WO2025047326A1 - Negative electrode and secondary battery - Google Patents
Negative electrode and secondary battery Download PDFInfo
- Publication number
- WO2025047326A1 WO2025047326A1 PCT/JP2024/028010 JP2024028010W WO2025047326A1 WO 2025047326 A1 WO2025047326 A1 WO 2025047326A1 JP 2024028010 W JP2024028010 W JP 2024028010W WO 2025047326 A1 WO2025047326 A1 WO 2025047326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- negative electrode
- granules
- current collector
- material layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- an active material layer is formed on a current collector.
- a current collector There are many methods for forming an active material layer on a current collector when making electrodes, but they can be broadly divided into wet methods and dry methods from the viewpoint of whether or not the electrode mixture containing the active material is made into a slurry.
- wet method the active material, polymer, solvent, etc. are mixed to obtain a slurry, and the obtained slurry is applied to a current collector and dried to form an electrode.
- the dry method an electrode is formed without going through a process of applying a slurry of the solvent and active material.
- an electrode is formed by forming a granule containing the active material in advance and pressing it onto a current collector.
- the content of the active material is preferably 95.0 parts by mass or more, more preferably 96 parts by mass or more, even more preferably 97 parts by mass or more, and preferably 99.5 parts by mass or less, more preferably 99.0 parts by mass or less, even more preferably 98.5 parts by mass or less.
- the proportion of the active material involved in the formation of the granules is at least 95% or more, preferably 97% or more, and even more preferably 99% or more.
- the conductive assistant preferably contains at least one selected from the group consisting of carbon black, carbon nanofibers, and carbon nanotubes.
- the carbon black used as the conductive assistant preferably has an aggregate structure in which carbon nanoparticles are connected in a beaded shape.
- As the carbon black acetylene black, ketjen black, etc. can be used.
- Carbon nanotubes formed of a substance composed of carbon atoms such as graphene into a cylindrical shape with a diameter of several nm and a length of several mm can also be used.
- single-walled carbon nanotubes formed in a substantially single layer around the cylinder or multi-walled carbon nanotubes formed in a multiple layer around the cylinder can be bundled.
- the content of the conductive assistant is preferably 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, even more preferably 3.0 parts by mass or more, and preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, even more preferably 0.5 parts by mass or less.
- the granules further contain a binder. It is preferable that the conductive assistant and the binder are present on the surface and inside of the granules. In this way, when the granules are pressed, the desired density can be obtained without over-compressing the pores between the active material particles or over-orienting them.
- the binder content is preferably 0.5 parts by mass or more, more preferably 0.7 parts by mass or more, even more preferably 1.0 parts by mass or more, and preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, even more preferably 2.0 parts by mass or less.
- a method for manufacturing a negative electrode preferably includes a step of forming granules by spraying and adding a dispersion liquid in which a conductive assistant is dispersed to the active material particles while mixing and stirring the active material particles, and a step of placing the granules on a current collector and pressing the granules.
- the method for forming the granules is not particularly limited, and examples of the method include a spray granulation method, an agitation granulation method, a fluidized bed granulation method, a rolling granulation method, an extrusion granulation method, and a compression granulation method. These granulation methods may be selected or combined as desired.
- An example of a spray granulation method is a spray drying granulation method.
- a spray drying granulation method for example, a dispersion liquid in which a negative electrode active material and a conductive assistant are dispersed is sprayed into high-temperature gas in a spray dryer to form granules.
- a dispersion liquid in which a conductive assistant is dispersed is sprayed and added to the negative electrode active material particles while mixing and stirring the negative electrode active material to form granules.
- a dispersion liquid containing a highly dispersed conductive additive and binder By attaching a dispersion liquid containing a highly dispersed conductive additive and binder to active material particles without containing any other organic solvents, it is possible to prepare an active material with a uniformly formed conductive additive on its surface.
- the diameter of the granules formed will vary depending on the equipment used to mix and stir these materials, but it is possible to control this by changing the amount and timing of spraying the dispersion liquid of the conductive additive and binder, as well as mixing and stirring times.
- by classifying the formed granules through a sieve it is possible to obtain granules with any particle size distribution.
- the material of the current collector is not particularly limited, but when the current collector is a positive electrode current collector, aluminum foil is preferable.
- the material is selected from the group consisting of copper, stainless steel, nickel, titanium, or an alloy thereof, with copper being particularly preferable.
- the shape of the current collector layer is not particularly limited, and may be foil, flat, or mesh-like. For example, the thickness is 0.001 mm or more and 0.5 mm or less.
- the pressing method is not particularly limited as long as it can form the electrode granules containing the electrode active material on the current collector.
- a long current collector is arranged so that the current collector passes between a pair of rolls while the current collector is unwound from a rolled roll and wound up.
- the granules are supplied onto the current collector before passing through the rolls, and are compressed when passing between the rolls to form an electrode sheet.
- the thickness In order to adjust the amount of granules supplied, it is preferable to supply the thickness while smoothing the surface with a squeegee or the like before supplying it between the rolls. It is preferable to previously form a current collector surface layer containing a binder to enhance the binding property with the granules on the current collector foil.
- a second embodiment of the present invention is a secondary battery in which the above-mentioned negative electrode and positive electrode are stacked in multiple layers with a separator interposed therebetween, optionally rolled up, and housed in an outer container, and a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode are drawn out from the outer container.
- the secondary battery according to the second embodiment can be produced using the above-mentioned negative electrode in accordance with a known method.
- the positive electrode is not particularly limited, but refers to a positive electrode used in a non-aqueous secondary battery material.
- the positive electrode is composed of a positive electrode current collector and a positive electrode active material layer provided on the surface of the positive electrode current collector, and the active material layer includes a positive electrode active material, a conductive additive, and a binder.
- the positive electrode active material layer including the positive electrode active material, the conductive additive, and the binder can be formed on at least one surface of the positive electrode current collector.
- the positive electrode current collector can be made of stainless steel, aluminum, nickel, titanium, or a positive electrode current collector in which the surface of aluminum or stainless steel is surface-treated with carbon, nickel, titanium, or silver.
- the olivine-type lithium phosphate contains, for example, one or more elements selected from the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe, lithium, phosphorus, and oxygen. These compounds may have some elements partially substituted with other elements in order to improve their properties.
- binder that forms the positive electrode and the material layer together with the positive electrode active material examples include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), etc.; conductive polymers such as polyanilines, polythiophenes, polyacetylenes, polypyrroles, etc.; synthetic rubbers such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile butadiene rubber (NBR), etc.; and polysaccharides such as carboxymethyl cellulose (CMC), xanthan gum, guar gum, pectin, etc.
- fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), etc.
- conductive polymers such as
- the conductive assistant examples include carbon black such as acetylene black and ketjen black, activated carbon, graphite, mesoporous carbon, fullerenes, carbon fibers such as carbon nanofibers, carbon nanotubes, and carbon nanobrushes.
- the positive electrode active material layer may appropriately contain electrode additives that are generally used for forming electrodes, such as thickeners, dispersants, and stabilizers.
- the separator may be, for example, a porous separator.
- the separator may be in the form of a membrane, film, nonwoven fabric, or the like.
- the porous separator include polyolefin-based porous separators such as polypropylene-based and polyethylene-based; and porous separators formed from polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride hexafluoropropylene copolymer, or the like.
- the separator may contain inorganic particles such as ceramic particles, or may further contain a layer containing inorganic particles.
- negative electrodes and positive electrodes are stacked in multiple layers with separators between them, and may be wound and housed in an outer container.
- the secondary battery is formed by drawing out a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode from the outer container.
- a flexible film having a resin layer on the front and back sides of a metal layer such as aluminum as a base material, or a metal can such as aluminum, iron, or stainless steel can be used.
- the positive electrode terminal can be made of aluminum or an aluminum alloy
- the negative electrode terminal can be made of copper or a copper alloy or copper or copper alloys plated with nickel.
- the shape of the secondary battery of the second embodiment can be, for example, a square, cylindrical, coin, or button type housed in an outer container made of an aluminum can, iron can, stainless steel can, or the like. Also preferred is a pouch-shaped secondary battery housed in an outer container made mainly of aluminum film.
- Examples 1 to 4 and Comparative Examples 1 to 4 Separately from the formation of the conductive layer and the adhesive layer, granulated particles of the negative electrode active material layer were prepared.
- a negative electrode dispersion liquid was prepared in which artificial graphite with an average particle size of 12 ⁇ m and silicon monoxide with an average particle size of 5 ⁇ m, which are negative electrode active material particles, single-wall carbon nanotubes (SWCNT) as a conductive assistant, and polyacrylic acid (PAA) and styrene butadiene rubber (SBR) as binders were highly dispersed together with a solvent.
- the negative electrode dispersion liquid prepared by the above procedure was rotated at a predetermined rotation speed and sprayed into a spray dryer to obtain a granule.
- the mass ratio of artificial graphite/silicon monoxide/CNT/PAA/SBR was 93.45:4.0:0.05:0.5:2.0.
- Artificial graphite from Nippon Graphite Industries Co., Ltd., PAA from Fujifilm Wako Pure Chemical Industries, Ltd., and SWCNT from OCSiAl Corporation can be used.
- Lithium nickel manganese cobalt oxide with an average particle size of 4.5 ⁇ m and expressed as LiNi 0.92 Mn 0.03 Co 0.05 O 2 was used as the positive electrode active material, and a slurry containing carbon black as a conductive additive and polyvinylidene fluoride (PVDF) as a binder was applied to an aluminum foil as a positive electrode current collector, and then pressed to obtain a positive electrode with a density of 3.5 g/cm 3 .
- PVDF polyvinylidene fluoride
- the eight positive electrode layers and the nine negative electrode layers of each of the previously obtained examples or comparative examples were laminated via a polyolefin-based porous separator, and a negative electrode terminal electrically connected to each negative electrode and a positive electrode terminal electrically connected to each positive electrode were provided to obtain a laminate.
- the prepared battery was charged at a constant current of 0.2 C up to 4.2 V, switched to a constant voltage after reaching 4.2 V and charged down to 0.015 C, and discharged at constant currents of 0.2 C and 3 C up to 2.5 V, and the rate characteristic was determined as 3C/0.2C, which is the ratio of the capacity of the 3C discharge to the capacity of the 0.2C discharge at 2.5 V.
- the capacity tends to decrease more easily as the current value increases, so the closer to 100%, the better the rate characteristic.
- the volumetric particle size distribution of the granules constituting the active material layer was measured by a laser diffraction scattering method using a dry particle size distribution measuring unit (LA-960 LY-9505, Horiba, Ltd.).
- the D50 (median diameter), D10, and D90 were determined from the particle size distribution curve (cumulative distribution curve) of the granules constituting each active material layer.
- secondary batteries using negative electrodes with active material layers in which the particle size distribution of the granules has a D50 of 80 to 120 ⁇ m show good rate characteristics.
- secondary batteries using negative electrodes with active material layers in which the particle size distribution of the granules has a D50 of 70 ⁇ m or less have poor rate characteristics.
- negative electrodes with active material layers in which the particle size distribution of the granules has a D50 of 70 ⁇ m or less tend to have clogged voids that serve as the ion path, which is thought to have reduced the rate characteristics of secondary batteries using such negative electrodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、負極および二次電池に関する。 The present invention relates to a negative electrode and a secondary battery.
リチウムイオン電池等に用いる電極は、集電体上に活物質層が形成されている。電極を作製するにあたり、集電体上に活物質層を形成する方法は多数存在するが、活物質を含む電極混合物をスラリー化するか否かの観点からは、湿式法と乾式法に大別することができる。湿式法では、活物質、ポリマー、溶媒等を混合してスラリーを得て、得られたスラリーを集電体上に塗布し、乾燥することにより電極を形成する。一方、乾式法では、溶媒と活物質とをスラリー化した状態で塗布する工程を経ずに電極を形成する。例えば、活物質を含む造粒体をあらかじめ形成し、これを集電体に圧着することにより電極を形成する。 In electrodes used in lithium-ion batteries and the like, an active material layer is formed on a current collector. There are many methods for forming an active material layer on a current collector when making electrodes, but they can be broadly divided into wet methods and dry methods from the viewpoint of whether or not the electrode mixture containing the active material is made into a slurry. In the wet method, the active material, polymer, solvent, etc. are mixed to obtain a slurry, and the obtained slurry is applied to a current collector and dried to form an electrode. On the other hand, in the dry method, an electrode is formed without going through a process of applying a slurry of the solvent and active material. For example, an electrode is formed by forming a granule containing the active material in advance and pressing it onto a current collector.
予め活物質を含む造粒体を形成しておき、それを活物質層の形成に用いる技術は、特許文献1および特許文献2に開示されている。 Technology in which granules containing an active material are formed in advance and then used to form an active material layer is disclosed in Patent Documents 1 and 2.
リチウムイオン二次電池においては、急速充放電への要求にこたえるためにレート特性が優れている、すなわち、大電流での充放電に耐えうる電極を用いることが望ましい。特許文献1では、D50が70μmの負極造粒体と、D50が40μmの正極造粒体を用いてリチウムイオン二次電池を作製しているが、このリチウムイオン二次電池は十分良好なレート特性を備えた電池ではないことがわかった。また特許文献2においては、D50が44.6μmの造粒体を用いた正極が開示されているが、このような造粒体を用いて電池を製造した場合も、十分に良好なレート特性を備えた電池が得られないことがわかった。 In lithium ion secondary batteries, it is desirable to use electrodes that have excellent rate characteristics in order to meet the demand for rapid charging and discharging, that is, electrodes that can withstand charging and discharging at large currents. In Patent Document 1, a lithium ion secondary battery is produced using negative electrode granules with a D50 of 70 μm and positive electrode granules with a D50 of 40 μm, but it was found that this lithium ion secondary battery does not have sufficiently good rate characteristics. In Patent Document 2, a positive electrode using granules with a D50 of 44.6 μm is disclosed, but it was found that even when a battery is produced using such granules, a battery with sufficiently good rate characteristics cannot be obtained.
本発明者らが検討を行ったところ、非球形の粒子を含む活物質を含む造粒体を用いた活物質層を備えた負極において、活物質の粒度分布を適切に調整することで、集電体からの活物質の脱落が少ない負極が得られ、それを備えた二次電池は、良好なレート特性を有していることを見出した。 The inventors conducted research and found that in a negative electrode having an active material layer using a granule containing an active material containing non-spherical particles, by appropriately adjusting the particle size distribution of the active material, a negative electrode with less active material falling off from the current collector can be obtained, and a secondary battery equipped with such a negative electrode has good rate characteristics.
本発明は上記事情に鑑みてなされたものであり、集電体との密着性が高い電極(特に負極)活物質層を備えた電極(特に負極)、およびそれを備えた二次電池を提供するものである。 The present invention has been made in consideration of the above circumstances, and provides an electrode (particularly a negative electrode) having an electrode (particularly a negative electrode) active material layer that has high adhesion to a current collector, and a secondary battery including the same.
すなわち、本発明によれば、以下に示す電極および電池が提供される。
1.集電体と、
前記集電体の表面に備えられた、活物質、導電助剤およびバインダを含む活物質層と、を含む負極であって、
前記活物質は、非球形の粒子を含み、
前記活物質層は、造粒体から構成され、
前記造粒体のレーザ回折・散乱法による体積基準粒度分布において、D50が70μm超え120μm以下であり、D10とD90の差が50μm以上である、負極。
That is, according to the present invention, there are provided the following electrodes and batteries.
1. A current collector;
an active material layer provided on a surface of the current collector, the active material layer including an active material, a conductive additive, and a binder;
the active material comprises non-spherical particles;
The active material layer is composed of granules,
In a volume-based particle size distribution of the granules by a laser diffraction/scattering method, D50 is more than 70 μm and 120 μm or less, and the difference between D10 and D90 is 50 μm or more.
2.上記1.に記載の負極と、正極とがセパレータを介して複数積層され、場合により巻回されて、外装容器に収容され、前記正極と電気的に接続される正極端子と、前記負極と電気的に接続される負極端子とが前記外装容器から引き出された、二次電池。 2. A secondary battery in which the negative electrode described in 1. above and the positive electrode are stacked in multiple layers with a separator between them, optionally rolled up, and housed in an outer container, with a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode being pulled out from the outer container.
本発明によれば、レート特性が高い二次電池およびそれに用いる負極を提供することができる。 The present invention makes it possible to provide a secondary battery with high rate characteristics and a negative electrode for use therein.
以下に、本発明の実施形態について説明する。 The following describes an embodiment of the present invention.
本発明の一の実施形態は、
集電体と、前記集電体の表面に備えられた、活物質、導電助剤およびバインダを含む活物質層と、を含む負極である。ここで前記活物質は、非球形の粒子を含み、
前記活物質層は、造粒体から構成され、
前記造粒体のレーザ回折・散乱法による体積基準粒度分布において、D50が70μm超え120μm以下であり、D10とD90の差が50μm以上であることを特徴とする。
One embodiment of the present invention comprises:
The negative electrode includes a current collector and an active material layer provided on a surface of the current collector, the active material layer including an active material, a conductive additive, and a binder. The active material includes non-spherical particles,
The active material layer is composed of granules,
The granules are characterized in that, in a volume-based particle size distribution measured by a laser diffraction/scattering method, D50 is greater than 70 μm and not greater than 120 μm, and the difference between D10 and D90 is 50 μm or more.
一の実施形態において負極は、特に限定されるものではないが、非水系二次電池材料に用いられる負極のことを指す。負極は、集電体と、集電体の表面に備えられた活物質層とから構成され、活物質層は、活物質、導電助剤およびバインダを含み、これらが凝集している。集電体として、例えば銅、ニッケル、チタン、ステンレス等の金属を用いることができる。集電体は、平面形状の金属、特に金属の箔を用いることが好ましい。集電体については、詳細には後述する。 In one embodiment, the negative electrode refers to, but is not limited to, a negative electrode used in a non-aqueous secondary battery material. The negative electrode is composed of a current collector and an active material layer provided on the surface of the current collector, and the active material layer contains an active material, a conductive additive, and a binder, which are aggregated together. As the current collector, for example, a metal such as copper, nickel, titanium, or stainless steel can be used. As the current collector, it is preferable to use a flat metal, particularly a metal foil. The current collector will be described in detail later.
活物質として、炭素系活物質を用いることができる。炭素系活物質としては、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボン、カーボンブラックまたはこれらの任意の混合物を選択することができる。天然黒鉛は粒子表面に非晶質炭素を被覆した天然黒鉛を含み、同様に人造黒鉛は粒子表面に非晶質炭素を被覆した人造黒鉛を含む。これらの天然黒鉛および人造黒鉛は、一次粒子または、一次粒子が凝集して二次粒子を形成した粒子、およびこれらの混合物を用いることができる。また、負極活物質は、炭素系活物質とケイ素系活物質の混合物を用いてもよい。負極活物質にはアルミニウム、リチウム、銀、ビスマス、カルシウム、セリウム、インジウム、マグネシウム、錫、亜鉛、ニッケルなどの金属材料を含んでもよい。負極活物質については、詳細には後述する。 A carbon-based active material can be used as the active material. As the carbon-based active material, natural graphite, artificial graphite, hard carbon, soft carbon, carbon black, or any mixture of these can be selected. Natural graphite includes natural graphite whose particle surface is coated with amorphous carbon, and similarly, artificial graphite includes artificial graphite whose particle surface is coated with amorphous carbon. These natural graphites and artificial graphites can be used in the form of primary particles, particles in which the primary particles are aggregated to form secondary particles, or mixtures of these. In addition, a mixture of a carbon-based active material and a silicon-based active material can be used as the negative electrode active material. The negative electrode active material can include metal materials such as aluminum, lithium, silver, bismuth, calcium, cerium, indium, magnesium, tin, zinc, and nickel. The negative electrode active material will be described in detail later.
導電助剤は、電極の抵抗を低減するための材料である。導電助剤として、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛、メソポーラスカーボン、フラーレン類、カーボンナノチューブ、カーボンナノファイバー、カーボンナノブラシ等のカーボン繊維等が挙げられる。導電助剤については、詳細には後述する。 The conductive additive is a material for reducing the resistance of the electrode. Examples of conductive additives include carbon black such as acetylene black and ketjen black, activated carbon, graphite, mesoporous carbon, fullerenes, carbon nanotubes, carbon nanofibers, carbon nanobrushes, and other carbon fibers. The conductive additive will be described in more detail later.
バインダは、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ポリアニリン類、ポリチオフェン類、ポリアセチレン類、ポリピロール類等の導電性ポリマー、スチレンブタジエンラバー(SBR)、ブタジエンラバー(BR)、クロロプレンラバー(CR)、イソプレンラバー(IR)、アクリロニトリルブタジエンラバー(NBR)等の合成ゴム、あるいはカルボキシメチルセルロース(CMC)、キサンタンガム、グアーガム、ペクチン等の多糖類を挙げることができる。また、バインダとして、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム;ポリアクリル酸エチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリルアミド、ポリアクリロニトリルおよびこれらの任意の混合物を用いることができる。またバインダとしてさらにセルロースの誘導体であるカルボキシメチルセルロース(「CMC」と称する。)、またはカルボキシメチルセルロースの金属塩(たとえば、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカリウム)を用いることもできる。バインダについては、詳細には後述する。 Examples of binders include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF); conductive polymers such as polyanilines, polythiophenes, polyacetylenes, and polypyrroles; synthetic rubbers such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), and acrylonitrile butadiene rubber (NBR); and polysaccharides such as carboxymethylcellulose (CMC), xanthan gum, guar gum, and pectin. Also, as the binder, polyacrylic acid, polymethacrylic acid, lithium polyacrylate, sodium polyacrylate, potassium polyacrylate, sodium polymethacrylate, potassium polymethacrylate; ethyl polyacrylate, ethyl polyacrylate, butyl polyacrylate, methyl polymethacrylate, ethyl polymethacrylate, butyl polymethacrylate, polyacrylamide, polyacrylonitrile, and any mixtures thereof can be used. Furthermore, as the binder, carboxymethylcellulose (hereinafter referred to as "CMC"), which is a derivative of cellulose, or a metal salt of carboxymethylcellulose (e.g., sodium carboxymethylcellulose, potassium carboxymethylcellulose) can also be used. The binder will be described in detail later.
一の実施形態において、活物質層は造粒体から構成される。造粒体は、活物質と、導電助剤と、バインダとを含み、これらが凝集したものである。
一の実施形態において、造粒体は、レーザ回折・散乱法による体積基準粒度分布において、D50が70μmを超え120μm以下であり、D10とD90の差が50μm以上である。活物質層を構成する造粒体の粒度分布を適切に調整することで、リチウムイオンのパスとなる集電体から活物質層の表面まで連通する空隙(経路)と、その数を維持することで、一の実施形態の負極を用いた二次電池のレート特性を向上させる。
In one embodiment, the active material layer is made of granules. The granules include an active material, a conductive additive, and a binder, and are aggregated together.
In one embodiment, the granules have a volume-based particle size distribution measured by a laser diffraction/scattering method, in which D50 is more than 70 μm and 120 μm or less, and the difference between D10 and D90 is 50 μm or more. By appropriately adjusting the particle size distribution of the granules constituting the active material layer, voids (paths) that connect from the current collector, which serves as a path for lithium ions, to the surface of the active material layer and the number of voids are maintained, thereby improving the rate characteristics of a secondary battery using the negative electrode of one embodiment.
活物質層を構成する造粒体が、上記のような粒度分布が観察されるような構造を有するために、活物質と導電助剤とバインダとが凝集した造粒体をまず形成し、ついで造粒体を集電体に積層して活物質層を形成することが好ましい。造粒体とは、上記の活物質、導電助剤およびバインダならびに場合により溶剤の混合物を原料とし、これらを凝集させた粒体(造粒物)のことである。一の実施形態の負極に用いる活物質層は、活物質、導電助剤およびバインダが凝集した造粒体を乾式コーティング法により集電体の表面に塗工して形成する。いったん造粒体を形成した状態で活物質層を形成した後に、プレス条件を調整しながら所望の密度が得られるようにプレスすることができる。活物質層のプレスの際に、造粒体が徐々に崩れることで、活物質粒子間の空隙を無くさずに活物質層が形成される。活物質、導電助剤およびバインダを混合したスラリーを用いる湿式コーティング法により形成した活物質層と比べると、造粒体を用いて形成した一の実施形態における活物質層は、活物質層の厚み方向に向かう空孔の経路の数が多いか同等である。活物質の粒径やバインダ量等を同じにして(すなわち同じ造粒体を使用して)、プレスの回数や圧力などのプレス条件を変化させることで空孔の経路長を調整することもできる。ここで造粒体を用いて形成した活物質層であっても、プレス条件を調整せずに密度を高めると、造粒体がもとの活物質粒子の状態まで解砕されて、結果的に活物質が配向するため、このような活物質層を含む負極を用いた二次電池のレート特性は悪化してしまう。 In order for the granules constituting the active material layer to have a structure that allows the above-mentioned particle size distribution to be observed, it is preferable to first form granules in which the active material, conductive assistant, and binder are aggregated, and then stack the granules on the current collector to form the active material layer. The granules are particles (granulated material) obtained by aggregating a mixture of the above-mentioned active material, conductive assistant, and binder, and optionally a solvent, as raw materials. The active material layer used in the negative electrode of one embodiment is formed by applying granules in which the active material, conductive assistant, and binder are aggregated to the surface of the current collector by a dry coating method. Once the granules are formed, the active material layer can be formed by adjusting the pressing conditions to obtain the desired density. When the active material layer is pressed, the granules gradually collapse, forming the active material layer without eliminating the voids between the active material particles. Compared to an active material layer formed by a wet coating method using a slurry containing a mixture of an active material, a conductive additive, and a binder, the active material layer in one embodiment formed using granules has a greater or equal number of pore paths in the thickness direction of the active material layer. The length of the pore paths can be adjusted by changing the pressing conditions, such as the number of presses and pressure, while keeping the particle size of the active material and the amount of binder the same (i.e., using the same granules). Here, even in the case of an active material layer formed using granules, if the density is increased without adjusting the pressing conditions, the granules will be crushed back to the original active material particle state, resulting in the active material being oriented, and the rate characteristics of a secondary battery using a negative electrode containing such an active material layer will deteriorate.
ここで造粒体の平均粒径は、好ましくは70μmを超え120μm以下である。一の実施形態において、造粒体の平均粒径とは、レーザ回折・散乱法により測定した体積基準粒度分布における積算値50%での粒子径(メジアン径:D50)を意味する。さらに造粒体のレーザ回折・散乱法による体積基準粒度分布において、D10とD90の差が50μm以上であることが好ましい。 Here, the average particle size of the granules is preferably more than 70 μm and not more than 120 μm. In one embodiment, the average particle size of the granules means the particle size at 50% of the cumulative value in the volumetric particle size distribution measured by the laser diffraction/scattering method (median size: D50). Furthermore, in the volumetric particle size distribution of the granules measured by the laser diffraction/scattering method, it is preferable that the difference between D10 and D90 is 50 μm or more.
活物質粒子の平均粒径は、導電助剤が活物質表面に最適に付着する観点から、好ましくは1.0μm以上、より好ましくは1.5μm以上、さらに好ましくは2.0μm以上である。そして、好ましくは20.0μm以下、より好ましくは10.0μm以下、さらに好ましくは5.0μm以下である。本発明において、活物質粒子の平均粒径とは、レーザ・回折散乱法により測定した体積基準粒度分布における積算値50%での粒子径(メジアン径:D50)を意味する。 The average particle size of the active material particles is preferably 1.0 μm or more, more preferably 1.5 μm or more, and even more preferably 2.0 μm or more, from the viewpoint of optimal adhesion of the conductive assistant to the active material surface. It is also preferably 20.0 μm or less, more preferably 10.0 μm or less, and even more preferably 5.0 μm or less. In the present invention, the average particle size of the active material particles means the particle size at an integrated value of 50% (median size: D50) in the volume-based particle size distribution measured by a laser diffraction scattering method.
負極活物質は、炭素系活物質を含む。炭素系活物質は、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボン、またはこれらの任意の混合物であることが好ましい。ここで黒鉛とは、六方晶系六角板状結晶の炭素材料であり、石墨、グラファイト等と称されることがある。天然黒鉛および人造黒鉛は、非晶質炭素による被覆を有する天然黒鉛、および非晶質炭素による被覆を有する人造黒鉛を含む。 The negative electrode active material includes a carbon-based active material. The carbon-based active material is preferably natural graphite, artificial graphite, hard carbon, soft carbon, or any mixture thereof. Here, graphite is a carbon material with hexagonal plate-shaped crystals in a hexagonal system, and is sometimes called graphite or graphite. Natural graphite and artificial graphite include natural graphite coated with amorphous carbon, and artificial graphite coated with amorphous carbon.
ここで、非晶質炭素とは、部分的に黒鉛に類似するような構造を有していてもよい、微結晶がランダムにネットワークした構造をとった、全体として非晶質である炭素材料のことである。非晶質炭素として、カーボンブラック、コークス、活性炭、カーボンファイバー、カーボンナノチューブ、ハードカーボン、ソフトカーボン、メソポーラスカーボン等が挙げられる。人造黒鉛を用いる場合、層間距離d値(d002)が0.33nm以上のものであることが好ましい。 Here, amorphous carbon refers to a carbon material that is amorphous overall, with a random network structure of microcrystals that may partially have a structure similar to graphite. Examples of amorphous carbon include carbon black, coke, activated carbon, carbon fiber, carbon nanotubes, hard carbon, soft carbon, and mesoporous carbon. When using artificial graphite, it is preferable that the interlayer distance d value (d002) is 0.33 nm or more.
人造黒鉛の結晶の構造は、一般的に天然黒鉛よりも薄い。人造黒鉛を非水電解質二次電池、特にリチウムイオン二次電池用負極活物質として用いる場合は、リチウムイオンが挿入可能な層間距離を有している必要がある。リチウムイオンの挿脱が可能な層間距離はd値(d002)で見積もることができ、d値が0.33nm以上であれば問題なくリチウムイオンの挿脱が行われる。また、負極活物質は、SiOx(式中、xは、0.5≦x≦1.6を満たす数である。)を含むケイ素系活物質(A)と、炭素系活物質とを含んでもよい。 The crystal structure of artificial graphite is generally thinner than that of natural graphite. When artificial graphite is used as a negative electrode active material for non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, it is necessary that the interlayer distance allows lithium ions to be inserted. The interlayer distance at which lithium ions can be inserted and removed can be estimated by the d value (d002), and if the d value is 0.33 nm or more, lithium ions can be inserted and removed without any problems. The negative electrode active material may also include a silicon-based active material (A) containing SiOx (wherein x is a number that satisfies 0.5≦x≦1.6) and a carbon-based active material.
負極活物質のアスペクト比は、1.1以上5以下が好ましい。当該範囲のアスペクト比を備えた負極活物質で主に構成された造粒体を作成すると、プレス条件によって活物質層の配向を調整しやすく、配向を調整した活物質層を有する負極を用いた二次電池の電気特性が安定する。負極活物質のアスペクト比が1.1未満になると、活物質粒子が緻密に充填されすぎて活物質層の配向を調整することができず、このような負極を用いた二次電池において優れたレート特性を得ることができない。一方で、アスペクト比が5を超える活物質を用いて造粒体を形成した場合、所望の密度を得ようとプレスの条件を調整すると、活物質層に形成される経路長が長くなりすぎて配向をいくら調整してもこのような負極を用いた二次電池のレート特性は低下する傾向にある。
なお、活物質層における活物質の配向は、レーザ回折・散乱法による体積基準粒度分布にておおよそ見積もることができる。活物質層を構成する造粒体のレーザ回折・散乱法による体積基準粒度分布において、D50が70μmを超え120μm以下であり、D10とD90の差が50μm以上であることが好ましい。
The aspect ratio of the negative electrode active material is preferably 1.1 or more and 5 or less. When a granule is prepared that is mainly composed of a negative electrode active material having an aspect ratio in this range, the orientation of the active material layer can be easily adjusted by the pressing conditions, and the electrical characteristics of a secondary battery using a negative electrode having an active material layer with an adjusted orientation are stabilized. When the aspect ratio of the negative electrode active material is less than 1.1, the active material particles are packed too densely, making it impossible to adjust the orientation of the active material layer, and excellent rate characteristics cannot be obtained in a secondary battery using such a negative electrode. On the other hand, when a granule is formed using an active material with an aspect ratio of more than 5, if the pressing conditions are adjusted to obtain a desired density, the path length formed in the active material layer becomes too long, and the rate characteristics of a secondary battery using such a negative electrode tend to decrease no matter how much the orientation is adjusted.
The orientation of the active material in the active material layer can be roughly estimated from the volumetric particle size distribution measured by a laser diffraction/scattering method. In the volumetric particle size distribution measured by a laser diffraction/scattering method of the granules constituting the active material layer, it is preferable that D50 is more than 70 μm and 120 μm or less, and the difference between D10 and D90 is 50 μm or more.
一の実施形態において、造粒体の全体を100質量部としたとき、前記活物質の含有量は、好ましくは95.0質量部以上、より好ましくは96質量部以上、さらに好ましくは97質量部以上、そして好ましくは99.5質量部以下、より好ましくは99.0質量部以下、さらに好ましくは98.5質量部以下である。活物質のうち、造粒体の形成に関わる活物質の割合は、少なくとも95%以上であり、好ましくは97%以上であり、さらに好ましくは99%以上である。 In one embodiment, when the total amount of the granules is 100 parts by mass, the content of the active material is preferably 95.0 parts by mass or more, more preferably 96 parts by mass or more, even more preferably 97 parts by mass or more, and preferably 99.5 parts by mass or less, more preferably 99.0 parts by mass or less, even more preferably 98.5 parts by mass or less. The proportion of the active material involved in the formation of the granules is at least 95% or more, preferably 97% or more, and even more preferably 99% or more.
導電助剤はカーボンブラック、カーボンナノファイバーおよびカーボンナノチューブからなる群から選ばれる少なくとも1以上を含むことが好ましい。
導電助剤として用いられるカーボンブラックは、ナノ粒子径を持ったカーボンが数珠状につながったアグリゲート構造を備えることが好ましい。また、カーボンブラックとしては、アセチレンブラック、ケッチェンブラックなどを用いることができる。また、グラフェン等の炭素原子で構成される物質を直径数nmで長さ数mmの円筒状に形成したカーボンナノチューブを用いることもできる。特に、円筒の周囲が略単層で形成された単層カーボンナノチューブがバンドル化されたものか、円筒の周囲が複層から形成される多層カーボンナノチューブを用いることができる。
The conductive assistant preferably contains at least one selected from the group consisting of carbon black, carbon nanofibers, and carbon nanotubes.
The carbon black used as the conductive assistant preferably has an aggregate structure in which carbon nanoparticles are connected in a beaded shape. As the carbon black, acetylene black, ketjen black, etc. can be used. Carbon nanotubes formed of a substance composed of carbon atoms such as graphene into a cylindrical shape with a diameter of several nm and a length of several mm can also be used. In particular, single-walled carbon nanotubes formed in a substantially single layer around the cylinder or multi-walled carbon nanotubes formed in a multiple layer around the cylinder can be bundled.
一の実施形態において、造粒体の全体を100質量部としたとき、前記導電助剤の含有量は、好ましくは0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上、さらに好ましくは3.0質量部以上、そして、好ましくは2.0質量部以下、より好ましくは1.5質量部以下、さらに好ましくは0.5質量部以下である。 In one embodiment, when the total amount of the granules is 100 parts by mass, the content of the conductive assistant is preferably 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, even more preferably 3.0 parts by mass or more, and preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, even more preferably 0.5 parts by mass or less.
一の実施形態において、造粒体は、さらにバインダを含む。導電助剤およびバインダがおよび導電助剤が造粒体の表面および内部に存在することが好ましい。このようにすることで造粒体をプレスしたときに、活物質粒子間の空孔を潰しすぎず、また配向させ過ぎずに、所望の密度を得ることが出来る。 In one embodiment, the granules further contain a binder. It is preferable that the conductive assistant and the binder are present on the surface and inside of the granules. In this way, when the granules are pressed, the desired density can be obtained without over-compressing the pores between the active material particles or over-orienting them.
バインダは、たとえば、ポリフッ化ビニリデン(PVDF)、ポリビニルピロリドン(PVP)、プリテトラフルオロエチレン、ポリイミド、ポリアミドイミド、ポリアミド等、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール、ポリビニルブチラール、あるいはこれらを2種以上含んでもよいがこれに限らず、溶媒に応じて適宜変更することができる。 The binder may contain, for example, polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), polytetrafluoroethylene, polyimide, polyamideimide, polyamide, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyvinyl alcohol, polyvinyl butyral, or two or more of these, but is not limited to these, and can be changed appropriately depending on the solvent.
一の実施形態において、造粒体の全体を100質量部としたとき、バインダの含有量は、好ましくは0.5量部以上、より好ましくは0.7質量部以上、さらに好ましくは1.0質量部以上、そして好ましくは5.0質量部以下、より好ましくは3.0質量部以下、さらに好ましくは2.0質量部以下である。 In one embodiment, when the total amount of the granules is 100 parts by mass, the binder content is preferably 0.5 parts by mass or more, more preferably 0.7 parts by mass or more, even more preferably 1.0 parts by mass or more, and preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, even more preferably 2.0 parts by mass or less.
一の実施形態の負極を製造する方法としては、活物質粒子を混合、攪拌しながら、導電助剤が分散した分散液を前記活物質粒子に噴霧しながら加えて造粒体を形成する工程と、造粒体を集電体上に配置してプレスする工程を含むのが好ましい。また、造粒体を形成する際の方式は特に限定されず、たとえば、噴霧造粒方式、攪拌造粒方式、流動層造粒方式、転動造粒方式、押出造粒方式、圧縮造粒方式などの方法が挙げられる。これらの造粒方法を任意に選択あるいは組み合わせてもよい。噴霧造粒方式として、噴霧乾燥造粒方式が挙げられる。噴霧乾燥造粒方式では、たとえば、負極活物質及び導電助剤が分散した分散液をスプレードライヤー内の高温気体中に噴霧することで造粒される。攪拌造粒方式では、たとえば、負極活物質を混合、攪拌しながら、導電助剤が分散した分散液を負極活物質粒子に噴霧しながら加えて造粒される。このように形成した造粒体を含む活物質層に対して、プレス回数とプレス圧力を調整することで、集電体と活物質層の密着性が高く、所望の活物質粒子間の空孔の経路を維持して所望の電極密度を得ることができる。 A method for manufacturing a negative electrode according to one embodiment preferably includes a step of forming granules by spraying and adding a dispersion liquid in which a conductive assistant is dispersed to the active material particles while mixing and stirring the active material particles, and a step of placing the granules on a current collector and pressing the granules. The method for forming the granules is not particularly limited, and examples of the method include a spray granulation method, an agitation granulation method, a fluidized bed granulation method, a rolling granulation method, an extrusion granulation method, and a compression granulation method. These granulation methods may be selected or combined as desired. An example of a spray granulation method is a spray drying granulation method. In the spray drying granulation method, for example, a dispersion liquid in which a negative electrode active material and a conductive assistant are dispersed is sprayed into high-temperature gas in a spray dryer to form granules. In the agitation granulation method, for example, a dispersion liquid in which a conductive assistant is dispersed is sprayed and added to the negative electrode active material particles while mixing and stirring the negative electrode active material to form granules. By adjusting the number of presses and the pressure applied to the active material layer containing the granules thus formed, it is possible to obtain high adhesion between the current collector and the active material layer, maintain the desired pore paths between the active material particles, and obtain the desired electrode density.
予め高分散した導電助剤とバインダを含む分散液を、ほかの有機溶媒を含まない状態で活物質粒子に付着させることで、表面に導電助剤が均一に形成された活物質を準備することができる。形成する造粒体の直径は、これらの材料を混合、攪拌する設備によっても異なるが、導電助剤とバインダの分散液を噴霧投入する量やタイミングや、混合、攪拌時間等の条件で制御することが可能である。また、形成した造粒体を篩にかけて分級することで、任意の粒度分布の造粒体を得ることが可能である。 By attaching a dispersion liquid containing a highly dispersed conductive additive and binder to active material particles without containing any other organic solvents, it is possible to prepare an active material with a uniformly formed conductive additive on its surface. The diameter of the granules formed will vary depending on the equipment used to mix and stir these materials, but it is possible to control this by changing the amount and timing of spraying the dispersion liquid of the conductive additive and binder, as well as mixing and stirring times. In addition, by classifying the formed granules through a sieve, it is possible to obtain granules with any particle size distribution.
一の実施形態において、集電体の材質は特に限定されないが、集電体が正極集電体である場合、好ましくはアルミニウム箔が好ましい。また、集電体が負極集電体である場合、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金をからなる群から選択されるが、特に銅が好ましい。集電体層の形状については、箔状、平板状、またはメッシュ状のものなど特に限定されない。例えば厚さは0.001mm以上0.5mm以下である。 In one embodiment, the material of the current collector is not particularly limited, but when the current collector is a positive electrode current collector, aluminum foil is preferable. When the current collector is a negative electrode current collector, the material is selected from the group consisting of copper, stainless steel, nickel, titanium, or an alloy thereof, with copper being particularly preferable. The shape of the current collector layer is not particularly limited, and may be foil, flat, or mesh-like. For example, the thickness is 0.001 mm or more and 0.5 mm or less.
造粒体を集電体表面または集電体の表面に配置してプレスする場合、プレスの方式は、電極活物質を含んだ電極用造粒体を集電体上に形成することが出来れば特に限定されるものではない。一の実施形態では、ロール式の加圧成形方式を用いることが好ましい。ロール式の加圧成形方式においては、長尺の集電体がロール状に巻かれたロール体から集電体を巻き出し、巻き取るまでのあいだに集電体が一対のロールのあいだを通過するように配置されている。造粒体はロールを通過する前に集電体上に供給され、ロール間を通過する際に圧縮され、電極シートとして形成される。造粒体の供給量を調整するために、造粒体はロール間に供給される前にスキージ等で表面をならしながら厚さを供給するのが好ましい。集電箔には、造粒体との結着性を高めるためのバインダを含む集電体表面層を予め形成しておくことが好ましい。電極シートのプレス回数、プレス圧力、温度等を調整することで、活物質層と集電体の密着性や、活物質粒子間の空隙の経路の長さを調整することができる。 When the granules are placed on the surface of the current collector or the surface of the current collector and pressed, the pressing method is not particularly limited as long as it can form the electrode granules containing the electrode active material on the current collector. In one embodiment, it is preferable to use a roll-type pressure molding method. In the roll-type pressure molding method, a long current collector is arranged so that the current collector passes between a pair of rolls while the current collector is unwound from a rolled roll and wound up. The granules are supplied onto the current collector before passing through the rolls, and are compressed when passing between the rolls to form an electrode sheet. In order to adjust the amount of granules supplied, it is preferable to supply the thickness while smoothing the surface with a squeegee or the like before supplying it between the rolls. It is preferable to previously form a current collector surface layer containing a binder to enhance the binding property with the granules on the current collector foil. By adjusting the number of times of pressing the electrode sheet, the pressing pressure, the temperature, etc., it is possible to adjust the adhesion between the active material layer and the current collector and the length of the path of the gap between the active material particles.
本発明の二の実施形態は、上記の負極と、正極とがセパレータを介して複数積層され、場合により巻回されて、外装容器に収容され、前記正極と電気的に接続される正極端子と、前記負極と電気的に接続される負極端子とが前記外装容器から引き出された、二次電池である。二の実施形態に係る二次電池は、上記負極を用い、公知の方法に準じて作製することができる。
二の実施形態において、正極は、特に限定されるものではないが、非水系二次電池材料に用いられる正極のことを指す。たとえば、正極は、正極集電体と、正極集電体の表面に備えられた正極活物質層とから構成され、活物質層は、正極活物質、導電助剤およびバインダを含む。正極活物質、導電助剤およびバインダを含む正極活物質層は、正極集電体の少なくとも一方の面に形成することができる。
正極集電体には、ステンレススチール、アルミニウム、ニッケル、チタン及びアルミニウム又はステンレススチールの表面にカーボン、ニッケル、チタン若しくは銀で表面処理した正極集電体を用いることができる。
A second embodiment of the present invention is a secondary battery in which the above-mentioned negative electrode and positive electrode are stacked in multiple layers with a separator interposed therebetween, optionally rolled up, and housed in an outer container, and a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode are drawn out from the outer container. The secondary battery according to the second embodiment can be produced using the above-mentioned negative electrode in accordance with a known method.
In the second embodiment, the positive electrode is not particularly limited, but refers to a positive electrode used in a non-aqueous secondary battery material. For example, the positive electrode is composed of a positive electrode current collector and a positive electrode active material layer provided on the surface of the positive electrode current collector, and the active material layer includes a positive electrode active material, a conductive additive, and a binder. The positive electrode active material layer including the positive electrode active material, the conductive additive, and the binder can be formed on at least one surface of the positive electrode current collector.
The positive electrode current collector can be made of stainless steel, aluminum, nickel, titanium, or a positive electrode current collector in which the surface of aluminum or stainless steel is surface-treated with carbon, nickel, titanium, or silver.
正極活物質は、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のリチウムと遷移金属との複合酸化物;TiS2、FeS、MoS2等の遷移金属硫化物;MnO、V2O5、V6O13、TiO2等の遷移金属酸化物;及びオリビン型リチウムリン酸化物からなる群から選択される一種または二種以上を含む。オリビン型リチウムリン酸化物は、例えばMn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb及びFeからなる群から選択される一種または二種以上の元素と、リチウムと、リンと、酸素とを含む。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。なかでも正極活物質としては、平均粒径3~15μmの、LiaNibMncCodMxO2(但し、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たし、Mは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種である)で表されるニッケルマンガンコバルト酸リチウムを用いるのが好ましい。
正極活物質とともに正極かつ物質層を形成するバインダとして、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ポリアニリン類、ポリチオフェン類、ポリアセチレン類、ポリピロール類等の導電性ポリマー、スチレンブタジエンラバー(SBR)、ブタジエンラバー(BR)、クロロプレンラバー(CR)、イソプレンラバー(IR)、アクリロニトリルブタジエンラバー(NBR)等の合成ゴム、あるいはカルボキシメチルセルロース(CMC)、キサンタンガム、グアーガム、ペクチン等の多糖類を挙げることができる。
導電助剤として、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛、メソポーラスカーボン、フラーレン類、カーボンナノファイバー、カーボンナノチューブ、カーボンナノブラシ等のカーボン繊維等が挙げられる。その他、正極活物質層には、増粘剤、分散剤、安定剤等の、電極形成のために一般的に用いられる電極添加剤を適宜使用することができる。
The positive electrode active material includes one or more selected from the group consisting of composite oxides of lithium and transition metals, such as lithium-nickel composite oxide, lithium-cobalt composite oxide, lithium-manganese composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-cobalt composite oxide, lithium-nickel-aluminum composite oxide, lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-manganese-cobalt composite oxide, lithium-nickel-manganese-aluminum composite oxide, and lithium-nickel-cobalt-manganese-aluminum composite oxide; transition metal sulfides, such as TiS 2 , FeS, and MoS 2 ; transition metal oxides, such as MnO, V 2 O 5 , V 6 O 13 , and TiO 2 ; and olivine-type lithium phosphate. The olivine-type lithium phosphate contains, for example, one or more elements selected from the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe, lithium, phosphorus, and oxygen. These compounds may have some elements partially substituted with other elements in order to improve their properties. Among these, as the positive electrode active material, it is preferable to use lithium nickel manganese cobalt oxide having an average particle size of 3 to 15 μm and represented by Li a Ni b Mn c Co d M x O 2 (wherein a, b, c, d and x satisfy 0.9≦a≦1.2, 0<b<1, 0<c≦0.5, 0<d≦0.5, 0≦x≦0.3, b+c+d=1, and M is at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr and Cr).
Examples of the binder that forms the positive electrode and the material layer together with the positive electrode active material include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), etc.; conductive polymers such as polyanilines, polythiophenes, polyacetylenes, polypyrroles, etc.; synthetic rubbers such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile butadiene rubber (NBR), etc.; and polysaccharides such as carboxymethyl cellulose (CMC), xanthan gum, guar gum, pectin, etc.
Examples of the conductive assistant include carbon black such as acetylene black and ketjen black, activated carbon, graphite, mesoporous carbon, fullerenes, carbon fibers such as carbon nanofibers, carbon nanotubes, and carbon nanobrushes. In addition, the positive electrode active material layer may appropriately contain electrode additives that are generally used for forming electrodes, such as thickeners, dispersants, and stabilizers.
二の実施形態の二次電池において、セパレータとしては、たとえば、多孔性セパレータが挙げられる。セパレータの形態としては、膜、フィルム、不織布等が挙げられる。多孔性セパレータとしては、ポリプロピレン系、ポリエチレン系等のポリオレフィン系多孔性セパレータ;ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフルオリドヘキサフルオロプロピレン共重合体等により形成された多孔性セパレータが挙げられる。 In the secondary battery of the second embodiment, the separator may be, for example, a porous separator. The separator may be in the form of a membrane, film, nonwoven fabric, or the like. Examples of the porous separator include polyolefin-based porous separators such as polypropylene-based and polyethylene-based; and porous separators formed from polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride hexafluoropropylene copolymer, or the like.
セパレータにはセラミック粒子等の無機粒子を含むか、無機粒子を含む層をさらに含んでいてもよい。 The separator may contain inorganic particles such as ceramic particles, or may further contain a layer containing inorganic particles.
二の実施形態の二次電池において、負極と、正極とがセパレータを介して複数積層され、場合により巻回されて、外装容器に収容されている。そして、二次電池は、正極と電気的に接続される正極端子と、負極と電気的に接続される負極端子とが外装容器から引き出されて成る。外装容器には、例えば、基材となるアルミニウム等の金属の層の表裏面に樹脂層を設けた可撓性フィルム、あるいは、アルミニウム、鉄、ステンレス等の金属の缶を用いることができる。また正極端子にはアルミニウムやアルミニウム合金で構成されたもの、負極端子には銅や銅合金あるいはそれらにニッケルメッキを施したもの等を用いることができる。 In the secondary battery of the second embodiment, negative electrodes and positive electrodes are stacked in multiple layers with separators between them, and may be wound and housed in an outer container. The secondary battery is formed by drawing out a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode from the outer container. For the outer container, for example, a flexible film having a resin layer on the front and back sides of a metal layer such as aluminum as a base material, or a metal can such as aluminum, iron, or stainless steel, can be used. The positive electrode terminal can be made of aluminum or an aluminum alloy, and the negative electrode terminal can be made of copper or a copper alloy or copper or copper alloys plated with nickel.
二の実施形態の二次電池の形状としては、たとえば、アルミニウム缶、鉄缶、ステンレス缶等を用いた外装容器に収容された角型、円筒型、コイン型、ボタン型の形状が挙げられる。また主としてアルミニウムフィルムで形成された外装容器に収容されたパウチ型の形状の二次電池も好ましい。 The shape of the secondary battery of the second embodiment can be, for example, a square, cylindrical, coin, or button type housed in an outer container made of an aluminum can, iron can, stainless steel can, or the like. Also preferred is a pouch-shaped secondary battery housed in an outer container made mainly of aluminum film.
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 The above describes the embodiments of the present invention, but these are merely examples of the present invention, and various configurations other than those described above can also be adopted. Furthermore, the present invention is not limited to the above-described embodiments, and modifications and improvements within the scope of the present invention are included in the present invention.
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained below with reference to examples and comparative examples, but the present invention is not limited to these.
<負極の製造>
(実施例1~4および比較例1~4)
導電層及び接着層の形成とは別に、負極活物質層の造粒粒子を準備した。負極活物質粒子である平均粒径12μmの人造黒鉛と平均粒径5μmの一酸化ケイ素、導電助剤としてシングルウォールカーボンナノチューブ(SWCNT)と、バインダとしてポリアクリル酸(PAA)及びスチレンブタジエンゴム(SBR)とを溶媒とともに高分散させた負極の分散液を準備した。次いで上記の手順で準備した負極の分散液をスプレードライヤー中にアトマイザを所定の回転数で回転させ噴霧することで、造粒体を得た。なお、人造黒鉛/一酸化ケイ素/CNT/PAA/SBRの質量比は93.45:4.0:0.05:0.5:2.0であった。
人造黒鉛は日本黒鉛工業株式会社、PAAは富士フィルム和光純薬株式会社、SWCNTはOCSiAl社のものを使用することができる。
<Production of negative electrode>
(Examples 1 to 4 and Comparative Examples 1 to 4)
Separately from the formation of the conductive layer and the adhesive layer, granulated particles of the negative electrode active material layer were prepared. A negative electrode dispersion liquid was prepared in which artificial graphite with an average particle size of 12 μm and silicon monoxide with an average particle size of 5 μm, which are negative electrode active material particles, single-wall carbon nanotubes (SWCNT) as a conductive assistant, and polyacrylic acid (PAA) and styrene butadiene rubber (SBR) as binders were highly dispersed together with a solvent. Next, the negative electrode dispersion liquid prepared by the above procedure was rotated at a predetermined rotation speed and sprayed into a spray dryer to obtain a granule. The mass ratio of artificial graphite/silicon monoxide/CNT/PAA/SBR was 93.45:4.0:0.05:0.5:2.0.
Artificial graphite from Nippon Graphite Industries Co., Ltd., PAA from Fujifilm Wako Pure Chemical Industries, Ltd., and SWCNT from OCSiAl Corporation can be used.
次いで、得られた造粒体を、スキージで表面をならしながら所定量、電極塗工機の巻き出し側から巻き取り側に向かって走行する集電体上に供給した。なお、集電体表面には予めカーボンブラックとバインダ(CMCとSBR)とを含む接着補助層を形成しておいた。造粒体を集電体上に供給後、プレスロールによって造粒体が圧縮されるまでのあいだに、スキージロールによってプレスロールに供給される造粒体の量が調整され、その後プレスロール間を通過させて所望の密度の活物質層を形成した。活物質層を構成する造粒体のレーザ・回折散乱法による体積基準粒度分布は、表1に示す。 Then, a predetermined amount of the obtained granules was supplied onto a current collector traveling from the unwinding side to the winding side of the electrode coater while smoothing the surface with a squeegee. An adhesive auxiliary layer containing carbon black and binders (CMC and SBR) had been formed in advance on the surface of the current collector. After the granules were supplied onto the current collector, the amount of granules supplied to the press roll by the squeegee roll was adjusted before the granules were compressed by the press roll, and the granules were then passed between the press rolls to form an active material layer of the desired density. The volumetric particle size distribution of the granules constituting the active material layer, measured by the laser diffraction scattering method, is shown in Table 1.
<電池の製造>
正極活物質として平均粒径4.5μm、LiNi0.92Mn0.03Co0.05O2で表されるニッケルマンガンコバルト酸リチウムを用い、導電助剤としてカーボンブラック、バインダとしてのポリフッ化ビニリデン(PVDF)を含有するスラリーを正極集電体であるアルミニウム箔に塗布し、その後プレスして密度3.5g/cm3の正極を得た。
当該正極8層と、先に得られている実施例あるいは比較例のそれぞれの負極9層とを、ポリオレフィン系多孔性セパレータを介して積層し、各負極と電気的に接続された負極端子および各正極と電気的に接続された正極端子を設け、積層体を得た。次いで、エチレンカーボネートとジエチルカーボネートとの混合溶媒(エチレンカーボネート:ジエチルカーボネート=3:7(体積比)に、電解質としてLiPF6を1.0mol/Lの濃度となるように溶解させた電解液を、得られた積層体とともに可撓性フィルムをケースとする容器に収容し、正極端子と負極端子を外部に引き出した状態で密封することで二次電池を得た。
<Battery manufacturing>
Lithium nickel manganese cobalt oxide with an average particle size of 4.5 μm and expressed as LiNi 0.92 Mn 0.03 Co 0.05 O 2 was used as the positive electrode active material, and a slurry containing carbon black as a conductive additive and polyvinylidene fluoride (PVDF) as a binder was applied to an aluminum foil as a positive electrode current collector, and then pressed to obtain a positive electrode with a density of 3.5 g/cm 3 .
The eight positive electrode layers and the nine negative electrode layers of each of the previously obtained examples or comparative examples were laminated via a polyolefin-based porous separator, and a negative electrode terminal electrically connected to each negative electrode and a positive electrode terminal electrically connected to each positive electrode were provided to obtain a laminate. Next, an electrolyte solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (ethylene carbonate:diethyl carbonate=3:7 (volume ratio) to a concentration of 1.0 mol/L was placed together with the obtained laminate in a container with a flexible film as a case, and the positive electrode terminal and the negative electrode terminal were pulled out to the outside and sealed to obtain a secondary battery.
<レート特性>
作製した電池を、0.2Cで4.2Vまで定電流充電し、4.2Vに到達後に定電圧に切り替えて0.015Cになるまで充電し、放電を0.2Cと3Cで2.5Vになるまで定電流で行い、2.5Vにおける3C放電と0.2C放電の容量の割合である3C/0.2Cをレート特性とした。一般的に電流値が大きいほど容量は低下しやすくなる傾向になることから、100%に近いほどレート特性が良いことを意味する。
<Rate characteristics>
The prepared battery was charged at a constant current of 0.2 C up to 4.2 V, switched to a constant voltage after reaching 4.2 V and charged down to 0.015 C, and discharged at constant currents of 0.2 C and 3 C up to 2.5 V, and the rate characteristic was determined as 3C/0.2C, which is the ratio of the capacity of the 3C discharge to the capacity of the 0.2C discharge at 2.5 V. Generally, the capacity tends to decrease more easily as the current value increases, so the closer to 100%, the better the rate characteristic.
<レーザ・回折散乱法による粒度分布の測定>
活物質層を構成する造粒体のレーザ・回折散乱法による体積基準粒度分布は、乾式粒度分布測定ユニット(LA-960 LY-9505、堀場製作所)により測定した。各活物質層を構成する造粒体の粒度分布曲線(積算分布曲線)から、D50(メジアン径)、D10およびD90を求めた。
<Measurement of particle size distribution by laser diffraction scattering method>
The volumetric particle size distribution of the granules constituting the active material layer was measured by a laser diffraction scattering method using a dry particle size distribution measuring unit (LA-960 LY-9505, Horiba, Ltd.). The D50 (median diameter), D10, and D90 were determined from the particle size distribution curve (cumulative distribution curve) of the granules constituting each active material layer.
表1が示すように、造粒体の粒度分布のD50が80~120μmである活物質層を備えた負極を用いた二次電池は、良好なレート特性を示す。一方、造粒体の粒度分布のD50が70μm以下である活物質層を備えた負極を用いた二次電池は、レート特性が低い。比較例1のように、造粒体の粒度分布のD50が70μm以下の活物質層を備えた負極は、イオンパスの経路となる空隙が塞がれやすくなり、これを用いた二次電池のレート特性が低下したと考えられる。比較例2のように造粒粒体の粒子径が大きすぎる活物質層を備えた負極を用いても、優れたレート特性の二次電池を得ることは出来なかった。大きな造粒体がプレス密度を高めることを阻害し、そのため活物質粒子間の導電助剤の接触が不十分になり、急速な充放電に追従できないためだと推察できる。また、比較例3や比較例4の二次電池に用いた負極活物質層を構成する造粒体は、その粒度分布のD10とD90との差が小さく、すなわち粒度分布の幅が狭いために、所望の活物質層密度が得にくく、活物質層に存在する空隙の経路の調整が困難になり、二次電池のレート特性が低下したと考えられる。 As shown in Table 1, secondary batteries using negative electrodes with active material layers in which the particle size distribution of the granules has a D50 of 80 to 120 μm show good rate characteristics. On the other hand, secondary batteries using negative electrodes with active material layers in which the particle size distribution of the granules has a D50 of 70 μm or less have poor rate characteristics. As in Comparative Example 1, negative electrodes with active material layers in which the particle size distribution of the granules has a D50 of 70 μm or less tend to have clogged voids that serve as the ion path, which is thought to have reduced the rate characteristics of secondary batteries using such negative electrodes. Even when negative electrodes with active material layers in which the particle size of the granules is too large, as in Comparative Example 2, were used, secondary batteries with excellent rate characteristics could not be obtained. It can be inferred that this is because the large granules prevent the press density from being increased, which results in insufficient contact of the conductive assistant between the active material particles and makes it impossible to keep up with rapid charging and discharging. In addition, the granules constituting the negative electrode active material layer used in the secondary batteries of Comparative Example 3 and Comparative Example 4 have a small difference between D10 and D90 in the particle size distribution, i.e., the width of the particle size distribution is narrow, making it difficult to obtain the desired active material layer density and difficult to adjust the paths of the voids present in the active material layer, which is thought to have reduced the rate characteristics of the secondary battery.
以上、本発明のリチウムイオン二次電池用の電極およびリチウムイオン二次電池について詳細に説明したが、本発明は上記実施形態および上記実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
The electrodes for lithium ion secondary batteries and the lithium ion secondary batteries of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments and examples, and various improvements and modifications may be made without departing from the spirit and scope of the present invention.
Claims (4)
前記集電体の表面に備えられた、活物質、導電助剤およびバインダを含む活物質層と、
を含む負極であって、
前記活物質は、非球形の粒子を含み、
前記活物質層は、造粒体から構成され、
前記造粒体のレーザ回折・散乱法による体積基準粒度分布において、D50が70μmを超え120μm以下であり、D10とD90の差が50μm以上である、負極。 A current collector;
an active material layer provided on a surface of the current collector, the active material layer including an active material, a conductive additive, and a binder;
A negative electrode comprising:
the active material comprises non-spherical particles;
The active material layer is composed of granules,
In a volume-based particle size distribution of the granules measured by a laser diffraction/scattering method, D50 is greater than 70 μm and not greater than 120 μm, and the difference between D10 and D90 is 50 μm or more.
A secondary battery comprising a negative electrode according to any one of claims 1 to 3 and a positive electrode stacked together with a separator therebetween, optionally wound, and housed in an outer container, and a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode being pulled out from the outer container.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-142501 | 2023-09-01 | ||
JP2023142501A JP2025035453A (en) | 2023-09-01 | 2023-09-01 | Anode and secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025047326A1 true WO2025047326A1 (en) | 2025-03-06 |
Family
ID=94819027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/028010 WO2025047326A1 (en) | 2023-09-01 | 2024-08-06 | Negative electrode and secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2025035453A (en) |
WO (1) | WO2025047326A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288059A (en) * | 2007-05-18 | 2008-11-27 | Panasonic Corp | Non-aqueous electrolyte battery |
JP2013196842A (en) * | 2012-03-16 | 2013-09-30 | Mitsubishi Chemicals Corp | Carbon material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery |
WO2016013434A1 (en) * | 2014-07-22 | 2016-01-28 | 日本ゼオン株式会社 | Composite particles for electrochemical element electrode, electrochemical element electrode, electrochemical element, production method for composite particles for electrochemical element electrode, and production method for electrochemical element electrode |
JP2016119260A (en) * | 2014-12-22 | 2016-06-30 | トヨタ自動車株式会社 | Manufacturing method of lithium ion secondary battery |
JP2019106271A (en) * | 2017-12-11 | 2019-06-27 | プライムアースEvエナジー株式会社 | Negative electrode for lithium ion secondary battery |
-
2023
- 2023-09-01 JP JP2023142501A patent/JP2025035453A/en active Pending
-
2024
- 2024-08-06 WO PCT/JP2024/028010 patent/WO2025047326A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288059A (en) * | 2007-05-18 | 2008-11-27 | Panasonic Corp | Non-aqueous electrolyte battery |
JP2013196842A (en) * | 2012-03-16 | 2013-09-30 | Mitsubishi Chemicals Corp | Carbon material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery |
WO2016013434A1 (en) * | 2014-07-22 | 2016-01-28 | 日本ゼオン株式会社 | Composite particles for electrochemical element electrode, electrochemical element electrode, electrochemical element, production method for composite particles for electrochemical element electrode, and production method for electrochemical element electrode |
JP2016119260A (en) * | 2014-12-22 | 2016-06-30 | トヨタ自動車株式会社 | Manufacturing method of lithium ion secondary battery |
JP2019106271A (en) * | 2017-12-11 | 2019-06-27 | プライムアースEvエナジー株式会社 | Negative electrode for lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2025035453A (en) | 2025-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11387445B2 (en) | Positive electrode for lithium-ion rechargeable battery, lithium-ion rechargeable battery, and method for producing positive electrode for lithium-ion rechargeable battery | |
JP7269511B2 (en) | Method for producing secondary battery electrode using non-aqueous electrolyte and binder for secondary battery electrode using non-aqueous electrolyte | |
JP5416128B2 (en) | Non-aqueous secondary battery | |
CN103107338B (en) | Manufacture the method for lithium secondary battery | |
CN113950759A (en) | Negative electrode, method for producing same, and secondary battery comprising same | |
KR20130107928A (en) | Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites and lithium secondary battery using the same | |
KR102791142B1 (en) | Cathode for lithium secondary battery comprising nanoclay, and lithium secondary battery comprising the same | |
JP7466981B2 (en) | Negative electrode and secondary battery including the same | |
JP2014182873A (en) | Nonaqueous secondary battery electrode-forming material, nonaqueous secondary battery electrode, and nonaqueous secondary battery | |
JP2016103479A (en) | Manufacturing method of lithium electrode, and lithium secondary battery including lithium electrode | |
JP6683265B2 (en) | Fast rechargeable lithium ion battery with nanocarbon coated anode material and imide anion based lithium salt electrolyte | |
KR20190097765A (en) | Method for Manufacturing an Electrode in which a Carbon nanotube is Applied as a Conductive Material, an Electrode Manufactured by the Method, and a Secondary Battery Including the Electrode | |
CN116569354A (en) | Carbon nanotube dispersion liquid for electrode paste, negative electrode paste, non-aqueous electrolyte secondary battery, and method for producing carbon nanotube dispersion liquid for electrode paste | |
KR102781564B1 (en) | Cathode for lithium secondary battery comprising pyrite, and lithium secondary battery comprising thereof | |
JP7062067B2 (en) | A method for producing iron oxyhydroxide, a positive electrode for a lithium secondary battery containing iron oxyhydroxide produced thereby, and a lithium secondary battery provided with the positive electrode. | |
KR102713210B1 (en) | Cathode for lithium secondary battery comprising goethite, and lithium secondary battery comprising the same | |
WO2025001355A1 (en) | Negative electrode sheet and battery | |
JP7649866B2 (en) | Method for producing positive electrode composition and method for producing positive electrode | |
JP2024102936A (en) | Positive electrode and non-aqueous electrolyte secondary battery | |
WO2025047326A1 (en) | Negative electrode and secondary battery | |
WO2025047325A1 (en) | Electrode and secondary battery | |
WO2025047554A1 (en) | Negative electrode and secondary battery | |
WO2025047327A1 (en) | Positive electrode and secondary battery | |
JP2017103137A (en) | Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP7477784B2 (en) | Method for manufacturing an electrode for a secondary battery using a non-aqueous electrolyte, binder for an electrode for a secondary battery using a non-aqueous electrolyte, binder for an electrode for a secondary battery, composition for producing an electrode, electrode mixture, and electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24859366 Country of ref document: EP Kind code of ref document: A1 |