphlet, WO2010/140551 pamphlet, WO2010/071155 pamphlet, WO2010/021290 pamphlet, WO2009/104552 pamphlet, WO2009/088039 pamphlet, WO2009/069712 pamphlet

 このような半導体基板上に、スピナー、コーター等の適当な塗布方法により本発明の下層膜形成用組成物を塗布する。その後、ホットプレート等の加熱手段を用いてベークすることによりレジスト下層膜を形成する。ベーク条件としては、ベーク温度100℃~400℃、ベーク時間0.3分~60分間の中から適宜、選択される。好ましくは、ベーク温度120℃~350℃、ベーク時間0.5分~30分間、より好ましくは、ベーク温度150℃~300℃、ベーク時間0.8分~10分間である。 The composition for forming the underlayer film of the present invention is applied onto such a semiconductor substrate by a suitable application method such as a spinner or coater. The composition is then baked using a heating means such as a hot plate to form a resist underlayer film. The baking conditions are appropriately selected from a baking temperature of 100°C to 400°C and a baking time of 0.3 minutes to 60 minutes. Preferably, the baking temperature is 120°C to 350°C, the baking time is 0.5 minutes to 30 minutes, and more preferably, the baking temperature is 150°C to 300°C, and the baking time is 0.8 minutes to 10 minutes.

 下層膜の膜厚としては、本発明の効果を好適に得る観点から、10nm未満が好ましく、9nm以下がより好ましく、8nm以下が更に好ましく、7nm以下が特に好ましい。また、下層膜の膜厚としては、1nm以上であってもよいし、2nm以上であってもよいし、3nm以上であってもよい。
 通常、レジスト下層膜の膜厚を薄くすると、表面が平坦な膜を得るのが困難となる。表面が平坦でない場合は、下層膜の上に成膜するレジスト膜の膜厚変動が大きくなり、結果としてレジストパターンのラフネスが大きくなると考えられる。
 本発明の下層膜形成用組成物が上述したビニルポリマーを含有することにより、基板との密着性及び成膜性に優れる下層膜が得られる傾向がある。このため、下層膜の膜厚が10nm未満であっても、表面が平坦な膜を形成することができ、レジストパターンのラフネス(LWRやCDU)を改善することができると推定される。上記LWR(Line width roughness)は、主に上記レジストパターンがラインアンドスペース(配線パターン)での評価であるが、本願の下層膜は、レジストパターンがコンタクトホール(孔パターン)であるときはCDU(Critical Dimendion Uniformity、CDユニフォーミティ、CD均一性)改善(ホール径のブレが少ない)にも効果を示す。
 上記CDUは、例えば、特開2020-003678号公報に記載の方法(段落〔0386〕パターン寸法の面内均一性(CDU)の評価)に準じた方法により評価することができる。
 また、パターン化された下層膜のパターンの隙間にブラシ層を形成する際に、ブラシ層は薄い層(例えば、1nm程度)となる。そのブラシ層の膜厚との違いを小さくする点から、下層膜の膜厚は薄い方が好ましい。その点で、下層膜の膜厚は10nm未満が好ましい。
 また、下層膜の膜厚を薄くすることで、パターン化された自己組織化膜のパターンを下層膜に転写する際に転写しやすい。その点で、下層膜の膜厚は10nm未満が好ましい。
From the viewpoint of obtaining the effects of the present invention, the thickness of the underlayer film is preferably less than 10 nm, more preferably 9 nm or less, even more preferably 8 nm or less, and particularly preferably 7 nm or less. The thickness of the underlayer film may be 1 nm or more, 2 nm or more, or 3 nm or more.
Generally, when the thickness of the resist underlayer film is reduced, it becomes difficult to obtain a film with a flat surface. If the surface is not flat, the thickness of the resist film formed on the underlayer film will vary greatly, resulting in increased roughness of the resist pattern.
The underlayer film forming composition of the present invention contains the above-mentioned vinyl polymer, so that an underlayer film having excellent adhesion to a substrate and excellent film forming properties tends to be obtained. Therefore, even if the underlayer film has a thickness of less than 10 nm, it is presumed that a film having a flat surface can be formed, and the roughness (LWR and CDU) of the resist pattern can be improved. The above LWR (Line width roughness) is mainly evaluated when the resist pattern is a line and space (wiring pattern), but the underlayer film of the present application also shows an effect of improving CDU (Critical Dimension Uniformity, CD uniformity) (less variation in hole diameter) when the resist pattern is a contact hole (hole pattern).
The CDU can be evaluated, for example, by a method similar to the method described in JP 2020-003678 A (paragraph [0386] Evaluation of in-plane uniformity (CDU) of pattern dimensions).
In addition, when the brush layer is formed in the gaps of the pattern of the patterned underlayer film, the brush layer becomes a thin layer (for example, about 1 nm). In order to reduce the difference in thickness from the brush layer, it is preferable that the underlayer film has a thin thickness. In this respect, the thickness of the underlayer film is preferably less than 10 nm.
Furthermore, by making the thickness of the underlayer film thin, the pattern of the patterned self-assembled film can be easily transferred to the underlayer film, and in this respect, the thickness of the underlayer film is preferably less than 10 nm.

 本明細書における下層膜の膜厚の測定方法は、以下のとおりである。
 ・測定装置名:エリプソ式膜厚測定装置RE-3100 ((株)SCREEN)
 ・SWE(単波長エリプソメータ)モード
 ・8点の算術平均(例えば、ウエハX方向に1cm間隔で8点測定)
In this specification, the method for measuring the thickness of the underlayer film is as follows.
・Measuring device name: Ellipso film thickness measuring device RE-3100 (SCREEN Co., Ltd.)
- SWE (single wavelength ellipsometer) mode - Arithmetic average of 8 points (for example, 8 points are measured at 1 cm intervals in the X direction of the wafer)

(半導体素子の製造方法)
 本発明の半導体素子の一実施形態は、第I工程及び第II工程を含む。
 ・第I工程:半導体基板の上に、本発明の下層膜形成用組成物を用いて、下層膜を形成する工程
 ・第II工程:下層膜の上に、自己組織化膜を形成する工程
(Method of manufacturing semiconductor device)
One embodiment of the semiconductor device of the present invention includes steps I and II.
Step I: A step of forming an underlayer film on a semiconductor substrate using the composition for forming an underlayer film of the present invention. Step II: A step of forming a self-assembled film on the underlayer film.

 本発明の半導体素子の製造方法の他の実施形態は、第1工程~第5工程を含む。
 ・第1工程:半導体基板の上に、本発明の下層膜形成用組成物を用いて、下層膜を形成する工程
 ・第2工程:下層膜の上に、フォトレジスト膜及び電子線レジスト膜のいずれかのレジスト膜を形成する工程
 ・第3工程:レジスト膜に光照射又は電子線照射を行い、次いで、レジスト膜を現像し、レジストパターンを得る工程
 ・第4工程:レジストパターンをマスクに用いて下層膜をエッチングし、パターン化された下層膜を形成する工程
 ・第5工程:パターン化された下層膜の上に、自己組織化膜を形成する工程
Another embodiment of the method for manufacturing a semiconductor device of the present invention includes the first to fifth steps.
- First step: a step of forming an underlayer film on a semiconductor substrate using the composition for forming an underlayer film of the present invention. - Second step: a step of forming a resist film, either a photoresist film or an electron beam resist film, on the underlayer film. - Third step: a step of irradiating the resist film with light or an electron beam, and then developing the resist film to obtain a resist pattern. - Fourth step: a step of etching the underlayer film using the resist pattern as a mask, to form a patterned underlayer film. - Fifth step: a step of forming a self-assembled film on the patterned underlayer film.

 第1工程~第5工程を含む本発明の半導体素子の製造方法の他の実施形態は、更に第6工程を含んでいてもよい。
 ・第6工程:パターン化された下層膜のパターンの隙間にブラシ層を形成する工程
 なお、第6工程は、第4工程と第5工程との間に行われる工程である。
Another embodiment of the method for manufacturing a semiconductor device of the present invention including the first to fifth steps may further include a sixth step.
Sixth step: A step of forming a brush layer in gaps in the pattern of the patterned underlayer film. The sixth step is carried out between the fourth and fifth steps.

<第1工程及び第I工程>
 第1工程及び第I工程は、半導体基板の上に、本発明の下層膜形成用組成物を用いて、下層膜を形成する工程である。下層膜の形成方法としては、特に制限されないが、例えば、前述の方法が挙げられる。即ち、下層膜は、例えば、下層膜形成用組成物を半導体基板上に塗布し、焼成することにより製造することができる。
<Step 1 and Step I>
The first and I steps are steps of forming an underlayer film on a semiconductor substrate using the composition for forming an underlayer film of the present invention. The method for forming the underlayer film is not particularly limited, but may be, for example, the above-mentioned method. That is, the underlayer film can be produced, for example, by applying the composition for forming an underlayer film on a semiconductor substrate and baking it.

 下層膜の膜厚としては、本発明の効果を好適に得る観点から、10nm未満が好ましく、9nm以下がより好ましく、8nm以下が更に好ましく、7nm以下が特に好ましい。また、下層膜の膜厚としては、1nm以上であってもよいし、2nm以上であってもよいし、3nm以上であってもよい。 From the viewpoint of optimally obtaining the effects of the present invention, the thickness of the underlayer film is preferably less than 10 nm, more preferably 9 nm or less, even more preferably 8 nm or less, and particularly preferably 7 nm or less. The thickness of the underlayer film may be 1 nm or more, 2 nm or more, or 3 nm or more.

<第2工程、第3工程及び第4工程>
 第2工程は、下層膜の上に、フォトレジスト膜及び電子線レジスト膜のいずれかのレジスト膜を形成する工程である。
 第3工程は、レジスト膜に光照射又は電子線照射を行い、次いで、レジスト膜を現像し、レジストパターンを得る工程である。
 第4工程は、レジストパターンをマスクに用いて下層膜をエッチングし、パターン化された下層膜を形成する工程である。
<Second step, third step and fourth step>
The second step is a step of forming a resist film, which is either a photoresist film or an electron beam resist film, on the underlayer film.
The third step is a step of irradiating the resist film with light or electron beams, and then developing the resist film to obtain a resist pattern.
The fourth step is a step of etching the underlayer film using the resist pattern as a mask to form a patterned underlayer film.

 形成されるレジスト膜の膜厚としては、特に制限されないが、200nm以下が好ましく、150nm以下がより好ましく、100nm以下が更に好ましく、80nm以下が特に好ましい。また、レジスト膜の膜厚としては、10nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましい。 The thickness of the resist film formed is not particularly limited, but is preferably 200 nm or less, more preferably 150 nm or less, even more preferably 100 nm or less, and particularly preferably 80 nm or less. The thickness of the resist film is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 30 nm or more.

 下層膜の上に公知の方法で塗布、焼成して形成されるレジストとしては照射に使用される光又は電子線(EB)に応答するものであれば特に限定はない。ネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。
 なお、本明細書においてはEBに応答するレジストもフォトレジストと称することがある。
 フォトレジストとしては、ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、及び酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジスト、メタル元素を含有するレジストなどがある。例えば、JSR(株)製商品名V146G、シプレー社製商品名APEX-E、住友化学(株)製商品名PAR710、及び信越化学工業(株)製商品名AR2772、SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。
The resist formed on the underlayer film by coating and baking in a known manner is not particularly limited as long as it responds to light or electron beam (EB) used for irradiation. Either a negative photoresist or a positive photoresist can be used.
In this specification, a resist that responds to EB may also be referred to as a photoresist.
Examples of photoresists include positive photoresists made of novolac resins and 1,2-naphthoquinone diazide sulfonic acid esters, chemically amplified photoresists made of a binder having a group that decomposes with acid to increase the alkaline dissolution rate and a photoacid generator, chemically amplified photoresists made of a low molecular compound that decomposes with acid to increase the alkaline dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, chemically amplified photoresists made of a binder having a group that decomposes with acid to increase the alkaline dissolution rate of the photoresist, a low molecular compound that decomposes with acid to increase the alkaline dissolution rate of the photoresist, and a photoacid generator, and resists containing metal elements. For example, V146G (trade name) manufactured by JSR Corporation, APEX-E (trade name) manufactured by Shipley, PAR710 (trade name) manufactured by Sumitomo Chemical Co., Ltd., and AR2772 and SEPR430 (trade names) manufactured by Shin-Etsu Chemical Co., Ltd. may be mentioned. For example, the photoresists described in Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), and Proc. SPIE, Vol. 3999, 365-374 (2000).

 また、WO2019/188595、WO2019/187881、WO2019/187803、WO2019/167737、WO2019/167725、WO2019/187445、WO2019/167419、WO2019/123842、WO2019/054282、WO2019/058945、WO2019/058890、WO2019/039290、WO2019/044259、WO2019/044231、WO2019/026549、WO2018/193954、WO2019/172054、WO2019/021975、WO2018/230334、WO2018/194123、特開2018-180525、WO2018/190088、特開2018-070596、特開2018-028090、特開2016-153409、特開2016-130240、特開2016-108325、特開2016-047920、特開2016-035570、特開2016-035567、特開2016-035565、特開2019-101417、特開2019-117373、特開2019-052294、特開2019-008280、特開2019-008279、特開2019-003176、特開2019-003175、特開2018-197853、特開2019-191298、特開2019-061217、特開2018-045152、特開2018-022039、特開2016-090441、特開2015-10878、特開2012-168279、特開2012-022261、特開2012-022258、特開2011-043749、特開2010-181857、特開2010-128369、WO2018/031896、特開2019-113855、WO2017/156388、WO2017/066319、特開2018-41099、WO2016/065120、WO2015/026482、特開2016-29498、特開2011-253185等に記載のレジスト組成物、感放射性樹脂組成物、有機金属溶液に基づいた高解像度パターニング組成物等のいわゆるレジスト組成物、金属含有レジスト組成物が使用できるが、これらに限定されない。 Also, WO2019/188595, WO2019/187881, WO2019/187803, WO2019/167737, WO2019/167725, WO2019/187445, WO2019/167419, WO2019/123842, WO2019/054282, WO2019/058945, WO2019/058890, WO2019/039290, WO2019/044259, WO2019/044231, WO2019/026549, WO2018/193954, WO20 19/172054, WO2019/021975, WO2018/230334, WO2018/194123, JP 2018-180525, WO2018/190088, JP 2018-070596, JP 2018-028090, JP 2016-153409, JP 2016-130240, JP 2016-108325, JP 2016-047920, JP 2016-035570, JP 2016-035567, JP 2016-035565, JP 2019-101417, JP 2019-117373 , JP 2019-052294, JP 2019-008280, JP 2019-008279, JP 2019-003176, JP 2019-003175, JP 2018-197853, JP 2019-191298, JP 2019-061217, JP 2018-045152, JP 2018-022039, JP 2016-090441, JP 2015-10878, JP 2012-168279, JP 2012-022261, JP 2012-022258, JP 2011-043749, JP 2010-18 1857, JP 2010-128369, WO 2018/031896, JP 2019-113855, WO 2017/156388, WO 2017/066319, JP 2018-41099, WO 2016/065120, WO 2015/026482, JP 2016-29498, JP 2011-253185, etc., so-called resist compositions such as radiation-sensitive resin compositions, high-resolution patterning compositions based on organometallic solutions, and metal-containing resist compositions can be used, but are not limited to these.

 レジスト組成物としては、例えば、以下の組成物が挙げられる。 Examples of resist compositions include the following compositions:

 酸の作用により脱離する保護基で極性基が保護された酸分解性基を有する繰り返し単位を有する樹脂A、及び、下記一般式(21)で表される化合物を含む、感活性光線性又は感放射線性樹脂組成物。 An actinic ray-sensitive or radiation-sensitive resin composition comprising: resin A having a repeating unit having an acid-decomposable group in which a polar group is protected with a protecting group that is cleaved by the action of an acid; and a compound represented by the following general formula (21).

Figure JPOXMLDOC01-appb-C000031
 一般式(21)中、mは、1~6の整数を表す。
 R及びRは、それぞれ独立に、フッ素原子又はパーフルオロアルキル基を表す。
 Lは、-O-、-S-、-COO-、-SO-、又は、-SO-を表す。
 Lは、置換基を有していてもよいアルキレン基又は単結合を表す。
 Wは、置換基を有していてもよい環状有機基を表す。
 Mは、カチオンを表す。
Figure JPOXMLDOC01-appb-C000031
In the general formula (21), m represents an integer of 1 to 6.
R 1 and R 2 each independently represent a fluorine atom or a perfluoroalkyl group.
L 1 represents —O—, —S—, —COO—, —SO 2 — or —SO 3 —.
L2 represents an alkylene group which may have a substituent or a single bond.
W 1 represents a cyclic organic group which may have a substituent.
M + represents a cation.

 金属-酸素共有結合を有する化合物と、溶媒とを含有し、上記化合物を構成する金属元素が、周期表第3族~第15族の第3周期~第7周期に属する、極端紫外線又は電子線リソグラフィー用金属含有膜形成組成物。 A metal-containing film-forming composition for extreme ultraviolet or electron beam lithography, comprising a compound having a metal-oxygen covalent bond and a solvent, the metal element constituting the compound belonging to Periods 3 to 7 of Groups 3 to 15 of the periodic table.

 下記式(31)で表される第1構造単位及び下記式(32)で表され酸解離性基を含む第2構造単位を有する重合体と、酸発生剤とを含有する、感放射線性樹脂組成物。 A radiation-sensitive resin composition comprising a polymer having a first structural unit represented by the following formula (31) and a second structural unit represented by the following formula (32) containing an acid-dissociable group, and an acid generator.

Figure JPOXMLDOC01-appb-C000032
(式(31)中、Arは、炭素原子数6~20のアレーンから(n+1)個の水素原子を除いた基である。Rは、ヒドロキシ基、スルファニル基又は炭素原子数1~20の1価の有機基である。nは、0~11の整数である。nが2以上の場合、複数のRは同一又は異なる。Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。式(32)中、Rは、上記酸解離性基を含む炭素原子数1~20の1価の基である。Zは、単結合、酸素原子又は硫黄原子である。Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。)
Figure JPOXMLDOC01-appb-C000032
(In formula (31), Ar is a group obtained by removing (n+1) hydrogen atoms from an arene having 6 to 20 carbon atoms. R 1 is a hydroxy group, a sulfanyl group, or a monovalent organic group having 1 to 20 carbon atoms. n is an integer from 0 to 11. When n is 2 or more, multiple R 1s are the same or different. R 2 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group. In formula (32), R 3 is a monovalent group having 1 to 20 carbon atoms containing the above-mentioned acid dissociable group. Z is a single bond, an oxygen atom, or a sulfur atom. R 4 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.)

 環状炭酸エステル構造を有する構造単位、下記式で表される構造単位及び酸不安定基を有する構造単位を含む樹脂(A1)と、酸発生剤とを含有するレジスト組成物。 A resist composition containing a resin (A1) including a structural unit having a cyclic carbonate structure, a structural unit represented by the following formula, and a structural unit having an acid labile group, and an acid generator.

Figure JPOXMLDOC01-appb-C000033
 [式中、
 Rは、ハロゲン原子を有してもよい炭素原子数1~6のアルキル基、水素原子又はハロゲン原子を表し、Xは、単結合、-CO-O-*又は-CO-NR-*を表し、*は-Arとの結合手を表し、Rは、水素原子又は炭素原子数1~4のアルキル基を表し、Arは、ヒドロキシ基及びカルボキシル基からなる群から選ばれる1以上の基を有していてもよい炭素原子数6~20の芳香族炭化水素基を表す。]
Figure JPOXMLDOC01-appb-C000033
[Wherein,
R 2 represents an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, a hydrogen atom or a halogen atom, X 1 represents a single bond, -CO-O-* or -CO-NR 4 -*, * represents a bond to -Ar, R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Ar represents an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have one or more groups selected from the group consisting of a hydroxyl group and a carboxyl group.]

 レジスト膜としては、例えば、以下が挙げられる。 Examples of resist films include:

 下記式(a1)で表される繰り返し単位及び/又は下記式(a2)で表される繰り返し単位と、露光によりポリマー主鎖に結合した酸を発生する繰り返し単位とを含むベース樹脂を含むレジスト膜。 A resist film comprising a base resin containing a repeating unit represented by the following formula (a1) and/or a repeating unit represented by the following formula (a2) and a repeating unit that generates an acid bonded to the polymer main chain upon exposure.

(式(a1)及び式(a2)中、Rは、それぞれ独立に、水素原子又はメチル基である。R及びRは、それぞれ独立に、炭素原子数4~6の3級アルキル基である。Rは、それぞれ独立に、フッ素原子又はメチル基である。mは、0~4の整数である。Xは、単結合、フェニレン基若しくはナフチレン基、又はエステル結合、ラクトン環、フェニレン基及びナフチレン基から選ばれる少なくとも1種を含む炭素原子数1~12の連結基である。Xは、単結合、エステル結合又はアミド結合である。) (In formula (a1) and formula (a2), R A is each independently a hydrogen atom or a methyl group. R 1 and R 2 are each independently a tertiary alkyl group having 4 to 6 carbon atoms. R 3 is each independently a fluorine atom or a methyl group. m is an integer of 0 to 4. X 1 is a single bond, a phenylene group or a naphthylene group, or a linking group having 1 to 12 carbon atoms containing at least one selected from an ester bond, a lactone ring, a phenylene group, and a naphthylene group. X 2 is a single bond, an ester bond, or an amide bond.)

 レジスト材料としては、例えば、以下が挙げられる。 Examples of resist materials include:

 下記式(b1)又は式(b2)で表される繰り返し単位を有するポリマーを含むレジスト材料。 A resist material containing a polymer having a repeating unit represented by the following formula (b1) or formula (b2):

Figure JPOXMLDOC01-appb-C000035
(式(b1)及び式(b2)中、Rは、水素原子又はメチル基である。Xは、単結合又はエステル基である。Xは、直鎖状、分岐状若しくは環状の炭素原子数1~12のアルキレン基又は炭素原子数6~10のアリーレン基であり、該アルキレン基を構成するメチレン基の一部が、エーテル基、エステル基又はラクトン環含有基で置換されていてもよく、また、Xに含まれる少なくとも1つの水素原子が臭素原子で置換されている。Xは、単結合、エーテル基、エステル基、又は炭素原子数1~12の直鎖状、分岐状若しくは環状のアルキレン基であり、該アルキレン基を構成するメチレン基の一部が、エーテル基又はエステル基で置換されていてもよい。Rf~Rfは、それぞれ独立に、水素原子、フッ素原子又はトリフルオロメチル基であるが、少なくとも1つはフッ素原子又はトリフルオロメチル基である。また、Rf及びRfが合わさってカルボニル基を形成してもよい。R~Rは、それぞれ独立に、直鎖状、分岐状若しくは環状の炭素原子数1~12のアルキル基、直鎖状、分岐状若しくは環状の炭素原子数2~12のアルケニル基、炭素原子数2~12のアルキニル基、炭素原子数6~20のアリール基、炭素原子数7~12のアラルキル基、又は炭素原子数7~12のアリールオキシアルキル基であり、これらの基の水素原子の一部又は全部が、ヒドロキシ基、カルボキシ基、ハロゲン原子、オキソ基、シアノ基、アミド基、ニトロ基、スルトン基、スルホン基又はスルホニウム塩含有基で置換されていてもよく、これらの基を構成するメチレン基の一部が、エーテル基、エステル基、カルボニル基、カーボネート基又はスルホン酸エステル基で置換されていてもよい。また、RとRとが結合して、これらが結合する硫黄原子と共に環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000035
In formula (b1) and formula (b2), R A is a hydrogen atom or a methyl group. X 1 is a single bond or an ester group. X 2 is a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or an arylene group having 6 to 10 carbon atoms, a part of the methylene groups constituting the alkylene group may be substituted with an ether group, an ester group or a lactone ring-containing group, and at least one hydrogen atom contained in X 2 is substituted with a bromine atom. X 3 is a single bond, an ether group, an ester group, or a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms, a part of the methylene groups constituting the alkylene group may be substituted with an ether group or an ester group. Rf 1 to Rf 4 are each independently a hydrogen atom, a fluorine atom or a trifluoromethyl group, and at least one of them is a fluorine atom or a trifluoromethyl group. 2 may combine to form a carbonyl group. R 1 to R 5 are each independently a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, or an aryloxyalkyl group having 7 to 12 carbon atoms, some or all of the hydrogen atoms of these groups may be substituted with a hydroxy group, a carboxy group, a halogen atom, an oxo group, a cyano group, an amide group, a nitro group, a sultone group, a sulfone group, or a sulfonium salt-containing group, and some of the methylene groups constituting these groups may be substituted with an ether group, an ester group, a carbonyl group, a carbonate group, or a sulfonate ester group. R 1 and R 2 may also be bonded to form a ring together with the sulfur atom to which they are bonded.)

 下記式(a)で表される繰り返し単位を含むポリマーを含むベース樹脂を含むレジスト材料。 A resist material comprising a base resin containing a polymer containing a repeating unit represented by the following formula (a):

Figure JPOXMLDOC01-appb-C000036
(式(a)中、Rは、水素原子又はメチル基である。Rは、水素原子又は酸不安定基である。Rは、直鎖状、分岐状若しくは環状の炭素原子数1~6のアルキル基、又は臭素以外のハロゲン原子である。Xは、単結合若しくはフェニレン基、又はエステル基若しくはラクトン環を含んでいてもよい直鎖状、分岐状若しくは環状の炭素原子数1~12のアルキレン基である。Xは、-O-、-O-CH-又は-NH-である。mは、1~4の整数である。uは、0~3の整数である。ただし、m+uは、1~4の整数である。)
Figure JPOXMLDOC01-appb-C000036
(In formula (a), R A is a hydrogen atom or a methyl group. R 1 is a hydrogen atom or an acid labile group. R 2 is a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, or a halogen atom other than bromine. X 1 is a single bond, a phenylene group, or a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms which may contain an ester group or a lactone ring. X 2 is -O-, -O-CH 2 - or -NH-. m is an integer of 1 to 4. u is an integer of 0 to 3, with the proviso that m+u is an integer of 1 to 4.)

 露光により酸を発生し、酸の作用により現像液に対する溶解性が変化するレジスト組成物であって、
  酸の作用により現像液に対する溶解性が変化する基材成分(A)及びアルカリ現像液に対して分解性を示すフッ素添加剤成分(F)を含有し、
  上記フッ素添加剤成分(F)は、塩基解離性基を含む構成単位(f1)と、下記一般式(f2-r-1)で表される基を含む構成単位(f2)と、を有するフッ素樹脂成分(F1)を含有する、レジスト組成物。
A resist composition which generates an acid upon exposure and changes its solubility in a developer by the action of the acid,
The composition contains a base component (A) whose solubility in a developer changes under the action of an acid, and a fluorine additive component (F) that is decomposable in an alkaline developer,
The fluorine additive component (F) is a resist composition containing a fluorine resin component (F1) having a structural unit (f1) containing a base dissociable group, and a structural unit (f2) containing a group represented by the following general formula (f2-r-1):

Figure JPOXMLDOC01-appb-C000037
[式(f2-r-1)中、Rf21は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、水酸基、ヒドロキシアルキル基又はシアノ基である。n”は、0~2の整数である。*は結合手である。]
Figure JPOXMLDOC01-appb-C000037
[In formula (f2-r-1), Rf 21 each independently represents a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, or a cyano group. n″ is an integer of 0 to 2. * represents a bond.]

 上記構成単位(f1)は、下記一般式(f1-1)で表される構成単位、又は下記一般式(f1-2)で表される構成単位を含む。 The structural unit (f1) includes a structural unit represented by the following general formula (f1-1) or a structural unit represented by the following general formula (f1-2).

Figure JPOXMLDOC01-appb-C000038
[式(f1-1)、(f1-2)中、Rは、それぞれ独立に、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~5のハロゲン化アルキル基である。Xは、酸解離性部位を有さない2価の連結基である。Aarylは、置換基を有していてもよい2価の芳香族環式基である。X01は、単結合又は2価の連結基である。Rは、それぞれ独立に、フッ素原子を有する有機基である。]
Figure JPOXMLDOC01-appb-C000038
[In formulas (f1-1) and (f1-2), R is each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a halogenated alkyl group having 1 to 5 carbon atoms. X is a divalent linking group having no acid dissociable site. A aryl is a divalent aromatic cyclic group which may have a substituent. X 01 is a single bond or a divalent linking group. R 2 is each independently an organic group having a fluorine atom.]

 コーティング、コーティング溶液、及びコーティング組成物としては、例えば、以下が挙げられる。 Examples of coatings, coating solutions, and coating compositions include the following:

 金属炭素結合および/または金属カルボキシラート結合により有機配位子を有する金属オキソ-ヒドロキソネットワークを含むコーティング。 A coating comprising a metal oxo-hydroxo network with organic ligands via metal carbon bonds and/or metal carboxylate bonds.

 無機オキソ/ヒドロキソベースの組成物。 Inorganic oxo/hydroxo based compositions.

 コーティング溶液であって、有機溶媒;第一の有機金属組成物であって、式RSnO(2-(z/2)-(x/2))(OH)(ここで、0<z≦2および0<(z+x)≦4である)、式R’SnX4-n(ここで、n=1または2である)、またはそれらの混合物によって表され、ここで、RおよびR’が、独立して、1~31個の炭素原子を有するヒドロカルビル基であり、およびXが、Snに対する加水分解性結合を有する配位子またはそれらの組合せである、第一の有機金属組成物;および加水分解性の金属化合物であって、式MX’(ここで、Mが、元素周期表の第2~16族から選択される金属であり、v=2~6の数であり、およびX’が、加水分解性のM-X結合を有する配位子またはそれらの組合せである)によって表される、加水分解性の金属化合物を含む、コーティング溶液。 1. A coating solution comprising: an organic solvent; a first organometallic composition represented by the formula RzSnO (2-(z/2)-(x/2)) (OH) x , where 0<z≦2 and 0<(z+x)≦4, R'nSnX4 -n , where n=1 or 2, or a mixture thereof, where R and R' are independently hydrocarbyl groups having 1 to 31 carbon atoms, and X is a ligand having a hydrolyzable bond to Sn, or a combination thereof; and a hydrolyzable metal compound represented by the formula MX'v , where M is a metal selected from Groups 2 to 16 of the Periodic Table of the Elements, v=a number from 2 to 6, and X' is a ligand having a hydrolyzable M-X bond, or a combination thereof.

 有機溶媒と、式RSnO(3/2-x/2)(OH)(式中、0<x<3)で表される第1の有機金属化合物とを含むコーティング溶液であって、上記溶液中に約0.0025M~約1.5Mのスズが含まれ、Rが3~31個の炭素原子を有するアルキル基またはシクロアルキル基であり、上記アルキル基またはシクロアルキル基が第2級または第3級炭素原子においてスズに結合された、コーティング溶液。 1. A coating solution comprising an organic solvent and a first organometallic compound having the formula RSnO (3/2-x/2) (OH) x , where 0<x<3, wherein the solution contains from about 0.0025M to about 1.5M tin, and R is an alkyl or cycloalkyl group having 3 to 31 carbon atoms, the alkyl or cycloalkyl group being bonded to the tin at a secondary or tertiary carbon atom.

 水と、金属亜酸化物陽イオンと、多原子無機陰イオンと、過酸化物基を含んで成る感放射線リガンドとの混合物を含んで成る無機パターン形成前駆体水溶液。 An aqueous inorganic pattern forming precursor solution comprising water, a mixture of metal suboxide cations, polyatomic inorganic anions, and a radiation sensitive ligand comprising a peroxide group.

 光又は電子線の照射は、例えば、所定のパターンを形成するためのマスク(レチクル)を通して行われる。光の波長としては特に制限されない。本発明の下層膜は、EB(電子線)又はEUV(極端紫外線:13.5nm)照射用に好適に適用されるが、EUV(極端紫外線)露光用に適用されることがより好ましい。
 EBの照射エネルギー及びEUVの露光量としては、特に制限されない。
Irradiation with light or electron beams is carried out, for example, through a mask (reticle) for forming a predetermined pattern. The wavelength of the light is not particularly limited. The underlayer film of the present invention is suitably applied for EB (electron beam) or EUV (extreme ultraviolet: 13.5 nm) irradiation, but is more preferably applied for EUV (extreme ultraviolet) exposure.
The EB irradiation energy and the EUV exposure dose are not particularly limited.

 光又は電子線の照射後であって現像の前に、ベーク(PEB:Post Exposure Bake)を行ってもよい。
 ベーク温度としては、特に制限されないが、60℃~150℃が好ましく、70℃~120℃がより好ましく、75℃~110℃が特に好ましい。
 ベーク時間としては、特に制限されないが、1秒間~10分間が好ましく、10秒間~5分間がより好ましく、30秒間~3分間が特に好ましい。
After the irradiation with light or electron beams and before development, baking (PEB: Post Exposure Bake) may be performed.
The baking temperature is not particularly limited, but is preferably from 60°C to 150°C, more preferably from 70°C to 120°C, and particularly preferably from 75°C to 110°C.
The baking time is not particularly limited, but is preferably from 1 second to 10 minutes, more preferably from 10 seconds to 5 minutes, and particularly preferably from 30 seconds to 3 minutes.

 現像には、例えば、アルカリ現像液が用いられる。
 現像温度としては、例えば、5℃~50℃が挙げられる。
 現像時間としては、例えば、10秒間~300秒間が挙げられる。
 アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジ-n-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液は第四級アンモニウム塩の水溶液、さらに好ましくはテトラメチルアンモニウムヒドロキシドの水溶液及びコリンの水溶液である。さらに、これらの現像液に界面活性剤などを加えることもできる。アルカリ現像液に代えて、酢酸ブチル等の有機溶媒で現像を行い、フォトレジストのアルカリ溶解速度が向上していない部分を現像する方法を用いることもできる。
For development, for example, an alkaline developer is used.
The development temperature is, for example, from 5°C to 50°C.
The development time may be, for example, from 10 seconds to 300 seconds.
As the alkaline developer, for example, aqueous solutions of alkalis such as inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia water, primary amines such as ethylamine and n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, quaternary ammonium salts such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and choline, and cyclic amines such as pyrrole and piperidine can be used. Furthermore, an appropriate amount of alcohols such as isopropyl alcohol and a nonionic surfactant can be added to the aqueous solution of the above-mentioned alkalis. Among these, preferred developers are aqueous solutions of quaternary ammonium salts, more preferably aqueous solutions of tetramethylammonium hydroxide and aqueous solutions of choline. Furthermore, surfactants and the like can be added to these developers. A method can also be used in which development is performed with an organic solvent such as butyl acetate instead of an alkaline developer to develop the parts of the photoresist where the alkaline dissolution rate is not improved.

 形成されるレジストパターンの種類としては、特に制限されず、ラインパターンであってもよいし、ホールパターンであってもよい。
 レジストパターンがラインパターンの場合のライン幅としては、特に制限されず、例えば、30nm~200nmが挙げられる。
 レジストパターンがホールパターンである場合、ホールの直径としては、例えば、30nm~200nmが挙げられる。
The type of resist pattern to be formed is not particularly limited, and may be a line pattern or a hole pattern.
When the resist pattern is a line pattern, the line width is not particularly limited and may be, for example, 30 nm to 200 nm.
When the resist pattern is a hole pattern, the diameter of the holes is, for example, 30 nm to 200 nm.

 次いで、形成したレジストパターンをマスクとして、下層膜をエッチングする。エッチングは、ドライエッチングであってもよし、ウェットエッチングであってもよいが、ドライエッチングであることが好ましい。 Then, the underlayer film is etched using the formed resist pattern as a mask. The etching may be dry etching or wet etching, but dry etching is preferred.

 第4工程の後には、レジストパターンを除去する工程を含んでいてもよい。
 レジストパターンの除去は、例えば、エッチングによって行われる。エッチングは、ドライエッチングであってもよく、ウェットエッチングであってもよい。
 レジストパターンの除去は、通常、第5工程の前に行われる。
After the fourth step, a step of removing the resist pattern may be included.
The resist pattern is removed by, for example, etching, which may be dry etching or wet etching.
The resist pattern is usually removed before the fifth step.

<第5工程及び第II工程>
 第5工程は、パターン化された下層膜の上に、自己組織化膜を形成する工程である。
 第II工程は、下層膜の上に、自己組織化膜を形成する工程である。
 自己組織化膜は、例えば、自己組織化膜形成用組成物を塗布し、乾燥することにより形成できる。
 自己組織化膜は、例えば、ブロックコポリマーを含む膜である。
<Step 5 and Step II>
The fifth step is to form a self-assembled film on the patterned underlayer film.
Step II is a step of forming a self-assembled film on the underlayer film.
The self-assembled film can be formed, for example, by applying a composition for forming a self-assembled film and drying it.
The self-assembled monolayer is, for example, a membrane that includes a block copolymer.

 自己組織化膜の膜厚としては、特に制限されないが、10nm~100nmが好ましく、30nm~80nmがより好ましく、40nm~60nmが特に好ましい。 The thickness of the self-assembled film is not particularly limited, but is preferably 10 nm to 100 nm, more preferably 30 nm to 80 nm, and particularly preferably 40 nm to 60 nm.

<<自己組織化膜形成用組成物>>
 自己組織化膜形成用組成物は、例えば、ブロックコポリマーを含有する。
 自己組織化膜形成用組成物は、通常、溶媒を含有する。
<<Composition for forming self-assembled film>>
The self-assembled film-forming composition contains, for example, a block copolymer.
The self-assembled film-forming composition usually contains a solvent.

 自己組織化膜形成用組成物は固形分0.1~10質量%、又は0.1~5質量%、又は0.1~3質量%とすることができる。固形分は膜形成用組成物中から溶媒を除いた残りの割合である。
 固形分中に占めるブロックコポリマーの割合は、30~100質量%、又は50~100質量%、又は50~90質量%、又は50~80質量%にすることができる。
 ブロックコポリマー中に存在するブロックの種類は2又は3以上とすることができる。そして、ブロックコポリマー中に存在するブロック数は2又は3以上とすることができる。
The self-assembled film-forming composition may have a solids content of 0.1 to 10 mass %, or 0.1 to 5 mass %, or 0.1 to 3 mass %. The solids content is the percentage remaining after excluding the solvent from the film-forming composition.
The proportion of the block copolymer in the solid content can be 30 to 100% by weight, or 50 to 100% by weight, or 50 to 90% by weight, or 50 to 80% by weight.
The number of types of blocks present in the block copolymer may be 2 or 3 or more, and the number of blocks present in the block copolymer may be 2 or 3 or more.

<<<ブロックコポリマー>>>
 ブロックポリマーとしてはAB、ABAB、ABA、ABC等の組み合わせがある。
 ブロックコポリマーを合成する方法の一つとして、重合過程が開始反応と成長反応のみからなり、成長末端を失活させる副反応を伴わないリビングラジカル重合、リビングカチオン重合が挙げられる。成長末端は重合反応中に成長活性反応を保ち続けることができる。連鎖移動を生じなくすることで長さの揃ったポリマー(PA)が得られる。違うモノマー(mb)を添加することにより、このポリマー(PA)の成長末端を利用して、モノマー(mb)の重合が進行しブロックコポリマー(AB)を形成することができる。
<<<Block copolymer>>>
Block polymers include combinations such as AB, ABAB, ABA, and ABC.
As a method for synthesizing a block copolymer, there is living radical polymerization and living cationic polymerization, in which the polymerization process consists only of an initiation reaction and a propagation reaction, and does not involve side reactions that deactivate the propagation end. The propagation end can maintain the propagation active reaction during the polymerization reaction. By preventing chain transfer, a polymer (PA) with a uniform length can be obtained. By adding a different monomer (mb), the propagation end of this polymer (PA) can be utilized to polymerize the monomer (mb) and form a block copolymer (AB).

 例えばブロックの種類がPAとPBの2種類である場合に、ポリマー鎖(PA)とポリマー鎖(PB)はモル比で1:9~9:1、好ましくは3:7~7:3とすることができる。
 ブロックコポリマーの体積比率は例えば30:70~70:30である。
 ホモポリマーPA、又はPBは、ラジカル重合可能な反応性基(ビニル基又はビニル基含有有機基)を少なくとも一つ有する重合性化合物の重合体である。
For example, when the types of blocks are two types, PA and PB, the molar ratio of the polymer chain (PA) to the polymer chain (PB) can be 1:9 to 9:1, preferably 3:7 to 7:3.
The volume ratio of the block copolymers is, for example, 30:70 to 70:30.
The homopolymer PA or PB is a polymer of a polymerizable compound having at least one radically polymerizable reactive group (vinyl group or vinyl-group-containing organic group).

 ブロックコポリマーの重量平均分子量Mwは1,000~100,000、又は5,000~100,000であることが好ましい。1,000以上では下地基板への塗布性が優れ、また100,000以下では溶媒への溶解性が優れる。
 ブロックコポリマーの多分散度(Mw/Mn)は、好ましくは1.00~1.50であり、より好ましくは1.00~1.20である。
The weight average molecular weight Mw of the block copolymer is preferably 1,000 to 100,000, or 5,000 to 100,000. When it is 1,000 or more, the coating property onto the base substrate is excellent, and when it is 100,000 or less, the solubility in the solvent is excellent.
The polydispersity (Mw/Mn) of the block copolymer is preferably from 1.00 to 1.50, more preferably from 1.00 to 1.20.

 本発明で用いられるブロックコポリマーは、公知のものを使用することができる。
 ブロックコポリマーの具体例として、例えば、含ケイ素ポリマー鎖と非含ケイ素ポリマー鎖とを組み合わせた場合、例えばドライエッチング速度の差を大きくすることができるため好ましい。
 含ケイ素ポリマー鎖としては、例えば、シリル化ポリスチレン誘導体などが挙げられる。シリル化ポリスチレン誘導体としては、例えば、ポリシラン類(例えば、ポリジヘキシルシランなど)、ポリシロキサン類(例えば、ポリジメチルシロキサンなど)、ポリ(トリメチルシリルスチレン)、ポリ(ペンタメチルジシリルスチレン)などが挙げられる。
 特に、上記シリル化ポリスチレン誘導体は、置換基を4位に有するポリ(4-トリメチルシリルスチレン)、ポリ(4-ペンタメチルジシリルスチレン)が好ましい。
The block copolymer used in the present invention may be any known one.
As a specific example of a block copolymer, for example, a combination of a silicon-containing polymer chain and a non-silicon-containing polymer chain is preferable because, for example, the difference in dry etching rate can be made large.
Examples of the silicon-containing polymer chain include silylated polystyrene derivatives, etc. Examples of the silylated polystyrene derivatives include polysilanes (e.g., polydihexylsilane, etc.), polysiloxanes (e.g., polydimethylsiloxane, etc.), poly(trimethylsilylstyrene), poly(pentamethyldisilylstyrene), etc.
In particular, the silylated polystyrene derivative is preferably poly(4-trimethylsilylstyrene) or poly(4-pentamethyldisilylstyrene) having a substituent at the 4-position.

 ブロックコポリマーの好ましい例は、有機基で置換されていてもよいスチレンを構成単位とするケイ素非含有ポリマー又はラクチド由来の構造を構成単位とするケイ素非含有ポリマーと、ケイ素含有基で置換されたスチレンを構成単位とするケイ素含有ポリマーとを結合させたブロックコポリマーである。
 これらの中でも、シリル化ポリスチレン誘導体とポリスチレン誘導体との組み合わせ、又はシリル化ポリスチレン誘導体とポリラクチドとの組み合わせが好ましい。
 これらの中でも、置換基を4位に有するシリル化ポリスチレン誘導体と置換基を4位に有するポリスチレン誘導体との組み合わせ、又は置換基を4位に有するシリル化ポリスチレン誘導体とポリラクチドとの組み合わせが好ましい。
 ブロックコポリマーのより好ましい具体例としては、ポリ(トリメチルシリルスチレン)とポリメトキシスチレンとの組み合わせ、ポリスチレンとポリ(トリメチルシリルスチレン)との組み合わせ、ポリ(トリメチルシリルスチレン)とポリ(D,L-ラクチド)との組み合わせが挙げられる。
 ブロックコポリマーのより好ましい具体例としては、ポリ(4-トリメチルシリルスチレン)とポリ(4-メトキシスチレン)との組み合わせ、ポリスチレンとポリ(4-トリメチルシリルスチレン)との組み合わせ、ポリ(4-トリメチルシリルスチレン)とポリ(D,L-ラクチド)との組み合わせが挙げられる。
 ブロックコポリマーの最も好ましい具体例としては、ポリ(4-メトキシスチレン)/ポリ(4-トリメチルシリルスチレン)ブロックコポリマー及びポリスチレン/ポリ(4-トリメチルシリルスチレン)ブロックコポリマーが挙げられる。
 WO2018/135456号パンフレットに記載の全開示は本明細書に援用される。
A preferred example of the block copolymer is a block copolymer obtained by combining a non-silicon-containing polymer having styrene, which may be substituted with an organic group, as a constituent unit or a non-silicon-containing polymer having a structure derived from lactide as a constituent unit, with a silicon-containing polymer having styrene, which is substituted with a silicon-containing group, as a constituent unit.
Among these, a combination of a silylated polystyrene derivative and a polystyrene derivative, or a combination of a silylated polystyrene derivative and a polylactide is preferred.
Among these, a combination of a silylated polystyrene derivative having a substituent at the 4-position and a polystyrene derivative having a substituent at the 4-position, or a combination of a silylated polystyrene derivative having a substituent at the 4-position and polylactide is preferred.
More preferred specific examples of the block copolymer include a combination of poly(trimethylsilylstyrene) and polymethoxystyrene, a combination of polystyrene and poly(trimethylsilylstyrene), and a combination of poly(trimethylsilylstyrene) and poly(D,L-lactide).
More preferred specific examples of the block copolymer include a combination of poly(4-trimethylsilylstyrene) and poly(4-methoxystyrene), a combination of polystyrene and poly(4-trimethylsilylstyrene), and a combination of poly(4-trimethylsilylstyrene) and poly(D,L-lactide).
Most preferred examples of the block copolymer include poly(4-methoxystyrene)/poly(4-trimethylsilylstyrene) block copolymer and polystyrene/poly(4-trimethylsilylstyrene) block copolymer.
The entire disclosure of WO2018/135456 is incorporated herein by reference.

 また、前記ブロックコポリマーが、ケイ素非含有ポリマーと、ケイ素含有基で置換されたスチレンを構成単位とするケイ素含有ポリマー、とを結合させたブロックコポリマーであり、上記ケイ素非含有ポリマーが、下記の式(1-1c)又は式(1-2c)で表される単位構造を含むブロックコポリマーであってよい。 The block copolymer may be a block copolymer formed by combining a non-silicon-containing polymer with a silicon-containing polymer having a structural unit of styrene substituted with a silicon-containing group, and the non-silicon-containing polymer may be a block copolymer containing a unit structure represented by the following formula (1-1c) or formula (1-2c).

(式(1-1c)又は式(1-2c)中、R及びRは各々独立に水素原子、ハロゲン原子、炭素原子数1~10アルキル基を示し、R~Rは各々独立に水素原子、ヒドロキシ基、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、シアノ基、アミノ基、アミド基又はカルボニル基を示す。) (In formula (1-1c) or formula (1-2c), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, and R 3 to R 5 each independently represent a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cyano group, an amino group, an amido group, or a carbonyl group.)

 上記ケイ素含有基が、1つのケイ素原子を含むものであってよい。
 上記ケイ素含有ポリマーが、下記式(2c)で表される単位構造を含むものであってよい。
The silicon-containing group may contain one silicon atom.
The silicon-containing polymer may contain a unit structure represented by the following formula (2c):

(式(2c)中、R~Rは各々独立に炭素原子数1~10のアルキル基又は炭素原子数6~40のアリール基を示す。) (In formula (2c), R 6 to R 8 each independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 40 carbon atoms.)

 さらに、前記ブロックコポリマーとしては、下記の[BCP11]~[BCP14]を含む、特表2019-507815号公報に記載のブロックコポリマーを使用してもよい。特表2019-507815号公報に記載の全開示は本明細書に援用される。
[BCP11]5-ビニルベンゾ[d][1,3]ジオキソールを含むブロックコポリマー。
[BCP12]前記ブロックコポリマーがケイ素を含有するブロックをさらに含む、[BCP11]に記載のブロックコポリマー。
[BCP13]前記ブロックコポリマーがペンタメチルジシリルスチレンをさらに含む、[BCP12]に記載のブロックコポリマー。
[BCP14]前記ブロックコポリマーがポリ(5-ビニルベンゾ[d][1,3]ジオキソール)-b-ポリ(ペンタメチルジシリルスチレン)である、[BCP13]に記載のブロックコポリマー。
Furthermore, as the block copolymer, the block copolymers described in JP-T-2019-507815, including the following [BCP11] to [BCP14], may be used. The entire disclosure of JP-T-2019-507815 is incorporated herein by reference.
[BCP11] Block copolymer containing 5-vinylbenzo[d][1,3]dioxole.
[BCP12] The block copolymer according to [BCP11], wherein the block copolymer further comprises a silicon-containing block.
[BCP13] The block copolymer according to [BCP12], wherein the block copolymer further contains pentamethyldisilylstyrene.
[BCP14] The block copolymer according to [BCP13], wherein the block copolymer is poly(5-vinylbenzo[d][1,3]dioxole)-b-poly(pentamethyldisilylstyrene).

 上記記載のポリ(5-ビニルベンゾ[d][1,3]ジオキソール-ブロック-4-ペンタメチルジシリルスチレン)の合成を下記のスキーム1に示す。 The synthesis of poly(5-vinylbenzo[d][1,3]dioxole-block-4-pentamethyldisilylstyrene) described above is shown in Scheme 1 below.

Figure JPOXMLDOC01-appb-C000041
 Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000041
Me represents a methyl group.

 好ましくは、上記ケイ素含有ポリマー又はケイ素を含有するブロックが、4-トリメチルシリルスチレンから誘導されるポリ(4-トリメチルシリルスチレン)である。好ましくは、上記ケイ素含有ポリマー又はケイ素を含有するブロックが、ペンタメチルジシリルスチレンから誘導される、ポリ(ペンタメチルジシリルスチレン)である。炭素原子数6~40のアリール基は、炭素原子数6~40の単環式若しくは多環式の、芳香族炭化水素の1価の基を意味し、具体例としてはフェニル基、ナフチル基又はアントリル基等が挙げられる。
 WO2020/017494号パンフレットに記載の全開示は本明細書に援用される。
Preferably, the silicon-containing polymer or silicon-containing block is poly(4-trimethylsilylstyrene) derived from 4-trimethylsilylstyrene. Preferably, the silicon-containing polymer or silicon-containing block is poly(pentamethyldisilylstyrene) derived from pentamethyldisilylstyrene. The aryl group having 6 to 40 carbon atoms means a monovalent group of a monocyclic or polycyclic aromatic hydrocarbon having 6 to 40 carbon atoms, and specific examples include a phenyl group, a naphthyl group, and an anthryl group.
The entire disclosure of WO2020/017494 is incorporated herein by reference.

 また、下記に記載のモノマーの組み合わせからなるブロックコポリマーを使用してもよい。スチレン、メチルメタクリレート、ジメチルシロキサン、プロピレンオキサイド、エチレンオキサイド、ビニルピリジン、ビニルナフタレン、D,L-ラクチド、メトキシスチレン、メチレンジオキシスチレン、トリメチルシリルスチレン、ペンタメチルジシリルスチレン。 Also, block copolymers consisting of combinations of the monomers listed below may be used: styrene, methyl methacrylate, dimethylsiloxane, propylene oxide, ethylene oxide, vinylpyridine, vinylnaphthalene, D,L-lactide, methoxystyrene, methylenedioxystyrene, trimethylsilylstyrene, pentamethyldisilylstyrene.

 有用なブロックコポリマーは少なくとも2つのブロックを含み、別個のブロックを有するジブロック、トリブロック、テトラブロックなどのコポリマーであってよく、そのそれぞれのブロックはホモポリマー、またはランダムもしくは交互コポリマーであってよい。 Useful block copolymers contain at least two blocks and may be diblock, triblock, tetrablock, etc. copolymers having distinct blocks, each of which may be a homopolymer or a random or alternating copolymer.

 典型的なブロックコポリマーには、ポリスチレン-b-ポリビニルピリジン、ポリスチレン-b-ポリブタジエン、ポリスチレン-b-ポリイソプレン、ポリスチレン-b-ポリメタクリル酸メチル、ポリスチレン-b-ポリアルケニル芳香族、ポリイソプレン-b-ポリエチレンオキシド、ポリスチレン-b-ポリ(エチレン-プロピレン)、ポリエチレンオキシド-b-ポリカプロラクトン、ポリブタジエン-b-ポリエチレンオキシド、ポリスチレン-b-ポリ((メタ)アクリル酸t-ブチル)、ポリメタクリル酸メチル-b-ポリ(メタクリル酸t-ブチル)、ポリエチレンオキシド-b-ポリプロピレンオキシド、ポリスチレン-b-ポリテトラヒドロフラン、ポリスチレン-b-ポリイソプレン-b-ポリエチレンオキシド、ポリ(スチレン-b-ジメチルシロキサン)、ポリ(メタクリル酸メチル-b-ジメチルシロキサン)、ポリ((メタ)アクリル酸メチル-r-スチレン)-b-ポリメタクリル酸メチル、ポリ((メタ)アクリル酸メチル-r-スチレン)-b-ポリスチレン、ポリ(p-ヒドロキシスチレン-r-スチレン)-b-ポリメタクリル酸メチル、ポリ(p-ヒドロキシスチレン-r-スチレン)-b-ポリエチレンオキシド、ポリイソプレン-b-ポリスチレン-b-ポリフェロセニルシラン、または上述のブロックコポリマーの少なくとも1種を含む組み合わせが挙げられる。 Typical block copolymers include polystyrene-b-polyvinylpyridine, polystyrene-b-polybutadiene, polystyrene-b-polyisoprene, polystyrene-b-polymethylmethacrylate, polystyrene-b-polyalkenyl aromatic, polyisoprene-b-polyethylene oxide, polystyrene-b-poly(ethylene-propylene), polyethylene oxide-b-polycaprolactone, polybutadiene-b-polyethylene oxide, polystyrene-b-poly(t-butyl (meth)acrylate), polymethylmethacrylate-b-poly(t-butyl methacrylate), polyethylene oxide-b-polypropylene oxide, polystyrene-b-polytetrafluoroethylene Examples of the block copolymer include hydrofuran, polystyrene-b-polyisoprene-b-polyethylene oxide, poly(styrene-b-dimethylsiloxane), poly(methyl methacrylate-b-dimethylsiloxane), poly(methyl (meth)acrylate-r-styrene)-b-polymethyl methacrylate, poly(methyl (meth)acrylate-r-styrene)-b-polystyrene, poly(p-hydroxystyrene-r-styrene)-b-polymethyl methacrylate, poly(p-hydroxystyrene-r-styrene)-b-polyethylene oxide, polyisoprene-b-polystyrene-b-polyferrocenylsilane, or a combination comprising at least one of the block copolymers described above.

 また、下記に記載の有機ポリマー及び/又は金属含有ポリマーの組み合わせからなるブロックコポリマーも例示される。 Further examples include block copolymers consisting of a combination of the organic polymers and/or metal-containing polymers described below.

 典型的な有機ポリマーとしては、ポリ(9,9-ビス(6’-N,N,N-トリメチルアンモニウム)-ヘキシル)-フルオレンフェニレン)(PEP)、ポリ(4-ビニルピリジン)(4PVP)、ヒドロキシプロピルメチルセルロース(HPMC)、ポリエチレングリコール(PEG)、ポリ(エチレン酸化物)-ポリ(プロピレン酸化物)ジブロック又はマルチブロック共重合体、ポリビニルアルコール(PVA)、ポリ(エチレン-ビニルアルコール)(PEVA)、ポリアクリル酸(PAA)、ポリ乳酸(PLA)、ポリ(エチルオキサゾリン)、ポリ(アルキルアクリラート)、ポリアクリルアミド、ポリ(N-アルキルアクリルアミド)、ポリ(N,N-ジアルキルアクリルアミド)、ポリプロピレングリコール(PPG)、ポリプロピレン酸化物(PPO)、一部若しくは全部が水素化したポリ(ビニルアルコール)、デキストラン、ポリスチレン(PS)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリイソプレン(PI)、ポリクロロプレン(CR)、ポリビニルエーテル(PVE)、ポリビニルアセテート(PVA)、塩化ポリビニル(PVC)、ポリウレタン(PU)、ポリアクリラート、ポリメタクリラート、少糖類又は多糖類が含まれるが、これらに限定されない。 Typical organic polymers include poly(9,9-bis(6'-N,N,N-trimethylammonium)-hexyl)-fluorenephenylene) (PEP), poly(4-vinylpyridine) (4PVP), hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), poly(ethylene oxide)-poly(propylene oxide) diblock or multiblock copolymers, polyvinyl alcohol (PVA), poly(ethylene-vinyl alcohol) (PEVA), polyacrylic acid (PAA), polylactic acid (PLA), poly(ethyloxazoline), poly(alkyl acrylate), polyacrylonitrile (PAA), poly(ethyl oxazoline), poly(alkyl acrylate), poly(acrylonitrile), poly(ethyl oxazoline ... Examples of the polyvinyl amide include, but are not limited to, poly(N-alkylacrylamide), poly(N,N-dialkylacrylamide), polypropylene glycol (PPG), polypropylene oxide (PPO), partially or fully hydrogenated poly(vinyl alcohol), dextran, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyisoprene (PI), polychloroprene (CR), polyvinyl ether (PVE), polyvinyl acetate (PVA), polyvinyl chloride (PVC), polyurethane (PU), polyacrylate, polymethacrylate, oligosaccharides, or polysaccharides.

 金属含有ポリマーとしては、シリコン含有ポリマー[例えばポリジメチルシロキサン(PDMS)、かご型シルセスキオサン(POSS)、又はポリ(トリメチルシリスチレン)(PTMSS)]又はシリコンと鉄を含むポリマー[例えばポリ(フェロセニルジメチルシラン)(PFS)]が含まれるが、これらに限定されない。 Metal-containing polymers include, but are not limited to, silicon-containing polymers (e.g., polydimethylsiloxane (PDMS), polyhedral silsesquioxane (POSS), or poly(trimethylsilylstyrene) (PTMSS)) or polymers containing silicon and iron (e.g., poly(ferrocenyldimethylsilane) (PFS)).

 典型的なブロックコポリマー(共重合体)には、ジブロック共重合体[たとえばポリスチレン-b-ポリジメチルシロキサン(PS-PDMS)、ポリ(2-ビニルプロピレン)-b-ポリジメチルシロキサン(P2VP-PDMS)、ポリスチレン-b-ポリ(フェロセニルジメチルシラン)(PS-PFS)、又はポリスチレン-b-ポリDL乳酸(PS-PLA)]又はトリブロック共重合体[たとえばポリスチレン-b-ポリ(フェロセニルジメチルシラン)-b-ポリ(2-ビニルピリジン)(PS-PFS-P2VP)、ポリイソプレン-b-ポリスチレン-b-ポリ(フェロセニルジメチルシラン)(PI-PS-PFS)、又はポリスチレン-b-ポリ(フェロセニルジメチルシラン)-b-ポリスチレン(PS-PTMSS-PS)]が含まれるが、これらに限定されない。一の実施例では、PS-PTMSS-PSブロック共重合体は、4つのスチレンユニットを含むリンカーによって接続されるPTMSSの2つの鎖によって構成されるポリ(トリメチルシリスチレン)ポリマーブロックを含む。たとえば米国特許出願公開第2012/0046415号明細書で開示されているようなブロック共重合体の修正型もまた考えられる。 Typical block copolymers include, but are not limited to, diblock copolymers [e.g., polystyrene-b-polydimethylsiloxane (PS-PDMS), poly(2-vinylpropylene)-b-polydimethylsiloxane (P2VP-PDMS), polystyrene-b-poly(ferrocenyldimethylsilane) (PS-PFS), or polystyrene-b-polyDL-lactic acid (PS-PLA)] or triblock copolymers [e.g., polystyrene-b-poly(ferrocenyldimethylsilane)-b-poly(2-vinylpyridine) (PS-PFS-P2VP), polyisoprene-b-polystyrene-b-poly(ferrocenyldimethylsilane) (PI-PS-PFS), or polystyrene-b-poly(ferrocenyldimethylsilane)-b-polystyrene (PS-PTMSS-PS)]. In one embodiment, the PS-PTMSS-PS block copolymer comprises a poly(trimethylsilylstyrene) polymer block composed of two chains of PTMSS connected by a linker containing four styrene units. Modified versions of block copolymers such as those disclosed in U.S. Patent Application Publication No. 2012/0046415 are also contemplated.

 その他のブロックコポリマーとしては、例えば、スチレン又はその誘導体を構成単位とするポリマーと(メタ)アクリル酸エステルを構成単位とするポリマーとを結合させたブロックコポリマー、スチレン又はその誘導体を構成単位とするポリマーとシロキサン又はその誘導体を構成単位とするポリマーとを結合させたブロックコポリマー、及びアルキレンオキシドを構成単位とするポリマーと(メタ)アクリル酸エステルを構成単位とするポリマーとを結合させたブロックコポリマー等が挙げられる。なお、「(メタ)アクリル酸エステル」とは、α位に水素原子が結合したアクリル酸エステルと、α位にメチル基が結合したメタクリル酸エステルの一方あるいは両方を意味する。 Other block copolymers include, for example, block copolymers in which a polymer having styrene or a derivative thereof as a constituent unit is bonded to a polymer having (meth)acrylic acid ester as a constituent unit, block copolymers in which a polymer having styrene or a derivative thereof as a constituent unit is bonded to a polymer having siloxane or a derivative thereof as a constituent unit, and block copolymers in which a polymer having alkylene oxide as a constituent unit is bonded to a polymer having (meth)acrylic acid ester as a constituent unit. Note that "(meth)acrylic acid ester" refers to either or both of an acrylic acid ester having a hydrogen atom bonded to the α-position and a methacrylic acid ester having a methyl group bonded to the α-position.

 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸の炭素原子に、アルキル基やヒドロキシアルキル基等の置換基が結合しているものが挙げられる。置換基として用いられるアルキル基としては、炭素原子数1~10の直鎖状、分岐鎖状、又は環状のアルキル基が挙げられる。(メタ)アクリル酸エステルとしては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸アントラセン、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメタン、(メタ)アクリル酸プロピルトリメトキシシラン等が挙げられる。 (Meth)acrylic acid esters include, for example, those in which a substituent such as an alkyl group or a hydroxyalkyl group is bonded to a carbon atom of (meth)acrylic acid. Examples of the alkyl group used as a substituent include linear, branched, or cyclic alkyl groups having 1 to 10 carbon atoms. Specific examples of (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, benzyl (meth)acrylate, anthracene (meth)acrylate, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethane (meth)acrylate, and propyltrimethoxysilane (meth)acrylate.

 スチレンの誘導体としては、例えば、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-t-ブチルスチレン、4-n-オクチルスチレン、2,4,6-トリメチルスチレン、4-メトキシスチレン、4-t-ブトキシスチレン、4-ヒドロキシスチレン、4-ニトロスチレン、3-ニトロスチレン、4-クロロスチレン、4-フルオロスチレン、4-アセトキシビニルスチレン、ビニルシクロへキサン、4-ビニルベンジルクロリド、1-ビニルナフタレン、4-ビニルビフェニル、1-ビニル-2-ピロリドン、9-ビニルアントラセン、ビニルピリジン等が挙げられる。 Examples of styrene derivatives include α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-t-butylstyrene, 4-n-octylstyrene, 2,4,6-trimethylstyrene, 4-methoxystyrene, 4-t-butoxystyrene, 4-hydroxystyrene, 4-nitrostyrene, 3-nitrostyrene, 4-chlorostyrene, 4-fluorostyrene, 4-acetoxyvinylstyrene, vinylcyclohexane, 4-vinylbenzyl chloride, 1-vinylnaphthalene, 4-vinylbiphenyl, 1-vinyl-2-pyrrolidone, 9-vinylanthracene, and vinylpyridine.

 シロキサンの誘導体としては、例えば、ジメチルシロキサン、ジエチルシロキサン、ジフェニルシロキサン、メチルフェニルシロキサン等が挙げられる。
 アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、イソプロピレンオキシド、ブチレンオキシド等が挙げられる。
Examples of siloxane derivatives include dimethylsiloxane, diethylsiloxane, diphenylsiloxane, and methylphenylsiloxane.
Examples of the alkylene oxide include ethylene oxide, propylene oxide, isopropylene oxide, butylene oxide, and the like.

 前記ブロックコポリマーとしては、ポリスチレン/ポリ(メチルメタクリレート)ブロックコポリマー、スチレン-ポリエチルメタクリレートブロックコポリマー、スチレン-(ポリ-t-ブチルメタクリレート)ブロックコポリマー、スチレン-ポリメタクリル酸ブロックコポリマー、スチレン-ポリメチルアクリレートブロックコポリマー、スチレン-ポリエチルアクリレートブロックコポリマー、スチレン-(ポリ-t-ブチルアクリレート)ブロックコポリマー、スチレン-ポリアクリル酸ブロックコポリマー等が挙げられる。
 WO2022/039187号パンフレットの全開示が本明細書に援用される。
Examples of the block copolymer include polystyrene/poly(methyl methacrylate) block copolymer, styrene-polyethyl methacrylate block copolymer, styrene-(poly-t-butyl methacrylate) block copolymer, styrene-polymethacrylic acid block copolymer, styrene-polymethyl acrylate block copolymer, styrene-polyethyl acrylate block copolymer, styrene-(poly-t-butyl acrylate) block copolymer, and styrene-polyacrylic acid block copolymer.
The entire disclosure of WO2022/039187 is incorporated herein by reference.

<<<溶媒>>>
 自己組織化膜形成用組成物に用いられる溶媒としては、例えば、以下の有機溶媒が挙げられる。
 ・n-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒
 ・ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンセン、i-プロピルベンセン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンセン、n-アミルナフタレン、トリメチルベンゼン等の芳香族炭化水素系溶媒
 ・メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、ヘプタノール-3、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチルヘプタノール-4、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、フェニルメチルカルビノール、ジアセトンアルコール、クレゾール等のモノアルコール系溶媒
 ・エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ペンタンジオール-2,4、2-メチルペンタンジオール-2,4、ヘキサンジオール-2,5、ヘプタンジオール-2,4、2-エチルヘキサンジオール-1,3、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン等の多価アルコール系溶媒
 ・アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロヘキサノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン等のケトン系溶媒
 ・エチルエーテル、i-プロピルエーテル、n-ブチルエーテル、n-ヘキシルエーテル、2-エチルヘキシルエーテル、エチレンオキシド、1,2-プロピレンオキシド、ジオキソラン、4-メチルジオキソラン、ジオキサン、ジメチルジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-n-ヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル系溶媒
 ・ジエチルカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等のエステル系溶媒
 ・N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等の含窒素系溶媒
 ・硫化ジメチル、硫化ジエチル、チオフェン、テトラヒドロチオフェン、ジメチルスルホキシド、スルホラン、1,3-プロパンスルトン等の含硫黄系溶媒
<<<Solvent>>>
Examples of the solvent used in the self-assembled film-forming composition include the following organic solvents.
Aliphatic hydrocarbon solvents such as n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane, cyclohexane, and methylcyclohexane. Aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene, and trimethylbenzene. Methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, heptanol-3, n-octanol, 2-ethylhexanol, Monoalcohol solvents such as sec-octanol, n-nonyl alcohol, 2,6-dimethylheptanol-4, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, phenylmethylcarbinol, diacetone alcohol, and cresol. Polyhydric alcohol solvents such as ethylene glycol, propylene glycol, 1,3-butylene glycol, pentanediol-2,4, 2-methylpentanediol-2,4, hexanediol-2,5, heptanediol-2,4, 2-ethylhexanediol-1,3, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, and glycerin. Ketone solvents such as acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, diethyl ketone, methyl i-butyl ketone, methyl n-pentyl ketone, ethyl n-butyl ketone, methyl n-hexyl ketone, di-i-butyl ketone, trimethylnonanone, cyclohexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, diacetone alcohol, acetophenone, and fenchone. Ethyl ether, i-propyl ether, n-butyl ether, n-hexyl ether, 2-ethylhexyl ether, ethylene oxide, 1,2-propylene oxide, dioxolane, 4-methyldioxolane, dioxane, dimethyldioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-n-hexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl Ether solvents such as ether, diethylene glycol mono-n-butyl ether, diethylene glycol di-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxytriglycol, tetraethylene glycol di-n-butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran. Diethyl carbonate, methyl acetate, ethyl acetate, gamma-butyrolactone, gamma-valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, di Ester solvents such as ethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, glycol diacetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, diethyl malonate, dimethyl phthalate, and diethyl phthalate. Nitrogen-containing solvents such as N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropionamide, and N-methylpyrrolidone Sulfur-containing solvents such as dimethyl sulfide, diethyl sulfide, thiophene, tetrahydrothiophene, dimethyl sulfoxide, sulfolane, and 1,3-propane sultone

 特に、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテートが組成物の溶液の保存安定性の点で好ましい。 In particular, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate are preferred in terms of storage stability of the solution of the composition.

 また、自己組織化膜形成用組成物が含む溶媒としては、WO2018/135456号パンフレットに記載の、沸点160℃以下の低沸点溶媒(A)と、170℃以上の高沸点溶媒(B)との組み合わせであってもよい。 The solvent contained in the composition for forming a self-assembled film may be a combination of a low-boiling point solvent (A) having a boiling point of 160°C or less and a high-boiling point solvent (B) having a boiling point of 170°C or more, as described in WO2018/135456.

 沸点160℃以下の低沸点溶媒(A)としては、例えば、プロピレングリコールモノメチルエーテルアセテート(沸点:146℃)、n-ブチルアセテート(沸点:126℃)、メチルイソブチルケトン(沸点:116℃)が好ましい。 Preferred examples of low-boiling point solvents (A) with a boiling point of 160°C or less include propylene glycol monomethyl ether acetate (boiling point: 146°C), n-butyl acetate (boiling point: 126°C), and methyl isobutyl ketone (boiling point: 116°C).

 沸点170℃以上の高沸点溶媒(B)としては、例えば、N-メチルピロリドン(沸点:204℃)、ジエチレングリコールモノメチルエーテル(沸点:193℃)、N,N-ジメチルイソブチルアミド(沸点:175℃)、3-メトキシ-N,N-ジメチルプロパンアミド(沸点:215℃)、γ-ブチロラクトン(沸点:204℃)が好ましい。 Preferred examples of high boiling point solvents (B) with a boiling point of 170°C or higher include N-methylpyrrolidone (boiling point: 204°C), diethylene glycol monomethyl ether (boiling point: 193°C), N,N-dimethylisobutyramide (boiling point: 175°C), 3-methoxy-N,N-dimethylpropanamide (boiling point: 215°C), and γ-butyrolactone (boiling point: 204°C).

 低沸点溶媒(A)、高沸点溶媒(B)はそれぞれ二種以上を選択、混合して使用することもできる。 Two or more low boiling point solvents (A) and two or more high boiling point solvents (B) can be selected and mixed for use.

 好ましい態様としては、上記組成物が含む溶媒全体に対して、高沸点溶媒(B)を0.3~2.0重量%含む。最も好ましくは、高沸点溶媒(B)を0.5~1.5重量%含む。
 WO2018/135456号パンフレットの全開示が本明細書に援用される。
In a preferred embodiment, the composition contains 0.3 to 2.0% by weight of the high boiling point solvent (B) relative to the total amount of the solvent contained in the composition, and most preferably contains 0.5 to 1.5% by weight of the high boiling point solvent (B).
The entire disclosure of WO2018/135456 is incorporated herein by reference.

<<自己組織化膜の相分離>>
 自己組織化膜(例えば、ブロックコポリマーの膜)の相分離は、自己組織化膜の再配列をもたらす処理、例えば、超音波処理、溶媒処理、熱アニール等によって行うことができる。多くの用途において、単純に加熱またはいわゆる熱アニールにより自己組織化膜の相分離を達成することが望ましい。
 熱アニールは、大気中又は不活性ガス中において、常圧、減圧又は加圧条件下で行うことができる。
 熱アニールの条件としては特に制限されないが、大気下で180℃~300℃が好ましく、210℃~280℃がより好ましく、230℃~270℃が特に好ましい。
 上記処理時間は特に制限されないが、通常1分~30分、好ましくは3分~10分である。
<<Phase separation of self-assembled monolayers>>
Phase separation of self-assembled monolayers (e.g., films of block copolymers) can be achieved by treatments that result in rearrangement of the self-assembled monolayer, such as ultrasonication, solvent treatment, thermal annealing, etc. In many applications, it is desirable to achieve phase separation of the self-assembled monolayer by simple heating or so-called thermal annealing.
The thermal annealing can be carried out in the air or in an inert gas under normal pressure, reduced pressure or pressurized conditions.
The conditions for the thermal annealing are not particularly limited, but are preferably 180° C. to 300° C., more preferably 210° C. to 280° C., and particularly preferably 230° C. to 270° C. in air.
The treatment time is not particularly limited, but is usually from 1 to 30 minutes, preferably from 3 to 10 minutes.

 自己組織化膜の相分離により、基板又は下層膜面に対して実質的に垂直に配向したドメインが形成される。ドメインの形態は、例えば、ラメラ状、球状、円柱状等である。ドメイン間隔としては、例えば50nm以下である。 By phase separation of the self-assembled film, domains are formed that are oriented substantially perpendicular to the substrate or the surface of the underlying film. The domains may be, for example, lamellar, spherical, cylindrical, etc. The domain spacing is, for example, 50 nm or less.

<<自己組織化膜のパターン化>>
 相分離した自己組織化膜の一部を選択的に除去することにより、ドメインの形態に応じたパターンが得られる。
 相分離した自己組織化膜の一部を選択的に除去する方法としては、例えば、相分離した自己組織化膜に対して、酸素プラズマ処理を行う方法、水素プラズマ処理を行う方法等が挙げられる。
<<Patterning of self-assembled monolayers>>
By selectively removing parts of the phase-separated self-assembled monolayer, a pattern corresponding to the morphology of the domains can be obtained.
Examples of a method for selectively removing a portion of a phase-separated self-assembled film include a method of subjecting the phase-separated self-assembled film to an oxygen plasma treatment or a hydrogen plasma treatment.

<第6工程>
 第6工程は、パターン化された下層膜のパターンの隙間にブラシ層を形成する工程である。
 なお、第6工程は、第4工程と第5工程との間に行われる工程である。
<Sixth step>
The sixth step is to form a brush layer in the gaps in the pattern of the patterned underlayer film.
The sixth step is carried out between the fourth and fifth steps.

 ブラシ層の形成方法としては、特に制限されないが、例えば、ブラシ層形成用組成物を塗布し、乾燥する方法が挙げられる。 The method for forming the brush layer is not particularly limited, but an example is a method in which a composition for forming the brush layer is applied and dried.

<<ブラシ層形成用組成物>>
 ブラシ層形成用組成物は、例えば、ブラシポリマーと、溶媒とを含有する。
 ブラシ層形成用組成物は、例えば、直接基板表面と結合可能なポリマー鎖を含む組成物である。ポリマー鎖が基板上にブラシ状に配置されてなる膜又は層はブラシ層と呼ばれることがある。
 ブラシ層形成用組成物は、例えば、ブロックコポリマーを含む層の下層膜を形成するための下層膜形成用組成物である。
 また、ブラシ層形成用組成物から形成される膜は、例えば、自己組織化により形成されるポリマー相の発生位置を制御するガイドの役割を果たす。例えば、ブラシ層形成用組成物から形成される膜は、凹凸構造を有し、凹部にミクロ相分離パターンを形成するための物理ガイド(grapho-epitaxy)における凹部の側壁である。また、例えば、ブラシ層形成用組成物から形成される膜は、自己組織化材料の下層に形成され、その表面エネルギーの違いに基づいてミクロ相分離パターンの形成位置を制御する化学ガイド(chemical-epitaxy)である。
<<Composition for forming brush layer>>
The brush layer forming composition contains, for example, a brush polymer and a solvent.
The brush layer-forming composition is, for example, a composition containing polymer chains capable of directly bonding to the surface of a substrate. A film or layer in which polymer chains are arranged in a brush shape on a substrate is sometimes called a brush layer.
The brush layer-forming composition is, for example, an underlayer film-forming composition for forming an underlayer film of a layer containing a block copolymer.
Furthermore, the film formed from the brush layer forming composition plays the role of, for example, a guide that controls the position where a polymer phase is formed by self-organization. For example, the film formed from the brush layer forming composition has an uneven structure, and is the side wall of a recess in a physical guide (grapho-epitaxy) for forming a microphase separation pattern in the recess. For example, the film formed from the brush layer forming composition is a chemical guide (chemical-epitaxy) that is formed under a self-organizing material and controls the position where a microphase separation pattern is formed based on the difference in surface energy.

<<<ブラシポリマー>>>
 ブラシポリマーとしては、下層膜の形成に用いられているブラシポリマーであれば、特に制限されない。
<<<Brush polymer>>>
There are no particular limitations on the brush polymer, so long as it is a brush polymer used in forming the underlayer film.

 ブラシポリマーの一例としては、例えば、特表2011-515537号公報に記載の中性湿潤底面が含むポリマーが挙げられる。そのようなポリマーとしては、例えば、特表2011-515537号公報の請求項15に記載のランダム共重合体、請求項16に記載のグラフトされた、複数のホモポリマーのブレンドなどが挙げられる。特表2011-515537号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 An example of a brush polymer is a polymer having a neutral wetting bottom surface as described in JP-T-2011-515537. Examples of such polymers include the random copolymer described in claim 15 of JP-T-2011-515537 and the grafted blend of multiple homopolymers described in claim 16. The contents of JP-T-2011-515537 are incorporated herein by reference to the same extent as if expressly set forth in its entirety.

 ブラシポリマーの他の一例としては、例えば、特表2011-518652号公報に記載のランダム共重合体が挙げられる。特表2011-518652号公報に記載のランダム共重合体の一例は、段落〔0028〕に記載の光架橋可能なランダムPS-r-PMMAである。特表2011-518652号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is the random copolymer described in JP-T-2011-518652. One example of the random copolymer described in JP-T-2011-518652 is the photocrosslinkable random PS-r-PMMA described in paragraph [0028]. The contents of JP-T-2011-518652 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、全体の構成単位のうち20モル%~80モル%が芳香族環含有モノマー由来の構成単位である樹脂が挙げられる。そのような樹脂は、例えば、国際公開第2012/036121号パンフレットに記載の下地剤が含有する樹脂成分である。国際公開第2012/036121号パンフレットの内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is a resin in which 20 mol % to 80 mol % of the total constituent units are derived from aromatic ring-containing monomers. Such a resin is, for example, the resin component contained in the primer described in WO 2012/036121. The contents of WO 2012/036121 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、特開2013-166934号公報の請求項1に記載のランダムコポリマーが挙げられる。特開2013-166934号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is the random copolymer described in claim 1 of JP 2013-166934 A. The contents of JP 2013-166934 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、全単位構造あたり多環芳香族ビニル化合物の単位構造を0.2モル%以上有するポリマーが挙げられる。そのようなポリマーは、例えば、国際公開第2014/097993号パンフレットに記載の下層膜形成組成物が含有するポリマーが挙げられる。国際公開第2014/097993号パンフレットの内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is a polymer having 0.2 mol % or more of a polycyclic aromatic vinyl compound unit structure per total unit structure. Such a polymer is, for example, a polymer contained in the underlayer film-forming composition described in WO 2014/097993. The contents of WO 2014/097993 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、特開2015-130496号公報に記載のブラシバックフィル組成物が含有するポリマー〔例えば、半導体基板に対して反応し得る官能基を持つポリ(アルキルアクリレート)〕が挙げられる。特開2015-130496号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is the polymer contained in the brush backfill composition described in JP 2015-130496 A (e.g., poly(alkyl acrylate) having a functional group capable of reacting with a semiconductor substrate). The contents of JP 2015-130496 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、特開2016-148024号公報の請求項1に記載の付加ポリマーが挙げられる。特開2016-148024号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is the addition polymer described in claim 1 of JP 2016-148024 A. The contents of JP 2016-148024 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、特表2016-528713号公報の請求項1に記載のピン止め材料が含有するポリマーが挙げられる。そのようなポリマーとしては、例えば、特表2016-528713号公報の請求項3に記載のポリマーが挙げられる。特表2016-528713号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is, for example, the polymer contained in the pinning material described in claim 1 of JP-T-2016-528713. Such a polymer is, for example, the polymer described in claim 3 of JP-T-2016-528713. The contents of JP-T-2016-528713 are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、特開2018-139007号公報の請求項1に記載の酸分解可能基、アタッチメント基及び官能基を含む酸感受性コポリマーが挙げられる。特開2018-139007号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is, for example, an acid-sensitive copolymer containing an acid-decomposable group, an attachment group, and a functional group, as described in claim 1 of JP 2018-139007 A. The contents of JP 2018-139007 A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーの他の一例としては、例えば、特表2018-503241号公報の請求項1に記載の疎水性ポリマーブラシ前駆体が挙げられる。特表2018-503241号公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。 Another example of a brush polymer is the hydrophobic polymer brush precursor described in claim 1 of JP2018-503241A. The contents of JP2018-503241A are incorporated herein by reference to the same extent as if expressly set forth in their entirety.

 ブラシポリマーは、好ましくは、基板に結合可能な官能基を有する。
 基板に結合可能な官能基としては、例えば、ヒドロキシ基、アミノ基、スルホン酸基などが挙げられる。
 ブラシポリマーは、基板に結合可能な官能基を、ポリマー鎖の末端に有していてもよいし、ポリマー鎖の末端以外の箇所に有していてもよい。
 基板に結合可能な官能基をポリマー鎖の末端に導入する方法としては、特に制限されず、例えば、付加重合型のポリマーの場合、重合開始剤や連鎖移動剤に基板に結合可能な官能基を有する化合物を用いる方法などが挙げられる。
The brush polymer preferably has functional groups capable of bonding to a substrate.
Examples of functional groups capable of bonding to a substrate include hydroxyl groups, amino groups, and sulfonic acid groups.
The brush polymer may have a functional group capable of bonding to a substrate at the end of the polymer chain or at a location other than the end of the polymer chain.
The method for introducing a functional group capable of bonding to a substrate into the end of a polymer chain is not particularly limited, and examples of the method include, in the case of an addition polymerization type polymer, a method in which a compound having a functional group capable of bonding to a substrate is used as a polymerization initiator or a chain transfer agent.

 ブラシポリマーは、付加重合型のポリマーであることが好ましい。
 付加重合型のポリマーは、例えば、1種類以上のラジカル重合性モノマーを重合して得られる。
The brush polymer is preferably an addition polymerization type polymer.
The addition polymerization type polymer can be obtained, for example, by polymerizing one or more types of radically polymerizable monomers.

 ラジカル重合性モノマーとしては、特に制限されないが、例えば、(メタ)アクリル化合物、芳香族基含有ビニル化合物などが挙げられる。
 (メタ)アクリル化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステルなどが挙げられる。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレートなどが挙げられる。
 芳香族基含有ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-t-ブチルスチレン、4-n-オクチルスチレン、2,4,6-トリメチルスチレン、4-メトキシスチレン、4-t-ブトキシスチレン、4-ヒドロキシスチレン、4-ニトロスチレン、3-ニトロスチレン、4-クロロスチレン、4-フルオロスチレン、4-アセトキシビニルスチレン、ビニルシクロへキサン、4-ビニルベンジルクロリド、1-ビニルナフタレン、4-ビニルビフェニル、1-ビニルー2-ピロリドン、9-ビニルアントラセン、ビニルピリジンなどが挙げられる。
The radical polymerizable monomer is not particularly limited, but examples thereof include (meth)acrylic compounds and aromatic group-containing vinyl compounds.
Examples of (meth)acrylic compounds include (meth)acrylic acid, (meth)acrylic acid esters, etc. Examples of (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, etc.
Examples of aromatic group-containing vinyl compounds include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-t-butylstyrene, 4-n-octylstyrene, 2,4,6-trimethylstyrene, 4-methoxystyrene, 4-t-butoxystyrene, 4-hydroxystyrene, 4-nitrostyrene, 3-nitrostyrene, 4-chlorostyrene, 4-fluorostyrene, 4-acetoxyvinylstyrene, vinylcyclohexane, 4-vinylbenzyl chloride, 1-vinylnaphthalene, 4-vinylbiphenyl, 1-vinyl-2-pyrrolidone, 9-vinylanthracene, and vinylpyridine.

<<<<ポリマー(P)>>>>
 ブラシポリマーは、下記構造単位(A)及び(B)を含むポリマー(P)であることが、ブロックコポリマーのミクロ相分離構造を基板に対して垂直に誘起させることができる点で好ましい。
 構造単位(A):(メタ)アクリロイル基と、基板に結合可能な官能基とを有する(メタ)アクリル化合物に由来する構造単位
 構造単位(B):芳香族基含有ビニル化合物に由来する構造単位
<<<<Polymer (P)>>>>
The brush polymer is preferably a polymer (P) containing the following structural units (A) and (B), in that a microphase-separated structure of the block copolymer can be induced perpendicular to the substrate.
Structural unit (A): A structural unit derived from a (meth)acrylic compound having a (meth)acryloyl group and a functional group capable of bonding to a substrate. Structural unit (B): A structural unit derived from an aromatic group-containing vinyl compound.

 ポリマー(P)中の全構造単位に対する構造単位(A)のモル割合は、0%超5%以下である。
 ポリマー中(P)の全構造単位に対する構造単位(A)のモル割合が、0%超5%以下であることにより、ブロックコポリマーのミクロ相分離構造を基板に対して垂直に誘起させる膜を形成することができる。ポリマー(P)中の全構造単位に対する構造単位(A)のモル割合が、5%を超えると、ブロックコポリマーのミクロ相分離構造の配列が乱れ、ブロックコポリマーのミクロ相分離構造を基板に対して垂直に誘起させることができない。
The molar ratio of the structural unit (A) to all structural units in the polymer (P) is more than 0% and 5% or less.
By setting the molar ratio of the structural unit (A) to the total structural units in the polymer (P) to be more than 0% and not more than 5%, a film can be formed that induces a microphase-separated structure of the block copolymer perpendicular to the substrate. If the molar ratio of the structural unit (A) to the total structural units in the polymer (P) exceeds 5%, the arrangement of the microphase-separated structure of the block copolymer becomes disordered, and the microphase-separated structure of the block copolymer cannot be induced perpendicular to the substrate.

 ポリマー(P)としては、構造単位(A)及び(B)を含む限り、特に制限されないが、重合性不飽和基を有する化合物の重合により得られる付加重合体であることが好ましい。重合性不飽和基としては、例えば、エチレン性不飽和基が挙げられる。エチレン性不飽和基としては、例えば、ビニル基、アリル基、プロパルギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリロイル基などが挙げられる。 The polymer (P) is not particularly limited as long as it contains the structural units (A) and (B), but is preferably an addition polymer obtained by polymerization of a compound having a polymerizable unsaturated group. Examples of the polymerizable unsaturated group include ethylenically unsaturated groups. Examples of the ethylenically unsaturated group include vinyl groups, allyl groups, propargyl groups, butenyl groups, ethynyl groups, phenylethynyl groups, maleimide groups, nadimide groups, and (meth)acryloyl groups.

 ポリマー(P)は、例えば、ランダム共重合体である。 The polymer (P) is, for example, a random copolymer.

 ポリマー(P)は、構造単位(A)及び(B)以外の構造単位を含んでいてもよい。 The polymer (P) may contain structural units other than the structural units (A) and (B).

 構造単位(A)は、(メタ)アクリル化合物に由来する構造単位である。
 (メタ)アクリル化合物は、(メタ)アクリロイル基を有する。
 (メタ)アクリル化合物は、基板に結合可能な官能基を有する。
 (メタ)アクリロイル基とは、アクリロイル基とメタクリロイル基とを示す表記である。アクリロイル基とはCH=CH-CO-で表される基をいい、メタクリロイル基とはCH=C(CH)-CO-で表される基をいう。
The structural unit (A) is a structural unit derived from a (meth)acrylic compound.
The (meth)acrylic compound has a (meth)acryloyl group.
The (meth)acrylic compound has a functional group capable of bonding to a substrate.
The term "(meth)acryloyl group" refers to both an acryloyl group and a methacryloyl group. The acryloyl group refers to a group represented by CH 2 ═CH--CO--, and the methacryloyl group refers to a group represented by CH 2 ═C(CH 3 )--CO--.

 基板に結合可能な官能基としては、特に制限されないが、例えば、ヒドロキシ基、アミノ基、スルホン酸基などが挙げられる。
 構造単位(A)における基板に結合可能な官能基の数としては、1つであってもよいし、2つ以上であってもよいが、1つが好ましい。
 (メタ)アクリル化合物における(メタ)アクリロイル基としては、1つであってもよいし、2つ以上であってもよいが、1つが好ましい。
The functional group capable of bonding to the substrate is not particularly limited, but examples thereof include a hydroxy group, an amino group, and a sulfonic acid group.
The number of functional groups capable of bonding to a substrate in the structural unit (A) may be one or may be two or more, but is preferably one.
The (meth)acrylic compound may have one (meth)acryloyl group or two or more (meth)acryloyl groups, but preferably has one (meth)acryloyl group.

 構造単位(A)は、構造単位(B)とは異なる構造単位である。そのため、構造単位(B)は、芳香族環を有しない。 Structural unit (A) is a structural unit different from structural unit (B). Therefore, structural unit (B) does not have an aromatic ring.

 ポリマー(P)中の構造単位(A)は、1種であってもよいし、2種以上であってもよい。 The structural unit (A) in the polymer (P) may be of one type or of two or more types.

 構造単位(A)としては、下記式(1)で表される構造単位(A-1)を含むことが好ましい。 The structural unit (A) preferably contains a structural unit (A-1) represented by the following formula (1):

(式(1)中、Xは、-O-又は-NH-を表す。Yは、ヒドロキシ基、アミノ基又はスルホン酸基を表す。Rは、ハロゲン原子で置換されていてもよい炭素原子数1~10のアルキレン基を表す。Rは、水素原子又はメチル基を表す。) (In formula (1), X represents -O- or -NH-. Y represents a hydroxy group, an amino group, or a sulfonic acid group. R1 represents an alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom. R2 represents a hydrogen atom or a methyl group.)

 アミノ基としては、第一級アミノ基、第二級アミノ基が好ましい。
 第一級アミノ基とは、アンモニアから水素原子を除いた1価の官能基(-NH)を指す。
 第二級アミノ基とは、第一級アミンから水素原子を除いた1価の官能基(-NHR(式中、Rは有機基を表す。)を指す。Rは、例えば、炭素原子数1~6のアルキル基を表す。
The amino group is preferably a primary amino group or a secondary amino group.
A primary amino group refers to a monovalent functional group (—NH 2 ) formed by removing a hydrogen atom from ammonia.
The secondary amino group refers to a monovalent functional group (-NHR (wherein R represents an organic group) formed by removing a hydrogen atom from a primary amine. R represents, for example, an alkyl group having 1 to 6 carbon atoms.

 ハロゲン原子で置換されていてもよい炭素原子数1~10のアルキレン基は、直鎖状であってもよいし、分岐状であってもよいし、環状であってもよい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 ハロゲン原子で置換されている炭素原子数1~10のアルキレン基におけるハロゲン原子の数としては、1つであってもよいし、2つ以上であってもよい。
The alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom may be linear, branched, or cyclic.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The number of halogen atoms in the alkylene group having 1 to 10 carbon atoms substituted with a halogen atom may be one or two or more.

 炭素原子数1~10のアルキレン基としては、直鎖状又は分岐状アルキレン基であってよく、メチレン基、エチレン基、1,3-プロピレン基(トリメチレン基)、1-メチルエチレン基(1,2-プロピレン基)、1,4-ブチレン基、1-エチルエチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,5-ペンチレン基、1-メチルブチレン基、2-メチルブチレン基、1,1-ジメチルプロピレン基、1,2-ジメチルプロピレン基、1-エチルプロピレン基、2-エチルプロピレン基、1,6-ヘキシレン基、1,4-シクロヘキシレン基、1,8-オクチレン基、2-エチルオクチレン基、1,9-ノニレン基、1,10-デシレン基などが挙げられる。 The alkylene group having 1 to 10 carbon atoms may be a straight-chain or branched alkylene group, and examples thereof include a methylene group, an ethylene group, a 1,3-propylene group (a trimethylene group), a 1-methylethylene group (a 1,2-propylene group), a 1,4-butylene group, a 1-ethylethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a 1,5-pentylene group, a 1-methylbutylene group, a 2-methylbutylene group, a 1,1-dimethylpropylene group, a 1,2-dimethylpropylene group, a 1-ethylpropylene group, a 2-ethylpropylene group, a 1,6-hexylene group, a 1,4-cyclohexylene group, a 1,8-octylene group, a 2-ethyloctylene group, a 1,9-nonylene group, and a 1,10-decylene group.

 ポリマー(P)中の全構造単位に対する構造単位(A)のモル割合は、0%超5%以下であり、0.1%以上5%以下が好ましく、0.3%以上4.5%以下がより好ましく、0.5%以上4.0%以下が特に好ましい。 The molar ratio of structural unit (A) to all structural units in polymer (P) is more than 0% and not more than 5%, preferably 0.1% to 5%, more preferably 0.3% to 4.5%, and particularly preferably 0.5% to 4.0%.

 (メタ)アクリル化合物としては、例えば、下記式(1-1)で表される化合物が挙げられる。 An example of a (meth)acrylic compound is a compound represented by the following formula (1-1):

(式(1-1)中、Xは、-O-又は-NH-を表す。Yは、ヒドロキシ基、アミノ基又はスルホン酸基を表す。Rは、ハロゲン原子で置換されていてもよい炭素原子数1~10のアルキレン基を表す。Rは、水素原子又はメチル基を表す。) (In formula (1-1), X represents -O- or -NH-. Y represents a hydroxy group, an amino group, or a sulfonic acid group. R1 represents an alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom. R2 represents a hydrogen atom or a methyl group.)

 (メタ)アクリル化合物としては、例えば、ヒドロキシ基含有(メタ)アクリレート、アミノ基含有(メタ)アクリレート、スルホン酸基含有(メタ)アクリレート、ヒドロキシ基含有(メタ)アクリルアミド、スルホン酸基含有(メタ)アクリルアミドなどが挙げられる。 Examples of (meth)acrylic compounds include hydroxyl group-containing (meth)acrylates, amino group-containing (meth)acrylates, sulfonic acid group-containing (meth)acrylates, hydroxyl group-containing (meth)acrylamides, and sulfonic acid group-containing (meth)acrylamides.

 ヒドロキシ基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレートなどが挙げられる。 Examples of hydroxy group-containing (meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, and 1,4-cyclohexanedimethanol mono(meth)acrylate.

 アミノ基含有(メタ)アクリレートとしては、例えば、第一級アミノ基含有(メタ)アクリレート、第二級アミノ基含有(メタ)アクリレートなどが挙げられる。
 第一級アミノ基含有(メタ)アクリレートとしては、例えば、アミノメチル(メタ)アクリレート、アミノエチル(メタ)アクリレートなどが挙げられる。
 第二級アミノ基含有(メタ)アクリレートとしては、例えば、t-ブチルアミノエチル(メタ)アクリレート、t-ブチルアミノプロピル(メタ)アクリレートなどが挙げられる。
Examples of the amino group-containing (meth)acrylate include primary amino group-containing (meth)acrylate and secondary amino group-containing (meth)acrylate.
Examples of the primary amino group-containing (meth)acrylate include aminomethyl (meth)acrylate and aminoethyl (meth)acrylate.
Examples of the secondary amino group-containing (meth)acrylate include t-butylaminoethyl (meth)acrylate and t-butylaminopropyl (meth)acrylate.

 スルホン酸基含有(メタ)アクリレートとしては、例えば、2-スルホエチル(メタ)アクリレート、3-スルホプロピル(メタ)アクリレート Examples of sulfonic acid group-containing (meth)acrylates include 2-sulfoethyl (meth)acrylate and 3-sulfopropyl (meth)acrylate.

 ヒドロキシ基含有(メタ)アクリルアミドとしては、例えば、N-(ヒドロキシメチル)(メタ)アクリルアミド、N(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(4-ヒドロキシブチル)(メタ)アクリルアミドなどが挙げられる。 Examples of hydroxy group-containing (meth)acrylamides include N-(hydroxymethyl)(meth)acrylamide, N-(2-hydroxyethyl)(meth)acrylamide, and N-(4-hydroxybutyl)(meth)acrylamide.

 構造単位(B)は、芳香族基含有ビニル化合物に由来する構造単位である。
 芳香族基含有ビニル化合物が有する芳香族環としては、芳香族炭化水素環であってもよいし、芳香族複素環であってもよいが、芳香族炭化水素環が好ましい。
 芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環などが挙げられる。
 芳香族基含有ビニル化合物は、例えば、基板に結合可能な官能基を有しない。
 芳香族基含有ビニル化合物は、例えば、ヒドロキシ基、アミノ基、及びスルホン酸基を有しない。
The structural unit (B) is a structural unit derived from an aromatic group-containing vinyl compound.
The aromatic ring contained in the aromatic group-containing vinyl compound may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring, with an aromatic hydrocarbon ring being preferred.
Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring.
Aromatic group-containing vinyl compounds, for example, do not have functional groups capable of bonding to a substrate.
The aromatic group-containing vinyl compound does not have, for example, a hydroxy group, an amino group, or a sulfonic acid group.

 構造単位(B)は、例えば、基板に結合可能な官能基を有しない。
 構造単位(B)は、例えば、ヒドロキシ基、アミノ基、及びスルホン酸基を有しない。
The structural unit (B) does not have, for example, a functional group capable of bonding to a substrate.
The structural unit (B) does not have, for example, a hydroxy group, an amino group, or a sulfonic acid group.

 ポリマー(P)中の構造単位(B)は、1種であってもよいし、2種以上であってもよい。 The structural unit (B) in the polymer (P) may be of one type or of two or more types.

 構造単位(B)としては、下記式(2)で表される構造単位(B-1)を含むことが好ましい。
 構造単位(B)としては、下記式(3)で表される構造単位(B-2)を含むことが好ましい。
The structural unit (B) preferably contains a structural unit (B-1) represented by the following formula (2).
The structural unit (B) preferably contains a structural unit (B-2) represented by the following formula (3).

(式(2)中、n個のYは、それぞれ独立して、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基、又はチオアルキル基を表し、nは0~7の整数を表す。) (In formula (2), n Y's each independently represent a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, or a thioalkyl group, and n represents an integer of 0 to 7.)

(式(3)中、R~Rは、それぞれ独立して、水素原子、又はtert-ブチル基を表す。ただし、R~Rの1つ又は2つはtert-ブチル基を表す。) (In formula (3), R 3 to R 5 each independently represent a hydrogen atom or a tert-butyl group, provided that one or two of R 3 to R 5 represent a tert-butyl group.)

 式(2)中のYにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 式(2)中のYにおけるアルキル基としては、炭素原子数1~15のアルキル基が好ましく、炭素原子数1~10のアルキル基がより好ましく、炭素原子数1~6のアルキル基が更により好ましく、炭素原子数1~3のアルキル基が特に好ましい。アルキル基は直鎖状であってもよいし、分岐状であってもよいし、環状であってもよい。
 式(2)中のYにおけるアルコキシ基としては、炭素原子数1~15のアルコキシ基が好ましく、炭素原子数1~10のアルコキシ基がより好ましく、炭素原子数1~6のアルコキシ基が更により好ましく、炭素原子数1~3のアルコキシ基が特に好ましい。アルコキシ基中のアルキル基は直鎖状であってもよいし、分岐状であってもよいし、環状であってもよい。
 式(2)中のYにおけるアルコキシカルボニル基としては、炭素原子数2~15のアルコキシカルボニル基が好ましく、炭素原子数2~10のアルコキシカルボニル基がより好ましく、炭素原子数2~6のアルコキシカルボニル基が更により好ましく、炭素原子数2~3のアルコキシカルボニル基が特に好ましい。アルコキシカルボニル基中のアルキル基は直鎖状であってもよいし、分岐状であってもよいし、環状であってもよい。
 式(2)中のYにおけるチオアルキル基としては、上記アルコキシ基の-O-が-S-に置き換えられた基が挙げられる。
Examples of the halogen atom for Y in formula (2) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group for Y in formula (2) is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, still more preferably an alkyl group having 1 to 6 carbon atoms, and particularly preferably an alkyl group having 1 to 3 carbon atoms. The alkyl group may be linear, branched, or cyclic.
The alkoxy group for Y in formula (2) is preferably an alkoxy group having 1 to 15 carbon atoms, more preferably an alkoxy group having 1 to 10 carbon atoms, even more preferably an alkoxy group having 1 to 6 carbon atoms, and particularly preferably an alkoxy group having 1 to 3 carbon atoms. The alkyl group in the alkoxy group may be linear, branched, or cyclic.
The alkoxycarbonyl group for Y in formula (2) is preferably an alkoxycarbonyl group having 2 to 15 carbon atoms, more preferably an alkoxycarbonyl group having 2 to 10 carbon atoms, even more preferably an alkoxycarbonyl group having 2 to 6 carbon atoms, and particularly preferably an alkoxycarbonyl group having 2 to 3 carbon atoms. The alkyl group in the alkoxycarbonyl group may be linear, branched, or cyclic.
Examples of the thioalkyl group for Y in formula (2) include the above alkoxy groups in which --O-- is replaced with --S--.

 ポリマー(P)中の全構造単位に対する構造単位(B)のモル割合としては、特に制限されないが、80%以上100%未満が好ましく、90%以上100%未満がより好ましく、95%超100%未満が特に好ましい。 The molar ratio of structural unit (B) to all structural units in polymer (P) is not particularly limited, but is preferably 80% or more and less than 100%, more preferably 90% or more and less than 100%, and particularly preferably more than 95% and less than 100%.

 ポリマー(P)中の構造単位(A)と構造単位(B)とのモル割合(構造単位(A):構造単位(B))としては、特に制限されないが、1:200~1:10が好ましく、1:150~1:20がより好ましい。 The molar ratio of structural unit (A) to structural unit (B) in polymer (P) (structural unit (A):structural unit (B)) is not particularly limited, but is preferably 1:200 to 1:10, and more preferably 1:150 to 1:20.

 ポリマー(P)が式(2)で表される構造単位(B-1)を含む場合、ポリマー(P)中の構造単位(A)と構造単位(B-1)とのモル割合(構造単位(A):構造単位(B-1))としては、特に制限されないが、1:100~1:5が好ましく、1:75~1:10がより好ましい。 When polymer (P) contains structural unit (B-1) represented by formula (2), the molar ratio of structural unit (A) to structural unit (B-1) in polymer (P) (structural unit (A):structural unit (B-1)) is not particularly limited, but is preferably 1:100 to 1:5, and more preferably 1:75 to 1:10.

 ポリマー(P)が式(3)で表される構造単位(B-2)を含む場合、ポリマー(P)中の構造単位(A)と構造単位(B-2)とのモル割合(構造単位(A):構造単位(B-2))としては、特に制限されないが、1:100~1:5が好ましく、1:75~1:10がより好ましい。 When polymer (P) contains structural unit (B-2) represented by formula (3), the molar ratio of structural unit (A) to structural unit (B-2) in polymer (P) (structural unit (A):structural unit (B-2)) is not particularly limited, but is preferably 1:100 to 1:5, and more preferably 1:75 to 1:10.

 ポリマー(P)が式(2)で表される構造単位(B-1)と式(3)で表される構造単位(B-2)とを含む場合、ポリマー(P)中の構造単位(B-1)と構造単位(B-2)とのモル割合(構造単位(B-1):構造単位(B-2))としては、特に制限されないが、1.0:0.1~0.1:1.0が好ましく、1.0:0.5~0.5:1.0がより好ましく、1.0:0.7~0.7:1.0が特に好ましい。 When polymer (P) contains structural unit (B-1) represented by formula (2) and structural unit (B-2) represented by formula (3), the molar ratio of structural unit (B-1) to structural unit (B-2) in polymer (P) (structural unit (B-1):structural unit (B-2)) is not particularly limited, but is preferably 1.0:0.1 to 0.1:1.0, more preferably 1.0:0.5 to 0.5:1.0, and particularly preferably 1.0:0.7 to 0.7:1.0.

 芳香族基含有ビニル化合物としては、例えば、下記式(2-1)で表される化合物、下記式(3-1)で表される化合物が挙げられる。 Examples of aromatic group-containing vinyl compounds include compounds represented by the following formula (2-1) and compounds represented by the following formula (3-1).

(式(2-1)中、n個のYは、それぞれ独立して、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基、又はチオアルキル基を表し、nは0~7の整数を表す。) (In formula (2-1), n Y's each independently represent a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, or a thioalkyl group, and n represents an integer of 0 to 7.)

(式(3-1)中、R~Rは、それぞれ独立して、水素原子、又はtert-ブチル基を表す。ただし、R~Rの1つ又は2つはtert-ブチル基を表す。) (In formula (3-1), R 3 to R 5 each independently represent a hydrogen atom or a tert-butyl group, provided that one or two of R 3 to R 5 represent a tert-butyl group.)

 ゲルパーミエーションクロマトグラフィー(Gel Permeation Chromatography、GPC)法で測定したブラシポリマーの重量平均分子量としては、特に制限されないが、ポリスチレン換算で、例えば1,000~50,000であり、好ましくは2,000~20,000である。 The weight average molecular weight of the brush polymer measured by gel permeation chromatography (GPC) is not particularly limited, but is, for example, 1,000 to 50,000, and preferably 2,000 to 20,000, in terms of polystyrene.

<<<<ブラシポリマーの製造方法>>>>
 ブラシポリマーの製造方法としては、特に制限されない。
 例えば、ブラシポリマーが付加重合型のポリマーの場合、モノマーを慣用の方法、例えば、塊状重合、溶液重合、懸濁重合、または乳化重合により、重合させることにより製造することができる。溶液重合が特に好ましく、その場合には、例えば、重合開始剤を添加した溶媒に、所望のモノマーを添加して重合することができる。
 例えば、ブラシポリマーが付加重合型のランダムコポリマーの場合、各種モノマーを慣用の方法、例えば、塊状重合、溶液重合、懸濁重合、または乳化重合により、適切なモル比となるよう共重合させることにより製造することができる。
 このような重合としては、例えば、ラジカル重合が挙げられる。
 ブラシポリマーの製造方法は、ラジカル重合以外の重合方法による製造方法であってもよい。例えば、イオン性(アニオン性、カチオン性)の付加重合による製造方法でもよく、重縮合、重付加反応による製造方法であってよい。
<<<<<Method of manufacturing brush polymer>>>>
The method for producing the brush polymer is not particularly limited.
For example, when the brush polymer is an addition polymerization type polymer, it can be produced by polymerizing monomers by a conventional method, such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization. Solution polymerization is particularly preferred, and in this case, for example, the desired monomers can be added to a solvent to which a polymerization initiator has been added, and polymerization can be carried out.
For example, when the brush polymer is an addition polymerization type random copolymer, it can be produced by copolymerizing various monomers in an appropriate molar ratio by a conventional method, such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization.
An example of such polymerization is radical polymerization.
The method for producing the brush polymer may be a polymerization method other than radical polymerization, for example, a production method based on ionic (anionic or cationic) addition polymerization, polycondensation, or polyaddition reaction.

 ポリマー(P)は、例えば、(メタ)アクリロイル基と基板に結合可能な官能基とを有する(メタ)アクリル化合物、及び芳香族基含有ビニル化合物を含有するモノマー混合物の溶液重合により製造することができる。 The polymer (P) can be produced, for example, by solution polymerization of a monomer mixture containing a (meth)acrylic compound having a (meth)acryloyl group and a functional group capable of bonding to a substrate, and an aromatic group-containing vinyl compound.

[重合開始剤]
 重合開始剤としては、有機過酸化物、ジアゾ系化合物を使用することができる。
[Polymerization initiator]
As the polymerization initiator, an organic peroxide or a diazo compound can be used.

 有機過酸化物としては、例えば、ジアシルパーオキサイド類、パーオキシジカーボネート類、パーオキシエステル類、過酸化スルホネート類などが挙げられる。
 ジアシルパーオキサイド類としては、例えば、ジアセチルパ-オキサイド、ジイソブチルパーオキサイド、ジデカノイルパーオキサイド、ベンゾイルパーオキサイド、スクシン酸パーオキサイドなどが挙げられる。
 パーオキシジカーボネート類としては、例えば、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジアリルパーオキシジカーボネートなどが挙げられる。
 パーオキシエステル類としては、例えば、tert-ブチルパーオキシイソブチレート、tert-ブチルネオデカネート、クメンパーオキシネオデカネートなどが挙げられる。
 過酸化スルホネート類としては、例えば、アセチルシクロヘキシルスルホニルパーオキシドなどが挙げられる。
Examples of the organic peroxide include diacyl peroxides, peroxydicarbonates, peroxy esters, and peroxysulfonates.
Examples of the diacyl peroxides include diacetyl peroxide, diisobutyl peroxide, didecanoyl peroxide, benzoyl peroxide, and succinic acid peroxide.
Examples of peroxydicarbonates include diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diallyl peroxydicarbonate.
Examples of peroxyesters include tert-butyl peroxyisobutyrate, tert-butyl neodecanate, and cumene peroxy neodecanate.
Examples of the sulfonate peroxide include acetylcyclohexylsulfonyl peroxide.

 ジアゾ系化合物としては、例えば、2,2’-アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(4-メトキシ-2,4-ジメトキシバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)などが挙げられる。 Examples of diazo compounds include 2,2'-azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(4-methoxy-2,4-dimethoxyvaleronitrile), and 2,2'-azobis(2-cyclopropylpropionitrile).

 重合を短時間で終了させたい場合には、80℃での分解半減期が10時間以下である重合開始剤を使用することが好ましい。そのような重合開始剤としては、ベンゾイルパーオキサイド、2,2’-アゾビスイソブチロニトリルが好ましく、2,2’-アゾビスイソブチロニトリルがより好ましい。 If you want to complete the polymerization in a short time, it is preferable to use a polymerization initiator whose decomposition half-life at 80°C is 10 hours or less. Such polymerization initiators are preferably benzoyl peroxide and 2,2'-azobisisobutyronitrile, and more preferably 2,2'-azobisisobutyronitrile.

 重合開始剤の使用量は、用いるモノマー全体に対して、例えば、0.0001~0.2当量であり、好ましくは0.0005~0.1当量である。 The amount of polymerization initiator used is, for example, 0.0001 to 0.2 equivalents relative to the total amount of monomers used, and preferably 0.0005 to 0.1 equivalents.

[溶媒]
 重合に用いる溶媒としては、重合反応に関与せず、かつ得られるブラシポリマーと相溶性のある溶媒であれば特に制限されず、例えば、芳香族炭化水素類、脂環族炭化水素類、脂肪族炭化水素類、ケトン類、エーテル類、エステル類、アミド類、スルホキシド類、アルコール類、多価アルコール誘導体類などが挙げられる。
 芳香族炭化水素類としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 脂環族炭化水素類としては、例えば、シクロヘキサンなどが挙げられる。
 脂肪族炭化水素類としては、例えば、n-ヘキサン、n-オクタンなどが挙げられる。
 ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノンなどが挙げられる。
 エーテル類としては、例えば、テトラヒドロフラン、ジオキサンなどが挙げられる。
 エステル類としては、例えば、酢酸エチル、酢酸ブチルなどが挙げられる。
 アミド類としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどが挙げられる。
 スルホキシド類としては、例えば、ジメチルスルホキシドなどが挙げられる。
 アルコール類としては、例えば、メタノール、エタノールなどが挙げられる。
 多価アルコール誘導体類としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。
 これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
[solvent]
The solvent used in the polymerization is not particularly limited as long as it is a solvent that is not involved in the polymerization reaction and is compatible with the resulting brush polymer, and examples of the solvent include aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, ketones, ethers, esters, amides, sulfoxides, alcohols, and polyhydric alcohol derivatives.
Examples of aromatic hydrocarbons include benzene, toluene, and xylene.
An example of the alicyclic hydrocarbons is cyclohexane.
Examples of the aliphatic hydrocarbons include n-hexane and n-octane.
Examples of ketones include acetone, methyl ethyl ketone, and cyclohexanone.
Examples of the ethers include tetrahydrofuran and dioxane.
Examples of the esters include ethyl acetate and butyl acetate.
Examples of the amides include N,N-dimethylformamide and N,N-dimethylacetamide.
The sulfoxides include, for example, dimethyl sulfoxide.
Examples of the alcohols include methanol and ethanol.
Examples of polyhydric alcohol derivatives include ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate.
These may be used alone or in combination of two or more.

 重合温度は、移動反応や停止反応などの副反応が起こらず、モノマーが消費され重合が完結する温度範囲であれば特に制限されないが、-100℃以上、溶媒沸点以下の温度範囲で行なわれることが好ましい。
 また、モノマーの溶媒に対する濃度は、特に制限されないが、通常、1~40質量%であり、10~30重量%であることが好ましい。
 重合反応させる時間は適宜選択できるが、通常2時間~50時間の範囲である。
The polymerization temperature is not particularly limited as long as it is within a temperature range in which side reactions such as transfer reactions and termination reactions do not occur and the monomer is consumed to complete the polymerization, but it is preferably carried out within a temperature range of −100° C. or higher and the boiling point of the solvent or lower.
The concentration of the monomer in the solvent is not particularly limited, but is usually 1 to 40% by weight, and preferably 10 to 30% by weight.
The polymerization reaction time can be appropriately selected, but is usually within the range of 2 to 50 hours.

<<<溶媒>>>
 ブラシ層形成用組成物に含有される溶媒としては、ブラシポリマーを溶解する溶媒であれば、特に制限されない。
 溶媒としては、例えば、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノプロピルエーテル、メチルエチルケトン、乳酸エチル、シクロヘキサノン、N,N-2-トリメチルプロピオンアミド、γ-ブチロラクトン、N-メチル-2-ピロリドン、2-ヒドロキシイソ酪酸メチル、3-エトキシプロピオン酸エチルなどが挙げられる。
 これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
<<<Solvent>>>
The solvent contained in the brush layer forming composition is not particularly limited as long as it is a solvent that dissolves the brush polymer.
Examples of the solvent include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monopropyl ether, methyl ethyl ketone, ethyl lactate, cyclohexanone, N,N-2-trimethylpropionamide, γ-butyrolactone, N-methyl-2-pyrrolidone, methyl 2-hydroxyisobutyrate, and ethyl 3-ethoxypropionate.
These may be used alone or in combination of two or more.

 ブラシ層形成用組成物における溶媒の含有量としては、特に制限されないが、例えば90質量%以上99.9質量%以下である。 The solvent content in the brush layer forming composition is not particularly limited, but is, for example, 90% by mass or more and 99.9% by mass or less.

<<<その他の成分>>>
 ブラシ層形成用組成物は、架橋剤を含有しないことが好ましい。例えば、ブラシポリマーを基板と反応させることで、ブラシ層形成用組成物から得られる膜は、ブロックコポリマーを含有する自己組織化膜形成用組成物に含有される溶媒に溶解しない膜となる。そのため、ブラシ層形成用組成物は架橋剤を含有する必要がない。
 本発明において「架橋剤を含有しない」とは、架橋剤としての役割を十分に果たさない程度に架橋剤がわずかに含有していることも含みうる。ブラシ層形成用組成物が架橋剤を含有しない態様としては、ブラシ層形成用組成物における架橋剤の含有量が、ブラシポリマーに対して、0.1質量%未満であることが好ましく、0.01質量%以下であることがより好ましく、0.001質量%以下であることが特に好ましい。
<<<Other ingredients>>>
The brush layer forming composition preferably does not contain a crosslinking agent. For example, by reacting the brush polymer with the substrate, the film obtained from the brush layer forming composition becomes a film that is not dissolved in the solvent contained in the self-assembled film forming composition containing the block copolymer. Therefore, the brush layer forming composition does not need to contain a crosslinking agent.
In the present invention, "not containing a crosslinking agent" may also include a case where the crosslinking agent is contained in such a small amount that the crosslinking agent does not sufficiently function as a crosslinking agent. In an embodiment in which the brush layer forming composition does not contain a crosslinking agent, the content of the crosslinking agent in the brush layer forming composition is preferably less than 0.1% by mass, more preferably 0.01% by mass or less, and particularly preferably 0.001% by mass or less, relative to the brush polymer.

 架橋剤としては、例えば、メチロール基またはアルコキシメチル基で置換された窒素原子を2つ~4つ有する含窒素化合物が挙げられる。 Examples of cross-linking agents include nitrogen-containing compounds having two to four nitrogen atoms substituted with methylol groups or alkoxymethyl groups.

 架橋剤としては、例えば、ヘキサメトキシメチルメラミン、テトラメトキシメチルグリコールウリル、テトラメトキシメチルベンゾグアナミン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素などが挙げられる。 Examples of crosslinking agents include hexamethoxymethylmelamine, tetramethoxymethylglycoluril, tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, 1,3,4,6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea, and 1,1,3,3-tetrakis(methoxymethyl)urea.

 ブラシ層形成用組成物は界面活性剤を含有していてもよい。界面活性剤は、基板に対する塗布性を向上させるための添加物である。
 界面活性剤としては、ノニオン系界面活性剤、フッ素系界面活性剤のような公知の界面活性剤を用いることができる。
 ブラシ層形成用組成物おける界面活性剤の含有量としては、例えば、ブラシポリマーに対して0.1質量%~5質量%が挙げられる。
The brush layer forming composition may contain a surfactant, which is an additive for improving the coatability onto the substrate.
As the surfactant, known surfactants such as nonionic surfactants and fluorine-based surfactants can be used.
The content of the surfactant in the brush layer forming composition is, for example, 0.1% by mass to 5% by mass relative to the brush polymer.

 ブラシ層形成用組成物において、溶媒を除いた成分を固形分と定義すると、固形分には、ブラシポリマー及び必要に応じて添加される添加物が含まれる。
 ブラシ層形成用組成物における固形分の濃度としては、特に制限されないが、例えば0.1質量%~15質量%、好ましくは0.1質量%~10質量%である。
In the brush layer forming composition, if the components excluding the solvent are defined as the solid content, the solid content includes the brush polymer and additives that are added as necessary.
The concentration of solids in the brush layer forming composition is not particularly limited, but is, for example, 0.1% by mass to 15% by mass, and preferably 0.1% by mass to 10% by mass.

 本発明の半導体素子の製造方法の一例を、図を用いて説明する。
 図1A~図1Iは、本発明の半導体素子の製造方法の一例を説明するための断面模式図である。
 半導体基板1の上に、本発明の下層膜形成用組成物を用いて、下層膜2を形成する(図1A)。
 次に、下層膜2の上に、レジスト膜3を形成する(図1B)。
 次に、レジスト膜3に光照射又は電子線照射を行い、次いで、レジスト膜3を現像し、レジストパターン(パターン状のレジスト膜3)を得る(図1C)。
 次に、レジストパターン(パターン状のレジスト膜3)をマスクに用いて下層膜2をエッチングし、パターン化された下層膜2を形成する(図1D)
 次に、レジストパターン(パターン状のレジスト膜3)を除去する(図1E)。
 次に、半導体基板1及びパターン化された下層膜2の上にブラシ層形成用組成物を塗布し、ブラシ層4を形成する(図1F)。
 次に、ブラシ層4の一部を除去し、パターン化された下層膜2のパターンの隙間にブラシ層4を形成する(図1G)。
 次に、パターン化された下層膜2及びブラシ層4の上に、自己組織化膜5を形成する。自己組織化膜5は、例えば、AブロックとBブロックとを有するブロックコポリマーの膜である。自己組織化膜5を相分離させることで、Aブロックのドメイン5aとBブロックのドメイン5bを有するミクロ相分離構造が得られる(図1H)。
 ミクロ相分離した自己組織化膜5の一部(例えば、Bブロックのドメイン5b)を選択的に除去することで、ミクロ相分離のドメインの形態に応じたパターンが得られる(図1I)。
 図示しないが、更なる工程として、ミクロ相分離のドメインの形態に応じたパターンをマスクとして、又は当該パターンが転写された下層膜2及びブラシ層4をマスクとして、半導体基板を加工する工程などが挙げられる。
An example of the method for manufacturing a semiconductor device according to the present invention will be described with reference to the drawings.
1A to 1I are schematic cross-sectional views for explaining an example of a method for manufacturing a semiconductor device according to the present invention.
An underlayer film 2 is formed on a semiconductor substrate 1 using a composition for forming an underlayer film of the present invention (FIG. 1A).
Next, a resist film 3 is formed on the underlayer film 2 (FIG. 1B).
Next, the resist film 3 is irradiated with light or electron beams, and then developed to obtain a resist pattern (patterned resist film 3) (FIG. 1C).
Next, the underlayer film 2 is etched using the resist pattern (patterned resist film 3) as a mask to form a patterned underlayer film 2 (FIG. 1D).
Next, the resist pattern (patterned resist film 3) is removed (FIG. 1E).
Next, a brush layer forming composition is applied onto the semiconductor substrate 1 and the patterned underlayer film 2 to form a brush layer 4 (FIG. 1F).
Next, a part of the brush layer 4 is removed, and the brush layer 4 is formed in the gaps in the pattern of the patterned underlayer film 2 (FIG. 1G).
Next, a self-assembled film 5 is formed on the patterned underlayer film 2 and brush layer 4. The self-assembled film 5 is, for example, a film of a block copolymer having an A block and a B block. By subjecting the self-assembled film 5 to phase separation, a microphase-separated structure having domains 5a of the A block and domains 5b of the B block is obtained ( FIG. 1H ).
By selectively removing a portion of the microphase-separated self-assembled film 5 (for example, domain 5b of the B block), a pattern according to the morphology of the microphase-separated domain can be obtained (FIG. 1I).
Although not shown, further steps include processing the semiconductor substrate using a pattern corresponding to the morphology of the microphase-separated domain as a mask, or using the underlayer film 2 and brush layer 4 to which the pattern has been transferred as masks.

 次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。 The following examples are provided to specifically explain the present invention, but the present invention is not limited to these.

 本明細書の下記合成例1及び比較合成例1に示すポリマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称する)による測定結果である。測定には東ソー(株)製GPC装置を用い、測定条件等は次のとおりである。
 GPCカラム:Shodex KF803L、Shodex(登録商標) KF802、Shodex(登録商標) KF801(昭和電工(株))
 カラム温度:40℃
 溶媒:N,N-ジメチルホルムアミド(DMF)
 流量:0.6ml/分
 標準試料:ポリスチレン(東ソー(株)製)
The weight average molecular weights of the polymers shown in the following Synthesis Example 1 and Comparative Synthesis Example 1 in this specification are the results of measurement by gel permeation chromatography (hereinafter abbreviated as GPC). For the measurement, a GPC device manufactured by Tosoh Corporation was used, and the measurement conditions etc. are as follows.
GPC columns: Shodex KF803L, Shodex (registered trademark) KF802, Shodex (registered trademark) KF801 (Showa Denko K.K.)
Column temperature: 40°C
Solvent: N,N-dimethylformamide (DMF)
Flow rate: 0.6 ml/min. Standard sample: polystyrene (manufactured by Tosoh Corporation)

<合成例1>
 2-ビニルナフタレン(ポリマー1全体に対するモル比60%)2.12g、3-ヒドロキシ-1-メタクリロイルオキシアダマンタン(ポリマー1全体に対するモル比20%)1.09g、2-ヒドロキシエチルメタクリレート(ポリマー1全体に対するモル比20%)0.60g、及び2,2’-アゾビスイソブチロニトリル0.19gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液を2-プロパノールに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー1を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、8,100であった。ポリマー1中に存在する構造を下記式に示す。
<Synthesis Example 1>
2.12 g of 2-vinylnaphthalene (molar ratio to the entire polymer 1: 60%), 1.09 g of 3-hydroxy-1-methacryloyloxyadamantane (molar ratio to the entire polymer 1: 20%), 0.60 g of 2-hydroxyethyl methacrylate (molar ratio to the entire polymer 1: 20%), and 0.19 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 1. The weight average molecular weight Mw measured by GPC in terms of polystyrene was 8,100. The structure present in polymer 1 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048

<合成例2>
 2-ビニルナフタレン(ポリマー2全体に対するモル比60%)2.13g、3-ヒドロキシ-1-メタクリロイルオキシアダマンタン(ポリマー2全体に対するモル比20%)1.09g、2-ヒドロキシプロピルメタクリレート(ポリマー2全体に対するモル比20%)0.66g、及び2,2’-アゾビスイソブチロニトリル0.12gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液を2-プロパノールに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー2を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、7,100であった。ポリマー2中に存在する構造を下記式に示す。
<Synthesis Example 2>
2.13 g of 2-vinylnaphthalene (molar ratio to the entire polymer 2: 60%), 1.09 g of 3-hydroxy-1-methacryloyloxyadamantane (molar ratio to the entire polymer 2: 20%), 0.66 g of 2-hydroxypropyl methacrylate (molar ratio to the entire polymer 2: 20%), and 0.12 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 2. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 7,100. The structure present in polymer 2 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049

<合成例3>
 2-ビニルナフタレン(ポリマー3全体に対するモル比60%)1.92g、3-ヒドロキシ-1-メタクリロイルオキシアダマンタン(ポリマー3全体に対するモル比40%)1.96g、及び2,2’-アゾビスイソブチロニトリル0.12gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液を2-プロパノールに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー3を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、8,900であった。ポリマー3中に存在する構造を下記式に示す。
<Synthesis Example 3>
1.92 g of 2-vinylnaphthalene (60% by mole relative to the total amount of polymer 3), 1.96 g of 3-hydroxy-1-methacryloyloxyadamantane (40% by mole relative to the total amount of polymer 3), and 0.12 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 3. The weight average molecular weight Mw measured by GPC in terms of polystyrene was 8,900. The structure present in polymer 3 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050

<合成例4>
 4-tertブチルスチレン(ポリマー4全体に対するモル比60%)1.96g、3-ヒドロキシ-1-メタクリロイルオキシアダマンタン(ポリマー4全体に対するモル比40%)1.93g、及び2,2’-アゾビスイソブチロニトリル0.12gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液をヘプタンに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー4を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、6,600であった。ポリマー4中に存在する構造を下記式に示す。
<Synthesis Example 4>
1.96 g of 4-tert-butylstyrene (molar ratio to the entire polymer 4: 60%), 1.93 g of 3-hydroxy-1-methacryloyloxyadamantane (molar ratio to the entire polymer 4: 40%), and 0.12 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The resulting reaction solution was dropped into heptane, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 4. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 6,600. The structure present in polymer 4 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051

<合成例5>
 2-ビニルナフタレン(ポリマー5全体に対するモル比55%)1.88g、ベンジルメタクリレート(ポリマー5全体に対するモル比26%)1.01g、3-ヒドロキシ-1-メタクリロイルオキシアダマンタン(ポリマー5全体に対するモル比19%)0.99g、及び2,2’-アゾビスイソブチロニトリル0.12gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液を2-プロパノールに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー5を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、7,700であった。ポリマー5中に存在する構造を下記式に示す。
<Synthesis Example 5>
1.88 g of 2-vinylnaphthalene (molar ratio to the entire polymer 5: 55%), 1.01 g of benzyl methacrylate (molar ratio to the entire polymer 5: 26%), 0.99 g of 3-hydroxy-1-methacryloyloxyadamantane (molar ratio to the entire polymer 5: 19%), and 0.12 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 5. The weight average molecular weight Mw measured by GPC in terms of polystyrene was 7,700. The structure present in polymer 5 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052

<合成例6>
 2-ビニルナフタレン(ポリマー6全体に対するモル比55%)1.84g、2-フェニルエチルメタクリレート(ポリマー6全体に対するモル比26%)1.07g、3-ヒドロキシ-1-メタクリロイルオキシアダマンタン(ポリマー6全体に対するモル比19%)0.97g、及び2,2’-アゾビスイソブチロニトリル0.12gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液を2-プロパノールに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー6を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、7,600であった。ポリマー6中に存在する構造を下記式に示す。
<Synthesis Example 6>
1.84 g of 2-vinylnaphthalene (molar ratio to the entire polymer 6: 55%), 1.07 g of 2-phenylethyl methacrylate (molar ratio to the entire polymer 6: 26%), 0.97 g of 3-hydroxy-1-methacryloyloxyadamantane (molar ratio to the entire polymer 6: 19%), and 0.12 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 6. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 7,600. The structure present in polymer 6 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053

<合成例7>
 2-ビニルナフタレン(ポリマー7全体に対するモル比55%)1.92g、フェニルメタクリレート(ポリマー7全体に対するモル比26%)0.95g、3-ヒドロキシ-1-メタクリロイルオキシアダマンタン(ポリマー7全体に対するモル比19%)1.01g、及び2,2’-アゾビスイソブチロニトリル0.12gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液を2-プロパノールに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー7を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、6,800であった。ポリマー7中に存在する構造を下記式に示す。
<Synthesis Example 7>
1.92 g of 2-vinylnaphthalene (molar ratio to the entire polymer 7: 55%), 0.95 g of phenyl methacrylate (molar ratio to the entire polymer 7: 26%), 1.01 g of 3-hydroxy-1-methacryloyloxyadamantane (molar ratio to the entire polymer 7: 19%), and 0.12 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The obtained reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 7. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 6,800. The structure present in polymer 7 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054

<比較合成例1>
 2-ビニルナフタレン(ポリマー8全体に対するモル比60%)2.17g、1-アダマンチルメタクリレート(ポリマー8全体に対するモル比20%)1.03g、2-ヒドロキシエチルメタクリレート(ポリマー8全体に対するモル比20%)0.61g、及び2,2’-アゾビスイソブチロニトリル0.19gをプロピレングリコールモノメチルエーテルアセテート16.00gに加え溶解させて溶液を得た。この溶液を加熱し、145℃で約3時間撹拌した。得られた反応液を2-プロパノールに滴下し、析出物を吸引ろ過にて回収した後、60℃で減圧乾燥してポリマー8を回収した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは、7,100であった。ポリマー8中に存在する構造を下記式に示す。
Comparative Synthesis Example 1
2.17 g of 2-vinylnaphthalene (60% by mole relative to the entire polymer 8), 1.03 g of 1-adamantyl methacrylate (20% by mole relative to the entire polymer 8), 0.61 g of 2-hydroxyethyl methacrylate (20% by mole relative to the entire polymer 8), and 0.19 g of 2,2'-azobisisobutyronitrile were added to 16.00 g of propylene glycol monomethyl ether acetate and dissolved to obtain a solution. This solution was heated and stirred at 145°C for about 3 hours. The resulting reaction solution was dropped into 2-propanol, and the precipitate was collected by suction filtration, and then dried under reduced pressure at 60°C to collect polymer 8. The weight average molecular weight Mw measured by GPC in terms of polystyrene was 7,100. The structure present in polymer 8 is shown in the following formula.

Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055

(下層膜形成組成物の調製)
(実施例)
 上記合成例1~7、比較合成例1で得られたポリマー、架橋剤、硬化触媒、溶剤を表1に示す割合で混合し、0.02μmのフッ素樹脂製のフィルターで濾過することによって、自己組織化膜のための下層膜形成用組成物をそれぞれ調製した。
 表1及び2中の略号は以下の通りである。各添加量は質量部で示した。
 PL-LI:テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)製)
 PyPTS:ピリジニウム-p-トルエンスルホン酸
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 PGME:プロピレングリコールモノメチルエーテル
(Preparation of Underlayer Film-Forming Composition)
(Example)
The polymers, crosslinking agents, curing catalysts, and solvents obtained in Synthesis Examples 1 to 7 and Comparative Synthesis Example 1 were mixed in the ratios shown in Table 1, and the mixture was filtered through a 0.02 μm fluororesin filter to prepare compositions for forming underlayer films for self-assembled films.
The abbreviations in Tables 1 and 2 are as follows. The amount of each additive is shown in parts by mass.
PL-LI: Tetramethoxymethylglycoluril (manufactured by Nippon Cytec Industries Co., Ltd.)
PyPTS: Pyridinium-p-toluenesulfonic acid PGMEA: Propylene glycol monomethyl ether acetate PGME: Propylene glycol monomethyl ether

Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056

Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057

(フォトレジスト溶剤への溶出試験)
 実施例1~7、比較例1の自己組織化膜のための下層膜形成用組成物を、スピナーを用いてシリコンウエハ上に塗布した。そのシリコンウエハを、ホットプレート上で240℃で60秒間ベークし、膜厚8nmの膜を得た。これらの下層膜をフォトレジストに使用する溶剤であるプロピレングリコールモノメチルエーテル(PGME)/プロピレングリコールモノメチルエーテルアセテート(PGMEA)=70/30の混合溶液に浸漬し、膜厚変化が2Å以下である場合に「良」、2Å超である場合に「不良」とした。その結果を表3に示す。
(Photoresist solvent elution test)
The compositions for forming an underlayer film for a self-assembled film of Examples 1 to 7 and Comparative Example 1 were applied onto a silicon wafer using a spinner. The silicon wafer was baked on a hot plate at 240° C. for 60 seconds to obtain a film with a thickness of 8 nm. These underlayer films were immersed in a mixed solution of propylene glycol monomethyl ether (PGME)/propylene glycol monomethyl ether acetate (PGMEA)=70/30, which is a solvent used in photoresists, and a film thickness change of 2 Å or less was rated as "good" and a film thickness change of more than 2 Å was rated as "poor". The results are shown in Table 3.

(成膜性試験)
 実施例1~7、比較例1の自己組織化膜のための下層膜形成用組成物を、スピナーを用いてシリコンウエハ上に塗布した。そのシリコンウエハを、ホットプレート上で240℃で60秒間ベークし、膜厚8nmの膜を得た。原子間力顕微鏡(AFM)を用いて、これらの下層膜の表面粗さ(Sa)を測定し、3Å以下である場合に「良」、3Å超である場合に「不良」とした。その結果を表3に示す。
(Film-forming test)
The compositions for forming underlayer films for self-assembled monolayers of Examples 1 to 7 and Comparative Example 1 were applied onto silicon wafers using a spinner. The silicon wafers were baked on a hot plate at 240° C. for 60 seconds to obtain films with a thickness of 8 nm. The surface roughness (Sa) of these underlayer films was measured using an atomic force microscope (AFM), and a roughness of 3 Å or less was rated as "good" and a roughness of more than 3 Å was rated as "poor." The results are shown in Table 3.

Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058

(自己組織化膜のための下層膜形成用組成物上での自己組織化評価)
 自己組織化膜のための下層膜形成用組成物を、スピナーを用いてシリコンウエハ上にそれぞれ塗布した。そのシリコンウエハを、ホットプレート上で240℃、60秒間ベークし、膜厚8nmの下層膜を得た。その下層膜上に、自己組織化膜(ブロックコポリマー)溶液をスピンコートし、90℃で60秒間加熱し、自己組織化膜を形成した。その積層膜をN雰囲気下のホットプレート上で260℃、900秒間ベークすることで自己組織化(ミクロ相分離)を進行させた。その後、走査型電子顕微鏡((株)日立ハイテクノロジーズ製、CG4100)を用いてミクロ相分離構造の観察を実施し、垂直配列性評価を実施した。自己組織化で得られたパターンがホール形状(シリンダー)の場合に垂直配列性が「良好」、指紋上配列形状(フィンガープリント)の場合に垂直配列が「不良」として、その結果を表4に示す。
(Evaluation of self-organization on a composition for forming an underlayer film for a self-assembled film)
The composition for forming the underlayer film for the self-assembled film was applied onto a silicon wafer using a spinner. The silicon wafer was baked on a hot plate at 240°C for 60 seconds to obtain an underlayer film with a thickness of 8 nm. A self-assembled film (block copolymer) solution was spin-coated onto the underlayer film and heated at 90°C for 60 seconds to form a self-assembled film. The laminated film was baked on a hot plate in an N2 atmosphere at 260°C for 900 seconds to allow self-organization (microphase separation) to proceed. Thereafter, the microphase separation structure was observed using a scanning electron microscope (CG4100, manufactured by Hitachi High-Technologies Corporation) to evaluate the vertical alignment. When the pattern obtained by self-organization was a hole shape (cylinder), the vertical alignment was deemed "good", and when it was a fingerprint-like array shape (fingerprint), the vertical alignment was deemed "poor". The results are shown in Table 4.

Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059

(ミクロ相分離構造の観察)
 ブロックコポリマーの配列性について、ミクロ相分離構造のSEM画像をそれぞれ実施例1~7及び比較例1を、図2~8(垂直配列性良好)及び図9(垂直配列性不良)に示す。
(Observation of microphase separation structure)
Regarding the alignment of the block copolymer, SEM images of the microphase separation structures of Examples 1 to 7 and Comparative Example 1 are shown in FIGS. 2 to 8 (good vertical alignment) and FIG. 9 (poor vertical alignment), respectively.

 1  半導体基板
 2  下層膜
 3  レジスト膜
 4  ブラシ層
 5  自己組織化膜
 5a Aブロックのドメイン
 5b Bブロックのドメイン
REFERENCE SIGNS LIST 1 Semiconductor substrate 2 Underlayer film 3 Resist film 4 Brush layer 5 Self-assembled film 5a Domain of A block 5b Domain of B block

Claims (20)

 自己組織化膜の下層膜を形成するための下層膜形成用組成物であって、
 ポリマーを含有し、
 前記ポリマーが、反応性基を有する脂環式炭化水素基を有する単位構造(A)を有する、
下層膜形成用組成物。
A composition for forming an underlayer film for forming an underlayer film of a self-assembled film, comprising:
Contains a polymer,
The polymer has a unit structure (A) having an alicyclic hydrocarbon group having a reactive group.
Composition for forming a lower layer film.
 前記単位構造(A)が、下記式(A-1)で表される単位構造である、請求項1に記載の下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000001
(式(A-1)中、Rは、水素原子又はメチル基を表す。Xは、単結合、エステル基又はアミド基を表す。Yは、単結合、又は炭素原子数1~6のアルキレン基を表す。Cyは、反応性基を有する脂環式炭化水素基を表す。)
2. The composition for forming an underlayer film according to claim 1, wherein the unit structure (A) is a unit structure represented by the following formula (A-1):
Figure JPOXMLDOC01-appb-C000001
(In formula (A-1), R 1 represents a hydrogen atom or a methyl group; X 1 represents a single bond, an ester group or an amide group; Y 1 represents a single bond or an alkylene group having 1 to 6 carbon atoms; and Cy represents an alicyclic hydrocarbon group having a reactive group.)
 前記ポリマーが、下記式(B-1)で表される単位構造を更に有する、請求項1に記載の下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000002
(式(B-1)中、R11は、水素原子又はメチル基を表す。Ar11は、置換されていてもよい芳香族基を表す。)
2. The composition for forming an underlayer film according to claim 1, wherein the polymer further has a unit structure represented by the following formula (B-1):
Figure JPOXMLDOC01-appb-C000002
(In formula (B-1), R 11 represents a hydrogen atom or a methyl group. Ar 11 represents an aromatic group which may be substituted.)
 前記式(B-1)中、Ar11は、置換されていてもよい、ナフタレン、アントラセン、フェナントレン、ピレン、トリフェニレン、クリセン、ナフタセン、ビフェニレン、フルオレン、若しくはカルバゾール、又は炭素原子数1~6の炭化水素基を1以上置換基として有するベンゼンを表す、請求項3に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 3, wherein, in formula (B-1), Ar 11 represents optionally substituted naphthalene, anthracene, phenanthrene, pyrene, triphenylene, chrysene, naphthacene, biphenylene, fluorene, or carbazole, or a benzene having one or more hydrocarbon groups having 1 to 6 carbon atoms as a substituent.  前記ポリマーが、単環芳香族構造を有する単位構造(C)を更に有する、請求項1に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 1, wherein the polymer further has a unit structure (C) having a monocyclic aromatic structure.  前記単位構造(C)が、下記式(C-1)で表される単位構造である、請求項5に記載の下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000003
(式(C-1)中、R21は、水素原子又はメチル基を表す。X21は、エステル基又はアミド基を表す。Y21は、単結合、又は炭素原子数1~6のアルキレン基を表す。Z21は、単結合、又はエーテル基を表す。Ar21は、置換されていてもよい、ベンゼン、ナフタレン又はアントラセンを表す。R22は、ハロゲン原子、又は置換されていてもよい炭素原子数1~10の有機基を表す。nは、0~5の整数を表す。R22が2つ以上の時、2つ以上のR22は同じであってもよいし異なっていてもよい。)
The composition for forming an underlayer film according to claim 5, wherein the unit structure (C) is a unit structure represented by the following formula (C-1):
Figure JPOXMLDOC01-appb-C000003
(In formula (C-1), R 21 represents a hydrogen atom or a methyl group. X 21 represents an ester group or an amide group. Y 21 represents a single bond or an alkylene group having 1 to 6 carbon atoms. Z 21 represents a single bond or an ether group. Ar 21 represents benzene, naphthalene or anthracene which may be substituted. R 22 represents a halogen atom or an organic group having 1 to 10 carbon atoms which may be substituted. n represents an integer of 0 to 5. When there are two or more R 22 , the two or more R 22 may be the same or different.)
 前記ポリマーが、反応性基を有する炭化水素基(但し、脂環式炭化水素基を除く。)を有する単位構造(D)を更に有する、請求項1に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 1, wherein the polymer further has a unit structure (D) having a hydrocarbon group (excluding alicyclic hydrocarbon groups) having a reactive group.  前記単位構造(D)が、下記式(D-1)で表される単位構造である、請求項7に記載の下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000004
(式(D-1)中、R31は、水素原子又はメチル基を表す。X31は、エステル基又はアミド基を表す。R32は、反応性基を有する炭素原子数1~12の炭化水素基(但し、脂環式炭化水素基を除く。)を表す。)
The composition for forming an underlayer film according to claim 7, wherein the unit structure (D) is a unit structure represented by the following formula (D-1):
Figure JPOXMLDOC01-appb-C000004
(In formula (D-1), R 31 represents a hydrogen atom or a methyl group. X 31 represents an ester group or an amide group. R 32 represents a hydrocarbon group having 1 to 12 carbon atoms (excluding alicyclic hydrocarbon groups) having a reactive group.)
 前記ポリマーの全単位構造に対する前記単位構造(A)のモル割合が、60モル%未満である、請求項1に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 1, wherein the molar ratio of the unit structure (A) to all unit structures of the polymer is less than 60 mol%.  前記ポリマーの全単位構造に対する前記単位構造(B-1)のモル割合が、45モル%~80モル%である、請求項3に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 3, wherein the molar ratio of the unit structure (B-1) to all unit structures of the polymer is 45 mol % to 80 mol %.  架橋剤を更に含有し、前記架橋剤の含有量が、前記ポリマーの20質量%~50質量%である、請求項1に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 1, further comprising a crosslinking agent, the content of the crosslinking agent being 20% by mass to 50% by mass of the polymer.  前記自己組織化膜が、ブロックコポリマーを含む膜である、請求項1に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 1, wherein the self-assembled film is a film containing a block copolymer.  フォトレジスト膜及び電子線レジスト膜のいずれかのレジスト膜と前記自己組織化膜とを用いたリソグラフィーにおいて、前記レジスト膜の下層膜として用いられた後に、更に前記自己組織化膜の下層膜として用いられる下層膜を形成するための組成物である、請求項1に記載の下層膜形成用組成物。 The composition for forming an underlayer film according to claim 1, which is a composition for forming an underlayer film that is used as an underlayer film for a resist film, either a photoresist film or an electron beam resist film, and the self-assembled film in lithography using the self-assembled film, and is then used as an underlayer film for the resist film.  請求項1から13のいずれかに記載の下層膜形成用組成物の塗布膜の焼成物である、下層膜。 An underlayer film that is a fired product of a coating film of a composition for forming an underlayer film according to any one of claims 1 to 13.  前記下層膜の膜厚が10nm未満である、請求項14に記載の下層膜。 The underlayer film according to claim 14, wherein the underlayer film has a thickness of less than 10 nm.  半導体基板の上に、請求項1から13のいずれかに記載の下層膜形成用組成物を用いて、下層膜を形成する工程と、
 前記下層膜の上に、自己組織化膜を形成する工程と、
を含む、半導体素子の製造方法。
forming an underlayer film on a semiconductor substrate using a composition for forming an underlayer film according to any one of claims 1 to 13;
forming a self-assembled film on the underlayer film;
A method for manufacturing a semiconductor device, comprising:
 前記自己組織化膜を形成する工程において、前記自己組織化膜が、パターン化された前記下層膜の上に形成され、
 更に、
 前記下層膜の上に、フォトレジスト膜及び電子線レジスト膜のいずれかのレジスト膜を形成する工程と、
 前記レジスト膜に光照射又は電子線照射を行い、次いで、前記レジスト膜を現像し、レジストパターンを得る工程と、
 前記レジストパターンをマスクに用いて前記下層膜をエッチングし、前記パターン化された下層膜を形成する工程と、
 を含む、請求項16に記載の半導体素子の製造方法。
In the step of forming a self-assembled film, the self-assembled film is formed on the patterned underlayer film,
Furthermore,
forming a resist film, which is either a photoresist film or an electron beam resist film, on the underlayer film;
a step of irradiating the resist film with light or electron beam and then developing the resist film to obtain a resist pattern;
etching the underlayer film using the resist pattern as a mask to form the patterned underlayer film;
The method for manufacturing a semiconductor device according to claim 16 , comprising:
 前記パターン化された下層膜を形成する工程と前記自己組織化膜を形成する工程との間に、前記パターン化された下層膜のパターンの隙間にブラシ層を形成する工程を更に含む、請求項17に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to claim 17, further comprising the step of forming a brush layer in the gaps in the pattern of the patterned underlayer film between the step of forming the patterned underlayer film and the step of forming the self-assembled film.  前記自己組織化膜が、ブロックコポリマーを含む膜である、請求項16に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to claim 16, wherein the self-assembled film is a film containing a block copolymer.  前記パターン化された下層膜を形成する工程の後に、前記レジストパターンを除去する工程を更に含む、請求項17に記載の半導体素子の製造方法。

 
The method for manufacturing a semiconductor device according to claim 17, further comprising the step of removing the resist pattern after the step of forming the patterned underlayer film.

PCT/JP2024/030954 2023-08-30 2024-08-29 Underlayer film material for self-assembled materials WO2025047871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-139866 2023-08-30
JP2023139866 2023-08-30

Publications (1)

Publication Number Publication Date
WO2025047871A1 true WO2025047871A1 (en) 2025-03-06

Family

ID=94819618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/030954 WO2025047871A1 (en) 2023-08-30 2024-08-29 Underlayer film material for self-assembled materials

Country Status (1)

Country Link
WO (1) WO2025047871A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506992A (en) * 2006-10-18 2010-03-04 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Anti-reflective coating composition
JP2013212489A (en) * 2012-03-09 2013-10-17 Tokyo Ohka Kogyo Co Ltd Pattern formation method for layer including block copolymer and underlayer agent
US20140116980A1 (en) * 2011-07-18 2014-05-01 Asml Netherlands B.V. Method for providing a template for a self-assemblable polymer for use in device lithography
JP2017513032A (en) * 2013-12-16 2017-05-25 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Underlayer composition for promoting self-assembly, and method of manufacture and use
JP2018509759A (en) * 2015-02-19 2018-04-05 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation A hybrid morphological chemical prepattern for induced self-assembly of block copolymers
JP2022096615A (en) * 2020-12-17 2022-06-29 ローム アンド ハース エレクトロニック マテリアルズ エルエルシー Photoresist underlayer compositions and patterning methods
WO2023106364A1 (en) * 2021-12-09 2023-06-15 日産化学株式会社 Composition for resist underlayer film formation including polymer containing polycyclic aromatic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506992A (en) * 2006-10-18 2010-03-04 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Anti-reflective coating composition
US20140116980A1 (en) * 2011-07-18 2014-05-01 Asml Netherlands B.V. Method for providing a template for a self-assemblable polymer for use in device lithography
JP2013212489A (en) * 2012-03-09 2013-10-17 Tokyo Ohka Kogyo Co Ltd Pattern formation method for layer including block copolymer and underlayer agent
JP2017513032A (en) * 2013-12-16 2017-05-25 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Underlayer composition for promoting self-assembly, and method of manufacture and use
JP2018509759A (en) * 2015-02-19 2018-04-05 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation A hybrid morphological chemical prepattern for induced self-assembly of block copolymers
JP2022096615A (en) * 2020-12-17 2022-06-29 ローム アンド ハース エレクトロニック マテリアルズ エルエルシー Photoresist underlayer compositions and patterning methods
WO2023106364A1 (en) * 2021-12-09 2023-06-15 日産化学株式会社 Composition for resist underlayer film formation including polymer containing polycyclic aromatic

Similar Documents

Publication Publication Date Title
KR102285718B1 (en) Composition for forming underlayer film of self-assembling film including aliphatic polycyclic structure
JP6402035B2 (en) Composition for forming underlayer of self-assembled film containing styrene structure
US10508181B2 (en) Bottom layer film-formation composition of self-organizing film containing polycyclic organic vinyl compound
WO2006126406A1 (en) Polysilane compound-containing lower layer film forming composition for lithography
KR20170086467A (en) Composition for forming silicon-containing resist underlayer film removable by wet process
US9567477B2 (en) Undercoat agent and method of producing structure containing phase-separated structure
KR20230093347A (en) Novel compound, semiconductor material, and methods for manufacturing coating and semiconductor using the same
US9816003B2 (en) Method of producing structure containing phase-separated structure
WO2025047871A1 (en) Underlayer film material for self-assembled materials
WO2024253181A1 (en) Underlayer film material for self-assembled material
WO2024106492A1 (en) Underlayer film material for self-assembled film
US12030974B2 (en) Composition for forming block copolymer layer for formation of microphase-separated pattern
US11440985B2 (en) Underlayer film-forming composition for use in forming a microphase-separated pattern
TW202506762A (en) Used as the bottom layer of self-assembly materials
JP2023084319A (en) Primer for self-assembly film
WO2023190807A1 (en) Brush material for self-assembled film
US20250066636A1 (en) Resin composition for forming phase-separated structure and method for producing structure having phase-separated structure
WO2022039187A1 (en) Vertically phase-separated block copolymer layer