[go: up one dir, main page]

WO2025047758A1 - Culture medium for culturing virus-producing cells - Google Patents

Culture medium for culturing virus-producing cells Download PDF

Info

Publication number
WO2025047758A1
WO2025047758A1 PCT/JP2024/030548 JP2024030548W WO2025047758A1 WO 2025047758 A1 WO2025047758 A1 WO 2025047758A1 JP 2024030548 W JP2024030548 W JP 2024030548W WO 2025047758 A1 WO2025047758 A1 WO 2025047758A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
virus
concentration
cells
acid
Prior art date
Application number
PCT/JP2024/030548
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 片山
雄一 渡邉
七彩 落合
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2025047758A1 publication Critical patent/WO2025047758A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof

Definitions

  • the present invention relates to cell culture technology, in particular to a culture medium for virus-producing cells, a culture method, etc.
  • virus-producing cells To meet the needs for human gene therapy and vaccine production, rapid and stable production technologies for viruses and viral vectors are essential, and in particular, the culture of cells that produce viruses and viral vectors (hereinafter also referred to as "virus-producing cells") is extremely important.
  • the components of the medium are an important issue.
  • the components contained in the medium affect the growth and proliferation of cells.
  • the medium for virus-producing cells also affects the virus proliferation ability (i.e., virus production ability) in the cells. Therefore, it is necessary to select appropriate components. For example, nutrients, vitamins, minerals, amino acids, sugars, etc. are important for cell proliferation.
  • the concentration of each component in the medium affects cell growth and virus production, so by appropriately adjusting the concentration of each component, it is possible to improve cell proliferation and virus productivity (Non-Patent Documents 1 to 4).
  • some components may be harmful to cells at high concentrations, so it is necessary to consider the balance.
  • the present invention aims to provide a medium that improves virus productivity in virus-producing cells when they are cultured, an agent for producing the medium, and a method for culturing virus-producing cells using the medium.
  • the present inventors have focused on medium components that improve virus productivity and have conducted intensive research. As a result, they have found that a medium containing a specific component at a specific concentration can improve the virus productivity of virus-producing cells, and have succeeded in preparing a medium additive (supplement) suitable for producing the medium, thereby completing the present invention. That is, the present invention is as follows.
  • a medium additive for use in culturing virus-producing cells comprising at least one selected from the group consisting of L-aspartic acid and glutathione, the final concentrations of each component being within the following ranges when added to a medium: (4) L-aspartic acid: 40 to 790 mg/L (10) Glutathione: 0.5 to 5 mg/L.
  • Potassium 8.65-86.5 mg/L
  • Magnesium 0.56 to 5.6 mg/L
  • Iron 3.19 to 31.9 mg/L
  • [4] The agent according to any one of [1] to [3], further comprising potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer and a glutamine source, wherein the final concentrations of each component when added to a medium are within the following ranges: (1) Potassium: 8.65-86.5 mg/L (2) Magnesium: 0.56 to 5.6 mg/L (3) Iron: 3.19 to 31.9 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 0.618-6.18mg/L (7) Riboflavin: 0.18 to 1.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 900 mg/L (11) Glutamine source: 17.54-175.4 mg/L.
  • a medium composition comprising a basal medium to which the medium additive according to any one of [1] to [5] has been added.
  • a medium composition for use in culturing virus-producing cells comprising at least one component selected from the group consisting of L-aspartic acid and glutathione, the concentration of each component in the medium composition being within the following ranges: (4) L-aspartic acid: 250 to 1,000 mg/L (10) Glutathione: 1.5 to 6 mg/L.
  • a method for producing a medium composition for use in culturing virus-producing cells comprising at least one component selected from the group consisting of L-aspartic acid and glutathione, the method comprising adjusting the concentrations of each component in the medium composition to be within the following concentration ranges: (4) L-aspartic acid: 250 to 1,000 mg/L (10) Glutathione: 1.5 to 6 mg/L.
  • a method for producing a medium composition for use in culturing virus-producing cells comprising L-aspartic acid and glutathione, the method comprising adjusting the concentrations of each component in the medium composition to fall within the following concentration ranges: (4) L-aspartic acid: 250 to 1,000 mg/L (10) Glutathione: 1.5 to 6 mg/L.
  • the medium composition further comprises at least one selected from the group consisting of potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, and a glutamine source, and the concentration of each component in the medium composition is within the following range: (1) Potassium: 290-772 mg/L (2) Magnesium: 7 to 45 mg/L (3) Iron: 17 to 123 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 3-59.6mg/L (7) Riboflavin: 0.7 to 4.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 8,800 mg/L (11) Glutamine source: 17.54 to 1169 mg/L (12) Copper: 0.002 to 0.024 mg/L.
  • Potassium 290-772 mg/L
  • Magnesium 7 to 45 mg/L
  • Iron 17 to 123 mg/L
  • L-tryptophan 48 to
  • the medium composition further comprises potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffering agent and a glutamine source, and the concentrations of each component in the medium composition are within the following ranges: (1) Potassium: 290-772 mg/L (2) Magnesium: 7 to 45 mg/L (3) Iron: 17 to 123 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 3-59.6mg/L (7) Riboflavin: 0.7 to 4.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 8,800 mg/L (11) Glutamine source: 17.54 to 1169 mg/L (12) Copper: 0.002 to 0.024 mg/L.
  • a method for culturing virus-producing cells comprising a step of culturing virus-producing cells in the medium composition according to any one of [7] to [11].
  • a method for producing a virus comprising culturing a virus-infected virus-producing cell in the medium composition according to any one of [7] to [11].
  • a medium additive for use in culturing virus-producing cells comprising at least one component selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source, the final concentration of each component being within the following ranges when added to a medium: (1) Potassium: 8.65-86.5 mg/L (2) Magnesium: 0.56 to 5.6 mg/L (3) Iron: 3.19 to 31.9 mg/L (4) L-aspartic acid: 171 to 1710 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 0.618-6.18mg/L (7) Riboflavin: 0.18 to 1.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 900 mg/L (10) Glutathione: 0.6 to 6 mg/L (11) Glutamine source:
  • a medium additive for use in culturing virus-producing cells comprising potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source, the agent according to [01] above, wherein the final concentrations of each component when added to a medium are within the following ranges: (1) Potassium: 8.65-86.5 mg/L (2) Magnesium: 0.56 to 5.6 mg/L (3) Iron: 3.19 to 31.9 mg/L (4) L-aspartic acid: 171 to 1710 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 0.618-6.18mg/L (7) Riboflavin: 0.18 to 1.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 900 mg/L (10) Glutathione: 0.6 to 6 mg/L (11) Glutamine source
  • a medium composition comprising a basal medium to which the medium additive according to any one of [01] to [03] has been added.
  • Potassium
  • the medium composition according to [04], comprising potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper in the following concentration ranges: (1) Potassium: 290-772 mg/L (2) Magnesium: 7 to 45 mg/L (3) Iron: 17 to 123 mg/L (4) L-aspartic acid: 220 to 3894 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 3-59.6mg/L (7) Riboflavin: 0.7 to 4.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 8,800 mg/L (10) Glutathione: 2 to 6 mg/L (11) Glutamine source: 17.54 to 1169 mg/L (12) Copper: 0.002 to 0.024 mg/L.
  • a medium composition for use in culturing virus-producing cells comprising at least one component selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper, the concentration of each component in the medium composition being within the following ranges: (1) Potassium: 290-772 mg/L (2) Magnesium: 7 to 45 mg/L (3) Iron: 17 to 123 mg/L (4) L-aspartic acid: 220 to 3894 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 3-59.6mg/L (7) Riboflavin: 0.7 to 4.8 mg/
  • a medium composition for use in culturing virus-producing cells comprising potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper, the concentration of each component in the medium composition being within the following ranges: (1) Potassium: 290-772 mg/L (2) Magnesium: 7 to 45 mg/L (3) Iron: 17 to 123 mg/L (4) L-aspartic acid: 220 to 3894 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 3-59.6mg/L (7) Riboflavin: 0.7 to 4.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 8,800 mg/L (10) Glutathione: 2 to 6 mg/L (11) Glutamine source: 17.54 to 1169 mg/L (12) Copper: 0.002 to 0.0
  • a method for producing a medium composition for use in culturing virus-producing cells comprising adjusting at least one selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper to the following concentration range: (1) Potassium: 290-772 mg/L (2) Magnesium: 7 to 45 mg/L (3) Iron: 17 to 123 mg/L (4) L-aspartic acid: 220 to 3894 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 3-59.6mg/L (7) Riboflavin: 0.7 to 4.8 mg/L (8) Ethanolamine: 10.2 to 102 mg/L (9) Buffer: 90 to 8,800 mg/L (10) Glutathione: 2 to 6 mg/L (11) Glutamine source: 17.54 to 1169 mg/L (12) Copper
  • a method for producing a medium composition for use in culturing virus-producing cells comprising adjusting the concentrations of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper to the following ranges: (1) Potassium: 290-772 mg/L (2) Magnesium: 7 to 45 mg/L (3) Iron: 17 to 123 mg/L (4) L-aspartic acid: 220 to 3894 mg/L (5) L-tryptophan: 48 to 480 mg/L (6) Folic acid: 3-59.6mg/L (7) Riboflavin: 0.7 to 4.8 mg/L (8) Ethanolamine: 10.2 to 480 mg/L (9) Buffer: 90 to 8,800 mg/L (10) Glutathione: 2 to 6 mg/L (11) Glutamine source: 17.54 to 1169 mg/L (12) Copper: 0.002 to
  • a method for culturing virus-producing cells comprising a step of culturing virus-producing cells in the medium composition according to any one of [04] to [010].
  • a method for producing a virus comprising culturing a virus-infected virus-producing cell in a medium composition according to any one of [04] to [010].
  • 3 is a graph showing the results of investigating the proliferation ability of virus-producing cells in a medium containing L-aspartic acid and glutathione (reduced form).
  • Figure 4 is a graph showing the results of investigating the proliferation ability of virus-producing cells in various media. The results are obtained under conditions of low cell density and low virus concentration.
  • “Supplement” refers to AJI Supplement.
  • "Supplement” means AJI Supplement.
  • Figure 6 is a graph showing the results of investigating the proliferation ability of virus-producing cells in various media.
  • the present invention provides a medium additive for use in culturing virus-producing cells (hereinafter, also referred to as "medium additive of the present invention").
  • the medium additive of the present invention can usually be added to a basal medium (described later).
  • the medium additive is added to a basal medium in an amount of 1/20 to 1/5, preferably 1/15 to 1/8, more preferably 1/10.
  • One embodiment of the medium additive of the present invention contains at least one member selected from the group consisting of L-aspartic acid and glutathione, and preferably contains both L-aspartic acid and glutathione.
  • the medium additive of the present invention contains at least one member selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source. Usually, 2, 3, 4, 5, 6, 7, 8, 9, or 10 members, and preferably all 11 members.
  • the medium additives include magnesium, folic acid, riboflavin, ethanolamine, a buffering agent, and glutathione.
  • the medium additive comprises potassium and iron.
  • the medium additive may be a solution of each desired component in a suitable solvent (e.g., water), or the solution may be freeze-dried or otherwise converted into a solid powder. It may also be a simple mixture of each solid component. Each component will be described below.
  • Potassium is a nutrient necessary for cell survival and proliferation, and is necessary for maintaining physiological functions of cells, including the regulation of metabolic processes. It is also essential for controlling the cell cycle (Biotechnology and Bioengineering. 2018;115:921-931, Appl Microbiol Biotechnol(2015) 99:9935-9949). Potassium is usually included in the medium additive as a potassium salt, although the form is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium. Examples of potassium salts include, but are not limited to, potassium chloride, potassium hydroxide, potassium sulfate, potassium phosphate, dipotassium hydrogen phosphate, potassium carbonate, potassium hydrogen carbonate, etc.
  • Potassium chloride is preferable.
  • the potassium salt may be anhydrous or hydrated.
  • Potassium is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 8.65 to 86.5 mg/L, preferably 15 to 60 mg/L, and particularly preferably 20 to 40 mg/L.
  • the concentration of potassium in the medium additive is usually 86.5 to 865 mg/L, preferably 150 to 600 mg/L, and particularly preferably 200 to 400 mg/L. If the potassium concentration in the medium additive is too high, the final concentration when added to the basal medium will be too high, which is undesirable because the osmotic pressure will increase and cell growth will decrease.
  • the potassium concentration in the medium additive is too low, the final concentration when added to the basal medium will be low, which is undesirable because the intracellular sodium-potassium pump will not start and the ATP required for cell growth will not be obtained.
  • the above concentration represents the concentration when converted into only the functional molecule (i.e., free potassium).
  • the potassium concentration can be measured by any method available in the art, but is usually measured by ICP MS.
  • Magnesium acts as a cofactor for enzyme activity and regulates many enzymatic reactions in cells. Magnesium is particularly required for many enzymes in the glycolytic pathway, such as phosphofructokinase and pyruvate kinase. Magnesium also participates in the formation of ATP (adenosine triphosphate) and supports cellular energy metabolism. Magnesium is not limited in its form as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium, and is usually included in the medium additive as a magnesium salt.
  • magnesium salts include, but are not limited to, magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium acetate, etc. Preferred examples include magnesium sulfate.
  • Magnesium salts may be anhydrous or hydrated. Magnesium is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.56 to 5.6 mg/L, preferably 1 to 4 mg/L, and particularly preferably 1.5 to 2.5 mg/L.
  • the concentration of magnesium in the medium additive is usually 5.6 to 56 mg/L, preferably 10 to 40 mg/L, and particularly preferably 15 to 25 mg/L.
  • magnesium concentration in the medium additive is too high, the final concentration when added to the basal medium will be too high, and if an excess of essential metals is contained in the medium, cell growth will be inhibited, which is not preferable. If the magnesium concentration in the medium additive is too low, the final concentration when added to the basal medium will be low, and essential metals required by cells will not be supplied, and cell growth will be inhibited, which is not preferable.
  • magnesium is provided as a magnesium salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free magnesium).
  • the magnesium concentration can be measured by any method available in the art, but is usually measured by ICP MS.
  • Iron Iron is also involved in the structure of enzymes and proteins in the electron transport system, and is an essential element for maintaining the proper function of these proteins (Biotechnol. Prog. 2000, 16, 872-884). Iron ions contained in electron carriers such as cytochromes and iron-sulfur proteins play an important role in the electron transport system in mitochondria.
  • the form of iron is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium, and is usually included in the medium additive as an iron salt.
  • iron salts include inorganic salts, organic acid salts, complexes (complex salts), and the like of iron. Examples of inorganic salts include sulfates, chlorides, and nitrates.
  • organic acid salts include acetates and citrates.
  • iron complex There is no particular restriction on the iron complex as long as it can form a complex with iron and transport iron into cells, but a synthetic non-proteinaceous one that is easily soluble in water and has a stable complex at the pH (near neutral) of the medium, i.e., does not precipitate as iron hydroxide, is selected.
  • iron salts include, but are not limited to, ferrous citrate, sodium ferrous citrate, ammonium ferrous citrate, ferrous acetate, ferrous oxalate, ferrous succinate, sodium ferrous citrate succinate, ferrous pyrophosphate, ferric pyrophosphate, ferrous lactate, ferrous gluconate, ferrous formate, ferric formate, potassium ferric oxalate ammonium, ferrous sulfate, ferric sulfate, ammonium ferrous sulfate, ferric carbonate, ferrous chloride, ferric chloride, etc.
  • sodium ferrous citrate is used.
  • the iron salt may be anhydrous or hydrated.
  • Iron is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 3.19 to 31.9 mg/L, preferably 5 to 20 mg/L, and particularly preferably 8 to 15 mg/L.
  • the concentration of iron in the medium additive is usually 31.9 to 319 mg/L, preferably 50 to 200 mg/L, and particularly preferably 80 to 150 mg/L. If the iron concentration in the medium additive is too high, the final concentration when added to the basal medium will be too high, and if an excess of essential metals is contained in the medium, cell growth will be inhibited, which is not preferable.
  • the iron concentration in the medium additive is too low, the final concentration when added to the basal medium will be low, and essential metals required by cells will not be supplied, and cell growth will be inhibited, which is not preferable.
  • the above concentration represents the concentration when converted into only functional molecules (i.e., free iron).
  • the iron concentration can be measured by any method available in the art, but is usually measured by ICP MS.
  • L-aspartic acid is known to be involved in the activation of the electron transport system (Biotechnol. Prog. 2000, 16, 872-884). L-aspartic acid functions as an electron donor for enzyme complex 1 (NADH: quinone oxidoreductase) of the electron transport system, and plays an important role in cell metabolism and proliferation by activating energy production. L-aspartic acid is also known to be a target of amino acid consumption specific to viruses (Vaccine 33 (2015) 5974-5981). The form of L-aspartic acid is not limited as long as it can exert its function in a medium additive and a medium composition obtained by adding the medium additive to a basal medium.
  • L-aspartic acid is included in the medium additive so that the final concentration when added to the basal medium is 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170 mg/L or more, and 1800, 1700, 1600, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800 mg/L or less.
  • L-aspartic acid is included in the medium additive so that the final concentration when added to the basal medium is in the range of 171 to 1710 mg/L, preferably 200 to 800 mg/L, particularly preferably 400 to 600 mg/L.
  • L-aspartic acid is contained in the medium additive so that the final concentration when added to a basal medium is in the range of 40 to 790 mg/L, preferably 60 to 700 mg/L, particularly preferably 80 to 600 mg/L.
  • the concentration of L-aspartic acid in the medium additive is usually 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 mg/L or more, and 18000, 17000, 16000, 15000, 14000, 13000, 12000, 11000, 10000, 9000, 8000 mg/L or less.
  • the concentration of L-aspartic acid in the medium additive is usually 1710 to 17100 mg/L, preferably 2000 to 8000 mg/L, particularly preferably 4000 to 6000 mg/L.
  • the concentration of L-aspartic acid in the medium additive is usually 400 to 7900 mg/L, preferably 600 to 7000 mg/L, particularly preferably 800 to 6000 mg/L. If the concentration of L-aspartic acid in the medium additive is too high, the final concentration when added to the basal medium becomes too high, the pH in the medium decreases, and the appropriate pH of the cells cannot be maintained, which is not preferable. If the concentration of L-aspartic acid in the medium additive is too low, the final concentration when added to the basal medium becomes low, metabolites are not supplied to the TCA cycle, and the cells become energy insufficient, which is not preferable.
  • L-aspartic acid When L-aspartic acid is provided as a salt, the above concentrations represent the concentrations calculated in terms of only the functional molecule (ie, free L-aspartic acid).
  • the concentration of L-aspartic acid can be measured by any method available in the art, but is usually measured by UPLC.
  • L-tryptophan is one of the amino acids necessary for protein synthesis in cells, and also plays an important role in cell growth and intracellular signal transduction pathways.
  • the form of L-tryptophan is not limited as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium.
  • L-tryptophan may be isolated and purified from natural products or processed products thereof, or may be a synthetic product. It may also be in the form of a salt, and specific examples thereof include salts with inorganic bases, organic bases, inorganic acids, organic acids, and salts with amino acids. Free L-tryptophan is preferred.
  • L-tryptophan is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 48 to 480 mg/L, preferably 60 to 300 mg/L, and particularly preferably 100 to 200 mg/L.
  • the concentration of L-tryptophan in the medium additive is usually 480 to 4800 mg/L, preferably 600 to 3000 mg/L, and particularly preferably 1000 to 2000 mg/L. If the concentration of L-tryptophan in the medium additive is too high, the final concentration when added to the basal medium becomes too high, which is undesirable because it is toxic to cells.
  • the concentration of L-tryptophan in the medium additive is too low, the final concentration when added to the basal medium becomes low, and tryptophan, an essential amino acid, is not synthesized in the cells, which is undesirable because the tryptophan required for the cells cannot be supplied.
  • L-tryptophan is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free L-tryptophan).
  • the L-tryptophan concentration can be measured by any method available in the art, but is usually measured by UPLC.
  • Folic acid is a component necessary for promoting nucleic acid synthesis (Journal of Biotechnology 233 (2016) 34-41).
  • the form of folic acid is not limited as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium.
  • Folic acid may be isolated and purified from natural products or processed products thereof, or may be a synthetic product. It may also be in the form of a salt, and examples of such salts include 5-methyltetrahydrofolic acid (5MeTHF), tetrahydrofolic acid (THF), and 5-formyltetrahydrofolic acid (5CHOTHF). Folic acid is preferred.
  • Folic acid is included in the medium additive so that the final concentration when added to the basal medium is in the range of 0.618 to 6.18 mg/L, preferably 1 to 5 mg/L, and particularly preferably 1.5 to 3 mg/L.
  • the concentration of folic acid in the medium additive is usually 6.18 to 61.8 mg/L, preferably 10 to 50 mg/L, and particularly preferably 15 to 30 mg/L. If the concentration of folic acid in the medium additive is too high, the final concentration when added to the basal medium will be too high, and the solubility in the medium will be low, resulting in precipitation in the medium. In addition, since it is very easily decomposed, it is not possible to deny that the decomposition products may have an adverse effect on some cells, which is not preferable.
  • the concentration of folic acid in the medium additive is too low, the final concentration when added to the basal medium will be low, and folic acid necessary for nucleic acid synthesis will not be supplied, which will affect cell growth, which is not preferable.
  • folic acid is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free folic acid).
  • the concentration of folic acid can be measured by any method available in the art, but is usually measured by LCMS.
  • Riboflavin is another name for vitamin B2 and plays an important role in the electron transport system of cells (Biotechnol. Prog. 2000, 16, 872-884).
  • the electron transport system is a sequential process consisting of multiple protein complexes present in the membranes of mitochondria, and is essential for energy production in cells. Therefore, the inclusion of riboflavin in a cell culture medium contributes to proper cell growth and metabolism.
  • Riboflavin may be in any form as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium. It may be isolated and purified from natural products or processed products thereof, or may be a synthetic product.
  • Riboflavin and riboflavin derivatives may be in the form of a salt. Examples of such salts include acid addition salts and salts with bases. Riboflavin is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.18 to 1.8 mg/L, preferably 0.3 to 1.5 mg/L, and particularly preferably 0.4 to 1.0 mg/L.
  • the concentration of riboflavin in the medium additive is usually 1.8 to 18 mg/L, preferably 3 to 15 mg/L, and particularly preferably 4 to 10 mg/L. If the concentration of riboflavin in the medium additive is too high, the final concentration when added to the basal medium will be too high, and the solubility in the medium will be low, resulting in precipitation in the medium. In addition, since it is very easily decomposed, it is not preferable because the decomposition products may have adverse effects on some cells.
  • the concentration of riboflavin in the medium additive is too low, the final concentration when added to the basal medium will be low, and the metabolic products of riboflavin will not be supplied to the electron transport system, resulting in a decrease in its function, which is not preferable.
  • riboflavin is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free riboflavin).
  • the riboflavin concentration can be measured by any method available in the art, but is usually measured by LCMS.
  • Ethanolamine also called 2-aminoethanol or monoethanolamine
  • 2-aminoethanol or monoethanolamine is involved in the synthesis of phosphatidylethanolamine, a phospholipid that is a major component of the cell membrane.
  • Phosphatidylethanolamine plays an important role in maintaining the structure of the cell membrane and regulating the fluidity and permeability of the cell membrane. Therefore, by including ethanolamine in the medium, it is possible to provide a suitable lipid environment for cells.
  • the form of ethanolamine is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium.
  • Ethanolamine may be isolated and purified from natural products or their processed products, or may be a synthetic product.
  • phosphoethanolamine also known as phosphorylethanolamine
  • monomethylethanolamine dimethylethanolamine
  • N-acylphosphatidylethanolamine phosphatidylethanolamine
  • phosphatidylethanolamine phosphatidylethanolamine
  • lysophosphatidylethanolamine phosphoethanolamine
  • the salt may be in the form of an ethanolamine or ethanolamine derivative salt.
  • salts include salts with inorganic bases, organic bases, inorganic acids, and organic acids, and salts with amino acids.
  • Preferred salts include salts with inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrobromic acid, salts with organic carboxylic acids such as acetic acid, trifluoroacetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, succinic acid, tannic acid, butyric acid, hybenzic acid, pamoic acid, enanthic acid, decanoic acid, teoclic acid, salicylic acid, lactic acid, oxalic acid, mandelic acid, and malic acid, and salts with organic sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
  • organic carboxylic acids such as acetic acid, trifluoroacetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid,
  • Ethanolamine is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 10.2 to 102 mg/L, preferably 15 to 60 mg/L, and particularly preferably 20 to 40 mg/L.
  • the concentration of ethanolamine in the medium additive is usually 102 to 1020 mg/L, preferably 150 to 600 mg/L, and particularly preferably 200 to 400 mg/L. If the concentration of ethanolamine in the medium additive is too high, the final concentration when added to the basal medium becomes too high, which is undesirable because it inhibits cell proliferation. If the concentration of ethanolamine in the medium additive is too low, the final concentration when added to the basal medium becomes low, which is undesirable because it does not supply cell membrane components necessary for cell proliferation.
  • ethanolamine is provided as a salt, the above concentration represents the concentration when converted to only the functional molecule (i.e., free ethanolamine).
  • the concentration of ethanolamine can be measured by any method available in the art, but is usually measured by UPLC.
  • the buffer contained in the medium additive of the present invention and in the medium composition obtained by adding the medium additive to a basal medium is not particularly limited as long as it can control the pH of the finally prepared medium composition to a predetermined value (e.g., 7.0 to 7.4), and examples thereof include N-[2-hydroxyethyl]-piperazine-N'-[2-ethanesulfonic acid] (HEPES), MOPS, MES, phosphates, bicarbonates, etc.
  • the concentration of the buffer used can be appropriately adjusted depending on the type of buffer used.
  • HEPES When HEPES is used as a buffer, HEPES is included in the medium additive so that the final concentration when added to the basal medium is in the range of 90 to 900 mg/L, preferably 100 to 600 mg/L, and particularly preferably 200 to 400 mg/L.
  • the concentration of HEPSE in the medium additive is usually 900 to 9000 mg/L, preferably 1000 to 6000 mg/L, and particularly preferably 2000 to 4000 mg/L. If the concentration of the buffer in the medium additive is too high or too low, the desired buffering capacity cannot be obtained, which is not preferable.
  • the concentration of the buffer for example, in the case of HEPES, can be measured by any method available in the art, but can usually be measured by LCMS-MS.
  • Glutathione has an antioxidant effect and has the function of protecting cells from oxidative stress within the cells (Journal of Biotechnology 233 (2016) 34-41, Appl Microbiol Biotechnol (2015) 99:9935-9949).
  • the form of glutathione is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium. It may be isolated and purified from natural products or processed products thereof, or it may be a synthetic product. Glutathione may be either oxidized glutathione or reduced glutathione, but reduced glutathione is preferable. It can also be made into a salt.
  • salts include salts with inorganic bases, organic bases, inorganic acids, organic acids, and salts with amino acids.
  • Preferred examples of the salts include salts with inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrobromic acid; salts with organic carboxylic acids such as acetic acid, trifluoroacetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, succinic acid, tannic acid, butyric acid, hybenzic acid, pamoic acid, enanthic acid, decanoic acid, teoclic acid, salicylic acid, lactic acid, oxalic acid, mandelic acid, and malic acid; and salts with organic sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
  • Glutathione is contained in the medium additive so that the final concentration when added to the basal medium is 0.5, 0.6, 0.7, 0.8, 0.9, 1 mg/L or more and 6, 5, 4, 3 mg/L or less.
  • glutathione is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.6 to 6 mg/L, preferably 1 to 5 mg/L, particularly preferably 1.5 to 3 mg/L.
  • glutathione is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.5 to 5 mg/L, preferably 1 to 4 mg/L, particularly preferably 2 to 3 mg/L.
  • the concentration of glutathione in the medium additive is usually 5, 6, 7, 8, 9, 10 mg/L or more and 60, 50, 40, 30 mg/L or less. In one embodiment of the present invention, the concentration of glutathione in the medium additive is 6 to 60 mg/L, preferably 10 to 50 mg/L, particularly preferably 15 to 30 mg/L. In another embodiment of the present invention, the concentration of glutathione in the medium additive is 5 to 50 mg/L, preferably 10 to 40 mg/L, particularly preferably 20 to 30 mg/L.
  • the concentration of glutathione in the medium additive is too high, the final concentration when added to the basal medium becomes too high, and since it is very easily decomposed, the possibility that the decomposition products may have an adverse effect on some cells cannot be denied, which is not preferable. If the concentration of glutathione in the medium additive is too low, the final concentration when added to the basal medium becomes low, which is not preferable, since it disrupts the balance of oxidation and reduction required within the cells.
  • glutathione is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free glutathione).
  • the glutathione concentration can be measured by any method available in the art, but is conveniently measured using a glutathione quantification kit (eg, DOJINDO: G257).
  • Glutamine is an amino acid and plays an important role in cell metabolism.
  • the glutamine source contained in the medium additive of the present invention and the medium composition obtained by adding the medium additive to a basal medium is not particularly limited as long as it can provide glutamine to the final medium composition prepared, and examples thereof include L-glutamine, alanyl-L-glutamine (an amino acid in which alanine and glutamine are bonded by a peptide bond), and glutamic acid (which can function as a precursor of glutamine).
  • Alanyl-L-glutamine is preferable. Alanyl-L-glutamine is more stable than general glutamine.
  • the form of the glutamine source is not limited as long as it can exert its function in the medium additive and the medium composition to which the medium additive is added. It may be isolated and purified from natural products or processed products thereof, or may be a synthetic product. It may also be a salt, and specific examples thereof include salts with inorganic bases, organic bases, inorganic acids, organic acids, and salts with amino acids. Alanyl-L-glutamine is preferred.
  • the glutamine source is included in the medium additive so that the final concentration when added to the basal medium is in the range of 17.54 to 175.4 mg/L, preferably 20 to 100 mg/L, and particularly preferably 40 to 70 mg/L.
  • the concentration of the glutamine source in the medium additive is usually 175.4 to 1754 mg/L, preferably 200 to 1000 mg/L, and particularly preferably 400 to 700 mg/L.
  • the above concentration of the glutamine source represents the concentration when converted into only the functional molecule (i.e., glutamine).
  • the glutamine concentration can be measured by any method available in the art, but is usually measured by UPLC.
  • the present invention provides a medium composition for use in culturing virus-producing cells (hereinafter, also referred to as "medium composition of the present invention").
  • One embodiment of the medium composition of the present invention contains at least one member selected from the group consisting of L-aspartic acid and glutathione, and preferably contains both L-aspartic acid and glutathione.
  • Another embodiment of the medium composition of the present invention contains at least one member selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper.
  • the medium composition of the present invention may be provided in a liquid state, or may be prepared in a more concentrated state than the concentration at the time of use, or in a solid state such as a freeze-dried powder, and then diluted with a solvent such as water, or dissolved or dispersed in a solvent such as water, at the time of use.
  • a solvent such as water, or dissolved or dispersed in a solvent such as water, at the time of use.
  • the potassium contained in the medium composition has the same meaning as described above in (1.1 Potassium).
  • the concentration of potassium in the medium composition is 290 to 772 mg/L, preferably 290 to 370 mg/L, and particularly preferably 300 to 400 mg/L.
  • the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free potassium).
  • the magnesium contained in the medium composition has the same meaning as described above in (1.2 Magnesium).
  • the concentration of magnesium in the medium composition is 7 to 45 mg/L, preferably 15 to 25 mg/L, and particularly preferably 18 to 23 mg/L.
  • the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free magnesium).
  • the iron contained in the medium composition has the same meaning as defined above in (1.3 Iron).
  • the iron concentration in the medium composition is 17 to 123 mg/L, preferably 18 to 30 mg/L, and particularly preferably 20 to 28 mg/L.
  • the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free iron).
  • the L-aspartic acid contained in the medium composition has the same meaning as defined above in (1.4 L-aspartic acid).
  • the concentration of L-aspartic acid in the medium composition is 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380 mg/L or more, and 2010, 1910, 1810, 1710, 1610, 1510, 1410, 1310, 1210, 1110, 1010 mg/L or less.
  • the concentration of L-aspartic acid in the medium composition is 220 to 3894 mg/L, preferably 500 to 1000 mg/L, particularly preferably 600 to 900 mg/L.
  • the concentration of L-aspartic acid in the medium composition is 250 to 1000 mg/L, preferably 270 to 910 mg/L, particularly preferably 290 to 810 mg/L.
  • L-aspartic acid is provided as a salt, the above concentrations represent the concentrations calculated in terms of only the functional molecule (ie, free L-aspartic acid).
  • the L-tryptophan contained in the medium composition has the same meaning as above (1.5 L-tryptophan).
  • the concentration of L-tryptophan in the medium composition is 48 to 480 mg/L, preferably 100 to 200 mg/L, and particularly preferably 150 to 200 mg/L.
  • L-tryptophan is provided as a salt, the above concentration represents the concentration converted into only the functional molecule (i.e., free L-tryptophan).
  • the folic acid contained in the medium composition has the same meaning as defined above in (1.6 Folic acid).
  • the concentration of folic acid in the medium composition is 3 to 59.6 mg/L, preferably 5 to 20 mg/L, and particularly preferably 8 to 15 mg/L.
  • the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free folic acid).
  • the riboflavin contained in the medium composition has the same meaning as defined above (1.7 Riboflavin).
  • the concentration of riboflavin in the medium composition is 0.7 to 4.8 mg/L, preferably 1 to 2 mg/L, and particularly preferably 1.4 to 2 mg/L.
  • the above concentration represents the concentration converted into only the functional molecule (i.e., free riboflavin).
  • the ethanolamine contained in the medium composition has the same meaning as described above (1.8 Ethanolamine).
  • the concentration of ethanolamine in the medium composition is 10.2 to 102 mg/L, preferably 30 to 50 mg/L, and particularly preferably 35 to 45 mg/L.
  • the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free ethanolamine).
  • the buffer contained in the medium composition has the same meaning as described above in (1.9 Buffer).
  • the concentration of the buffer in the medium composition is 90 to 8800 mg/L, preferably 1000 to 3000 mg/L, and particularly preferably 2000 to 3000 mg/L.
  • the glutathione contained in the medium composition has the same meaning as defined above in (1.10 Glutathione).
  • the concentration of glutathione in the medium composition is 0.5, 0.6, 0.7, 0.8, 0.9, 1 mg/L or more and 6, 5, 4, 3 mg/L or less.
  • the concentration of glutathione in the medium composition is 2 to 6 mg/L, preferably 2.5 to 3.5 mg/L, particularly preferably 2.8 to 3.2 mg/L.
  • the concentration of glutathione in the medium composition is 1.5 to 6 mg/L, preferably 2 to 5 mg/L, particularly preferably 3 to 4 mg/L.
  • the glutamine source contained in the medium composition is the same as that described above in (1.11 Glutamine source).
  • the concentration of the glutamine source in the medium composition is 17.54 to 1169 mg/L, preferably 145 to 1030 mg/L, and particularly preferably 290 to 880 mg/L.
  • the above concentration of the glutamine source represents the concentration converted into only the functional molecule (i.e., glutamine).
  • Copper is a type of trace element and is involved in many enzyme reactions in cells. For example, it acts as a coenzyme for enzymes involved in cell metabolism and antioxidant enzymes. These enzymes catalyze important reactions in cells and are necessary to maintain normal cell function, so copper is an important component for cell growth. Copper is not limited in its form as long as it can exert its function in the medium composition, and is usually included in the medium composition as a copper salt.
  • copper salts include inorganic salts, organic acid salts, complexes (complex salts), and the like of copper. Examples of inorganic salts include sulfates, chlorides, and nitrates. Examples of organic acid salts include acetates and citrates.
  • copper complex there is no particular restriction on the copper complex as long as it can form a complex with copper and transport copper into cells.
  • copper salts include, but are not limited to, copper nitrate, copper acetate, copper sulfate, and the like. Preferably, copper sulfate is used.
  • the copper salt may be anhydrous or hydrated.
  • the copper concentration in the medium composition is 0.002 to 0.024 mg/L, preferably 0.004 to 0.015 mg/L, and particularly preferably 0.006 to 0.01 mg/L.
  • the above concentration represents the concentration converted into only the functional molecule (i.e., free copper).
  • the copper concentration is usually measured by ICP MS.
  • the medium composition of the present invention can be prepared, for example, by adding the medium additive of the present invention (see "1. Medium additive" above) to a basal medium, and this embodiment is preferred because of its simplicity.
  • the medium composition of the present invention can be obtained by adding 1/20 to 1/5, preferably 1/15 to 1/8, and more preferably 1/10 of the medium additive to a basal medium.
  • basal medium refers to a medium containing carbon sources, nitrogen sources, inorganic salts, etc., which are essential for cell culture.
  • the basal medium may be prepared by a method known per se, or a commercially available product may be used.
  • Usable basal media include, for example, Dulbecco's Modified Eagle's Medium (DMEM), Ham's Nutrient Mixture F12, DMEM/F12, McCoy's 5A medium, Minimum Essential Medium (MEM), Eagle's Minimum Essential Medium (EMEM), alpha modified Eagle's Minimum Essential Medium (alpha modified Eagle's Medium), and alpha modified Eagle's Medium (alpha modified Eagle's Medium).
  • DMEM Dulbecco's Modified Eagle's Medium
  • EMEM Eagle's Minimum Essential Medium
  • alpha modified Eagle's Minimum Essential Medium alpha modified Eagle's Medium
  • alpha modified Eagle's Medium alpha modified Eagle's Medium
  • alpha modified Eagle's Medium alpha modified Eagle's Medium
  • the basal medium may be commercially available or may be one currently under development.
  • basal media used in preparing the medium composition of the present invention for culturing virus-producing cells include CDM4HEK293 (Cytiva), SFM4HEK293 (Cytiva), HyCell TM TransFx-H (Cytiva), Pro293a (LONZA), Pro293s (LONZA), BalanCD HEK293 (FUJIFILM), EX-CELL (registered trademark) 293 (SAFC), EX-CELL (registered trademark) CD293 Viral Vector Medium (SAFC), 293 SFMII (Thermo Fisher Scientific), CD293 (Thermo Fisher Scientific), and 293 SFMII (Thermo Fisher Scientific).
  • Preferred basal media include FreeStyle293 TM Expression medium (Thermo Fisher Scientific), Expi293 TM Expression medium (Thermo Fisher Scientific), LV MAX TM Production medium (Thermo Fisher Scientific), Viral Production Medium (Thermo Fisher Scientific), etc.
  • Preferred basal media under development include B10-06, PBH-05, etc.
  • the medium composition of the present invention is prepared by adding the medium additive of the present invention to a basal medium.
  • the concentration of the component in the medium composition is the sum of the concentration in the medium additive and the concentration in the basal medium.
  • component (12) copper, it is not contained in the medium additive, so its concentration corresponds to that in the basal medium.
  • the medium composition of the present invention can also contain components that are favorable for cell growth and virus production.
  • Such components include, for example, sugars such as glucose, fructose, sucrose, and maltose; amino acids; proteins such as albumin and transferrin; peptides such as glycylglycylglycine and soybean peptide; serum; vitamins such as choline, vitamin A, B vitamins (thiamine, pyridoxine, cyanocobalamin, biotin, pantothenic acid, nicotinamide, etc.), vitamin C, and vitamin E; fatty acids such as oleic acid, arachidonic acid, and linoleic acid; lipids such as cholesterol; inorganic salts such as sodium chloride, calcium chloride, and sodium dihydrogen phosphate; trace elements such as zinc and selenium; N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (N,N,N-bis(2-hydroxyethy
  • the medium composition may contain serum or may be serum-free.
  • serum There are no particular limitations on the serum, so long as it is derived from an animal and does not inhibit cell growth, but it is preferably mammalian serum (e.g., fetal bovine serum, human serum, etc.), and more preferably human serum.
  • the concentration of serum may be within a known concentration range.
  • the medium composition of the present invention is preferably serum-free.
  • the medium composition of the present invention preferably a medium composition obtained by adding the medium additive of the present invention to a basal medium, can be used for producing any virus capable of replicating in the medium composition.
  • Viruses that are the subject of the present invention include, for example, viruses belonging to the following families: orthomyxoviruses, paramyxoviruses, reoviruses, picornaviruses, flaviviruses, arenaviruses, herpesviruses, poxviruses, and adenoviruses. These may be recombinant viruses.
  • the viruses of interest are those that may form part of a vaccine, in particular a human vaccine, and the medium composition of the present invention may be used for the cultivation of cells producing these viruses.
  • the viruses may in particular be poliovirus, rabies virus, Japanese encephalitis virus, yellow fever virus, rubella virus, mumps virus, dengue virus or measles virus, viruses of various forms of hepatitis, AIDS virus or chickenpox virus, herpes virus, viruses of the disease caused by respiratory syncytial virus, cytomegalovirus, EBV, rotavirus or influenza virus.
  • the target virus is adenovirus and adeno-associated virus (AAV), and the medium composition of the present invention can be used for culturing cells that produce these viruses.
  • AAV adenovirus and adeno-associated virus
  • adenovirus and AAV have the ability to carry genes, they can be used as virus vectors in gene therapy and gene transfer research. Therefore, it is possible to mass-produce adenovirus vectors carrying specific genes using adenovirus and AAV-producing cells, and to introduce the genes into target cells. Furthermore, adenovirus and AAV with specific genes can be mass-produced using virus-producing cells to be used as vaccines.
  • virus-producing cells there are no particular limitations on the virus-producing cells as long as they are capable of propagating the desired virus, and mammalian cells such as human, monkey, and rodent cells can be used.
  • mammalian cells such as human, monkey, and rodent cells
  • specific examples include HEK293 cells, Vero cells, CV-1 cells, LLC-MK2 cells, MDCK cells, MDBK cells, WI-38 cells, MRC5 cells (human fibroblast cells), and BHK21 cells, all of which are commercially available.
  • HEK293 cells or Vero cells are preferably used when the target virus is adenovirus or AAV
  • MDCK cells are preferably used when the target virus is influenza virus.
  • the present invention provides a method for culturing virus-producing cells (hereinafter, also referred to as the "culturing method of the present invention").
  • the culturing method of the present invention comprises a step of culturing virus-producing cells in the medium composition of the present invention.
  • the virus-producing cells can be cultured under the same culture conditions as those for culturing normal animal cells.
  • the culture can be performed at 95% humidity and a CO2 concentration of 5-10% (v/v), but the present invention is not limited to such conditions.
  • the culture can be performed at, for example, 30-37°C, but may be performed at a temperature outside the above range as long as the desired cell growth and virus production can be achieved.
  • the culture period is not particularly limited, and is, for example, 12-150 hours, preferably 48-120 hours.
  • the incubator used for cell culture is not particularly limited as long as it is capable of culturing the target cells, but examples include flasks, tissue culture flasks, dishes, Petri dishes, tissue culture dishes, multi-dishes, microplates, microwell plates, multi-plates, multi-well plates, microslides, chamber slides, petri dishes, tubes, trays, culture bags, and roller bottles.
  • the culture vessel may be either cell-adhesive or cell-non-adhesive, and is appropriately selected depending on the purpose.
  • a cell-adhesive culture vessel may be coated with any cell-supporting substrate, such as an extracellular matrix (ECM), for the purpose of improving adhesion of the surface of the culture vessel to cells.
  • ECM extracellular matrix
  • the cell-supporting substrate may be any substance intended for cell adhesion.
  • the present invention provides a method for producing a virus (hereinafter, also referred to as the "production method of the present invention”).
  • the method for producing a virus of the present invention is characterized in that virus-producing cells infected with a virus (hereinafter, also referred to as the "infected cells”) are cultured in the medium composition of the present invention.
  • the culture may be an adhesion culture or a suspension culture, but is preferably a suspension culture.
  • adheresion culture means culturing by adhering to a culture substrate, and specifically means a method in which adherent cells are grown while adhering to the surface of the culture substrate and while adhering to each other.
  • culture substrates include, but are not limited to, multi-well plates, culture dishes, petri dishes, culture flasks, microcarriers, hollow fibers, and the like.
  • the culture may be a stationary culture on a substrate.
  • suspension culture refers to a cell culture method performed in a state in which cells are not adhered to a culture vessel. Suspension culture may or may not involve external pressure or vibration on the liquid medium, or shaking or rotation in the liquid medium.
  • the virus is produced by collecting a supernatant from the culture medium obtained by culturing the infected cells.
  • the virus-producing cells in which virus production has been achieved are then collected and disrupted, and the resulting cell disruption liquid containing the virus particles is appropriately subjected to a process such as filter filtration, ultracentrifugation, chromatography, or ultrafiltration to purify the virus particles into the final product.
  • the term "cells infected with a virus” refers not only to cells in which a live virus has been added to a virus-producing cell and the virus has proliferated within the cell, but also to cells in which a nucleic acid encoding a protein necessary for viral infection has been introduced into a virus-producing cell and the virus has been produced and proliferated within the cell.
  • the virus (particle) or vector obtained by the production method of the present invention can be used as an active ingredient in a pharmaceutical composition, which can be used ex vivo in cells derived from a patient or can be administered directly to a patient.
  • ⁇ Production of medium composition of the present invention 1> L-aspartic acid and glutathione were dissolved in distilled water to prepare a medium additive. The medium additive was added to a basal medium to prepare the medium composition of the present invention. The concentrations of each component in the medium composition are as follows (each concentration is shown as the concentration of the functional molecule only). (4) L-aspartic acid: 250 to 1,000 mg/L (10) Glutathione: 1.5 to 6 mg/L
  • a medium additive was prepared by dissolving potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source in distilled water.
  • the medium additive was added to a basal medium to prepare a medium composition of the present invention (hereinafter, also referred to as "AJI Supplement").
  • the concentrations of each component in the medium composition are as follows (each concentration is shown as the concentration of the functional molecule only).
  • a medium composition was prepared having the following concentrations of each component (each concentration is shown as the concentration of the functional molecule only): (1) Potassium: 290-370 mg/L (2) Magnesium: 15 to 25 mg/L (3) Iron: 18-30 mg/L (4) L-aspartic acid: 290 to 810 mg/L (5) L-tryptophan: 100 to 200 mg/L (6) Folic acid: 5-20mg/L (7) Riboflavin: 1 to 2 mg/L (8) Ethanolamine: 30 to 50 mg/L (9) Buffer: 1000 to 3000 mg/L (10) Glutathione: 3 to 4 mg/L (11) Glutamine source: 145 to 1030 mg/L (12) Copper: 0.004-0.015mg/L
  • the potassium used was potassium chloride
  • the magnesium used was anhydrous magnesium sulfate
  • the iron used was sodium ferric citrate
  • the ethanolamine used was ethanolamine hydrochloride
  • the buffer used was HEPES
  • the glutathione used was reduced glutathione
  • the glutamine source used was alanyl L-glutamine.
  • Serum-free adaptation and suspension of HEK293 cells 1 Reagents used (1) Fetal Bovine Serum (FBS, Cytiva) (2) DMEM/F12 (Thermo Fisher Scientific Co., Ltd.) (3) 293 SFM II (Thermo Fisher Scientific Co., Ltd.) (4) L-Glutamine (200 mM) (Thermo Fisher Scientific Japan Co., Ltd.)
  • Serum-free acclimation and suspension method Serum-free acclimation and suspension were carried out according to the following procedure. (1): HEK293 2. sus cells were put to sleep in 10% FBS/DMEM F12 medium and statically cultured (seeding density: 2 ⁇ 10 5 cells/mL, T75 flask ⁇ 1, culture period: 3 days, CO 2 5%). (2): Before reaching 100% confluence, the cells were passaged and statically cultured in 5% FBS/DMEM F12 medium (seeding density: 2 ⁇ 10 5 cells/mL, T75 flask ⁇ 1, culture period: 3 days, CO 2 5%).
  • the cells were cultured for 2 passages in a 1:1 mixture of 2.5% FBS/DMEM F12 medium and 293SFM II + 4 mM L-Gln for 4 days with shaking (final FBS concentration: 1.25%) (seeding density: 3 x 10 cells/mL, 2 petri dishes, 4 days of culture, 5% CO, 90 rpm).
  • ⁇ Virus preparation method> 1 Reagents used (1) Fetal Bovine Serum (FBS, Cytiva) Minimum Essential Medium Eagle (hereinafter referred to as MEM, Sigma-Aldrich) Minimum Essential Medium (autoclavable) (Thermo Fisher Scientific Co., Ltd.) Sodium bicarbonate (FUJIFILM Wako Pure Chemical Corporation) Neutral Red (FUJIFILM Wako Pure Chemical Corporation) Agarose (Becton, Dickinson and Company) Antibacterial agent (penicillin-streptomycin solution) (FUJIFILM Wako Pure Chemical Corporation) PBS(-) (FUJIFILM Wako Pure Chemical Corporation) 0.05% trypsin (Thermo Fisher Scientific Co., Ltd.)
  • Virus strains and host cells used Cell line: HEK-293 (ATCC 1573 TM )
  • the recovery liquid is mixed with an equal volume of MEM containing 10% FBS, and centrifuged for 5 minutes (1000 rpm, 190 ⁇ g, 24° C.) to remove the supernatant.
  • (6) Add 1 mL of 10% FBS-containing MEM to a 15 mL centrifuge tube and resuspend.
  • Add 0.1 mL of the suspension to a 25 cm2 culture flask containing 5 mL of 10% FBS-containing MEM, and culture in a CO2 incubator for several days.
  • steps (4) to (6) are repeated to subculture the cells.
  • Frozen virus is thawed, appropriately diluted with MEM, and added to a 75 cm2 culture flask in which HEK-293 cells have been cultured, and the virus is allowed to adsorb to the cells for 1 hour in a CO2 incubator. Thereafter, the virus solution is removed, MEM is added, and the cells are cultured in a CO 2 incubator. The culture is continued until the appearance of cytopathic effect (CPE), and the supernatant containing the virus solution and the cells are harvested.
  • CPE cytopathic effect
  • inoculum virus solution After collection, freeze-thaw three times (suspension times: 5 or more) and centrifuge for 5 minutes (2000 rpm, 780 x g, 4°C), and the supernatant is used as the inoculum virus solution.
  • the inoculum virus solution is dispensed into 1 mL portions into ceramic tubes and frozen (-80°C) in an ultra-low temperature freezer until use.
  • Virus strains and host cells used Cell line: 1. Suspension-type HEK293 prepared in 2. sus (ATCC: CRL-1573.3) Virus strain: Human adenovirus 32 (ATCC VR-625 TM ) prepared in 2.
  • Virus production experiment using culture medium and AJI Supplement 5.1 Low cell density and virus concentration 5.1.1.
  • Reagents used (1) 293 SFM II (Thermo Fisher Scientific Co., Ltd.) (2) L-Glutamine (200 mM) (Thermo Fisher Scientific Co., Ltd.) (3) CDM4HEK293 (Cytiva) (4) B10-06 (developed by Ajinomoto Co., Inc.) (5) PBH-05 (developed by Ajinomoto Co., Inc.) (6) As the AJI Supplement, Supplement V0 (developed by Ajinomoto Co., Inc.) was used.
  • *L-Glutamine was added to 293 SFM II to a final concentration of 4 mM to prepare glutamine-containing 293 SFM II.
  • Table 8 shows the concentration of each component in Table 7 converted to functional molecules only.
  • the number of cells is counted (FIG. 6), and the culture medium for each group is adjusted to 5 ⁇ 10 5 cells/mL, and 5 mL is added per petri dish.
  • the frozen virus inoculation solution is thawed, and for 5 ⁇ 10 5 cells/mL, the virus solution is added to the petri dish so that the MOI is 10 (see Table 9).
  • the concentrations of each component in each group are as shown in Tables 7 and 8.
  • the present invention it is possible to provide a medium composition for culturing virus-producing cells having excellent virus productivity and a medium additive suitable for producing the medium.
  • the amount of virus produced per cell is significantly increased. Therefore, more efficient virus production is possible.
  • the obtained virus can function as a virus vector useful for gene therapy and vaccine production.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing: for the culturing of virus-producing cells, a culture medium for improving the virus productivity of the cells and an agent for producing said culture medium; and a method for culturing virus-producing cells using said culture medium. A culture medium for culturing virus-producing cells according to the present invention contains at least one selected from the group consisting of L-aspartic acid and glutathione or at least one selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper, and preferably contains all of the above in predetermined concentrations. The culture medium has excellent virus productivity.

Description

ウイルス産生細胞培養用培地Culture medium for virus-producing cells

 本発明は、細胞培養技術、特にウイルス産生細胞の培養用培地、培養方法等に関する。 The present invention relates to cell culture technology, in particular to a culture medium for virus-producing cells, a culture method, etc.

 ヒト遺伝子治療やワクチン製造に対するニーズを満たすためには、ウイルスやウイルスベクターの迅速で且つ安定した生産技術が不可欠である。特にウイルスやウイルスベクターを産生する細胞(以下、「ウイルス産生細胞」とも称する)の培養は極めて重要である。
 ウイルス産生細胞用の培地を設計・最適化する際、培地の成分が重要な課題となる。培地に含まれる成分は、細胞の成長と増殖に影響を与える。加えて、ウイルス産生細胞用の培地では、細胞内でのウイルス増殖能(即ちウイルス産生能)にも影響を与える。従って、適切な成分を選定することが必要となる。例えば、栄養分やビタミン、ミネラル、アミノ酸、糖などが細胞の増殖に重要である。また、培地中の各成分の濃度は、細胞の生育やウイルス産生に影響を与えることから各成分の濃度を適切に調整することで、細胞の増殖性、及びウイルスの生産性を向上させることが可能になる(非特許文献1~4)。一方で、高濃度では細胞にとって有害となる成分もあり得るため、バランスを考慮する必要がある。
To meet the needs for human gene therapy and vaccine production, rapid and stable production technologies for viruses and viral vectors are essential, and in particular, the culture of cells that produce viruses and viral vectors (hereinafter also referred to as "virus-producing cells") is extremely important.
When designing and optimizing a medium for virus-producing cells, the components of the medium are an important issue. The components contained in the medium affect the growth and proliferation of cells. In addition, the medium for virus-producing cells also affects the virus proliferation ability (i.e., virus production ability) in the cells. Therefore, it is necessary to select appropriate components. For example, nutrients, vitamins, minerals, amino acids, sugars, etc. are important for cell proliferation. In addition, the concentration of each component in the medium affects cell growth and virus production, so by appropriately adjusting the concentration of each component, it is possible to improve cell proliferation and virus productivity (Non-Patent Documents 1 to 4). On the other hand, some components may be harmful to cells at high concentrations, so it is necessary to consider the balance.

Liste-Calleja L, J Biosci Bioeng. 2014;117(4):471-7Liste-Calleja L, J Biosci Bioeng. 2014;117(4):471-7 Petiot E, Vaccine. 2015;33(44):5974-81Petiot E, Vaccine. 2015;33(44):5974-81 Cervera L, BMC Proc. 2011;5 Suppl 8(Suppl 8):P126Cervera L, BMC Proc. 2011;5 Suppl 8(Suppl 8):P126 Shen CF, Vaccine. 2012;30(2):300-6Shen CF, Vaccine. 2012;30(2):300-6

 本発明は、ウイルス産生細胞の培養において、該細胞におけるウイルス生産性を向上するような培地並びに該培地を製造する為の剤、及び該培地を用いたウイルス産生細胞の培養方法等を提供することを目的とする。 The present invention aims to provide a medium that improves virus productivity in virus-producing cells when they are cultured, an agent for producing the medium, and a method for culturing virus-producing cells using the medium.

 上記課題に鑑み、本発明者はウイルス生産性を向上するような培地成分に着目し、鋭意研究を進めた。結果、特定の成分を特定の濃度で含有する培地がウイルス産生細胞のウイルス生産性を向上できることを見出し、又、当該培地を製造するのに適した培地添加剤(サプリメント)を調製することに成功し、本発明を完成するに至った。
 即ち、本発明は以下の通りである。
In view of the above problems, the present inventors have focused on medium components that improve virus productivity and have conducted intensive research. As a result, they have found that a medium containing a specific component at a specific concentration can improve the virus productivity of virus-producing cells, and have succeeded in preparing a medium additive (supplement) suitable for producing the medium, thereby completing the present invention.
That is, the present invention is as follows.

[1]ウイルス産生細胞の培養に用いる為の培地添加剤であって、L-アスパラギン酸及びグルタチオンからなる群より選択される少なくとも1種を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、剤:
(4)L-アスパラギン酸:40~790mg/L
(10)グルタチオン:0.5~5mg/L。
[2]L-アスパラギン酸及びグルタチオンを含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、[1]記載の剤:
(4)L-アスパラギン酸 :40~790mg/L
(10)グルタチオン:0.5~5mg/L。
[3]さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源からなる群より選択される少なくとも1種を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、[1]又は[2]記載の剤:
(1)カリウム:8.65~86.5mg/L
(2)マグネシウム:0.56~5.6mg/L
(3)鉄:3.19~31.9mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:0.618~6.18mg/L
(7)リボフラビン:0.18~1.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~900mg/L
(11)グルタミン源:17.54~175.4mg/L。
[4]さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、[1]~[3]のいずれかに記載の剤:
(1)カリウム:8.65~86.5mg/L
(2)マグネシウム:0.56~5.6mg/L
(3)鉄:3.19~31.9mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:0.618~6.18mg/L
(7)リボフラビン:0.18~1.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~900mg/L
(11)グルタミン源:17.54~175.4mg/L。
[5]グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、[3]又は[4]記載の剤。
[6][1]~[5]のいずれかに記載の培地添加剤を基礎培地に添加してなる培地組成物。
[7]ウイルス産生細胞の培養に用いる為の培地組成物であって、L-アスパラギン酸及びグルタチオンからなる群より選択される少なくとも1種を含み、各成分の培地組成物中の濃度が下記の範囲である、培地組成物:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
[8]L-アスパラギン酸及びグルタチオンを含み、各成分の培地組成物中の濃度が下記の範囲である、[7]記載の培地組成物:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
[9]さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源からなる群より選択される少なくとも1種を含み、各成分の培地組成物中の濃度が下記の範囲である、[7]又は[8]記載の培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[10]さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源を含み、各成分の培地組成物中の濃度が下記の範囲である、[7]~[9]のいずれかに記載の培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[11]グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、[9]又は[10]記載の培地組成物。
[12]L-アスパラギン酸及びグルタチオンからなる群より選択される少なくとも1種を含む、ウイルス産生細胞の培養に用いる為の培地組成物の製造方法であって、各成分の培地組成物中の濃度を下記の濃度範囲になるように調整することを含む方法:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
[13]L-アスパラギン酸及びグルタチオンを含む、ウイルス産生細胞の培養に用いる為の培地組成物の製造方法であって、各成分の培地組成物中の濃度を下記の濃度範囲になるように調整することを含む[12]記載の方法:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
[14]該培地組成物がさらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源からなる群より選択される少なくとも1種を含み、各成分の培地組成物中の濃度が下記の範囲である、[12]又は[13]記載の方法:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[15]該培地組成物がさらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源を含み、各成分の培地組成物中の濃度が下記の範囲である、[12]~[14]のいずれかに記載の方法:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[16]グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、[14]又は[15]記載の方法。
[17][7]~[11]のいずれかに記載の培地組成物中でウイルス産生細胞を培養する工程を含む、ウイルス産生細胞の培養方法。
[18]ウイルスを感染させたウイルス産生細胞を[7]~[11]のいずれかに記載の培地組成物中で培養することを特徴とする、ウイルスの製造方法。
[1] A medium additive for use in culturing virus-producing cells, comprising at least one selected from the group consisting of L-aspartic acid and glutathione, the final concentrations of each component being within the following ranges when added to a medium:
(4) L-aspartic acid: 40 to 790 mg/L
(10) Glutathione: 0.5 to 5 mg/L.
[2] The agent according to [1], which contains L-aspartic acid and glutathione, and when added to a medium, the final concentrations of each component are within the following ranges:
(4) L-aspartic acid: 40 to 790 mg/L
(10) Glutathione: 0.5 to 5 mg/L.
[3] The agent according to [1] or [2], further comprising at least one selected from the group consisting of potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, and a glutamine source, wherein the final concentrations of each component when added to a medium are within the following ranges:
(1) Potassium: 8.65-86.5 mg/L
(2) Magnesium: 0.56 to 5.6 mg/L
(3) Iron: 3.19 to 31.9 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 0.618-6.18mg/L
(7) Riboflavin: 0.18 to 1.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 900 mg/L
(11) Glutamine source: 17.54-175.4 mg/L.
[4] The agent according to any one of [1] to [3], further comprising potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer and a glutamine source, wherein the final concentrations of each component when added to a medium are within the following ranges:
(1) Potassium: 8.65-86.5 mg/L
(2) Magnesium: 0.56 to 5.6 mg/L
(3) Iron: 3.19 to 31.9 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 0.618-6.18mg/L
(7) Riboflavin: 0.18 to 1.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 900 mg/L
(11) Glutamine source: 17.54-175.4 mg/L.
[5] The agent according to [3] or [4], wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine and glycylglutamine.
[6] A medium composition comprising a basal medium to which the medium additive according to any one of [1] to [5] has been added.
[7] A medium composition for use in culturing virus-producing cells, comprising at least one component selected from the group consisting of L-aspartic acid and glutathione, the concentration of each component in the medium composition being within the following ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
[8] The medium composition according to [7], which contains L-aspartic acid and glutathione, and the concentrations of each component in the medium composition are within the following ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
[9] The medium composition according to [7] or [8], further comprising at least one selected from the group consisting of potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, and a glutamine source, wherein the concentration of each component in the medium composition is within the following range:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[10] The medium composition according to any one of [7] to [9], further comprising potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer and a glutamine source, wherein the concentrations of each component in the medium composition are within the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[11] The medium composition according to [9] or [10], wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine and glycylglutamine.
[12] A method for producing a medium composition for use in culturing virus-producing cells, comprising at least one component selected from the group consisting of L-aspartic acid and glutathione, the method comprising adjusting the concentrations of each component in the medium composition to be within the following concentration ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
[13] A method for producing a medium composition for use in culturing virus-producing cells, comprising L-aspartic acid and glutathione, the method comprising adjusting the concentrations of each component in the medium composition to fall within the following concentration ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
[14] The method according to [12] or [13], wherein the medium composition further comprises at least one selected from the group consisting of potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, and a glutamine source, and the concentration of each component in the medium composition is within the following range:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[15] The method according to any one of [12] to [14], wherein the medium composition further comprises potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffering agent and a glutamine source, and the concentrations of each component in the medium composition are within the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[16] The method according to [14] or [15], wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine and glycylglutamine.
[17] A method for culturing virus-producing cells, comprising a step of culturing virus-producing cells in the medium composition according to any one of [7] to [11].
[18] A method for producing a virus, comprising culturing a virus-infected virus-producing cell in the medium composition according to any one of [7] to [11].

[01]ウイルス産生細胞の培養に用いる為の培地添加剤であって、カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン及びグルタミン源からなる群より選択される少なくとも1種を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、剤:
(1)カリウム:8.65~86.5mg/L
(2)マグネシウム:0.56~5.6mg/L
(3)鉄:3.19~31.9mg/L
(4)L-アスパラギン酸:171~1710mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:0.618~6.18mg/L
(7)リボフラビン:0.18~1.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~900mg/L
(10)グルタチオン:0.6~6mg/L
(11)グルタミン源:17.54~175.4mg/L。
[02]ウイルス産生細胞の培養に用いる為の培地添加剤であって、カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン及びグルタミン源を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、[01]に記載の剤:
(1)カリウム:8.65~86.5mg/L
(2)マグネシウム:0.56~5.6mg/L
(3)鉄:3.19~31.9mg/L
(4)L-アスパラギン酸:171~1710mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:0.618~6.18mg/L
(7)リボフラビン:0.18~1.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~900mg/L
(10)グルタチオン:0.6~6mg/L
(11)グルタミン源:17.54~175.4mg/L。
[03]グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、[01]又は[02]記載の剤。
[04][01]~[03]のいずれかに記載の培地添加剤を基礎培地に添加してなる培地組成物。
[05A]カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン、グルタミン源及び銅からなる群より選択される少なくとも1種を、下記の濃度範囲で含む、[04]記載の培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(4)L-アスパラギン酸:220~3894mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(10)グルタチオン:2~6mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[05B]カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン、グルタミン源及び銅を、下記の濃度範囲で含む、[04]記載の培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(4)L-アスパラギン酸:220~3894mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(10)グルタチオン:2~6mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[06]グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、[05A]又は[05B]記載の培地組成物。
[07]ウイルス産生細胞の培養に用いる為の培地組成物であって、カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン、グルタミン源及び銅からなる群より選択される少なくとも1種を含み、各成分の培地組成物中の濃度が下記の範囲である、培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(4)L-アスパラギン酸:220~3894mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(10)グルタチオン:2~6mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[08]各成分の培地組成物中の濃度が下記の範囲である、[07]記載の培地組成物:
(1)カリウム:290~370mg/L
(2)マグネシウム:15~25mg/L
(3)鉄:18~30mg/L
(4)L-アスパラギン酸:500~1000mg/L
(5)L-トリプトファン:100~200mg/L
(6)葉酸:5~20mg/L
(7)リボフラビン:1~2mg/L
(8)エタノールアミン:30~50mg/L
(9)緩衝剤:1000~3000mg/L
(10)グルタチオン:2~4mg/L
(11)グルタミン源:145~1030mg/L
(12)銅:0.004~0.015mg/L。
[09]ウイルス産生細胞の培養に用いる為の培地組成物であって、カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン、グルタミン源及び銅を含み、各成分の培地組成物中の濃度が下記の範囲である、培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(4)L-アスパラギン酸:220~3894mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(10)グルタチオン:2~6mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[010]各成分の培地組成物中の濃度が下記の範囲である、[09]記載の培地組成物:
(1)カリウム:290~370mg/L
(2)マグネシウム:15~25mg/L
(3)鉄:18~30mg/L
(4)L-アスパラギン酸:500~1000mg/L
(5)L-トリプトファン:100~200mg/L
(6)葉酸:5~20mg/L
(7)リボフラビン:1~2mg/L
(8)エタノールアミン:30~50mg/L
(9)緩衝剤:1000~3000mg/L
(10)グルタチオン:2~4mg/L
(11)グルタミン源:145~1030mg/L
(12)銅:0.004~0.015mg/L。
[011]カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン、グルタミン源及び銅からなる群より選択される少なくとも1種を、下記の濃度範囲になるよう調整することを含む、ウイルス産生細胞の培養に用いる為の培地組成物の製造方法:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(4)L-アスパラギン酸:220~3894mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(10)グルタチオン:2~6mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[012]カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン、グルタミン源及び銅を、下記の濃度範囲になるよう調整することを含む、ウイルス産生細胞の培養に用いる為の培地組成物の製造方法:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(4)L-アスパラギン酸:220~3894mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~480mg/L
(9)緩衝剤:90~8800mg/L
(10)グルタチオン:2~6mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
[013][04]~[010]のいずれかに記載の培地組成物中でウイルス産生細胞を培養する工程を含む、ウイルス産生細胞の培養方法。
[014]ウイルスを感染させたウイルス産生細胞を[04]~[010]のいずれかに記載の培地組成物中で培養することを特徴とする、ウイルスの製造方法。
[01] A medium additive for use in culturing virus-producing cells, comprising at least one component selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source, the final concentration of each component being within the following ranges when added to a medium:
(1) Potassium: 8.65-86.5 mg/L
(2) Magnesium: 0.56 to 5.6 mg/L
(3) Iron: 3.19 to 31.9 mg/L
(4) L-aspartic acid: 171 to 1710 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 0.618-6.18mg/L
(7) Riboflavin: 0.18 to 1.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 900 mg/L
(10) Glutathione: 0.6 to 6 mg/L
(11) Glutamine source: 17.54-175.4 mg/L.
[02] A medium additive for use in culturing virus-producing cells, comprising potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source, the agent according to [01] above, wherein the final concentrations of each component when added to a medium are within the following ranges:
(1) Potassium: 8.65-86.5 mg/L
(2) Magnesium: 0.56 to 5.6 mg/L
(3) Iron: 3.19 to 31.9 mg/L
(4) L-aspartic acid: 171 to 1710 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 0.618-6.18mg/L
(7) Riboflavin: 0.18 to 1.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 900 mg/L
(10) Glutathione: 0.6 to 6 mg/L
(11) Glutamine source: 17.54-175.4 mg/L.
[03] The agent according to [01] or [02], wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine and glycylglutamine.
[04] A medium composition comprising a basal medium to which the medium additive according to any one of [01] to [03] has been added.
[05A] The medium composition according to [04], which contains at least one selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper in the following concentration ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(4) L-aspartic acid: 220 to 3894 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(10) Glutathione: 2 to 6 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[05B] The medium composition according to [04], comprising potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper in the following concentration ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(4) L-aspartic acid: 220 to 3894 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(10) Glutathione: 2 to 6 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[06] The medium composition according to [05A] or [05B], wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine and glycylglutamine.
[07] A medium composition for use in culturing virus-producing cells, comprising at least one component selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper, the concentration of each component in the medium composition being within the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(4) L-aspartic acid: 220 to 3894 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(10) Glutathione: 2 to 6 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[08] The medium composition according to [07], wherein the concentration of each component in the medium composition is within the following range:
(1) Potassium: 290-370 mg/L
(2) Magnesium: 15-25 mg/L
(3) Iron: 18-30 mg/L
(4) L-aspartic acid: 500 to 1,000 mg/L
(5) L-tryptophan: 100 to 200 mg/L
(6) Folic acid: 5-20mg/L
(7) Riboflavin: 1 to 2 mg/L
(8) Ethanolamine: 30 to 50 mg/L
(9) Buffer: 1000 to 3000 mg/L
(10) Glutathione: 2 to 4 mg/L
(11) Glutamine source: 145 to 1030 mg/L
(12) Copper: 0.004 to 0.015 mg/L.
[09] A medium composition for use in culturing virus-producing cells, comprising potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper, the concentration of each component in the medium composition being within the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(4) L-aspartic acid: 220 to 3894 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(10) Glutathione: 2 to 6 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[010] The medium composition according to [09], wherein the concentration of each component in the medium composition is within the following range:
(1) Potassium: 290-370 mg/L
(2) Magnesium: 15-25 mg/L
(3) Iron: 18-30 mg/L
(4) L-aspartic acid: 500 to 1,000 mg/L
(5) L-tryptophan: 100 to 200 mg/L
(6) Folic acid: 5-20mg/L
(7) Riboflavin: 1 to 2 mg/L
(8) Ethanolamine: 30 to 50 mg/L
(9) Buffer: 1000 to 3000 mg/L
(10) Glutathione: 2 to 4 mg/L
(11) Glutamine source: 145 to 1030 mg/L
(12) Copper: 0.004 to 0.015 mg/L.
[011] A method for producing a medium composition for use in culturing virus-producing cells, comprising adjusting at least one selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper to the following concentration range:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(4) L-aspartic acid: 220 to 3894 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(10) Glutathione: 2 to 6 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[012] A method for producing a medium composition for use in culturing virus-producing cells, comprising adjusting the concentrations of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper to the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(4) L-aspartic acid: 220 to 3894 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 480 mg/L
(9) Buffer: 90 to 8,800 mg/L
(10) Glutathione: 2 to 6 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
[013] A method for culturing virus-producing cells, comprising a step of culturing virus-producing cells in the medium composition according to any one of [04] to [010].
[014] A method for producing a virus, comprising culturing a virus-infected virus-producing cell in a medium composition according to any one of [04] to [010].

 本発明によれば、ウイルス生産性に優れたウイルス産生細胞培養用の培地組成物及び該培地を製造するのに好適な培地添加剤を提供することができる。本発明の培地組成物で培養したウイルス産生細胞では、細胞あたりのウイルス生産量が顕著に増加する。従って、より効率のよいウイルス産生が可能となる。得られたウイルスは遺伝子治療やワクチン製造に有益なウイルスベクターとして機能し得る。 The present invention provides a medium composition for culturing virus-producing cells with excellent virus productivity, and a medium additive suitable for producing the medium. When virus-producing cells are cultured in the medium composition of the present invention, the amount of virus produced per cell is significantly increased. This allows for more efficient virus production. The resulting virus can function as a useful viral vector for gene therapy and vaccine production.

図1は、L-アスパラギン酸及びグルタチオン(還元型)を含有する培地における、ウイルス産生細胞の増殖能を調べた結果を示すグラフである。L-アスパラギン酸濃度が高い条件での結果である。n=2の平均値を示す。1 is a graph showing the results of investigating the proliferation ability of virus-producing cells in a medium containing L-aspartic acid and glutathione (reduced form). The results are obtained under conditions of high L-aspartic acid concentrations. The average value of n=2 is shown. 図2は、L-アスパラギン酸及びグルタチオン(還元型)を含有する培地における、ウイルス産生細胞の増殖能を調べた結果を示すグラフである。L-アスパラギン酸濃度が低い条件での結果である。n=2の平均値を示す。2 is a graph showing the results of investigating the proliferation ability of virus-producing cells in a medium containing L-aspartic acid and glutathione (reduced form). The results are obtained under conditions where the L-aspartic acid concentration is low. The average value of n=2 is shown. 図3は、L-アスパラギン酸及びグルタチオン(還元型)を含有する培地における、ウイルス産生細胞の増殖能を調べた結果を示すグラフである。基礎培地を変えて実験を行った結果である。n=2の平均値を示す。3 is a graph showing the results of investigating the proliferation ability of virus-producing cells in a medium containing L-aspartic acid and glutathione (reduced form). The results are from experiments in which different basal media were used. The average value of n=2 is shown. 図4は、各種培地における、ウイルス産生細胞の増殖能を調べた結果を示すグラフである。細胞密度及び感染させるウイルス濃度が低い条件での結果である。グラフ中、「サプリメント」はAJI Supplementを意味する。Figure 4 is a graph showing the results of investigating the proliferation ability of virus-producing cells in various media. The results are obtained under conditions of low cell density and low virus concentration. In the graph, "Supplement" refers to AJI Supplement. 図5は、各種培地における、ウイルス産生細胞のウイルス産生能を調べた結果を示すグラフである。細胞密度及び感染させるウイルス濃度が低い条件での結果である。平均値±標準偏差で示す(n=3)。グラフ中、「サプリメント」はAJI Supplementを意味する。Figure 5 is a graph showing the results of investigating the virus production ability of virus-producing cells in various media. The results are obtained under conditions of low cell density and low virus concentration. The results are shown as the mean value ± standard deviation (n = 3). In the graph, "Supplement" means AJI Supplement. 図6は、各種培地における、ウイルス産生細胞の増殖能を調べた結果を示すグラフである。細胞密度及び感染させるウイルス濃度が高い条件での結果である。平均値±標準偏差で示す(n=3)。グラフ中、「サプリメント」はAJI Supplementを意味する。Figure 6 is a graph showing the results of investigating the proliferation ability of virus-producing cells in various media. The results are obtained under conditions of high cell density and high virus concentration for infection. The results are shown as the mean ± standard deviation (n = 3). In the graph, "Supplement" means AJI Supplement. 図7は、各種培地における、ウイルス産生細胞のウイルス産生能を調べた結果を示すグラフである。細胞密度及び感染させるウイルス濃度が高い条件での結果である。平均値±標準偏差で示す(n=3)。グラフ中、「サプリメント」はAJI Supplementを意味する。Figure 7 is a graph showing the results of investigating the virus production ability of virus-producing cells in various media. The results are obtained under conditions of high cell density and high virus concentration for infection. The results are shown as the mean value ± standard deviation (n = 3). In the graph, "Supplement" means AJI Supplement.

 以下、本発明を説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味を有する。
1.培地添加剤
 本発明は、ウイルス産生細胞の培養に用いるための培地添加剤(以下、「本発明の培地添加剤」とも称する)を提供する。本発明の培地添加剤は、通常、基礎培地(後述)に添加して使用し得る。例えば培地添加剤が溶液の場合、1/20~1/5、好ましくは1/15~1/8、より好ましくは1/10量の培地添加剤を基礎培地に添加して用いる。本発明の培地添加剤の一実施態様はL-アスパラギン酸及びグルタチオンからなる群より少なくとも1種を含み、好ましくはL-アスパラギン酸及びグルタチオンの両方を含む。本発明の培地添加剤の別の一実施態様はカリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン及びグルタミン源からなる群より少なくとも1種を含む。通常、2種、3種、4種、5種、6種、7種、8種、9種、又は10種を含み、好ましくは11種全てを含む。
 本発明の別の一実施態様としては、培地添加剤は、マグネシウム、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタチオンを含む。
 本発明の別の一実施態様としては、培地添加剤は、カリウム及び鉄を含む。
 培地添加剤は所望される各成分を適当な溶媒(例、水)に溶解し溶液状としたものであってもよいし、該溶液を凍結乾燥等して、固形粉末としたものであってもよい。固形の各成分を単に混合したものであってもよい。
 以下、各成分について述べる。
The present invention will now be described. Terms used in the present specification have the meanings commonly used in the art unless otherwise specified.
1. Medium additive The present invention provides a medium additive for use in culturing virus-producing cells (hereinafter, also referred to as "medium additive of the present invention"). The medium additive of the present invention can usually be added to a basal medium (described later). For example, when the medium additive is a solution, the medium additive is added to a basal medium in an amount of 1/20 to 1/5, preferably 1/15 to 1/8, more preferably 1/10. One embodiment of the medium additive of the present invention contains at least one member selected from the group consisting of L-aspartic acid and glutathione, and preferably contains both L-aspartic acid and glutathione. Another embodiment of the medium additive of the present invention contains at least one member selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source. Usually, 2, 3, 4, 5, 6, 7, 8, 9, or 10 members, and preferably all 11 members.
In another embodiment of the present invention, the medium additives include magnesium, folic acid, riboflavin, ethanolamine, a buffering agent, and glutathione.
In another embodiment of the present invention, the medium additive comprises potassium and iron.
The medium additive may be a solution of each desired component in a suitable solvent (e.g., water), or the solution may be freeze-dried or otherwise converted into a solid powder. It may also be a simple mixture of each solid component.
Each component will be described below.

(1.1 カリウム)
 カリウムは、細胞の生存と増殖に必要な栄養素であり、代謝プロセスの調節をはじめとした細胞の生理的機能を維持する為に必要である。また、細胞周期のコントロールにも不可欠である(Biotechnology and Bioengineering. 2018;115:921-931、Appl Microbiol Biotechnol(2015) 99:9935-9949)。カリウムは、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されないが、通常カリウム塩として培地添加剤に含められる。カリウム塩としては、例えば、塩化カリウム、水酸化カリウム、硫酸カリウム、リン酸カリウム、リン酸水素二カリウム、炭酸カリウム、炭酸水素カリウム等が挙げられるが、これらに限定されない。好ましくは塩化カリウムである。カリウム塩は無水物であっても水和物であってもよい。
 カリウムは、基礎培地に添加された場合の最終濃度が8.65~86.5mg/L、好ましくは15~60mg/L、特に好ましくは20~40mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のカリウムの濃度は、通常、86.5~865mg/L、好ましくは150~600mg/L、特に好ましくは200~400mg/Lである。培地添加剤中のカリウム濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、浸透圧が上昇し細胞増殖が低下してしまう為好ましくない。培地添加剤中のカリウム濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、細胞内のナトリウム・カリウムポンプが起動しなくなり細胞の生育に必要なATPが賛成できなくなる為好ましくない。カリウムがカリウム塩として提供される場合は、上記濃度は機能分子(即ち遊離のカリウム)のみに換算した場合の濃度を表す。
 カリウム濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、ICP MSにて行われる。
(1.1 Potassium)
Potassium is a nutrient necessary for cell survival and proliferation, and is necessary for maintaining physiological functions of cells, including the regulation of metabolic processes. It is also essential for controlling the cell cycle (Biotechnology and Bioengineering. 2018;115:921-931, Appl Microbiol Biotechnol(2015) 99:9935-9949). Potassium is usually included in the medium additive as a potassium salt, although the form is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium. Examples of potassium salts include, but are not limited to, potassium chloride, potassium hydroxide, potassium sulfate, potassium phosphate, dipotassium hydrogen phosphate, potassium carbonate, potassium hydrogen carbonate, etc. Potassium chloride is preferable. The potassium salt may be anhydrous or hydrated.
Potassium is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 8.65 to 86.5 mg/L, preferably 15 to 60 mg/L, and particularly preferably 20 to 40 mg/L. The concentration of potassium in the medium additive is usually 86.5 to 865 mg/L, preferably 150 to 600 mg/L, and particularly preferably 200 to 400 mg/L. If the potassium concentration in the medium additive is too high, the final concentration when added to the basal medium will be too high, which is undesirable because the osmotic pressure will increase and cell growth will decrease. If the potassium concentration in the medium additive is too low, the final concentration when added to the basal medium will be low, which is undesirable because the intracellular sodium-potassium pump will not start and the ATP required for cell growth will not be obtained. When potassium is provided as a potassium salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free potassium).
The potassium concentration can be measured by any method available in the art, but is usually measured by ICP MS.

(1.2 マグネシウム)
 マグネシウムは、酵素活性の補因子として働き、細胞内での多くの酵素反応を調節する。特に解糖系の多くの酵素に必要とされ、例えば、ホスホフルクトキナーゼやピルビン酸キナーゼなどの酵素がマグネシウムを必要とする。また、マグネシウムは、ATP(アデノシン三リン酸)の形成に関与し、細胞のエネルギー代謝をサポートする。マグネシウムは、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されず、通常マグネシウム塩として培地添加剤に含められる。マグネシウム塩としては、例えば、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、酢酸マグネシウム等が挙げられるが、これらに限定されない。好ましくは硫酸マグネシウムが挙げられる。マグネシウム塩は無水物であっても水和物であってもよい。
 マグネシウムは、基礎培地に添加された場合の最終濃度が0.56~5.6mg/L、好ましくは1~4mg/L、特に好ましくは1.5~2.5mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のマグネシウムの濃度は、通常、5.6~56mg/L、好ましくは10~40mg/L、特に好ましくは15~25mg/Lである。培地添加剤中のマグネシウム濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、必須金属が過剰に培地中に含まれると細胞増殖が阻害される為好ましくない。培地添加剤中のマグネシウム濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、細胞が必要とする必須金属が供給されず細胞増殖が阻害される為好ましくない。マグネシウムがマグネシウム塩として提供される場合は、上記濃度は機能分子(即ち遊離のマグネシウム)のみに換算した場合の濃度を表す。
 マグネシウム濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、ICP MSにて行われる。
(1.2 Magnesium)
Magnesium acts as a cofactor for enzyme activity and regulates many enzymatic reactions in cells. Magnesium is particularly required for many enzymes in the glycolytic pathway, such as phosphofructokinase and pyruvate kinase. Magnesium also participates in the formation of ATP (adenosine triphosphate) and supports cellular energy metabolism. Magnesium is not limited in its form as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium, and is usually included in the medium additive as a magnesium salt. Examples of magnesium salts include, but are not limited to, magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium acetate, etc. Preferred examples include magnesium sulfate. Magnesium salts may be anhydrous or hydrated.
Magnesium is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.56 to 5.6 mg/L, preferably 1 to 4 mg/L, and particularly preferably 1.5 to 2.5 mg/L. The concentration of magnesium in the medium additive is usually 5.6 to 56 mg/L, preferably 10 to 40 mg/L, and particularly preferably 15 to 25 mg/L. If the magnesium concentration in the medium additive is too high, the final concentration when added to the basal medium will be too high, and if an excess of essential metals is contained in the medium, cell growth will be inhibited, which is not preferable. If the magnesium concentration in the medium additive is too low, the final concentration when added to the basal medium will be low, and essential metals required by cells will not be supplied, and cell growth will be inhibited, which is not preferable. When magnesium is provided as a magnesium salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free magnesium).
The magnesium concentration can be measured by any method available in the art, but is usually measured by ICP MS.

(1.3 鉄)
 鉄は電子伝達系における酵素やタンパク質の構造にも関与し、これらのタンパク質の適切な機能を維持するために必要な要素である(Biotechnol. Prog. 2000, 16, 872-884)。シトクロムや鉄硫黄タンパク質等に電子伝達体に含まれる鉄イオンは、ミトコンドリア内の電子伝達系において重要な役割を果たす。鉄は、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されず、通常鉄塩として培地添加剤に含められる。鉄塩としては、鉄の無機塩、有機酸塩、錯体(錯塩)等が挙げられる。無機塩としては、硫酸塩、塩化物、硝酸塩等が例示される。有機酸塩としては、酢酸塩、クエン酸塩等が例示される。鉄錯体としては鉄と錯体を形成し、細胞内に鉄を運搬できるものであれば特に制限はないが、水に溶けやすく、培地のpH(中性付近)において錯体が安定なもの、即ち水酸化鉄として沈澱を生じない、合成非タンパク性のものが選択される。鉄塩としては、例えば、クエン酸第一鉄、クエン酸鉄ナトリウム、クエン酸鉄アンモニウム、酢酸鉄、シュウ酸鉄、コハク酸第一鉄、コハク酸クエン酸鉄ナトリウム、ピロリン酸第一鉄、ピロリン酸第二鉄、乳酸鉄、グルコン酸第一鉄、ギ酸第一鉄、ギ酸第二鉄、シュウ酸カリウム第二鉄アンモニウム、硫酸第一鉄、硫酸第二鉄、硫酸鉄アンモニウム、炭酸第二鉄、塩化第一鉄、塩化第二鉄等が挙げられるが、これらに限定されない。好ましくはクエン酸鉄ナトリウムが挙げられる。鉄塩は無水物であっても水和物であってもよい。
 鉄は、基礎培地に添加された場合の最終濃度が3.19~31.9mg/L、好ましくは5~20mg/L、特に好ましくは8~15mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中の鉄の濃度は、通常、31.9~319mg/L、好ましくは50~200mg/L、特に好ましくは80~150mg/Lである。培地添加剤中の鉄濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、必須金属が過剰に培地中に含まれると細胞増殖が阻害される為好ましくない。培地添加剤中の鉄濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、細胞が必要とする必須金属が供給されず細胞増殖が阻害される為好ましくない。鉄が鉄塩として提供される場合は、上記濃度は機能分子(即ち遊離の鉄)のみに換算した場合の濃度を表す。
 鉄濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、ICP MSにて行われる。
(1.3 Iron)
Iron is also involved in the structure of enzymes and proteins in the electron transport system, and is an essential element for maintaining the proper function of these proteins (Biotechnol. Prog. 2000, 16, 872-884). Iron ions contained in electron carriers such as cytochromes and iron-sulfur proteins play an important role in the electron transport system in mitochondria. The form of iron is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium, and is usually included in the medium additive as an iron salt. Examples of iron salts include inorganic salts, organic acid salts, complexes (complex salts), and the like of iron. Examples of inorganic salts include sulfates, chlorides, and nitrates. Examples of organic acid salts include acetates and citrates. There is no particular restriction on the iron complex as long as it can form a complex with iron and transport iron into cells, but a synthetic non-proteinaceous one that is easily soluble in water and has a stable complex at the pH (near neutral) of the medium, i.e., does not precipitate as iron hydroxide, is selected. Examples of iron salts include, but are not limited to, ferrous citrate, sodium ferrous citrate, ammonium ferrous citrate, ferrous acetate, ferrous oxalate, ferrous succinate, sodium ferrous citrate succinate, ferrous pyrophosphate, ferric pyrophosphate, ferrous lactate, ferrous gluconate, ferrous formate, ferric formate, potassium ferric oxalate ammonium, ferrous sulfate, ferric sulfate, ammonium ferrous sulfate, ferric carbonate, ferrous chloride, ferric chloride, etc. Preferably, sodium ferrous citrate is used. The iron salt may be anhydrous or hydrated.
Iron is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 3.19 to 31.9 mg/L, preferably 5 to 20 mg/L, and particularly preferably 8 to 15 mg/L. The concentration of iron in the medium additive is usually 31.9 to 319 mg/L, preferably 50 to 200 mg/L, and particularly preferably 80 to 150 mg/L. If the iron concentration in the medium additive is too high, the final concentration when added to the basal medium will be too high, and if an excess of essential metals is contained in the medium, cell growth will be inhibited, which is not preferable. If the iron concentration in the medium additive is too low, the final concentration when added to the basal medium will be low, and essential metals required by cells will not be supplied, and cell growth will be inhibited, which is not preferable. When iron is provided as an iron salt, the above concentration represents the concentration when converted into only functional molecules (i.e., free iron).
The iron concentration can be measured by any method available in the art, but is usually measured by ICP MS.

(1.4 L-アスパラギン酸)
 L-アスパラギン酸は電子伝達系活性化に関与することが知られている(Biotechnol. Prog. 2000, 16, 872-884)。L-アスパラギン酸は電子伝達系の酵素複合体1(NADH:キノン酸化還元酵素)に対して電子供与体として機能し、エネルギー産生を活性化することで細胞の代謝と増殖に重要な役割を果たす。又、L-アスパラギン酸はウイルスに特有のアミノ酸消費の対象となることが知られている(Vaccine 33 (2015) 5974-5981)。L-アスパラギン酸は、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されない。天然物やその加工品から単離・精製したものであってもよいし合成品であってもよい。塩とすることも可能であり、具体的には、無機塩基、有機塩基、無機酸、有機酸との塩およびアミノ酸との塩等が挙げられる。
 好ましくは遊離のL-アスパラギン酸である。
 L-アスパラギン酸は、基礎培地に添加された場合の最終濃度が40、50、60、70、80、90、100、110、120、130、140、150、160、170mg/L以上、1800、1700、1600、1500、1400、1300、1200、1100、1000、900、800mg/L以下となるよう培地添加剤中に含められる。本発明の一実施態様において、L-アスパラギン酸は、基礎培地に添加された場合の最終濃度が171~1710mg/L、好ましくは200~800mg/L、特に好ましくは400~600mg/Lの範囲となるよう培地添加剤中に含められる。本発明の別の一実施態様において、L-アスパラギン酸は、基礎培地に添加された場合の最終濃度が40~790mg/L、好ましくは60~700mg/L、特に好ましくは80~600mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のL-アスパラギン酸の濃度は、通常、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700mg/L以上、18000、17000、16000、15000、14000、13000、12000、11000、10000、9000、8000mg/L以下である。本発明の一実施態様において、培地添加剤中のL-アスパラギン酸の濃度は、通常、1710~17100mg/L、好ましくは2000~8000mg/L、特に好ましくは4000~6000mg/Lである。本発明の別の一実施態様において、培地添加剤中のL-アスパラギン酸の濃度は、通常、400~7900mg/L、好ましくは600~7000mg/L、特に好ましくは800~6000mg/Lである。培地添加剤中のL-アスパラギン酸の濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、培地中のpHが低下し、細胞の適正pHが保てなくなる為好ましくない。培地添加剤中のL-アスパラギン酸の濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、TCA回路に代謝物が供給されなくなり、細胞がエネルギー不足に陥る為好ましくない。L-アスパラギン酸が塩として提供される場合は、上記濃度は機能分子(即ち遊離のL-アスパラギン酸)のみに換算した場合の濃度を表す。
 L-アスパラギン酸濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、UPLCにて行われる。
(1.4 L-Aspartic Acid)
L-aspartic acid is known to be involved in the activation of the electron transport system (Biotechnol. Prog. 2000, 16, 872-884). L-aspartic acid functions as an electron donor for enzyme complex 1 (NADH: quinone oxidoreductase) of the electron transport system, and plays an important role in cell metabolism and proliferation by activating energy production. L-aspartic acid is also known to be a target of amino acid consumption specific to viruses (Vaccine 33 (2015) 5974-5981). The form of L-aspartic acid is not limited as long as it can exert its function in a medium additive and a medium composition obtained by adding the medium additive to a basal medium. It may be isolated and purified from a natural product or a processed product thereof, or may be a synthetic product. It can also be made into a salt, and specific examples thereof include salts with inorganic bases, organic bases, inorganic acids, organic acids, and salts with amino acids.
Free L-aspartic acid is preferred.
L-aspartic acid is included in the medium additive so that the final concentration when added to the basal medium is 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170 mg/L or more, and 1800, 1700, 1600, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800 mg/L or less. In one embodiment of the present invention, L-aspartic acid is included in the medium additive so that the final concentration when added to the basal medium is in the range of 171 to 1710 mg/L, preferably 200 to 800 mg/L, particularly preferably 400 to 600 mg/L. In another embodiment of the present invention, L-aspartic acid is contained in the medium additive so that the final concentration when added to a basal medium is in the range of 40 to 790 mg/L, preferably 60 to 700 mg/L, particularly preferably 80 to 600 mg/L. The concentration of L-aspartic acid in the medium additive is usually 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 mg/L or more, and 18000, 17000, 16000, 15000, 14000, 13000, 12000, 11000, 10000, 9000, 8000 mg/L or less. In one embodiment of the present invention, the concentration of L-aspartic acid in the medium additive is usually 1710 to 17100 mg/L, preferably 2000 to 8000 mg/L, particularly preferably 4000 to 6000 mg/L. In another embodiment of the present invention, the concentration of L-aspartic acid in the medium additive is usually 400 to 7900 mg/L, preferably 600 to 7000 mg/L, particularly preferably 800 to 6000 mg/L. If the concentration of L-aspartic acid in the medium additive is too high, the final concentration when added to the basal medium becomes too high, the pH in the medium decreases, and the appropriate pH of the cells cannot be maintained, which is not preferable. If the concentration of L-aspartic acid in the medium additive is too low, the final concentration when added to the basal medium becomes low, metabolites are not supplied to the TCA cycle, and the cells become energy insufficient, which is not preferable. When L-aspartic acid is provided as a salt, the above concentrations represent the concentrations calculated in terms of only the functional molecule (ie, free L-aspartic acid).
The concentration of L-aspartic acid can be measured by any method available in the art, but is usually measured by UPLC.

(1.5 L-トリプトファン)
 L-トリプトファンは、細胞内でタンパク質の合成に必要なアミノ酸の一つで、細胞増殖や、細胞内のシグナル伝達経路においても重要な役割を果たす。L-トリプトファンは、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されない。天然物やその加工品から単離・精製したものであってもよいし合成品であってもよい。塩とすることも可能であり、具体的には、無機塩基、有機塩基、無機酸、有機酸との塩およびアミノ酸との塩等が挙げられる。
 好ましくは遊離のL-トリプトファンである。
 L-トリプトファンは、基礎培地に添加された場合の最終濃度が48~480mg/L、好ましくは60~300mg/L、特に好ましくは100~200mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のL-トリプトファンの濃度は、通常、480~4800mg/L、好ましくは600~3000mg/L、特に好ましくは1000~2000mg/Lである。培地添加剤中のL-トリプトファンの濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、細胞に毒性を示す為好ましくない。培地添加剤中のL-トリプトファンの濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、必須アミノ酸であるトリプトファンは細胞内で合成されず、細胞に必要なトリプトファンが供給できない為好ましくない。L-トリプトファンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のL-トリプトファン)のみに換算した場合の濃度を表す。
 L-トリプトファン濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、UPLCにて行われる。
(1.5 L-tryptophan)
L-tryptophan is one of the amino acids necessary for protein synthesis in cells, and also plays an important role in cell growth and intracellular signal transduction pathways. The form of L-tryptophan is not limited as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium. L-tryptophan may be isolated and purified from natural products or processed products thereof, or may be a synthetic product. It may also be in the form of a salt, and specific examples thereof include salts with inorganic bases, organic bases, inorganic acids, organic acids, and salts with amino acids.
Free L-tryptophan is preferred.
L-tryptophan is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 48 to 480 mg/L, preferably 60 to 300 mg/L, and particularly preferably 100 to 200 mg/L. The concentration of L-tryptophan in the medium additive is usually 480 to 4800 mg/L, preferably 600 to 3000 mg/L, and particularly preferably 1000 to 2000 mg/L. If the concentration of L-tryptophan in the medium additive is too high, the final concentration when added to the basal medium becomes too high, which is undesirable because it is toxic to cells. If the concentration of L-tryptophan in the medium additive is too low, the final concentration when added to the basal medium becomes low, and tryptophan, an essential amino acid, is not synthesized in the cells, which is undesirable because the tryptophan required for the cells cannot be supplied. When L-tryptophan is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free L-tryptophan).
The L-tryptophan concentration can be measured by any method available in the art, but is usually measured by UPLC.

(1.6 葉酸)
 葉酸は核酸合成を促進するのに必要な成分である(Journal of Biotechnology 233 (2016) 34-41)。葉酸は、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されない。天然物やその加工品から単離・精製したものであってもよいし合成品であってもよい。塩とすることも可能であり、そのような塩としては、5-メチルテトラヒドロ葉酸(5MeTHF)、テトラヒドロ葉酸(THF)および5-ホルミルテトラヒドロ葉酸(5CHOTHF)等が挙げられる。好ましくは葉酸である。
 葉酸は、基礎培地に添加された場合の最終濃度が0.618~6.18mg/L、好ましくは1~5mg/L、特に好ましくは1.5~3mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中の葉酸の濃度は、通常、6.18~61.8mg/L、好ましくは10~50mg/L、特に好ましくは15~30mg/Lである。培地添加剤中の葉酸の濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、培地中での溶解度が低く培地中で析出してしまう。また、非常に分解しやすいため分解物が細胞によっては悪影響を及ぼす可能性が否定できない為好ましくない。培地添加剤中の葉酸の濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、核酸合成に必要な葉酸が供給されないことで細胞増殖に影響が生じる為好ましくない。葉酸が塩として提供される場合は、上記濃度は機能分子(即ち遊離の葉酸)のみに換算した場合の濃度を表す。
 葉酸濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、LCMSにて行われる。
(1.6 Folic Acid)
Folic acid is a component necessary for promoting nucleic acid synthesis (Journal of Biotechnology 233 (2016) 34-41). The form of folic acid is not limited as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium. Folic acid may be isolated and purified from natural products or processed products thereof, or may be a synthetic product. It may also be in the form of a salt, and examples of such salts include 5-methyltetrahydrofolic acid (5MeTHF), tetrahydrofolic acid (THF), and 5-formyltetrahydrofolic acid (5CHOTHF). Folic acid is preferred.
Folic acid is included in the medium additive so that the final concentration when added to the basal medium is in the range of 0.618 to 6.18 mg/L, preferably 1 to 5 mg/L, and particularly preferably 1.5 to 3 mg/L. The concentration of folic acid in the medium additive is usually 6.18 to 61.8 mg/L, preferably 10 to 50 mg/L, and particularly preferably 15 to 30 mg/L. If the concentration of folic acid in the medium additive is too high, the final concentration when added to the basal medium will be too high, and the solubility in the medium will be low, resulting in precipitation in the medium. In addition, since it is very easily decomposed, it is not possible to deny that the decomposition products may have an adverse effect on some cells, which is not preferable. If the concentration of folic acid in the medium additive is too low, the final concentration when added to the basal medium will be low, and folic acid necessary for nucleic acid synthesis will not be supplied, which will affect cell growth, which is not preferable. When folic acid is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free folic acid).
The concentration of folic acid can be measured by any method available in the art, but is usually measured by LCMS.

(1.7 リボフラビン)
 リボフラビンはビタミンB2の別名であり、細胞の電子伝達系において重要な役割を果たす(Biotechnol. Prog. 2000, 16, 872-884)。電子伝達系は、ミトコンドリア内の膜に存在する複数のタンパク質複合体からなる系列的なプロセスであり、細胞内でのエネルギー生産に不可欠であることから、細胞培養用培地にリボフラビンを含めることで、適切な細胞の生育や代謝に寄与する。リボフラビンは、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されない。天然物やその加工品から単離・精製したものであってもよいし合成品であってもよい。誘導体とすることも可能であり、そのような誘導体としては、例えばフラビンモノヌクレオチド(FMN)、フラビンアデニンジヌクレオチド(FAD)、酪酸リボフラビン(例えば四酪酸リボフラビン)、またはそれらの塩、それらの水和物等が含まれるがこれらに制限されない。リボフラビン及びリボフラビン誘導体は塩の形態であってもよい。そのような塩としては、酸付加塩や塩基との塩等を挙げることができる。
 リボフラビンは、基礎培地に添加された場合の最終濃度が0.18~1.8mg/L、好ましくは0.3~1.5mg/L、特に好ましくは0.4~1.0mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のリボフラビンの濃度は、通常、1.8~18mg/L、好ましくは3~15mg/L、特に好ましくは4~10mg/Lである。培地添加剤中のリボフラビンの濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、培地中での溶解度が低く培地中で析出してしまう。また、非常に分解しやすいため分解物が細胞によっては悪影響を及ぼす可能性が否定できない為好ましくない。培地添加剤中のリボフラビンの濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、リボフラビンの代謝産物が電子伝達系へ供給されず、その機能が低下する為好ましくない。リボフラビンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のリボフラビン)のみに換算した場合の濃度を表す。
 リボフラビン濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、LCMSにて行われる。
(1.7 Riboflavin)
Riboflavin is another name for vitamin B2 and plays an important role in the electron transport system of cells (Biotechnol. Prog. 2000, 16, 872-884). The electron transport system is a sequential process consisting of multiple protein complexes present in the membranes of mitochondria, and is essential for energy production in cells. Therefore, the inclusion of riboflavin in a cell culture medium contributes to proper cell growth and metabolism. Riboflavin may be in any form as long as it can exert its function in the medium additive and in the medium composition obtained by adding the medium additive to a basal medium. It may be isolated and purified from natural products or processed products thereof, or may be a synthetic product. It may also be a derivative, and examples of such derivatives include, but are not limited to, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), riboflavin butyrate (e.g., riboflavin tetrabutyrate), or salts thereof, hydrates thereof, and the like. Riboflavin and riboflavin derivatives may be in the form of a salt. Examples of such salts include acid addition salts and salts with bases.
Riboflavin is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.18 to 1.8 mg/L, preferably 0.3 to 1.5 mg/L, and particularly preferably 0.4 to 1.0 mg/L. The concentration of riboflavin in the medium additive is usually 1.8 to 18 mg/L, preferably 3 to 15 mg/L, and particularly preferably 4 to 10 mg/L. If the concentration of riboflavin in the medium additive is too high, the final concentration when added to the basal medium will be too high, and the solubility in the medium will be low, resulting in precipitation in the medium. In addition, since it is very easily decomposed, it is not preferable because the decomposition products may have adverse effects on some cells. If the concentration of riboflavin in the medium additive is too low, the final concentration when added to the basal medium will be low, and the metabolic products of riboflavin will not be supplied to the electron transport system, resulting in a decrease in its function, which is not preferable. When riboflavin is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free riboflavin).
The riboflavin concentration can be measured by any method available in the art, but is usually measured by LCMS.

(1.8 エタノールアミン)
 エタノールアミンは、2-アミノエタノール、モノエタノールアミンとも呼ばれ、細胞膜の主要な構成要素であるリン脂質の一つであるホスファチジルエタノールアミンの合成に関与する。ホスファチジルエタノールアミンは、細胞膜の構造を維持し、細胞膜の流動性や透過性を調節する重要な役割を果たしています。従って、エタノールアミンを培地に含めることにより、細胞に適切な脂質環境を提供することが可能となる。エタノールアミンは、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されない。天然物やその加工品から単離・精製したものであってもよいし合成品であってもよい。誘導体とすることも可能である。そのような誘導体としては、ホスホエタノールアミン(別名ホスホリルエタノールアミン)、モノメチルエタノールアミン、ジメチルエタノールアミン、N-アシルホスファチジルエタノールアミン、ホスファチジルエタノールアミン、及びリゾホスファチジルエタノールアミン等が挙げられる。
 エタノールアミン及びエタノールアミン誘導体塩の形態であってもよい。そのような塩としては、無機塩基、有機塩基、無機酸、有機酸との塩およびアミノ酸との塩等が挙げられる。好ましくは塩酸、硫酸、リン酸、硝酸、臭化水素酸などの無機酸との塩、酢酸、トリフルオロ酢酸、クエン酸、安息香酸、マレイン酸、フマル酸、酒石酸、コハク酸、タンニン酸、酪酸、ヒベンズ酸、パモ酸、エナント酸、デカン酸、テオクル酸、サリチル酸、乳酸、シュウ酸、マンデル酸、リンゴ酸等の有機カルボン酸との塩、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機スルホン酸との塩が挙げられる。特に塩酸塩が好ましい。
 エタノールアミンは、基礎培地に添加された場合の最終濃度が10.2~102mg/L、好ましくは15~60mg/L、特に好ましくは20~40mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のエタノールアミンの濃度は、通常、102~1020mg/L、好ましくは150~600mg/L、特に好ましくは200~400mg/Lである。培地添加剤中のエタノールアミンの濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、細胞増殖性を抑制する為好ましくない。培地添加剤中のエタノールアミンの濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、細胞増殖に必要な細胞膜成分が供給されない為好ましくない。エタノールアミンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のエタノールアミン)のみに換算した場合の濃度を表す。
 エタノールアミン濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、UPLCにて行われる。
1.8 Ethanolamine
Ethanolamine, also called 2-aminoethanol or monoethanolamine, is involved in the synthesis of phosphatidylethanolamine, a phospholipid that is a major component of the cell membrane. Phosphatidylethanolamine plays an important role in maintaining the structure of the cell membrane and regulating the fluidity and permeability of the cell membrane. Therefore, by including ethanolamine in the medium, it is possible to provide a suitable lipid environment for cells. The form of ethanolamine is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium. Ethanolamine may be isolated and purified from natural products or their processed products, or may be a synthetic product. It is also possible to make it into a derivative. Examples of such derivatives include phosphoethanolamine (also known as phosphorylethanolamine), monomethylethanolamine, dimethylethanolamine, N-acylphosphatidylethanolamine, phosphatidylethanolamine, and lysophosphatidylethanolamine.
The salt may be in the form of an ethanolamine or ethanolamine derivative salt. Examples of such salts include salts with inorganic bases, organic bases, inorganic acids, and organic acids, and salts with amino acids. Preferred salts include salts with inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrobromic acid, salts with organic carboxylic acids such as acetic acid, trifluoroacetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, succinic acid, tannic acid, butyric acid, hybenzic acid, pamoic acid, enanthic acid, decanoic acid, teoclic acid, salicylic acid, lactic acid, oxalic acid, mandelic acid, and malic acid, and salts with organic sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid. Particularly preferred are hydrochlorides.
Ethanolamine is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 10.2 to 102 mg/L, preferably 15 to 60 mg/L, and particularly preferably 20 to 40 mg/L. The concentration of ethanolamine in the medium additive is usually 102 to 1020 mg/L, preferably 150 to 600 mg/L, and particularly preferably 200 to 400 mg/L. If the concentration of ethanolamine in the medium additive is too high, the final concentration when added to the basal medium becomes too high, which is undesirable because it inhibits cell proliferation. If the concentration of ethanolamine in the medium additive is too low, the final concentration when added to the basal medium becomes low, which is undesirable because it does not supply cell membrane components necessary for cell proliferation. When ethanolamine is provided as a salt, the above concentration represents the concentration when converted to only the functional molecule (i.e., free ethanolamine).
The concentration of ethanolamine can be measured by any method available in the art, but is usually measured by UPLC.

(1.9 緩衝剤)
 本発明の培地添加剤及び培地添加剤を基礎培地に添加してなる培地組成物中に含められる緩衝剤は、最終的に調製される培地組成物のpHを所定の値(例、7.0~7.4)に制御できるものであれば特に限定されないが、例えばN-[2-ヒドロキシエチル]-ピペラジン-N’-[2-エタンスルホン酸](HEPES)、MOPS、MES、リン酸塩、重炭酸塩等が挙げられる。
 緩衝剤の使用濃度は、用いる緩衝剤の種類によって適宜調節され得る。緩衝剤としてHEPESを用いた場合、HEPESは、基礎培地に添加された場合の最終濃度が90~900mg/L、好ましくは100~600mg/L、特に好ましくは200~400mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のHEPSEの濃度は、通常、900~9000mg/L、好ましくは1000~6000mg/L、特に好ましくは2000~4000mg/Lである。培地添加剤中の緩衝剤の濃度が高すぎる、あるいは低すぎると、所望の緩衝能が得られないため好ましくない。
 緩衝剤の濃度は、例えばHEPESの場合、当分野で実施され得る方法が適宜利用できるが、通常、LCMS-MSによって測定することができる。
1.9 Buffers
The buffer contained in the medium additive of the present invention and in the medium composition obtained by adding the medium additive to a basal medium is not particularly limited as long as it can control the pH of the finally prepared medium composition to a predetermined value (e.g., 7.0 to 7.4), and examples thereof include N-[2-hydroxyethyl]-piperazine-N'-[2-ethanesulfonic acid] (HEPES), MOPS, MES, phosphates, bicarbonates, etc.
The concentration of the buffer used can be appropriately adjusted depending on the type of buffer used. When HEPES is used as a buffer, HEPES is included in the medium additive so that the final concentration when added to the basal medium is in the range of 90 to 900 mg/L, preferably 100 to 600 mg/L, and particularly preferably 200 to 400 mg/L. The concentration of HEPSE in the medium additive is usually 900 to 9000 mg/L, preferably 1000 to 6000 mg/L, and particularly preferably 2000 to 4000 mg/L. If the concentration of the buffer in the medium additive is too high or too low, the desired buffering capacity cannot be obtained, which is not preferable.
The concentration of the buffer, for example, in the case of HEPES, can be measured by any method available in the art, but can usually be measured by LCMS-MS.

(1.10 グルタチオン)
 グルタチオンは、抗酸化作用を有し、細胞内での酸化ストレスから細胞を保護する機能を有する(Journal of Biotechnology 233 (2016) 34-41、Appl Microbiol Biotechnol (2015) 99:9935-9949)。グルタチオンは、培地添加剤及び該培地添加剤を基礎培地に添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されない。天然物やその加工品から単離・精製したものであってもよいし合成品であってもよい。グルタチオンとしては酸化型グルタチオン及び還元型グルタチオンのいずれであってもよいが好ましくは還元型グルタチオンである。塩とすることも可能である。そのような塩としては、無機塩基、有機塩基、無機酸、有機酸との塩およびアミノ酸との塩等が挙げられる。好ましくは塩酸、硫酸、リン酸、硝酸、臭化水素酸などの無機酸との塩、酢酸、トリフルオロ酢酸、クエン酸、安息香酸、マレイン酸、フマル酸、酒石酸、コハク酸、タンニン酸、酪酸、ヒベンズ酸、パモ酸、エナント酸、デカン酸、テオクル酸、サリチル酸、乳酸、シュウ酸、マンデル酸、リンゴ酸等の有機カルボン酸との塩、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機スルホン酸との塩が挙げられる。
 グルタチオンは、基礎培地に添加された場合の最終濃度が0.5、0.6、0.7、0.8、0.9、1mg/L以上、6、5、4、3mg/L以下となるよう培地添加剤中に含められる。本発明の一実施態様において、グルタチオンは、基礎培地に添加された場合の最終濃度が0.6~6mg/L、好ましくは1~5mg/L、特に好ましくは1.5~3mg/Lの範囲となるよう培地添加剤中に含められる。本発明の別の一実施態様において、グルタチオンは、基礎培地に添加された場合の最終濃度が0.5~5mg/L、好ましくは1~4mg/L、特に好ましくは2~3mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のグルタチオンの濃度は、通常、5、6、7、8、9、10mg/L以上、60、50、40、30mg/L以下である。本発明の一実施態様において、培地添加剤中のグルタチオンの濃度は、6~60mg/L、好ましくは10~50mg/L、特に好ましくは15~30mg/Lである。本発明の別の一実施態様において、培地添加剤中のグルタチオンの濃度は、5~50mg/L、好ましくは10~40mg/L、特に好ましくは20~30mg/Lである。培地添加剤中のグルタチオンの濃度が高すぎると基礎培地に添加された場合の最終濃度が高くなり過ぎ、非常に分解しやすいため分解物が細胞によっては悪影響を及ぼす可能性が否定できない為好ましくない。培地添加剤中のグルタチオンの濃度が低すぎると基礎培地に添加された場合の最終濃度が低くなり、細胞内に必要な酸化還元のバランスが崩れる為好ましくない。グルタチオンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のグルタチオン)のみに換算した場合の濃度を表す。
 グルタチオン濃度の測定は、当分野で実施され得る方法が適宜利用できるが、簡易には、グルタチオン定量キット(例、DOJINDO:G257)にて行われる。
(1.10 Glutathione)
Glutathione has an antioxidant effect and has the function of protecting cells from oxidative stress within the cells (Journal of Biotechnology 233 (2016) 34-41, Appl Microbiol Biotechnol (2015) 99:9935-9949). The form of glutathione is not limited as long as it can exert its function in the medium additive and the medium composition obtained by adding the medium additive to a basal medium. It may be isolated and purified from natural products or processed products thereof, or it may be a synthetic product. Glutathione may be either oxidized glutathione or reduced glutathione, but reduced glutathione is preferable. It can also be made into a salt. Examples of such salts include salts with inorganic bases, organic bases, inorganic acids, organic acids, and salts with amino acids. Preferred examples of the salts include salts with inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrobromic acid; salts with organic carboxylic acids such as acetic acid, trifluoroacetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, succinic acid, tannic acid, butyric acid, hybenzic acid, pamoic acid, enanthic acid, decanoic acid, teoclic acid, salicylic acid, lactic acid, oxalic acid, mandelic acid, and malic acid; and salts with organic sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
Glutathione is contained in the medium additive so that the final concentration when added to the basal medium is 0.5, 0.6, 0.7, 0.8, 0.9, 1 mg/L or more and 6, 5, 4, 3 mg/L or less. In one embodiment of the present invention, glutathione is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.6 to 6 mg/L, preferably 1 to 5 mg/L, particularly preferably 1.5 to 3 mg/L. In another embodiment of the present invention, glutathione is contained in the medium additive so that the final concentration when added to the basal medium is in the range of 0.5 to 5 mg/L, preferably 1 to 4 mg/L, particularly preferably 2 to 3 mg/L. The concentration of glutathione in the medium additive is usually 5, 6, 7, 8, 9, 10 mg/L or more and 60, 50, 40, 30 mg/L or less. In one embodiment of the present invention, the concentration of glutathione in the medium additive is 6 to 60 mg/L, preferably 10 to 50 mg/L, particularly preferably 15 to 30 mg/L. In another embodiment of the present invention, the concentration of glutathione in the medium additive is 5 to 50 mg/L, preferably 10 to 40 mg/L, particularly preferably 20 to 30 mg/L. If the concentration of glutathione in the medium additive is too high, the final concentration when added to the basal medium becomes too high, and since it is very easily decomposed, the possibility that the decomposition products may have an adverse effect on some cells cannot be denied, which is not preferable. If the concentration of glutathione in the medium additive is too low, the final concentration when added to the basal medium becomes low, which is not preferable, since it disrupts the balance of oxidation and reduction required within the cells. When glutathione is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free glutathione).
The glutathione concentration can be measured by any method available in the art, but is conveniently measured using a glutathione quantification kit (eg, DOJINDO: G257).

(1.11 グルタミン源)
 グルタミンは、アミノ酸の一つであり、細胞の代謝に重要な役割を果たす。本発明の培地添加剤及び培地添加剤を基礎培地に添加してなる培地組成物中に含められるグルタミン源は、最終的に調製される培地組成物にグルタミンを提供できるものであれば特に限定されないが、L-グルタミン、アラニル-L-グルタミン(アラニンとグルタミンがペプチド結合で結合したアミノ酸)、グルタミン酸(グルタミンの前駆体として機能し得る)等が挙げられる。好ましくは、アラニル-L-グルタミンである。アラニル-L-グルタミンは一般的なグルタミンよりも安定している。グルタミン源は、培地添加剤及び該培地添加剤を添加してなる培地組成物中でその機能を発揮し得る限りその態様は限定されない。天然物やその加工品から単離・精製したものであってもよいし合成品であってもよい。塩とすることも可能であり、具体的には、無機塩基、有機塩基、無機酸、有機酸との塩およびアミノ酸との塩等が挙げられる。
 好ましくはアラニル-L-グルタミンである。
 グルタミン源は、基礎培地に添加された場合の最終濃度が17.54~175.4mg/L、好ましくは20~100mg/L、特に好ましくは40~70mg/Lの範囲となるよう培地添加剤中に含められる。培地添加剤中のグルタミン源の濃度は、通常、175.4~1754mg/L、好ましくは200~1000mg/L、特に好ましくは400~700mg/Lである。ここでグルタミン源の上記濃度は機能分子(即ちグルタミン)のみに換算した場合の濃度を表す。
 グルタミン濃度の測定は、当分野で実施され得る方法が適宜利用できるが、通常、UPLCにて行われる。
1.11 Glutamine Source
Glutamine is an amino acid and plays an important role in cell metabolism. The glutamine source contained in the medium additive of the present invention and the medium composition obtained by adding the medium additive to a basal medium is not particularly limited as long as it can provide glutamine to the final medium composition prepared, and examples thereof include L-glutamine, alanyl-L-glutamine (an amino acid in which alanine and glutamine are bonded by a peptide bond), and glutamic acid (which can function as a precursor of glutamine). Alanyl-L-glutamine is preferable. Alanyl-L-glutamine is more stable than general glutamine. The form of the glutamine source is not limited as long as it can exert its function in the medium additive and the medium composition to which the medium additive is added. It may be isolated and purified from natural products or processed products thereof, or may be a synthetic product. It may also be a salt, and specific examples thereof include salts with inorganic bases, organic bases, inorganic acids, organic acids, and salts with amino acids.
Alanyl-L-glutamine is preferred.
The glutamine source is included in the medium additive so that the final concentration when added to the basal medium is in the range of 17.54 to 175.4 mg/L, preferably 20 to 100 mg/L, and particularly preferably 40 to 70 mg/L. The concentration of the glutamine source in the medium additive is usually 175.4 to 1754 mg/L, preferably 200 to 1000 mg/L, and particularly preferably 400 to 700 mg/L. Here, the above concentration of the glutamine source represents the concentration when converted into only the functional molecule (i.e., glutamine).
The glutamine concentration can be measured by any method available in the art, but is usually measured by UPLC.

2.培地組成物
 本発明は、ウイルス産生細胞の培養に用いるための培地組成物(以下、「本発明の培地組成物」とも称する)を提供する。本発明の培地組成物の一実施態様はL-アスパラギン酸及びグルタチオンからなる群より少なくとも1種を含み、好ましくはL-アスパラギン酸及びグルタチオンの両方を含む。本発明の培地組成物の別の一実施態様はカリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン、グルタミン源及び銅からなる群より少なくとも1種を含む。通常、2種、3種、4種、5種、6種、7種、8種、9種、10種、又は11種を含み、好ましくは12種全てを含む。
 本発明の培地組成物は、液体の状態で提供されてもよいし、また、使用時の濃度よりも濃縮した状態や、凍結乾燥された粉末等の固体の状態で調製し、使用時に水等の溶媒で希釈し、または水等の溶媒に溶解または分散して用いる態様とすることもできる。
 以下、各成分について述べる。
2. Medium Composition The present invention provides a medium composition for use in culturing virus-producing cells (hereinafter, also referred to as "medium composition of the present invention"). One embodiment of the medium composition of the present invention contains at least one member selected from the group consisting of L-aspartic acid and glutathione, and preferably contains both L-aspartic acid and glutathione. Another embodiment of the medium composition of the present invention contains at least one member selected from the group consisting of potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, a glutamine source, and copper. Usually, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 members are contained, and preferably all 12 members are contained.
The medium composition of the present invention may be provided in a liquid state, or may be prepared in a more concentrated state than the concentration at the time of use, or in a solid state such as a freeze-dried powder, and then diluted with a solvent such as water, or dissolved or dispersed in a solvent such as water, at the time of use.
Each component will be described below.

(2.1 カリウム)
 培地組成物中に含まれるカリウムは、上記(1.1 カリウム)と同義である。
 培地組成物中のカリウムの濃度は、290~772mg/L、好ましくは290~370mg/L、特に好ましくは300~400mg/Lである。カリウムがカリウム塩として提供される場合は、上記濃度は機能分子(即ち遊離のカリウム)のみに換算した場合の濃度を表す。
(2.1 Potassium)
The potassium contained in the medium composition has the same meaning as described above in (1.1 Potassium).
The concentration of potassium in the medium composition is 290 to 772 mg/L, preferably 290 to 370 mg/L, and particularly preferably 300 to 400 mg/L. When potassium is provided as a potassium salt, the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free potassium).

(2.2 マグネシウム)
 培地組成物中に含まれるマグネシウムは、上記(1.2 マグネシウム)と同義である。
 培地組成物中のマグネシウムの濃度は、7~45mg/L、好ましくは15~25mg/L、特に好ましくは18~23mg/Lである。マグネシウムがマグネシウム塩として提供される場合は、上記濃度は機能分子(即ち遊離のマグネシウム)のみに換算した場合の濃度を表す。
(2.2 Magnesium)
The magnesium contained in the medium composition has the same meaning as described above in (1.2 Magnesium).
The concentration of magnesium in the medium composition is 7 to 45 mg/L, preferably 15 to 25 mg/L, and particularly preferably 18 to 23 mg/L. When magnesium is provided as a magnesium salt, the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free magnesium).

(2.3 鉄)
 培地組成物中に含まれる鉄は、上記(1.3 鉄)と同義である。
 培地組成物中の鉄の濃度は、17~123mg/L、好ましくは18~30mg/L、特に好ましくは20~28mg/Lである。鉄が鉄塩として提供される場合は、上記濃度は機能分子(即ち遊離の鉄)のみに換算した場合の濃度を表す。
(2.3 Iron)
The iron contained in the medium composition has the same meaning as defined above in (1.3 Iron).
The iron concentration in the medium composition is 17 to 123 mg/L, preferably 18 to 30 mg/L, and particularly preferably 20 to 28 mg/L. When iron is provided as an iron salt, the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free iron).

(2.4 L-アスパラギン酸)
 培地組成物中に含まれるL-アスパラギン酸は、上記(1.4 L-アスパラギン酸)と同義である。
 培地組成物中のL-アスパラギン酸の濃度は、250、260、270、280、290、300、310、320、330、340、350、360、370、380mg/L以上、2010、1910、1810、1710、1610、1510、1410、1310、1210、1110、1010mg/L以下である。本発明の一実施態様において、培地組成物中のL-アスパラギン酸の濃度は、220~3894mg/L、好ましくは500~1000mg/L、特に好ましくは600~900mg/Lである。本発明の別の一実施態様において、培地組成物中のL-アスパラギン酸の濃度は、250~1000mg/L、好ましくは270~910mg/L、特に好ましくは290~810mg/Lである。L-アスパラギン酸が塩として提供される場合は、上記濃度は機能分子(即ち遊離のL-アスパラギン酸)のみに換算した場合の濃度を表す。
2.4 L-Aspartic Acid
The L-aspartic acid contained in the medium composition has the same meaning as defined above in (1.4 L-aspartic acid).
The concentration of L-aspartic acid in the medium composition is 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380 mg/L or more, and 2010, 1910, 1810, 1710, 1610, 1510, 1410, 1310, 1210, 1110, 1010 mg/L or less. In one embodiment of the present invention, the concentration of L-aspartic acid in the medium composition is 220 to 3894 mg/L, preferably 500 to 1000 mg/L, particularly preferably 600 to 900 mg/L. In another embodiment of the present invention, the concentration of L-aspartic acid in the medium composition is 250 to 1000 mg/L, preferably 270 to 910 mg/L, particularly preferably 290 to 810 mg/L. When L-aspartic acid is provided as a salt, the above concentrations represent the concentrations calculated in terms of only the functional molecule (ie, free L-aspartic acid).

(2.5 L-トリプトファン)
 培地組成物中に含まれるL-トリプトファンは、上記(1.5 L-トリプトファン)と同義である。
 培地組成物中のL-トリプトファンの濃度は、48~480mg/L、好ましくは100~200mg/L、特に好ましくは150~200mg/Lである。L-トリプトファンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のL-トリプトファン)のみに換算した場合の濃度を表す。
(2.5 L-tryptophan)
The L-tryptophan contained in the medium composition has the same meaning as above (1.5 L-tryptophan).
The concentration of L-tryptophan in the medium composition is 48 to 480 mg/L, preferably 100 to 200 mg/L, and particularly preferably 150 to 200 mg/L. When L-tryptophan is provided as a salt, the above concentration represents the concentration converted into only the functional molecule (i.e., free L-tryptophan).

(2.6 葉酸)
 培地組成物中に含まれる葉酸は、上記(1.6 葉酸)と同義である。
 培地組成物中の葉酸の濃度は、3~59.6mg/L、好ましくは5~20mg/L、特に好ましくは8~15mg/Lである。葉酸が塩として提供される場合は、上記濃度は機能分子(即ち遊離の葉酸)のみに換算した場合の濃度を表す。
(2.6 Folic Acid)
The folic acid contained in the medium composition has the same meaning as defined above in (1.6 Folic acid).
The concentration of folic acid in the medium composition is 3 to 59.6 mg/L, preferably 5 to 20 mg/L, and particularly preferably 8 to 15 mg/L. When folic acid is provided as a salt, the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free folic acid).

(2.7 リボフラビン)
 培地組成物中に含まれるリボフラビンは、上記(1.7 リボフラビン)と同義である。
 培地組成物中のリボフラビンの濃度は0.7~4.8mg/L、好ましくは1~2mg/L、特に好ましくは1.4~2mg/Lである。リボフラビンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のリボフラビン)のみに換算した場合の濃度を表す。
(2.7 Riboflavin)
The riboflavin contained in the medium composition has the same meaning as defined above (1.7 Riboflavin).
The concentration of riboflavin in the medium composition is 0.7 to 4.8 mg/L, preferably 1 to 2 mg/L, and particularly preferably 1.4 to 2 mg/L. When riboflavin is provided as a salt, the above concentration represents the concentration converted into only the functional molecule (i.e., free riboflavin).

(2.8 エタノールアミン)
 培地組成物中に含まれるエタノールアミンは、上記(1.8 エタノールアミン)と同義である。
 培地組成物中のエタノールアミンの濃度は10.2~102mg/L、好ましくは30~50mg/L、特に好ましくは35~45mg/Lである。エタノールアミンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のエタノールアミン)のみに換算した場合の濃度を表す。
2.8 Ethanolamine
The ethanolamine contained in the medium composition has the same meaning as described above (1.8 Ethanolamine).
The concentration of ethanolamine in the medium composition is 10.2 to 102 mg/L, preferably 30 to 50 mg/L, and particularly preferably 35 to 45 mg/L. When ethanolamine is provided as a salt, the above concentration represents the concentration calculated in terms of only the functional molecule (i.e., free ethanolamine).

(2.9 緩衝剤)
 培地組成物中に含まれる緩衝剤は、上記(1.9 緩衝剤)と同義である。
 培地組成物中の緩衝剤の濃度は、緩衝剤がHEPESの場合、90~8800mg/L、好ましくは1000~3000mg/L、特に好ましくは2000~3000mg/Lである。
2.9 Buffers
The buffer contained in the medium composition has the same meaning as described above in (1.9 Buffer).
When the buffer is HEPES, the concentration of the buffer in the medium composition is 90 to 8800 mg/L, preferably 1000 to 3000 mg/L, and particularly preferably 2000 to 3000 mg/L.

(2.10 グルタチオン)
 培地組成物中に含まれるグルタチオンは、上記(1.10 グルタチオン)と同義である。
 培地組成物中のグルタチオンの濃度は、0.5、0.6、0.7、0.8、0.9、1mg/L以上、6、5、4、3mg/L以下である。本発明の一実施態様において、培地組成物中のグルタチオンの濃度は、2~6mg/L、好ましくは2.5~3.5mg/L、特に好ましくは2.8~3.2mg/Lである。本発明の別の一実施態様において、培地組成物中のグルタチオンの濃度は、1.5~6mg/L、好ましくは2~5mg/L、特に好ましくは3~4mg/Lである。グルタチオンが塩として提供される場合は、上記濃度は機能分子(即ち遊離のグルタチオン)のみに換算した場合の濃度を表す。
(2.10 Glutathione)
The glutathione contained in the medium composition has the same meaning as defined above in (1.10 Glutathione).
The concentration of glutathione in the medium composition is 0.5, 0.6, 0.7, 0.8, 0.9, 1 mg/L or more and 6, 5, 4, 3 mg/L or less. In one embodiment of the present invention, the concentration of glutathione in the medium composition is 2 to 6 mg/L, preferably 2.5 to 3.5 mg/L, particularly preferably 2.8 to 3.2 mg/L. In another embodiment of the present invention, the concentration of glutathione in the medium composition is 1.5 to 6 mg/L, preferably 2 to 5 mg/L, particularly preferably 3 to 4 mg/L. When glutathione is provided as a salt, the above concentration represents the concentration when converted into only the functional molecule (i.e., free glutathione).

(2.11 グルタミン源)
 培地組成物中に含まれるグルタミン源は、上記(1.11 グルタミン源)と同義である。
 培地組成物中のグルタミン源の濃度は17.54~1169mg/L、好ましくは145~1030mg/L、特に好ましくは290~880mg/Lである。ここでグルタミン源の上記濃度は機能分子(即ちグルタミン)のみに換算した場合の濃度を表す。
2.11 Glutamine Source
The glutamine source contained in the medium composition is the same as that described above in (1.11 Glutamine source).
The concentration of the glutamine source in the medium composition is 17.54 to 1169 mg/L, preferably 145 to 1030 mg/L, and particularly preferably 290 to 880 mg/L. Here, the above concentration of the glutamine source represents the concentration converted into only the functional molecule (i.e., glutamine).

(2.12 銅)
 銅は、微量元素の一種で、細胞内での多くの酵素反応に関与している。例えば、細胞の代謝に関わる酵素や抗酸化酵素などの補酵素として働く。これらの酵素は細胞内で重要な反応を触媒し、正常な細胞機能を維持するために必要であることから銅は細胞増殖に重要な成分である。銅は、培地組成物中でその機能を発揮し得る限りその態様は限定されず、通常銅塩として培地組成物中に含められる。銅塩としては、銅の無機塩、有機酸塩、錯体(錯塩)等が挙げられる。無機塩としては、硫酸塩、塩化物、硝酸塩等が例示される。有機酸塩としては、酢酸塩、クエン酸塩等が例示される。銅錯体としては銅と錯体を形成し、細胞内に銅を運搬できるものであれば特に制限はない。銅塩としては、例えば、硝酸銅、酢酸銅、硫酸銅等が挙げられるが、これらに限定されない。好ましくは硫酸銅が挙げられる。銅塩は無水物であっても水和物であってもよい。
 培地組成物中の銅の濃度は0.002~0.024mg/L、好ましくは0.004~0.015mg/L、特に好ましくは0.006~0.01mg/Lである。銅が銅塩として提供される場合は、上記濃度は機能分子(即ち遊離の銅)のみに換算した場合の濃度を表す。
 銅濃度の測定は、通常、ICP MSにて行われる。
(2.12 Copper)
Copper is a type of trace element and is involved in many enzyme reactions in cells. For example, it acts as a coenzyme for enzymes involved in cell metabolism and antioxidant enzymes. These enzymes catalyze important reactions in cells and are necessary to maintain normal cell function, so copper is an important component for cell growth. Copper is not limited in its form as long as it can exert its function in the medium composition, and is usually included in the medium composition as a copper salt. Examples of copper salts include inorganic salts, organic acid salts, complexes (complex salts), and the like of copper. Examples of inorganic salts include sulfates, chlorides, and nitrates. Examples of organic acid salts include acetates and citrates. There is no particular restriction on the copper complex as long as it can form a complex with copper and transport copper into cells. Examples of copper salts include, but are not limited to, copper nitrate, copper acetate, copper sulfate, and the like. Preferably, copper sulfate is used. The copper salt may be anhydrous or hydrated.
The copper concentration in the medium composition is 0.002 to 0.024 mg/L, preferably 0.004 to 0.015 mg/L, and particularly preferably 0.006 to 0.01 mg/L. When copper is provided as a copper salt, the above concentration represents the concentration converted into only the functional molecule (i.e., free copper).
The copper concentration is usually measured by ICP MS.

 本発明の培地組成物は、例えば、本発明の培地添加剤(上記した「1.培地添加剤」)を基礎培地に添加することによって調製することができ、また、簡便であることからかかる態様が好ましい。例えば、本発明の培地添加剤が溶液の場合、1/20~1/5、好ましくは1/15~1/8、より好ましくは1/10量の培地添加剤を基礎培地に添加することによって本発明の培地組成物を得ることができる。 The medium composition of the present invention can be prepared, for example, by adding the medium additive of the present invention (see "1. Medium additive" above) to a basal medium, and this embodiment is preferred because of its simplicity. For example, when the medium additive of the present invention is in the form of a solution, the medium composition of the present invention can be obtained by adding 1/20 to 1/5, preferably 1/15 to 1/8, and more preferably 1/10 of the medium additive to a basal medium.

 本明細書において、「基礎培地」とは、細胞の培養に必須の炭素源、窒素源及び無機塩等を含有させた培地をいう。本発明の培地においてその構成成分として使用し得る基礎培地は特に限定されず、培養する細胞に応じて適宜選択すればよい。基礎培地は、自体公知の方法により調製してもよいし、市販品を用いてもよい。 In this specification, the term "basal medium" refers to a medium containing carbon sources, nitrogen sources, inorganic salts, etc., which are essential for cell culture. There are no particular limitations on the basal medium that can be used as a component of the medium of the present invention, and it may be appropriately selected depending on the cells to be cultured. The basal medium may be prepared by a method known per se, or a commercially available product may be used.

 使用可能な基礎培地としては、例えば、ダルベッコ改変イーグル培地(Dulbecco’s Modified Eagle’s Medium)(DMEM)、ハムF12培地(Ham’s Nutrient Mixture F12)、DMEM/F12培地、マッコイ5A培地(McCoy’s 5A medium)、最小必須培地(Minimum Essential Medium)(MEM)、イーグル最小必須培地(Eagle’s Minimum Essential Medium)(EMEM)、α改変型イーグル最小必須培地(alpha Modified Eagle’s Minimum Essential Medium)(αMEM)、ロズウェルパーク記念研究所(Roswell Park Memorial Institute)(RPMI)1640培地、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium)(IMDM)、MCDB131培地、ウィリアム培地E(William’s Medium E)、フィッシャー培地(Fischer’s Medium)、これらの培地の混合培地等が挙げられる。基礎培地は商業的に入手可能なものであってもよいし、現在開発中のものであってもよい。 Usable basal media include, for example, Dulbecco's Modified Eagle's Medium (DMEM), Ham's Nutrient Mixture F12, DMEM/F12, McCoy's 5A medium, Minimum Essential Medium (MEM), Eagle's Minimum Essential Medium (EMEM), alpha modified Eagle's Minimum Essential Medium (alpha modified Eagle's Medium), and alpha modified Eagle's Medium (alpha modified Eagle's Medium). Examples of the basal medium include α-MEM, α-MEM, Roswell Park Memorial Institute (RPMI) 1640 medium, Iscove's Modified Dulbecco's Medium (IMDM), MCDB131 medium, William's Medium E, Fischer's Medium, and mixtures of these media. The basal medium may be commercially available or may be one currently under development.

 また、特にウイルス産生細胞(後述)の培養用として本発明の培地組成物を調製する場合に使用される基礎培地としては、CDM4HEK293(Cytiva)、SFM4HEK293(Cytiva)、HyCellTMTransFx-H(Cytiva)、Pro293a(LONZA)、Pro293s(LONZA)、BalanCD HEK293(FUJIFILM)、EX-CELL(登録商標)293(SAFC)、EX-CELL(登録商標)CD293 Viral Vector Medium(SAFC)、293 SFMII(Thermo Fisher Scientific)、CD293(Thermo Fisher Scientific)、FreeStyle293TM Expression medium(Thermo Fisher Scientific)、Expi293TM Expression medium(Thermo Fisher Scientific)、LV MAXTM Production medium(Thermo Fisher Scientific)、Viral Production Medium(Thermo Fisher Scientific)等が好ましい。開発中の基礎培地としては、B10-06、PBH-05等が好ましい。 In addition, examples of basal media used in preparing the medium composition of the present invention for culturing virus-producing cells (described later) include CDM4HEK293 (Cytiva), SFM4HEK293 (Cytiva), HyCell TransFx-H (Cytiva), Pro293a (LONZA), Pro293s (LONZA), BalanCD HEK293 (FUJIFILM), EX-CELL (registered trademark) 293 (SAFC), EX-CELL (registered trademark) CD293 Viral Vector Medium (SAFC), 293 SFMII (Thermo Fisher Scientific), CD293 (Thermo Fisher Scientific), and 293 SFMII (Thermo Fisher Scientific). Preferred basal media include FreeStyle293 Expression medium (Thermo Fisher Scientific), Expi293 Expression medium (Thermo Fisher Scientific), LV MAX Production medium (Thermo Fisher Scientific), Viral Production Medium (Thermo Fisher Scientific), etc. Preferred basal media under development include B10-06, PBH-05, etc.

 本発明の一実施態様として、本発明の培地組成物は本発明の培地添加剤を基礎培地に添加することによって調製される。その場合、培地組成物に必須な成分(1)~(11)が基礎培地中に既に含まれている場合、当該成分の培地組成物中の濃度は培地添加剤中の濃度と基礎培地中の濃度との合計になる。成分(12)銅については、培地添加剤に含まれていないことから基礎培地中の濃度に相当する。 In one embodiment of the present invention, the medium composition of the present invention is prepared by adding the medium additive of the present invention to a basal medium. In this case, if the components (1) to (11) essential to the medium composition are already contained in the basal medium, the concentration of the component in the medium composition is the sum of the concentration in the medium additive and the concentration in the basal medium. As for component (12), copper, it is not contained in the medium additive, so its concentration corresponds to that in the basal medium.

 また、本発明の培地組成物は、培地添加剤及び基礎培地に加えて、さらに細胞増殖やウイルス産生に好ましい成分を添加することもできる。かかる成分としては、例えば、グルコース、フルクトース、スクロース、マルトース等の糖;アミノ酸;アルブミン、トランスフェリン等のタンパク質;グリシルグリシルグリシン、大豆ペプチド等のペプチド;血清;コリン、ビタミンA、ビタミンB群(チアミン、ピリドキシン、シアノコバラミン、ビオチン、パントテン酸、ニコチンアミド等)、ビタミンC、ビタミンE等のビタミン;オレイン酸、アラキドン酸、リノール酸等の脂肪酸;コレステロール等の脂質;塩化ナトリウム、塩化カルシウム、リン酸二水素ナトリウム等の無機塩;亜鉛、セレン等の微量元素;N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid(BES))、N-[トリス(ヒドロキシメチル)メチル]グリシン(N-[tris(hydroxymethyl)methyl]glycine(Tricine))等の緩衝剤;アンホテリシンB、カナマイシン、ゲンタマイシン、ストレプトマイシン、ペニシリン等の抗生物質;Type I コラーゲン、Type II コラーゲン、フィブロネクチン、ラミニン、ポリ-L-リシン、ポリ-D-リシン等の細胞接着因子および細胞外マトリックス成分;インターロイキン、線維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)、トランスフォーミング増殖因子(TGF)-α、トランスフォーミング増殖因子(TGF)-β、血管内皮増殖因子(VEGF)、アクチビンA等のサイトカインおよび増殖因子;デキサメサゾン、ヒドロコルチゾン、エストラジオール、プロゲステロン、グルカゴン、インスリン等のホルモン等が挙げられ、培養する細胞の種類に応じて適切な成分を選択して用いることができる。 In addition to the medium additives and the basal medium, the medium composition of the present invention can also contain components that are favorable for cell growth and virus production. Such components include, for example, sugars such as glucose, fructose, sucrose, and maltose; amino acids; proteins such as albumin and transferrin; peptides such as glycylglycylglycine and soybean peptide; serum; vitamins such as choline, vitamin A, B vitamins (thiamine, pyridoxine, cyanocobalamin, biotin, pantothenic acid, nicotinamide, etc.), vitamin C, and vitamin E; fatty acids such as oleic acid, arachidonic acid, and linoleic acid; lipids such as cholesterol; inorganic salts such as sodium chloride, calcium chloride, and sodium dihydrogen phosphate; trace elements such as zinc and selenium; N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES)), N-[tris(hydroxymethyl)methyl]glycine (N-[tris (hydroxymethyl)methyl]glycine (Tricine) and other buffers; antibiotics such as amphotericin B, kanamycin, gentamicin, streptomycin, and penicillin; cell adhesion factors and extracellular matrix components such as type I collagen, type II collagen, fibronectin, laminin, poly-L-lysine, and poly-D-lysine; cytokines and growth factors such as interleukin, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), transforming growth factor (TGF)-α, transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF), and activin A; hormones such as dexamethasone, hydrocortisone, estradiol, progesterone, glucagon, and insulin, and the appropriate components can be selected and used depending on the type of cells to be cultured.

 培地組成物には、血清が含まれていても、無血清であってもよい。血清としては、動物由来の血清であれば、細胞の増殖を阻害するものでない限り特に限定されないが、好ましくは哺乳動物由来の血清(例えばウシ胎仔血清、ヒト血清等)であり、より好ましくはヒト血清である。血清の濃度は、自体公知の濃度範囲内であればよい。本発明の培地組成物は好ましくは無血清である。 The medium composition may contain serum or may be serum-free. There are no particular limitations on the serum, so long as it is derived from an animal and does not inhibit cell growth, but it is preferably mammalian serum (e.g., fetal bovine serum, human serum, etc.), and more preferably human serum. The concentration of serum may be within a known concentration range. The medium composition of the present invention is preferably serum-free.

3.ウイルス産生細胞及びウイルス産生細胞の培養方法
 本発明の培地組成物、好ましくは本発明の培地添加剤を基礎培地に添加してなる培地組成物は、該培地組成物中で複製可能な全てのウイルスの産生に使用することができる。本発明で対象とするウイルスは、例えば以下の科に属するウイルスが挙げられる:オルソミクソウイルス、パラミクソウイルス、レオウイルス、ピコルナウイルス、フラビウイルス、アレナウイルス、ヘルペスウイルス、ポックスウイルスおよびアデノウイルス。これらは組換えウイルスであってもよい。
 本発明の好ましい一実施態様において、対象とするウイルスはワクチン、特にヒトワクチンの一部を形成し得るウイルスであって、本発明の培地組成物はこれらのウイルスを産生する細胞の培養に使用され得る。ウイルスは、特に、ポリオウイルス、狂犬病ウイルス、日本脳炎ウイルス、黄熱病ウイルス、風疹ウイルス、おたふくかぜウイルス、デング熱ウイルスまたは麻疹ウイルス、種々の形態の肝炎のウイルス、AIDSウイルスまたは水痘ウイルス、ヘルペスウイルス、RS(respiratory syncytial)ウイルスにより引き起こされる疾患のウイルス、サイトメガロウイルス、EBV、ロタウイルスまたはインフルエンザウイルスであってもよい。
 本発明の好ましい別の一実施態様において、対象とするウイルスはアデノウイルス及びアデノ随伴ウイルス(AAV)であって、本発明の培地組成物はこれらのウイルスを産生する細胞の培養に使用され得る。アデノウイルスやAAVは遺伝子を運ぶ能力があるため、遺伝子治療や遺伝子導入研究などでウイルスベクターとして使用することができる。従ってアデノウイルスやAAV産生細胞を用いて、所定の遺伝子を持つアデノウイルスベクターを大量生産し、その遺伝子を標的細胞に導入することが可能となる。さらに、所定の遺伝子を組み込んだアデノウイルスやAAVを、ウイルス産生細胞を用いて大量に製造しワクチンとすることができる。
3. Virus-producing cells and a method for culturing virus-producing cells The medium composition of the present invention, preferably a medium composition obtained by adding the medium additive of the present invention to a basal medium, can be used for producing any virus capable of replicating in the medium composition. Viruses that are the subject of the present invention include, for example, viruses belonging to the following families: orthomyxoviruses, paramyxoviruses, reoviruses, picornaviruses, flaviviruses, arenaviruses, herpesviruses, poxviruses, and adenoviruses. These may be recombinant viruses.
In a preferred embodiment of the present invention, the viruses of interest are those that may form part of a vaccine, in particular a human vaccine, and the medium composition of the present invention may be used for the cultivation of cells producing these viruses. The viruses may in particular be poliovirus, rabies virus, Japanese encephalitis virus, yellow fever virus, rubella virus, mumps virus, dengue virus or measles virus, viruses of various forms of hepatitis, AIDS virus or chickenpox virus, herpes virus, viruses of the disease caused by respiratory syncytial virus, cytomegalovirus, EBV, rotavirus or influenza virus.
In another preferred embodiment of the present invention, the target virus is adenovirus and adeno-associated virus (AAV), and the medium composition of the present invention can be used for culturing cells that produce these viruses. Since adenovirus and AAV have the ability to carry genes, they can be used as virus vectors in gene therapy and gene transfer research. Therefore, it is possible to mass-produce adenovirus vectors carrying specific genes using adenovirus and AAV-producing cells, and to introduce the genes into target cells. Furthermore, adenovirus and AAV with specific genes can be mass-produced using virus-producing cells to be used as vaccines.

 ウイルス産生細胞は、所望のウイルスが増殖可能であれば特に制限はなく、ヒト、サル、げっ歯類等の哺乳動物細胞が用いられる。具体的には、HEK293細胞、Vero細胞、CV-1細胞、LLC-MK2細胞、MDCK細胞、MDBK細胞、WI-38細胞、MRC5細胞(ヒト線維芽細胞)、BHK21細胞等が挙げられ、いずれも商業的に入手可能である。対象とするウイルスがアデノウイルスやAAVの場合、HEK293細胞やVero細胞が、対象とするウイルスがインフルエンザウイルスの場合MDCK細胞が好ましく用いられる。 There are no particular limitations on the virus-producing cells as long as they are capable of propagating the desired virus, and mammalian cells such as human, monkey, and rodent cells can be used. Specific examples include HEK293 cells, Vero cells, CV-1 cells, LLC-MK2 cells, MDCK cells, MDBK cells, WI-38 cells, MRC5 cells (human fibroblast cells), and BHK21 cells, all of which are commercially available. HEK293 cells or Vero cells are preferably used when the target virus is adenovirus or AAV, and MDCK cells are preferably used when the target virus is influenza virus.

 本発明は、ウイルス産生細胞の培養方法を提供する(以下、「本発明の培養方法」とも称する)。本発明の培養方法は、本発明の培地組成物中でウイルス産生細胞を培養する工程を含む。
 ウイルス産生細胞の培養は、通常の動物細胞を培養する場合の培養条件で行うことができる。例えば湿度95%、CO濃度5~10%(v/v)での培養が例示されるが、本発明はこのような条件に限定されるものではない。培養は、例えば30~37℃で実施できるが、所望の細胞の増殖、ウイルスの産生が達成できる範囲で前記の範囲以外の温度で実施してもよい。培養期間は特に限定はなく、例えば12~150時間、好適には48~120時間である。
The present invention provides a method for culturing virus-producing cells (hereinafter, also referred to as the "culturing method of the present invention"). The culturing method of the present invention comprises a step of culturing virus-producing cells in the medium composition of the present invention.
The virus-producing cells can be cultured under the same culture conditions as those for culturing normal animal cells. For example, the culture can be performed at 95% humidity and a CO2 concentration of 5-10% (v/v), but the present invention is not limited to such conditions. The culture can be performed at, for example, 30-37°C, but may be performed at a temperature outside the above range as long as the desired cell growth and virus production can be achieved. The culture period is not particularly limited, and is, for example, 12-150 hours, preferably 48-120 hours.

 細胞培養に用いられる培養器は、対象とした細胞の培養が可能なものであれば特に限定されないが、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、マイクロスライド、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、及びローラーボトルが挙げられ得る。 The incubator used for cell culture is not particularly limited as long as it is capable of culturing the target cells, but examples include flasks, tissue culture flasks, dishes, Petri dishes, tissue culture dishes, multi-dishes, microplates, microwell plates, multi-plates, multi-well plates, microslides, chamber slides, petri dishes, tubes, trays, culture bags, and roller bottles.

 培養器は、細胞接着性であっても細胞非接着性であってもよく、目的に応じて適宜選ばれる。細胞接着性の培養器は、培養器の表面の細胞との接着性を向上させる目的で、細胞外マトリックス(ECM)等の任意の細胞支持用基質でコーティングされたものであり得る。細胞支持用基質は、細胞接着を目的とする任意の物質であり得る。 The culture vessel may be either cell-adhesive or cell-non-adhesive, and is appropriately selected depending on the purpose. A cell-adhesive culture vessel may be coated with any cell-supporting substrate, such as an extracellular matrix (ECM), for the purpose of improving adhesion of the surface of the culture vessel to cells. The cell-supporting substrate may be any substance intended for cell adhesion.

4.ウイルスの製造方法
 本発明は、ウイルスの製造方法を提供する(以下、「本発明の製造方法」とも称する)。本発明のウイルスの製造方法は、ウイルスを感染させたウイルス産生細胞(以下、「感染細胞」とも称する)を本発明の培地組成物中で培養することを特徴とする。当該培養は、接着培養であっても浮遊培養であっても構わないが、好ましくは浮遊培養である。本明細書において、「接着培養」とは、培養基材に接着させて培養することを意味し、具体的には接着細胞を培養基材表面に接着させながら、且つ細胞同士を互いに接着させながら増殖させる方法を意味する。培養基材として、マルチウェルプレート、培養ディッシュ、シャーレ、培養フラスコ、マイクロキャリア、中空糸などが挙げられるがこれらに限定されるものではない。培養は、基材上での静置培養であり得る。本明細書において、「浮遊培養」とは、培養容器に対して細胞が接着しない状態で行われる細胞培養方法をいう。浮遊培養は、液体培地に対する外部からの圧力や振動、または、当該液体培地中での振とうや回転操作を伴ってもよいし、伴わなくてもよい。
 感染細胞を培養することにより得られる培養液から上清を採取し、ウイルスの製造が実施される。ウイルス産生が達成されたウイルス産生細胞は、その後、回収、破砕され、得られたウイルス粒子を含む細胞破砕液を適宜フィルターろ過、超遠心、クロマトグラフィー、又は限外ろ過等の工程に供することによってウイルス粒子が精製され、最終製造物となる。
 本発明において、「ウイルスを感染させた細胞」とは、生きたウイルスをウイルス産生細胞に添加して細胞内でウイルスが増殖するようになった細胞に加え、ウイルス感染に必要なタンパク質をコードする核酸をウイルス産生細胞に導入して細胞内でウイルスがつくられ増殖するようになった細胞も含む概念である。
 本発明の製造方法を用いて取得したウイルス(粒子)、ベクターは、医薬組成物の有効成分として使用することができる。当該医薬組成物は、患者由来の細胞に体外で使用するか、もしくは患者へ直接投与することができる。
4. Method for Producing Virus The present invention provides a method for producing a virus (hereinafter, also referred to as the "production method of the present invention"). The method for producing a virus of the present invention is characterized in that virus-producing cells infected with a virus (hereinafter, also referred to as the "infected cells") are cultured in the medium composition of the present invention. The culture may be an adhesion culture or a suspension culture, but is preferably a suspension culture. In this specification, "adhesion culture" means culturing by adhering to a culture substrate, and specifically means a method in which adherent cells are grown while adhering to the surface of the culture substrate and while adhering to each other. Examples of culture substrates include, but are not limited to, multi-well plates, culture dishes, petri dishes, culture flasks, microcarriers, hollow fibers, and the like. The culture may be a stationary culture on a substrate. In this specification, "suspension culture" refers to a cell culture method performed in a state in which cells are not adhered to a culture vessel. Suspension culture may or may not involve external pressure or vibration on the liquid medium, or shaking or rotation in the liquid medium.
The virus is produced by collecting a supernatant from the culture medium obtained by culturing the infected cells. The virus-producing cells in which virus production has been achieved are then collected and disrupted, and the resulting cell disruption liquid containing the virus particles is appropriately subjected to a process such as filter filtration, ultracentrifugation, chromatography, or ultrafiltration to purify the virus particles into the final product.
In the present invention, the term "cells infected with a virus" refers not only to cells in which a live virus has been added to a virus-producing cell and the virus has proliferated within the cell, but also to cells in which a nucleic acid encoding a protein necessary for viral infection has been introduced into a virus-producing cell and the virus has been produced and proliferated within the cell.
The virus (particle) or vector obtained by the production method of the present invention can be used as an active ingredient in a pharmaceutical composition, which can be used ex vivo in cells derived from a patient or can be administered directly to a patient.

 以下に実施例を用いて本発明を詳述するが、本発明は何ら限定されるものではない。使用する試薬及び材料は特に限定されない限り商業的に入手可能であるか、既知文献等によって調製可能である。また、同様の効果、作用を有するものであれば代替可能であることを当業者は理解している。 The present invention will be described in detail below using examples, but the present invention is not limited in any way. Unless otherwise specified, the reagents and materials used are commercially available or can be prepared according to known literature, etc. Furthermore, those skilled in the art will understand that they can be substituted with other substances that have similar effects and actions.

<本発明の培地組成物の製造1>
 L-アスパラギン酸及びグルタチオンを蒸留水に溶解し培地添加剤を調製した。培地添加剤を基礎培地に添加し本発明の培地組成物を調製した。培地組成物中の各成分の濃度は以下の通り(各濃度は機能分子のみの濃度で示す)。
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L
<Production of medium composition of the present invention 1>
L-aspartic acid and glutathione were dissolved in distilled water to prepare a medium additive. The medium additive was added to a basal medium to prepare the medium composition of the present invention. The concentrations of each component in the medium composition are as follows (each concentration is shown as the concentration of the functional molecule only).
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L

<本発明の培地組成物の製造2>
 カリウム、マグネシウム、鉄、L-アスパラギン酸、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤、グルタチオン及びグルタミン源を蒸留水に溶解し培地添加剤を調製した。培地添加剤を基礎培地に添加し本発明の培地組成物を調製した(以下、「AJI Supplement」とも称する)。培地組成物中の各成分の濃度は以下の通り(各濃度は機能分子のみの濃度で示す)。
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(4)L-アスパラギン酸:250~1000mg/L
(5)L-トリプトファン:48~408mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(10)グルタチオン:1.5~6mg/L
(11)グルタミン源:17.54~1169mg/L
 また、培地組成物中の(12)銅の濃度は、基礎培地からの持ち込みで0.002~0.024mg/Lであった。
<Production of medium composition of the present invention 2>
A medium additive was prepared by dissolving potassium, magnesium, iron, L-aspartic acid, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, glutathione, and a glutamine source in distilled water. The medium additive was added to a basal medium to prepare a medium composition of the present invention (hereinafter, also referred to as "AJI Supplement"). The concentrations of each component in the medium composition are as follows (each concentration is shown as the concentration of the functional molecule only).
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(4) L-aspartic acid: 250 to 1,000 mg/L
(5) L-tryptophan: 48 to 408 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(10) Glutathione: 1.5 to 6 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
In addition, the concentration of (12) copper in the medium composition was 0.002 to 0.024 mg/L, which was carried over from the basal medium.

 又、同様にして、各成分の濃度が以下の通り(各濃度は機能分子のみの濃度で示す)の培地組成物も調製した。
(1)カリウム:290~370mg/L
(2)マグネシウム:15~25mg/L
(3)鉄:18~30mg/L
(4)L-アスパラギン酸:290~810mg/L
(5)L-トリプトファン:100~200mg/L
(6)葉酸:5~20mg/L
(7)リボフラビン:1~2mg/L
(8)エタノールアミン:30~50mg/L
(9)緩衝剤:1000~3000mg/L
(10)グルタチオン:3~4mg/L
(11)グルタミン源:145~1030mg/L
(12)銅:0.004~0.015mg/L
Similarly, a medium composition was prepared having the following concentrations of each component (each concentration is shown as the concentration of the functional molecule only):
(1) Potassium: 290-370 mg/L
(2) Magnesium: 15 to 25 mg/L
(3) Iron: 18-30 mg/L
(4) L-aspartic acid: 290 to 810 mg/L
(5) L-tryptophan: 100 to 200 mg/L
(6) Folic acid: 5-20mg/L
(7) Riboflavin: 1 to 2 mg/L
(8) Ethanolamine: 30 to 50 mg/L
(9) Buffer: 1000 to 3000 mg/L
(10) Glutathione: 3 to 4 mg/L
(11) Glutamine source: 145 to 1030 mg/L
(12) Copper: 0.004-0.015mg/L

 カリウムとしては塩化カリウムを、マグネシウムとしては無水硫酸マグネシウムを、鉄としてはクエン酸鉄ナトリウムを、エタノールアミンとしてはエタノールアミン塩酸塩を、緩衝剤としてはHEPESを、グルタチオンとしては還元型グルタチオンを、グルタミン源としてはアラニル L-グルタミンを、それぞれ用いた。 The potassium used was potassium chloride, the magnesium used was anhydrous magnesium sulfate, the iron used was sodium ferric citrate, the ethanolamine used was ethanolamine hydrochloride, the buffer used was HEPES, the glutathione used was reduced glutathione, and the glutamine source used was alanyl L-glutamine.

<HEK293細胞の無血清順化・浮遊化>
1:使用試薬
(1)ウシ胎児血清(FBS, Fetal Bovine Serum, Cytiva)
(2)DMEM/F12(サーモフィッシャーサイエンティフィック株式会社)
(3)293 SFM II(サーモフィッシャーサイエンティフィック株式会社)
(4)L-Glutamine(200mM)(サーモフィッシャーサイエンティフィック株式会社)
Serum-free adaptation and suspension of HEK293 cells
1: Reagents used (1) Fetal Bovine Serum (FBS, Cytiva)
(2) DMEM/F12 (Thermo Fisher Scientific Co., Ltd.)
(3) 293 SFM II (Thermo Fisher Scientific Co., Ltd.)
(4) L-Glutamine (200 mM) (Thermo Fisher Scientific Japan Co., Ltd.)

2:使用細胞
細胞株:HEK293 2.sus(ATCC:CRL-1573.3)
2: Cells used Cell line: HEK293 2. sus(ATCC:CRL-1573.3)

3:無血清順化・浮遊化方法
下記の手順で無血清順化・浮遊化を実施した。
(1):HEK293 2.sus細胞を10%FBS/DMEM F12培地にて起眠し、静置培養した(播種密度:2×10 cells/mL T75 Flask×1本 培養日数3日間 CO 5%)。
(2):100%コンフルエントになる前に5%FBS/DMEM F12培地にて継代・静置培養した(播種密度:2×10 cells/mL T75 Flask×1本 培養日数3日 CO 5%)。
(3):100%コンフルエントになる前に2.5%FBS/DMEM F12培地にて継代・静置培養した(播種密度:2×10 cells/mL T75 Flask×2本 培養日数3日 CO 5%)。
(4):100%コンフルエントになる前に2.5% FBS/DMEM F12培地にて継代・振とう培養した(播種密度:3×10 cells/mL シャーレ×2枚 培養日数3~4日 CO 5% 90rpm)。
(5):2.5%FBS/DMEM F12培地と293SFM II+4mM L-Glnを1:1で混ぜた培地にて4日間振とう培養を2継代行った(FBS終濃度:1.25%)(播種密度:3×10 cells/mL シャーレ×2枚 培養日数4日 CO 5% 90rpm)。
(6):2.5%FBS/DMEM F12培地と293SFM II+4mM L-Glnを1:3で混ぜた培地にて振とう培養を2継代行った(FBS終濃度:0.625%)(播種密度:3×10cells/mL シャーレ×2枚 培養日数4日 CO 5% 90rpm)。
(7):2.5%FBS/DMEM F12培地と293SFM II+4mM L-Glnを1:7で混ぜた培地にて振とう培養を2継代行った(FBS終濃度:0.313%)(播種密度:3×10cells/mL シャーレ×2枚 培養日数4日 CO 5% 90rpm)。
(8):2.5%FBS/DMEM F12培地と293SFM II+4mM L-Glnを1:15で混ぜた培地にて振とう培養を2継代行った(FBS終濃度:0.156%)(播種密度:3×10cells/mL シャーレ×2枚 培養日数4日 CO 5% 90rpm)。
(9):293SFM II+4mM L-Glnにて振とう培養を3継代行った(FBS終濃度:0%)(播種密度:3×10cells/mL シャーレ×2枚 培養日数4日 CO 5% 90rpm)。
(10):細胞バンクを作製した。
3: Serum-free acclimation and suspension method Serum-free acclimation and suspension were carried out according to the following procedure.
(1): HEK293 2. sus cells were put to sleep in 10% FBS/DMEM F12 medium and statically cultured (seeding density: 2×10 5 cells/mL, T75 flask×1, culture period: 3 days, CO 2 5%).
(2): Before reaching 100% confluence, the cells were passaged and statically cultured in 5% FBS/DMEM F12 medium (seeding density: 2×10 5 cells/mL, T75 flask×1, culture period: 3 days, CO 2 5%).
(3): Before reaching 100% confluence, the cells were passaged and statically cultured in 2.5% FBS/DMEM F12 medium (seeding density: 2×10 5 cells/mL, T75 flask×2, culture period: 3 days, CO 2 5%).
(4): Before reaching 100% confluence, the cells were subcultured and cultured with shaking in 2.5% FBS/DMEM F12 medium (seeding density: 3×10 5 cells/mL, 2 petri dishes, culture period: 3-4 days, 5% CO 2 , 90 rpm).
(5): The cells were cultured for 2 passages in a 1:1 mixture of 2.5% FBS/DMEM F12 medium and 293SFM II + 4 mM L-Gln for 4 days with shaking (final FBS concentration: 1.25%) (seeding density: 3 x 10 cells/mL, 2 petri dishes, 4 days of culture, 5% CO, 90 rpm).
(6): Shaking culture was performed for two passages in a medium prepared by mixing 2.5% FBS/DMEM F12 medium and 293SFM II + 4 mM L-Gln at a ratio of 1:3 (final FBS concentration: 0.625%) (seeding density: 3 x 105 cells/mL, 2 petri dishes, culture period: 4 days, CO2 5%, 90 rpm).
(7): Shaking culture was performed for two passages in a medium prepared by mixing 2.5% FBS/DMEM F12 medium and 293SFM II + 4 mM L-Gln at a ratio of 1:7 (final FBS concentration: 0.313%) (seeding density: 3 x 105 cells/mL, 2 petri dishes, culture period: 4 days, CO2 5%, 90 rpm).
(8): Shaking culture was performed for two passages in a medium prepared by mixing 2.5% FBS/DMEM F12 medium and 293SFM II + 4 mM L-Gln at a ratio of 1:15 (final FBS concentration: 0.156%) (seeding density: 3 x 105 cells/mL, 2 petri dishes, culture period: 4 days, CO2 5%, 90 rpm).
(9): Shaking culture was performed for 3 passages in 293SFM II + 4 mM L-Gln (final FBS concentration: 0%) (seeding density: 3 x 10 5 cells/mL, 2 petri dishes, culture period: 4 days, CO 2 5%, 90 rpm).
(10): A cell bank was prepared.

<ウイルスの調製方法>
1:使用試薬
(1)ウシ胎児血清(FBS, Fetal Bovine Serum, Cytiva)
Minimum Essential Medium Eagle(以下MEM、Sigma-Aldrich)
Minimum Essential Medium(autoclavable)(サーモフィッシャーサイエンティフィック株式会社)
炭酸水素ナトリウム(富士フイルム和光純薬株式会社)
ニュートラルレッド(富士フイルム和光純薬株式会社)
アガロース(Becton, Dickinson and Company)
抗菌薬(ペニシリン-ストレプトマイシン溶液)(富士フイルム和光純薬株式会社)
PBS(-)(富士フイルム和光純薬株式会社)
0.05%トリプシン(サーモフィッシャーサイエンティフィック株式会社)
<Virus preparation method>
1: Reagents used (1) Fetal Bovine Serum (FBS, Cytiva)
Minimum Essential Medium Eagle (hereinafter referred to as MEM, Sigma-Aldrich)
Minimum Essential Medium (autoclavable) (Thermo Fisher Scientific Co., Ltd.)
Sodium bicarbonate (FUJIFILM Wako Pure Chemical Corporation)
Neutral Red (FUJIFILM Wako Pure Chemical Corporation)
Agarose (Becton, Dickinson and Company)
Antibacterial agent (penicillin-streptomycin solution) (FUJIFILM Wako Pure Chemical Corporation)
PBS(-) (FUJIFILM Wako Pure Chemical Corporation)
0.05% trypsin (Thermo Fisher Scientific Co., Ltd.)

2:使用ウイルス株及び宿主細胞
細胞株:HEK-293(ATCC 1573TM
ウイルス株:Human adenovirus 32(ATCC VR- 625TM
2: Virus strains and host cells used Cell line: HEK-293 (ATCC 1573 TM )
Viral strain: Human adenovirus 32 (ATCC VR-625 )

3:実施方法
3.1 継代方法
(1)凍結保管中の宿主細胞を約37℃に設定した恒温槽で融解後、15mL遠心管に10%FBS含有MEM 10mLを入れ、融解した細胞液1mLを添加し懸濁する。
(2)遠心機(AX-310、株式会社トミー精工)にて、5分間遠心分離(1000rpm、190×g、24℃)して上清を除去する。
(3)15mL遠心管に10%FBS含有MEM 1mLを加えて再懸濁する。10%FBS含有MEM 5mLを加えた25cm培養フラスコに細胞懸濁液0.5mLを添加し、COインキュベーター(設定温度:37℃、CO濃度:5%、型式:MCO-170AICUV-PJ、パナソニックヘルスケア株式会社)で数日間培養する。
(4)細胞が25cm培養フラスコの底に単層シート状になっていることを確認する。培地を除去し、PBSで細胞を2回洗浄後に0.05%トリプシン1mLを加えて細胞を剥離し、回収液を15mL遠心管に移す。
(5)回収液と等量の10%FBS含有MEMを混合し、5分間遠心分離(1000rpm、190×g、24℃)して上清を除去する。
(6)15mL遠心管に10%FBS含有MEM 1mLを加えて再懸濁する。10%FBS含有MEM 5mLを加えた25cm培養フラスコに懸濁液0.1mLを添加し、COインキュベーターで数日間培養する。
(7)単層シート状になったら(4)~(6)を繰り返し、細胞を継代する。
3. Implementation method
3.1 Passaging method (1) The host cells in the frozen storage are thawed in an incubator set at about 37° C., and then 10 mL of MEM containing 10% FBS is placed in a 15 mL centrifuge tube, and 1 mL of the thawed cell liquid is added and suspended.
(2) The mixture is centrifuged (1000 rpm, 190×g, 24° C.) for 5 minutes using a centrifuge (AX-310, Tommy Seiko Co., Ltd.) to remove the supernatant.
(3) Add 1 mL of 10% FBS-containing MEM to a 15 mL centrifuge tube and resuspend the cells. Add 0.5 mL of the cell suspension to a 25 cm2 culture flask containing 5 mL of 10% FBS-containing MEM, and culture for several days in a CO2 incubator (temperature setting: 37°C, CO2 concentration: 5%, model: MCO-170AICUV-PJ, Panasonic Healthcare Co., Ltd.).
(4) Confirm that the cells are in the form of a monolayer sheet on the bottom of a 25 cm2 culture flask. Remove the medium, wash the cells twice with PBS, add 1 mL of 0.05% trypsin to detach the cells, and transfer the collected solution to a 15 mL centrifuge tube.
(5) The recovery liquid is mixed with an equal volume of MEM containing 10% FBS, and centrifuged for 5 minutes (1000 rpm, 190×g, 24° C.) to remove the supernatant.
(6) Add 1 mL of 10% FBS-containing MEM to a 15 mL centrifuge tube and resuspend. Add 0.1 mL of the suspension to a 25 cm2 culture flask containing 5 mL of 10% FBS-containing MEM, and culture in a CO2 incubator for several days.
(7) Once the cells have formed into a monolayer sheet, steps (4) to (6) are repeated to subculture the cells.

3.2 75cm 培養フラスコ作製方法
(1)継代培養し、25cm培養フラスコの底で単層シート状になった宿主細胞の培地を除去し、PBSで細胞を2回洗浄後、0.05%トリプシンを25cm培養フラスコ1本に対して1mLを加えて細胞を剥離し、回収液を15mL遠心管に移す。
(2)回収液と等量の10%FBS含有MEMを混合し、5分間遠心分離(1000rpm、190×g、24℃)して上清を除去する。
(3)15mL遠心管に10%FBS含有MEMを1mL加え再懸濁する。再懸濁した全量を滅菌済みメディウム瓶に入れ、さらに10%FBS含有MEMを加えて、75cm培養フラスコに15mLずつを播種し、COインキュベーターで培養する。
(4)宿主細胞が75cm培養フラスコの底に単層シート状になっていることを確認し、接種ウイルス液の精製に用いる。
3.2 Method for preparing a 75 cm2 culture flask ( 1) After subculture, remove the medium from the host cells that have formed a monolayer sheet at the bottom of the 25 cm2 culture flask. Wash the cells twice with PBS, then add 1 mL of 0.05% trypsin per 25 cm2 culture flask to detach the cells, and transfer the recovered solution to a 15 mL centrifuge tube.
(2) The recovery liquid is mixed with an equal volume of MEM containing 10% FBS, and centrifuged for 5 minutes (1000 rpm, 190×g, 24° C.) to remove the supernatant.
(3) Add 1 mL of 10% FBS-containing MEM to a 15 mL centrifuge tube and resuspend. Place the entire resuspended volume in a sterilized medium bottle, add 10% FBS-containing MEM, and inoculate 15 mL of each into 75 cm2 culture flasks and culture in a CO2 incubator.
(4) Confirm that the host cells are in the form of a monolayer sheet on the bottom of a 75 cm2 culture flask, and use this for purifying the inoculated virus solution.

3.3 6ウェルプレート作製方法
(1)継代培養し、25cm培養フラスコの底で単層シート状になった宿主細胞の培地を除去し、PBSで細胞を2回洗浄後、0.05%トリプシンを25cm培養フラスコ1本に対して1mLを加えて細胞を剥離し、回収液を15mL遠心管に移す。
(2)回収液と等量の10%FBS含有MEMを混合し、5分間遠心分離(1000rpm、190×g、24℃)して上清を除去する。
(3)15mL遠心管に10%FBS含有MEM 1mLを加えて再懸濁する。細胞数が0.15×10cells/mLとなるように培養液を加え、6ウェルプレートに2mLずつを播種し、COインキュベーターで培養する。
(4)宿主細胞がプレートの底に単層シート状になっていることを確認し、接種ウイルス液の濃度測定及びウイルス量測定に用いる。
3.3 Method for preparing a 6-well plate (1) After subculture, the medium of the host cells that have formed a monolayer sheet at the bottom of a 25 cm2 culture flask is removed, and the cells are washed twice with PBS. 1 mL of 0.05% trypsin is added to each 25 cm2 culture flask to detach the cells, and the collected solution is transferred to a 15 mL centrifuge tube.
(2) The recovery liquid is mixed with an equal volume of MEM containing 10% FBS, and centrifuged for 5 minutes (1000 rpm, 190×g, 24° C.) to remove the supernatant.
(3) Add 1 mL of 10% FBS-containing MEM to a 15 mL centrifuge tube and resuspend the cells. Add culture medium so that the cell count is 0.15 x 10 6 cells/mL, and seed 2 mL of the mixture into a 6-well plate and culture in a CO 2 incubator.
(4) Confirm that the host cells have formed a monolayer sheet on the bottom of the plate, and use it to measure the concentration of the inoculated virus solution and the amount of virus.

3.4 接種ウイルス液の精製方法
 凍結保存のウイルスを解凍し、MEMで適宜希釈し、HEK-293細胞を培養した75cm培養フラスコに添加し、COインキュベーターで、細胞にウイルスを1時間吸着させる。
 その後、ウイルス液を除去し、MEMを加え、COインキュベーターで培養する。培養は、細胞変性効果(CPE)が出現するまで実施し、ウイルス液を含む上清と細胞を採取する。
 採取後、凍結融解を3回行い(懸濁回数:5回以上)、5分間遠心分離(2000rpm、780×g、4℃)し、上清を接種ウイルス液とする。接種ウイルス液は1mLずつセラムチューブに分注し、超低温フリーザーに使用時まで凍結(-80℃)保存する。
3.4 Purification method of inoculated virus solution Frozen virus is thawed, appropriately diluted with MEM, and added to a 75 cm2 culture flask in which HEK-293 cells have been cultured, and the virus is allowed to adsorb to the cells for 1 hour in a CO2 incubator.
Thereafter, the virus solution is removed, MEM is added, and the cells are cultured in a CO 2 incubator. The culture is continued until the appearance of cytopathic effect (CPE), and the supernatant containing the virus solution and the cells are harvested.
After collection, freeze-thaw three times (suspension times: 5 or more) and centrifuge for 5 minutes (2000 rpm, 780 x g, 4°C), and the supernatant is used as the inoculum virus solution. The inoculum virus solution is dispensed into 1 mL portions into ceramic tubes and frozen (-80°C) in an ultra-low temperature freezer until use.

3.5 接種ウイルス液の濃度測定
 接種ウイルス液をPBSで段階希釈液(10~10倍希釈液)を調製する。HEK-293細胞を培養した6ウェルプレートに各ウイルス希釈液を1ウェルに0.2mLずつ添加し、15分毎に6ウェルプレートを振盪し、細胞にウイルスを1時間吸着させた。
 1時間経過後、培地Aと培地Bを等量混ぜ合わせ、速やかに2mLずつ吸着の終わったシャーレに加える。アガロースが凝固するまで室温に放置し、COインキュベーターで数日間培養し、ニュートラルレッドを加えた培地(培地A+培地B)を2mL重層し、一晩COインキュベーターで培養後、ハンディコロニーカウンター(アズワン株式会社)でプラーク数を算定する。各濃度の例数は3とする。
培地A:10×MEM 9.5mL、7.5%炭酸水素ナトリウム3mL、FBS 5mL、抗菌薬0.5mL、滅菌蒸留水32mL
培地B:アガロース0.8g、蒸留水50mL
3.5 Measurement of inoculated virus concentration: Serial dilutions (10 to 10 6- fold dilutions) of the inoculated virus solution were prepared with PBS. 0.2 mL of each virus dilution was added to each well of a 6-well plate in which HEK-293 cells were cultured, and the 6-well plate was shaken every 15 minutes to allow the virus to adsorb to the cells for 1 hour.
After 1 hour, mix equal amounts of medium A and medium B and quickly add 2 mL each to the petri dish where the adsorption was completed. Leave at room temperature until the agarose solidifies, culture in a CO2 incubator for several days, overlay 2 mL of medium (medium A + medium B) containing neutral red, culture overnight in a CO2 incubator, and then count the number of plaques using a handy colony counter (As One Corporation). The number of samples for each concentration is 3.
Medium A: 10xMEM 9.5 mL, 7.5% sodium bicarbonate 3 mL, FBS 5 mL, antibiotic 0.5 mL, sterile distilled water 32 mL
Medium B: 0.8 g agarose, 50 mL distilled water

4.L―アスパラギン酸及びグルタチオン(還元型)含有培地のウイルス産生実験
4.1 L―アスパラギン酸及びグルタチオン(還元型)濃度が低い条件
4.1.1.使用試薬
(1)293 SFM II(サーモフィッシャーサイエンティフィック株式会社)
(2)B10-06(味の素(株)開発品)
(3)L-アスパラギン酸
(4)グルタチオン(還元型)
*293 SFM IIにL-Glutamineを終濃度4mMとなるように添加し、グルタミン含有293 SFM IIとした。
*B10-06にはAlanyl-Glutamineを終濃度4mMとなるように添加した。
4. Virus production experiment using medium containing L-aspartic acid and glutathione (reduced form)
4.1 Conditions with low concentrations of L-aspartic acid and glutathione (reduced form)
4.1.1. Reagents used (1) 293 SFM II (Thermo Fisher Scientific Co., Ltd.)
(2) B10-06 (developed by Ajinomoto Co., Inc.)
(3) L-aspartic acid (4) glutathione (reduced form)
*L-Glutamine was added to 293 SFM II to a final concentration of 4 mM to prepare glutamine-containing 293 SFM II.
*Alanyl-Glutamine was added to B10-06 to a final concentration of 4 mM.

4.1.2.使用ウイルス株及び宿主細胞
細胞株:1.にて調製した浮遊型HEK293 2.sus(ATCC:CRL-1573.3)
ウイルス株:2.にて調製したHuman adenovirus 32(ATCC VR- 625TM
4.1.2. Virus strains and host cells used Cell line: 1. Suspension-type HEK293 prepared in 2. sus (ATCC: CRL-1573.3)
Virus strain: Human adenovirus 32 (ATCC VR-625 ) prepared in 2.

4.1.3.実験方法
(1)凍結保存中の細胞を約37℃に設定した恒温槽で融解後、15mL遠心管にグルタミン含有293 SFM II 10mLを入れ、融解した細胞液1mLを添加し懸濁する。
(2)遠心機(AX-310、株式会社トミー精工)にて、5分間遠心分離(1000rpm、190×g、24℃)して上清を除去する。
(3)15mL遠心管に継代用培地1mLを加えて再懸濁し、50mLチューブに全量入れ、グルタミン含有293 SFM II 29mLを加え懸濁する。シャーレに細胞懸濁液5mLを入れ、COインキュベーター(設定温度:37℃、CO濃度:5%、型式:MCO-170AICUV-PJ、パナソニックヘルスケア株式会社)で2~3日間振盪培養(50rpm)する。
(4)培養後、培養液を回収し、15mL遠心管に移す。
(5)5分間遠心分離(1000rpm、190×g、24℃)して上清を除去する。
(6)15mL遠心管にグルタミン含有293 SFM II 1mLを加えて再懸濁する。血球計算盤で細胞数を計測し、3×10cells/mLとなるように培養液を加える。調整した細胞懸濁液5mLをシャーレに加え、COインキュベーターで3~4日間振盪培養(50rpm)する。
(7)培養後、(4)~(6)を1回繰り返す。
(8)COインキュベーターで3~4日間の培養後、培養液を回収し、15mL遠心管に移す。
(9)5分間遠心分離(1000rpm、190×g、24℃)して上清を除去する。
(10)15mL遠心管に各群の培養液(表2参照)1mLを加えて再懸濁する。血球計算盤で細胞数を計測し、3×10cells/mLとなるように新しい培養液を加える。調整した細胞懸濁液5mLを2シャーレに加え、COインキュベーターで3~4日間振盪培養する。
(11)培養後、(8)~(10)を3回繰り返す。
(12)培養後、細胞数を計測し、5×10cells/mLとなるように各群の培養液で調整し、シャーレ1枚当たり5mLを加える。凍結保存中の接種ウイルス液を解凍し、MOI 10となるようにウイルス液をシャーレに添加する(表1参照)。
4.1.3. Experimental method (1) Cryopreserved cells were thawed in a thermostatic bath set at approximately 37° C., and then 10 mL of glutamine-containing 293 SFM II was placed in a 15 mL centrifuge tube, and 1 mL of the thawed cell solution was added and suspended.
(2) The mixture is centrifuged (1000 rpm, 190×g, 24° C.) for 5 minutes using a centrifuge (AX-310, Tommy Seiko Co., Ltd.) to remove the supernatant.
(3) Add 1 mL of subculture medium to a 15 mL centrifuge tube and resuspend the cells, then transfer the entire amount to a 50 mL tube and add 29 mL of glutamine-containing 293 SFM II to suspend the cells. Place 5 mL of the cell suspension in a petri dish and culture with shaking (50 rpm) in a CO2 incubator (set temperature: 37°C, CO2 concentration: 5%, model: MCO-170AICUV-PJ, Panasonic Healthcare Co., Ltd.) for 2 to 3 days.
(4) After cultivation, the culture medium is collected and transferred to a 15 mL centrifuge tube.
(5) Centrifuge for 5 minutes (1000 rpm, 190×g, 24° C.) and remove the supernatant.
(6) Add 1 mL of glutamine-containing 293 SFM II to a 15 mL centrifuge tube and resuspend the cells. Count the cell count with a hemocytometer and add culture medium to make the cell count 3 x 10 5 cells/mL. Add 5 mL of the adjusted cell suspension to a petri dish and culture with shaking (50 rpm) in a CO 2 incubator for 3 to 4 days.
(7) After incubation, (4) to (6) are repeated once.
(8) After culturing in a CO2 incubator for 3 to 4 days, the culture medium is collected and transferred to a 15 mL centrifuge tube.
(9) Centrifuge for 5 minutes (1000 rpm, 190×g, 24° C.) and remove the supernatant.
(10) Add 1 mL of culture medium (see Table 2) for each group to a 15 mL centrifuge tube and resuspend the cells. Count the number of cells using a hemocytometer and add new culture medium to make the cell count 3 x 10 5 cells/mL. Add 5 mL of the adjusted cell suspension to two petri dishes and culture with shaking in a CO 2 incubator for 3 to 4 days.
(11) After incubation, (8) to (10) are repeated three times.
(12) After culturing, count the number of cells, adjust the culture medium for each group to 5 x 10 cells/mL, and add 5 mL per petri dish. Thaw the frozen inoculation virus liquid, and add the virus liquid to the petri dish at an MOI of 10 (see Table 1).

 培養液中の各成分が表2に記載の濃度となるように調整した。 The concentrations of each component in the culture medium were adjusted as shown in Table 2.

(13)COインキュベーターで2日間、振盪培養する。
(14)培養後、シャーレから培養液を回収し、凍結融解を3回行い(懸濁回数:5回以上)、遠心分離(2000rpm、190×g、4℃、10分間)し、上清を採取する。
(15)上清を1mLずつセラムチューブに加え、使用時まで冷凍(-80℃)保管する。
(16)凍結した上清は後日3.5.の方法でウイルス濃度を測定する。結果を図1に示す。
(13) Culture with shaking in a CO2 incubator for 2 days.
(14) After culturing, the culture medium is recovered from the petri dish, freeze-thawed three times (number of suspensions: 5 or more times), centrifuged (2000 rpm, 190 x g, 4°C, 10 minutes), and the supernatant is collected.
(15) Add 1 mL of the supernatant to a cryostat tube and store frozen (-80°C) until use.
(16) The virus concentration of the frozen supernatant will be measured later using the method described in 3.5. The results are shown in Figure 1.

4.2 L―アスパラギン酸濃度が低い条件
4.2.1.使用試薬
 4.1.1と同様にして調製した。
4.2.2.使用ウイルス株及び宿主細胞
 4.1.2と同様にして調製した。
4.2.3.実験方法
 4.1.3の(1)~(11)と同様にして実施した。
(12)培養後、細胞数を計測し、5×10cells/mLに各群の培養液で調整し、シャーレ1枚当たり5mLを加える。凍結保存中の接種ウイルス液を解凍し、MOI 10となるようにウイルス液をシャーレに添加する(表3参照)。
4.2 Conditions with low L-aspartic acid concentration
4.2.1. Reagents used: Prepared in the same manner as in 4.1.1.
4.2.2. Virus strains and host cells used were prepared in the same manner as in 4.1.2.
4.2.3. Experimental method The experiment was carried out in the same manner as in 4.1.3 (1) to (11).
(12) After culturing, count the number of cells, adjust the culture medium for each group to 5 x 10 cells/mL, and add 5 mL per petri dish. Thaw the frozen inoculation virus solution, and add the virus solution to the petri dish at an MOI of 10 (see Table 3).

 各成分が表4に記載の濃度となるように調整した。 The concentrations of each component were adjusted as shown in Table 4.

 4.1.3の(13)~(15)と同様にして実施した。
(16)凍結した上清は後日3.5.の方法でウイルス濃度を測定する。結果を図2に示す。
The procedure was carried out in the same manner as in (13) to (15) of 4.1.3.
(16) The virus concentration of the frozen supernatant will be measured later using the method described in 3.5. The results are shown in Figure 2.

4.3 他の培地にL-アスパラギン酸及びグルタチオン(還元型)を添加した条件
4.3.1.使用試薬
(1)293 SFM II(サーモフィッシャーサイエンティフィック株式会社)
(2)L-アスパラギン酸
(3)グルタチオン(還元型)
*293 SFM IIにはL-Glutamineを終濃度4mMとなるように添加した。
4.3.2.使用ウイルス株及び宿主細胞
 4.1.2と同様にして調製した。
4.3.3.実験方法
 4.1.3の(1)~(11)と同様にして実施した。
(12)培養後、細胞数を計測し、5×10cells/mLに各群の培養液で調整し、シャーレ1枚当たり5mLを加える。凍結保存中の接種ウイルス液を解凍し、MOI 10となるようにウイルス液をシャーレに添加する(表5参照)。
4.3 Conditions in which L-aspartic acid and glutathione (reduced form) were added to other media
4.3.1. Reagents used (1) 293 SFM II (Thermo Fisher Scientific Co., Ltd.)
(2) L-aspartic acid (3) glutathione (reduced form)
*293 SFM II was supplemented with L-Glutamine to a final concentration of 4 mM.
4.3.2. Virus strains and host cells used were prepared in the same manner as in 4.1.2.
4.3.3. Experimental method The experiment was carried out in the same manner as in 4.1.3 (1) to (11).
(12) After culturing, count the number of cells, adjust the culture medium for each group to 5 x 10 cells/mL, and add 5 mL per petri dish. Thaw the frozen inoculation virus solution, and add the virus solution to the petri dish at an MOI of 10 (see Table 5).

 4.1.3の(13)~(15)と同様にして実施した。
(16)凍結した上清は後日3.5.の方法でウイルス濃度を測定する。結果を図3に示す。
The procedure was carried out in the same manner as in (13) to (15) of 4.1.3.
(16) The virus concentration of the frozen supernatant will be measured later using the method described in 3.5. The results are shown in Figure 3.

5.培地及びAJI Supplementのウイルス産生実験
5.1 細胞密度、ウイルス濃度が低い条件
5.1.1.使用試薬
(1)293 SFM II(サーモフィッシャーサイエンティフィック株式会社)
(2)L-Glutamine(200mM)(サーモフィッシャーサイエンティフィック株式会社)
(3)CDM4HEK293(Cytiva)
(4)B10-06(味の素(株)開発品)
(5)PBH-05(味の素(株)開発品)
(6)AJI SupplementとしてSupplementV0(味の素(株)開発品)を用いた。
*293 SFM IIにL-Glutamineを終濃度4mMとなるように添加し、グルタミン含有293 SFM IIとした。
*CDM4HEK293、B10-06、PBH-05にはAlanyl-Glutamineを終濃度4mMとなるように添加した。
5.1.2.使用ウイルス株及び宿主細胞
 4.1.2と同様にして調製した
5.1.3.実験方法
 4.1.3の(1)~(9)と同様にして実施した。
(10)15mL遠心管に各群の培養液(表6参照)1mLを加えて再懸濁する。血球計算盤で細胞数を計測し、3×10cells/mLとなるように新しい培養液を加える。調整した細胞懸濁液5mLを2シャーレに加え、COインキュベーターで3~4日間振盪培養する。
(11)培養後、(8)~(10)を3回繰り返す。
(12)3日間の培養後、細胞数を計測し(図4)、1×10cells/mLに各群の培養液で調整し、シャーレ1枚当たり5mLを加える。凍結保存中の接種ウイルス液を解凍し、1×10cells/mLにはMOI 0.1となるようにウイルス液をシャーレに添加する(表6参照)。各群における各成分の濃度は表7及び表8に記載の通り。
5. Virus production experiment using culture medium and AJI Supplement
5.1 Low cell density and virus concentration
5.1.1. Reagents used (1) 293 SFM II (Thermo Fisher Scientific Co., Ltd.)
(2) L-Glutamine (200 mM) (Thermo Fisher Scientific Co., Ltd.)
(3) CDM4HEK293 (Cytiva)
(4) B10-06 (developed by Ajinomoto Co., Inc.)
(5) PBH-05 (developed by Ajinomoto Co., Inc.)
(6) As the AJI Supplement, Supplement V0 (developed by Ajinomoto Co., Inc.) was used.
*L-Glutamine was added to 293 SFM II to a final concentration of 4 mM to prepare glutamine-containing 293 SFM II.
*Alanyl-Glutamine was added to CDM4HEK293, B10-06, and PBH-05 to a final concentration of 4 mM.
5.1.2. Virus strains and host cells used were prepared in the same manner as in 4.1.2.
5.1.3. Experimental method The experiment was carried out in the same manner as in 4.1.3 (1) to (9).
(10) Add 1 mL of culture medium (see Table 6) for each group to a 15 mL centrifuge tube and resuspend. Count the cell count with a hemocytometer and add new culture medium to make the cell count 3 x 10 5 cells/mL. Add 5 mL of the adjusted cell suspension to two petri dishes and culture with shaking in a CO 2 incubator for 3 to 4 days.
(11) After incubation, (8) to (10) are repeated three times.
(12) After 3 days of culture, the cell number is counted (Figure 4), and the culture medium for each group is adjusted to 1 x 105 cells/mL, and 5 mL is added per petri dish. The frozen virus inoculation solution is thawed, and for 1 x 105 cells/mL, the virus solution is added to the petri dish so that the MOI is 0.1 (see Table 6). The concentrations of each component in each group are as shown in Tables 7 and 8.

 群1、群2については市販の培地を用い、群3については、市販の培地にSupplementV0を添加して用いた。群4~群7については各成分が表7に記載の濃度となるように調整した。 For groups 1 and 2, a commercially available medium was used, and for group 3, a commercially available medium supplemented with Supplement V0 was used. For groups 4 to 7, the concentrations of each component were adjusted to the concentrations listed in Table 7.

 表7における各成分について、それぞれ機能分子のみに換算した濃度を表8に示す。 Table 8 shows the concentration of each component in Table 7 converted to functional molecules only.

(13)COインキュベーターでMOI 0.1の場合6日間、振盪培養する。
(14)培養後、シャーレから培養液を回収し、凍結融解を3回行い(懸濁回数:5回以上)、遠心分離(2000rpm、190×g、4℃、10分間)し、上清を採取する。
(15)上清を1mLずつセラムチューブに加え、使用時まで冷凍(-80℃)保管する。
(16)凍結した上清は後日3.5.の方法でウイルス濃度を測定する。結果を図5に示す。
(13) Culture with shaking in a CO2 incubator for 6 days at MOI 0.1.
(14) After culturing, the culture medium is recovered from the petri dish, freeze-thawed three times (number of suspensions: 5 or more times), centrifuged (2000 rpm, 190 x g, 4°C, 10 minutes), and the supernatant is collected.
(15) Add 1 mL of the supernatant to a cryostat tube and store frozen (-80°C) until use.
(16) The virus concentration of the frozen supernatant will be measured later by the method described in 3.5. The results are shown in Figure 5.

5.2 細胞密度、ウイルス濃度が高い条件
5.2.1.使用試薬
 5.1.1と同様にして調製した。
5.2.2.使用ウイルス株及び宿主細胞
 4.1.2と同様にして調製した
5.2.3.実験方法
 4.1.3の(1)~(9)と同様にして実施した。
(10)15mL遠心管に各群の培養液(表9参照)1mLを加えて再懸濁する。血球計算盤で細胞数を計測し、3×10cells/mLとなるように各群の培養液を加える。調整した細胞懸濁液5mLを2シャーレに加え、COインキュベーターで3~4日間振盪培養する。
(11)培養後、(8)~(10)を3回繰り返す。
(12)培養後、細胞数を計測し(図6)、5×10cells/mLに各群の培養液で調整し、シャーレ1枚当たり5mLを加える。凍結保存中の接種ウイルス液を解凍し、5×10cells/mLにはMOI 10となるようにウイルス液をシャーレに添加する(表9参照)。各群における各成分の濃度は表7及び表8に記載の通り。
5.2 High cell density and virus concentration conditions
5.2.1. Reagents used: Prepared in the same manner as in 5.1.1.
5.2.2. Virus strains and host cells used were prepared in the same manner as in 4.1.2.
5.2.3. Experimental method The experiment was carried out in the same manner as in 4.1.3 (1) to (9).
(10) Add 1 mL of culture medium (see Table 9) for each group to a 15 mL centrifuge tube and resuspend. Count the number of cells using a hemocytometer and add culture medium for each group so that the cell count is 3 x 10 5 cells/mL. Add 5 mL of the adjusted cell suspension to two petri dishes and culture with shaking in a CO 2 incubator for 3 to 4 days.
(11) After incubation, (8) to (10) are repeated three times.
(12) After culturing, the number of cells is counted (FIG. 6), and the culture medium for each group is adjusted to 5×10 5 cells/mL, and 5 mL is added per petri dish. The frozen virus inoculation solution is thawed, and for 5×10 5 cells/mL, the virus solution is added to the petri dish so that the MOI is 10 (see Table 9). The concentrations of each component in each group are as shown in Tables 7 and 8.

(13)COインキュベーターでMOI10の場合2日間振盪培養する。
(14)培養後、シャーレから培養液を回収し、凍結融解を3回行い(懸濁回数:5回以上)、遠心分離(2000rpm、190×g、4C、10分間)し、上清を採取する。
(15)上清を1mLずつセラムチューブに加え、使用時まで冷凍(-80℃)保管する。
(16)凍結した上清は後日3.5.の方法でウイルス濃度を測定する。結果を図7に示す。
(13) Culture with shaking in a CO2 incubator for 2 days at MOI 10.
(14) After culturing, the culture medium is recovered from the petri dish, freeze-thawed three times (number of suspensions: 5 or more times), centrifuged (2000 rpm, 190 x g, 4 C, 10 minutes), and the supernatant is collected.
(15) Add 1 mL of the supernatant to a cryostat tube and store frozen (-80°C) until use.
(16) The virus concentration of the frozen supernatant will be measured later by the method described in 3.5. The results are shown in Figure 7.

 本発明によれば、ウイルス生産性に優れたウイルス産生細胞培養用の培地組成物及び該培地を製造するのに好適な培地添加剤を提供することができる。本発明の培地組成物で培養したウイルス産生細胞では、細胞あたりのウイルス生産量が顕著に増加する。従って、より効率のよいウイルス産生が可能となる。得られたウイルスは遺伝子治療やワクチン製造に有益なウイルスベクターとして機能し得る。
 本出願は、日本で出願された特願2023-138419(出願日:2023年8月28日)を基礎としておりその内容は本明細書に全て包含されるものである。
According to the present invention, it is possible to provide a medium composition for culturing virus-producing cells having excellent virus productivity and a medium additive suitable for producing the medium. In the virus-producing cells cultured in the medium composition of the present invention, the amount of virus produced per cell is significantly increased. Therefore, more efficient virus production is possible. The obtained virus can function as a virus vector useful for gene therapy and vaccine production.
This application is based on Japanese Patent Application No. 2023-138419 (filing date: August 28, 2023) filed in Japan, the contents of which are incorporated in their entirety herein.

Claims (18)

 ウイルス産生細胞の培養に用いる為の培地添加剤であって、L-アスパラギン酸及びグルタチオンからなる群より選択される少なくとも1種を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、剤:
(4)L-アスパラギン酸:40~790mg/L
(10)グルタチオン:0.5~5mg/L。
A medium additive for use in culturing virus-producing cells, comprising at least one component selected from the group consisting of L-aspartic acid and glutathione, the final concentrations of each component being within the following ranges when added to a medium:
(4) L-aspartic acid: 40 to 790 mg/L
(10) Glutathione: 0.5 to 5 mg/L.
 L-アスパラギン酸及びグルタチオンを含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、請求項1記載の剤:
(4)L-アスパラギン酸 :40~790mg/L
(10)グルタチオン:0.5~5mg/L。
The agent according to claim 1, which contains L-aspartic acid and glutathione, and when added to a medium, the final concentrations of each component are in the following ranges:
(4) L-aspartic acid: 40 to 790 mg/L
(10) Glutathione: 0.5 to 5 mg/L.
 さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源からなる群より選択される少なくとも1種を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、請求項1記載の剤:
(1)カリウム:8.65~86.5mg/L
(2)マグネシウム:0.56~5.6mg/L
(3)鉄:3.19~31.9mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:0.618~6.18mg/L
(7)リボフラビン:0.18~1.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~900mg/L
(11)グルタミン源:17.54~175.4mg/L。
The agent according to claim 1, further comprising at least one selected from the group consisting of potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer and a glutamine source, and the final concentrations of each component when added to a medium are within the following ranges:
(1) Potassium: 8.65-86.5 mg/L
(2) Magnesium: 0.56 to 5.6 mg/L
(3) Iron: 3.19 to 31.9 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 0.618-6.18mg/L
(7) Riboflavin: 0.18 to 1.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 900 mg/L
(11) Glutamine source: 17.54-175.4 mg/L.
 さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源を含み、培地に添加された場合の各成分の最終濃度が下記の範囲である、請求項1記載の剤:
(1)カリウム:8.65~86.5mg/L
(2)マグネシウム:0.56~5.6mg/L
(3)鉄:3.19~31.9mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:0.618~6.18mg/L
(7)リボフラビン:0.18~1.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~900mg/L
(11)グルタミン源:17.54~175.4mg/L。
The agent according to claim 1, further comprising potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer and a glutamine source, and the final concentrations of each component when added to a medium are within the following ranges:
(1) Potassium: 8.65-86.5 mg/L
(2) Magnesium: 0.56 to 5.6 mg/L
(3) Iron: 3.19 to 31.9 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 0.618-6.18mg/L
(7) Riboflavin: 0.18 to 1.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 900 mg/L
(11) Glutamine source: 17.54-175.4 mg/L.
 グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、請求項3記載の剤。 The agent according to claim 3, wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine, and glycylglutamine.  請求項1~5のいずれか1項に記載の培地添加剤を基礎培地に添加してなる培地組成物。 A medium composition comprising a basal medium to which the medium additive according to any one of claims 1 to 5 has been added.  ウイルス産生細胞の培養に用いる為の培地組成物であって、L-アスパラギン酸及びグルタチオンからなる群より選択される少なくとも1種を含み、各成分の培地組成物中の濃度が下記の範囲である、培地組成物:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
A medium composition for use in culturing virus-producing cells, comprising at least one component selected from the group consisting of L-aspartic acid and glutathione, the concentration of each component in the medium composition being within the following ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
 L-アスパラギン酸及びグルタチオンを含み、各成分の培地組成物中の濃度が下記の範囲である、請求項7記載の培地組成物:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
The medium composition according to claim 7, which contains L-aspartic acid and glutathione, and the concentrations of each component in the medium composition are within the following ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
 さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源からなる群より選択される少なくとも1種を含み、各成分の培地組成物中の濃度が下記の範囲である、請求項7記載の培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
The medium composition according to claim 7, further comprising at least one selected from the group consisting of potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer, and a glutamine source, and the concentration of each component in the medium composition is within the following range:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
 さらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源を含み、各成分の培地組成物中の濃度が下記の範囲である、請求項7記載の培地組成物:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
The medium composition according to claim 7, further comprising potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffer and a glutamine source, the concentrations of each component in the medium composition being within the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
 グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、請求項9記載の培地組成物。 The medium composition according to claim 9, wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine, and glycylglutamine.  L-アスパラギン酸及びグルタチオンからなる群より選択される少なくとも1種を含む、ウイルス産生細胞の培養に用いる為の培地組成物の製造方法であって、各成分の培地組成物中の濃度を下記の濃度範囲になるように調整することを含む方法:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
A method for producing a medium composition for use in culturing virus-producing cells, comprising at least one component selected from the group consisting of L-aspartic acid and glutathione, the method comprising adjusting the concentrations of each component in the medium composition to be within the following concentration ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
 L-アスパラギン酸及びグルタチオンを含む、ウイルス産生細胞の培養に用いる為の培地組成物の製造方法であって、各成分の培地組成物中の濃度を下記の濃度範囲になるように調整することを含む請求項12記載の方法:
(4)L-アスパラギン酸:250~1000mg/L
(10)グルタチオン:1.5~6mg/L。
13. A method for producing a medium composition for use in culturing virus-producing cells, comprising L-aspartic acid and glutathione, comprising adjusting the concentrations of each component in the medium composition to the following concentration ranges:
(4) L-aspartic acid: 250 to 1,000 mg/L
(10) Glutathione: 1.5 to 6 mg/L.
 該培地組成物がさらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源からなる群より選択される少なくとも1種を含み、各成分の培地組成物中の濃度が下記の範囲である、請求項12記載の方法:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
The method according to claim 12, wherein the medium composition further comprises at least one selected from the group consisting of potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffering agent, and a glutamine source, and the concentration of each component in the medium composition is within the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
 該培地組成物がさらにカリウム、マグネシウム、鉄、L-トリプトファン、葉酸、リボフラビン、エタノールアミン、緩衝剤及びグルタミン源を含み、各成分の培地組成物中の濃度が下記の範囲である、請求項12記載の方法:
(1)カリウム:290~772mg/L
(2)マグネシウム:7~45mg/L
(3)鉄:17~123mg/L
(5)L-トリプトファン:48~480mg/L
(6)葉酸:3~59.6mg/L
(7)リボフラビン:0.7~4.8mg/L
(8)エタノールアミン:10.2~102mg/L
(9)緩衝剤:90~8800mg/L
(11)グルタミン源:17.54~1169mg/L
(12)銅:0.002~0.024mg/L。
13. The method of claim 12, wherein the medium composition further comprises potassium, magnesium, iron, L-tryptophan, folic acid, riboflavin, ethanolamine, a buffering agent, and a glutamine source, the concentrations of each component in the medium composition being in the following ranges:
(1) Potassium: 290-772 mg/L
(2) Magnesium: 7 to 45 mg/L
(3) Iron: 17 to 123 mg/L
(5) L-tryptophan: 48 to 480 mg/L
(6) Folic acid: 3-59.6mg/L
(7) Riboflavin: 0.7 to 4.8 mg/L
(8) Ethanolamine: 10.2 to 102 mg/L
(9) Buffer: 90 to 8,800 mg/L
(11) Glutamine source: 17.54 to 1169 mg/L
(12) Copper: 0.002 to 0.024 mg/L.
 グルタミン源がL-グルタミン、アラニルグルタミン及びグリシルグルタミンからなる群より選択される少なくとも1種である、請求項14記載の方法。 The method according to claim 14, wherein the glutamine source is at least one selected from the group consisting of L-glutamine, alanylglutamine, and glycylglutamine.  請求項7~11のいずれか1項に記載の培地組成物中でウイルス産生細胞を培養する工程を含む、ウイルス産生細胞の培養方法。 A method for culturing virus-producing cells, comprising a step of culturing the virus-producing cells in a medium composition according to any one of claims 7 to 11.  ウイルスを感染させたウイルス産生細胞を請求項7~11のいずれか1項に記載の培地組成物中で培養することを特徴とする、ウイルスの製造方法。 A method for producing a virus, comprising culturing a virus-infected virus-producing cell in a medium composition according to any one of claims 7 to 11.
PCT/JP2024/030548 2023-08-28 2024-08-27 Culture medium for culturing virus-producing cells WO2025047758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023138419 2023-08-28
JP2023-138419 2023-08-28

Publications (1)

Publication Number Publication Date
WO2025047758A1 true WO2025047758A1 (en) 2025-03-06

Family

ID=94819383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/030548 WO2025047758A1 (en) 2023-08-28 2024-08-27 Culture medium for culturing virus-producing cells

Country Status (1)

Country Link
WO (1) WO2025047758A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514845A (en) * 1997-09-05 2001-09-18 ターゲティッド ジェネティクス コーポレイション Method for generating a high titer helper-free preparation of a recombinant AAV vector
JP2010154866A (en) * 1996-10-10 2010-07-15 Life Technologies Corp Animal cell culture medium comprising plant-derived nutrient
WO2015125926A1 (en) * 2014-02-21 2015-08-27 国立研究開発法人理化学研究所 Method for establishing and maintaining trophoblast stem cells
CN114736871A (en) * 2022-04-27 2022-07-12 中山康晟生物技术有限公司 Adenovirus packaging WAYNE293LVPRO animal cell culture method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154866A (en) * 1996-10-10 2010-07-15 Life Technologies Corp Animal cell culture medium comprising plant-derived nutrient
JP2001514845A (en) * 1997-09-05 2001-09-18 ターゲティッド ジェネティクス コーポレイション Method for generating a high titer helper-free preparation of a recombinant AAV vector
WO2015125926A1 (en) * 2014-02-21 2015-08-27 国立研究開発法人理化学研究所 Method for establishing and maintaining trophoblast stem cells
CN114736871A (en) * 2022-04-27 2022-07-12 中山康晟生物技术有限公司 Adenovirus packaging WAYNE293LVPRO animal cell culture method

Similar Documents

Publication Publication Date Title
DK2561065T3 (en) CELL CULTURE MEDIUM CONTAINING SMALL PEPTIDES
JP6990659B2 (en) Chemically defined medium for culturing cancer stem cell (CSC) -containing cell populations
CN106554936B (en) New method for inducing human stem cell to directionally differentiate into liver cell
CN107267462B (en) Serum-free culture medium for inducing pluripotent stem cells to rapidly generate
CN101418330A (en) Non protein culture medium adapted to large-scale culture of NSO cell and production of antibody
CN111440764A (en) Serum-free culture medium of mesenchymal stem cells and clinical-grade large-scale culture method of mesenchymal stem cells
CN105524882B (en) Serum substitute for immunologic cytotoxicity cell expansion ex vivo combines
WO2025047758A1 (en) Culture medium for culturing virus-producing cells
CN104611291B (en) A medium for inducing embryonic stem cells into cardiomyocytes and application thereof
WO2020067502A1 (en) Culture additive, culture medium and culture method for animal cells
IL292933A (en) Serum-free human pluripotent stem cell culture medium
Thilly et al. Microcarriers and the problem of high density cell culture
US20230002729A1 (en) Cell culture medium composition
CN103421736A (en) Medium additive replacing animal serum in CHO cell culture and preparation method thereof
US20210395698A1 (en) Methods and compositions for cultivating pluripotent cell suspensions
Zhang Approaches to optimizing animal cell culture process: substrate metabolism regulation and protein expression improvement
CN111876373A (en) Serum-free culture medium with definite chemical components for human airway epithelial cells and application thereof
Gerdtzen Medium Design, Culture Management, and the PAT Initiative
JP2022023684A (en) Medium for culturing canine mesenchymal stem cells, method for culturing canine mesenchymal stem cells, and method for producing canine mesenchymal stem cells
AU2003252890B2 (en) A composition for the culture of cells, in particular animal cells or tissues, comprising polyethylene glycol
WO2021145322A1 (en) Medium having reduced osmotic pressure
WO2025053166A1 (en) Culture medium composition
EP4092101A1 (en) Cell culture method
WO2021145321A1 (en) High-density cell culture method
CN113832097A (en) Composition and serum-free, feeder-layer-free stem cell culture medium containing the same and application thereof