WO2025047299A1 - Resin composition, prepreg, resin-bearing film, resin-bearing metal foil, metal-clad laminate sheet, and wiring board - Google Patents
Resin composition, prepreg, resin-bearing film, resin-bearing metal foil, metal-clad laminate sheet, and wiring board Download PDFInfo
- Publication number
- WO2025047299A1 WO2025047299A1 PCT/JP2024/027819 JP2024027819W WO2025047299A1 WO 2025047299 A1 WO2025047299 A1 WO 2025047299A1 JP 2024027819 W JP2024027819 W JP 2024027819W WO 2025047299 A1 WO2025047299 A1 WO 2025047299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- group
- resin
- compound
- boron nitride
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 174
- 229920005989 resin Polymers 0.000 title claims description 81
- 239000011347 resin Substances 0.000 title claims description 81
- -1 prepreg Substances 0.000 title claims description 75
- 239000011888 foil Substances 0.000 title claims description 63
- 229910000897 Babbitt (metal) Inorganic materials 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 135
- 239000000945 filler Substances 0.000 claims abstract description 117
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 114
- 229910052582 BN Inorganic materials 0.000 claims abstract description 113
- 229920001690 polydopamine Polymers 0.000 claims abstract description 73
- 229920001955 polyphenylene ether Polymers 0.000 claims abstract description 60
- 125000000524 functional group Chemical group 0.000 claims abstract description 47
- 239000011256 inorganic filler Substances 0.000 claims abstract description 47
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 47
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 38
- 125000005439 maleimidyl group Chemical class C1(C=CC(N1*)=O)=O 0.000 claims abstract description 13
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims description 61
- 239000002184 metal Substances 0.000 claims description 61
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims description 38
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 35
- 229960003638 dopamine Drugs 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 15
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 15
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 11
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 7
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 6
- 125000005395 methacrylic acid group Chemical group 0.000 claims description 5
- 125000003700 epoxy group Chemical group 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 abstract description 12
- 239000010408 film Substances 0.000 description 53
- 238000000034 method Methods 0.000 description 28
- 125000000217 alkyl group Chemical group 0.000 description 24
- 125000004432 carbon atom Chemical group C* 0.000 description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 239000002245 particle Substances 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 17
- 239000002966 varnish Substances 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 125000001424 substituent group Chemical group 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000011889 copper foil Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 229920002554 vinyl polymer Polymers 0.000 description 12
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- 125000000304 alkynyl group Chemical group 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 9
- 125000005090 alkenylcarbonyl group Chemical group 0.000 description 9
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 9
- 125000005087 alkynylcarbonyl group Chemical group 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 239000003999 initiator Substances 0.000 description 9
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 8
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 7
- 239000013039 cover film Substances 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 6
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 6
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical class OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 6
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- ZPQAUEDTKNBRNG-UHFFFAOYSA-N 2-methylprop-2-enoylsilicon Chemical compound CC(=C)C([Si])=O ZPQAUEDTKNBRNG-UHFFFAOYSA-N 0.000 description 5
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 125000005641 methacryl group Chemical group 0.000 description 5
- 125000005504 styryl group Chemical group 0.000 description 5
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 4
- 230000010933 acylation Effects 0.000 description 4
- 238000005917 acylation reaction Methods 0.000 description 4
- 125000000732 arylene group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 4
- DCUFMVPCXCSVNP-UHFFFAOYSA-N methacrylic anhydride Chemical compound CC(=C)C(=O)OC(=O)C(C)=C DCUFMVPCXCSVNP-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 3
- RGYRCSKRQNNKOE-UHFFFAOYSA-N 1-phenylacenaphthylene Chemical class C=12C3=CC=CC2=CC=CC=1C=C3C1=CC=CC=C1 RGYRCSKRQNNKOE-UHFFFAOYSA-N 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000001095 magnesium carbonate Substances 0.000 description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 3
- 235000014380 magnesium carbonate Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- CTENFNNZBMHDDG-UHFFFAOYSA-N Dopamine hydrochloride Chemical compound Cl.NCCC1=CC=C(O)C(O)=C1 CTENFNNZBMHDDG-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 150000001240 acenaphthylenes Chemical class 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- CHIHQLCVLOXUJW-UHFFFAOYSA-N benzoic anhydride Chemical compound C=1C=CC=CC=1C(=O)OC(=O)C1=CC=CC=C1 CHIHQLCVLOXUJW-UHFFFAOYSA-N 0.000 description 2
- 150000005130 benzoxazines Chemical class 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229960001149 dopamine hydrochloride Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 108091081474 miR-5000 stem-loop Proteins 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 2
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 1
- YZGJLGUCTISYPI-UHFFFAOYSA-N 1,3-bis(2-butylperoxypropan-2-yl)benzene Chemical compound CCCCOOC(C)(C)C1=CC=CC(C(C)(C)OOCCCC)=C1 YZGJLGUCTISYPI-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- QEFYWTSOECIYBZ-UHFFFAOYSA-N 1-bromoacenaphthylene Chemical group C1=CC(C(Br)=C2)=C3C2=CC=CC3=C1 QEFYWTSOECIYBZ-UHFFFAOYSA-N 0.000 description 1
- IUOZUYUGGOKLEA-UHFFFAOYSA-N 1-chloroacenaphthylene Chemical group C1=CC(C(Cl)=C2)=C3C2=CC=CC3=C1 IUOZUYUGGOKLEA-UHFFFAOYSA-N 0.000 description 1
- IYSVFZBXZVPIFA-UHFFFAOYSA-N 1-ethenyl-4-(4-ethenylphenyl)benzene Chemical group C1=CC(C=C)=CC=C1C1=CC=C(C=C)C=C1 IYSVFZBXZVPIFA-UHFFFAOYSA-N 0.000 description 1
- ODJRITACLOVRQV-UHFFFAOYSA-N 1-ethylacenaphthylene Chemical group C1=CC(C(CC)=C2)=C3C2=CC=CC3=C1 ODJRITACLOVRQV-UHFFFAOYSA-N 0.000 description 1
- QALUZRZBRMSBPM-UHFFFAOYSA-N 1-methylacenaphthylene Chemical group C1=CC(C(C)=C2)=C3C2=CC=CC3=C1 QALUZRZBRMSBPM-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical class O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- FCHGUOSEXNGSMK-UHFFFAOYSA-N 1-tert-butylperoxy-2,3-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC(OOC(C)(C)C)=C1C(C)C FCHGUOSEXNGSMK-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- CYLVUSZHVURAOY-UHFFFAOYSA-N 2,2-dibromoethenylbenzene Chemical compound BrC(Br)=CC1=CC=CC=C1 CYLVUSZHVURAOY-UHFFFAOYSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 1
- BQARUDWASOOSRH-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-yl hydrogen carbonate Chemical compound CC(C)(C)OOC(C)(C)OC(O)=O BQARUDWASOOSRH-UHFFFAOYSA-N 0.000 description 1
- ROVPTGZDLJKYQV-UHFFFAOYSA-N 3-[diethoxy(ethyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](CC)(OCC)CCCOC(=O)C(C)=C ROVPTGZDLJKYQV-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- CUFBVQOUUNXQIO-UHFFFAOYSA-N 3-bromoacenaphthylene Chemical group C1=CC=C2C=CC3=C2C1=CC=C3Br CUFBVQOUUNXQIO-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- KKPSNHYXALQUBD-UHFFFAOYSA-N 3-chloroacenaphthylene Chemical group C1=CC=C2C=CC3=C2C1=CC=C3Cl KKPSNHYXALQUBD-UHFFFAOYSA-N 0.000 description 1
- XBOHCDFAAIZEQZ-UHFFFAOYSA-N 3-ethylacenaphthylene Chemical group C1=CC=C2C=CC3=C2C1=CC=C3CC XBOHCDFAAIZEQZ-UHFFFAOYSA-N 0.000 description 1
- DNPPYSNUWVGIGZ-UHFFFAOYSA-N 3-methylacenaphthylene Chemical group C1=CC=C2C=CC3=C2C1=CC=C3C DNPPYSNUWVGIGZ-UHFFFAOYSA-N 0.000 description 1
- ZNVVZLZOLHTXSL-UHFFFAOYSA-N 3-phenylacenaphthylene Chemical group C1=CC(C2=3)=CC=CC=3C=CC2=C1C1=CC=CC=C1 ZNVVZLZOLHTXSL-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- XDQWJFXZTAWJST-UHFFFAOYSA-N 3-triethoxysilylpropyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C=C XDQWJFXZTAWJST-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- SLKWRPNSYYDOKD-UHFFFAOYSA-N 4-bromoacenaphthylene Chemical group C1=CC2=CC(Br)=CC(C=C3)=C2C3=C1 SLKWRPNSYYDOKD-UHFFFAOYSA-N 0.000 description 1
- DAGATIMEWIKWMN-UHFFFAOYSA-N 4-chloroacenaphthylene Chemical group C1=CC2=CC(Cl)=CC(C=C3)=C2C3=C1 DAGATIMEWIKWMN-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- AYYVMLCJGXKTAE-UHFFFAOYSA-N 4-ethylacenaphthylene Chemical group C1=CC2=CC(CC)=CC(C=C3)=C2C3=C1 AYYVMLCJGXKTAE-UHFFFAOYSA-N 0.000 description 1
- GXVCPNMXBPKQDH-UHFFFAOYSA-N 4-methylacenaphthylene Chemical group C1=CC2=CC(C)=CC(C=C3)=C2C3=C1 GXVCPNMXBPKQDH-UHFFFAOYSA-N 0.000 description 1
- VSBAENYXNNUKBN-UHFFFAOYSA-N 4-phenylacenaphthylene Chemical group C=1C(C2=3)=CC=CC=3C=CC2=CC=1C1=CC=CC=C1 VSBAENYXNNUKBN-UHFFFAOYSA-N 0.000 description 1
- PSRUTZHGMSPRPZ-UHFFFAOYSA-N 5-bromoacenaphthylene Chemical group C1=CC2=CC=CC3=C2C1=CC=C3Br PSRUTZHGMSPRPZ-UHFFFAOYSA-N 0.000 description 1
- VTEHXZOGYXPKKC-UHFFFAOYSA-N 5-chloroacenaphthylene Chemical group C1=CC2=CC=CC3=C2C1=CC=C3Cl VTEHXZOGYXPKKC-UHFFFAOYSA-N 0.000 description 1
- BEJCZQAOCVRCQO-UHFFFAOYSA-N 5-ethylacenaphthylene Chemical group C1=CC2=CC=CC3=C2C1=CC=C3CC BEJCZQAOCVRCQO-UHFFFAOYSA-N 0.000 description 1
- CQKTVYCWAAZXTJ-UHFFFAOYSA-N 5-methylacenaphthylene Chemical group C1=CC2=CC=CC3=C2C1=CC=C3C CQKTVYCWAAZXTJ-UHFFFAOYSA-N 0.000 description 1
- NJPYKVVOFZQFBK-UHFFFAOYSA-N 5-phenylacenaphthylene Chemical group C=12C3=CC=CC=1C=CC2=CC=C3C1=CC=CC=C1 NJPYKVVOFZQFBK-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- MNMOTUZSVCLQGT-UHFFFAOYSA-N C1(C=CC(N1)=O)=O.[SiH4] Chemical compound C1(C=CC(N1)=O)=O.[SiH4] MNMOTUZSVCLQGT-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- LJUXFZKADKLISH-UHFFFAOYSA-N benzo[f]phosphinoline Chemical class C1=CC=C2C3=CC=CC=C3C=CC2=P1 LJUXFZKADKLISH-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- WPKWPKDNOPEODE-UHFFFAOYSA-N bis(2,4,4-trimethylpentan-2-yl)diazene Chemical compound CC(C)(C)CC(C)(C)N=NC(C)(C)CC(C)(C)C WPKWPKDNOPEODE-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000006639 cyclohexyl carbonyl group Chemical group 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- VGSVNUGKHOVSPK-UHFFFAOYSA-N leukoaminochrome Chemical group C1=C(O)C(O)=CC2=C1NCC2 VGSVNUGKHOVSPK-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 108091063785 miR-3000 stem-loop Proteins 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- LIBWSLLLJZULCP-UHFFFAOYSA-N n-(3-triethoxysilylpropyl)aniline Chemical compound CCO[Si](OCC)(OCC)CCCNC1=CC=CC=C1 LIBWSLLLJZULCP-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- SFLRURCEBYIKSS-UHFFFAOYSA-N n-butyl-2-[[1-(butylamino)-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound CCCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCCC SFLRURCEBYIKSS-UHFFFAOYSA-N 0.000 description 1
- GLTDLAUASUFHNK-UHFFFAOYSA-N n-silylaniline Chemical compound [SiH3]NC1=CC=CC=C1 GLTDLAUASUFHNK-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229910052628 phlogopite Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- ARJOQCYCJMAIFR-UHFFFAOYSA-N prop-2-enoyl prop-2-enoate Chemical compound C=CC(=O)OC(=O)C=C ARJOQCYCJMAIFR-UHFFFAOYSA-N 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/14—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
Definitions
- the present invention relates to a resin composition, a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board.
- wiring boards used in various electronic devices are required to be high-frequency compatible wiring boards, such as millimeter wave radar boards for in-vehicle applications.
- wiring boards used in various electronic devices are required to reduce loss during signal transmission, and this is especially true for wiring boards that are high-frequency compatible.
- the substrate material that constitutes the substrate for the wiring boards used in various electronic devices is required to have a low dielectric constant and dielectric tangent.
- a substrate material for example, a PPE-containing resin composition containing PPE (polyphenylene ether), a crosslinked curable compound, and a phosphaphenanthrene derivative has been reported to have excellent low dielectric properties (Patent Document 1).
- the boron nitride filler described in Patent Document 2 does indeed improve the thermal conductivity of the resin composition. However, when the resin composition is used as a molding material for substrate materials, etc., even better adhesion is also required. In this regard, it has been found that boron nitride does not have sufficient adhesion to resins. When the adhesion between the inorganic filler and the resin is poor, breaks are likely to occur in the cured product of the resin composition, and when a resin composition containing the inorganic filler is used as a substrate material for metal-clad laminates, the adhesion to the metal foil will also be poor. In the technology described in Patent Document 2, an aldehyde compound is used as a surface modifier for the inorganic filler to increase the thermal conductivity, but the above-mentioned adhesion problem is not resolved.
- the present invention has been made in consideration of these circumstances, and aims to provide a resin composition that can give a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion.
- the present invention also aims to provide a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board that are obtained using the resin composition.
- the resin composition according to one embodiment of the present invention is a resin composition containing a thermosetting compound (A) and an inorganic filler (B), characterized in that the thermosetting compound (A) contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups, the inorganic filler (B) contains a boron nitride filler (B1), and polydopamine (C) having a functional group (X) that reacts with the radically polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1).
- the thermosetting compound (A) contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups
- FIG. 1 is a schematic cross-sectional view showing an example of a prepreg according to an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing an example of a metal-clad laminate according to an embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view showing an example of a wiring board according to an embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated metal foil according to an embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view showing an example of a resin-coated film according to an embodiment of the present invention.
- the resin composition according to the embodiment of the present invention is a resin composition containing a thermosetting compound (A) and an inorganic filler (B).
- the thermosetting compound (A) contains at least one radical polymerizable compound (A1) selected from the group consisting of a polyphenylene ether compound having a reactive unsaturated group, a hydrocarbon-based compound having a reactive unsaturated group, and a maleimide compound having two or more maleimide groups.
- the inorganic filler (B) contains a boron nitride filler (B1), and a polydopamine (C) having a functional group (X) that reacts with the radical polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1).
- the above-mentioned configuration makes it possible to provide a resin composition that can give a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion.
- a prepreg a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board that are obtained using the resin composition and have excellent properties.
- thermosetting resin compound (A) of this embodiment is a thermosetting compound containing a radically polymerizable compound (A1).
- the radically polymerizable compound (A1) used in this embodiment is a compound having radical polymerizability, such as a compound having a reactive unsaturated group, a compound having a maleimide group, etc. More specifically, for example, a polyphenylene ether compound, a cyanate ester compound, an active ester compound, a compound having an unsaturated group, etc. can be mentioned.
- Examples of the compound having an unsaturated group include an acrylic compound, a methacrylic compound, a vinyl compound, an allyl compound, a propenyl compound, a maleimide compound, a hydrocarbon-based compound having an unsaturated double bond, etc.
- thermosetting resin compound (A) of this embodiment contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon-based compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups.
- A1 radically polymerizable compound selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon-based compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups.
- Polyphenylene ether compound The polyphenylene ether compound that can be used in this embodiment is not particularly limited as long as it is a polyphenylene ether compound having a reactive unsaturated group in the molecule.
- the term "reactive unsaturated group” refers to, for example, a group having an unsaturated double bond.
- Specific examples of polyphenylene ether compounds having a reactive unsaturated group include polyphenylene ether compounds having a group represented by the following formula (3) or formula (4). It is believed that the inclusion of such a modified polyphenylene ether compound results in a resin composition that can obtain a cured product with low dielectric properties and high heat resistance.
- s represents an integer of 0 to 10.
- Z represents an arylene group.
- R 1 to R 3 are each independent. That is, R 1 to R 3 may be the same group or different groups.
- R 1 to R 3 represent a hydrogen atom or an alkyl group.
- the arylene group of Z is not particularly limited.
- the arylene group include monocyclic aromatic groups such as phenylene groups, and polycyclic aromatic groups in which the aromatic ring is not monocyclic but is polycyclic aromatic such as naphthalene rings.
- the arylene group also includes derivatives in which the hydrogen atom bonded to the aromatic ring is replaced with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
- the alkyl group is not particularly limited, and is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
- R4 represents a hydrogen atom or an alkyl group.
- the alkyl group is not particularly limited, and is preferably, for example, an alkyl group having 1 to 18 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
- Preferred specific examples of the substituent represented by formula (3) include, for example, a substituent containing a vinylbenzyl group.
- Examples of the substituent containing a vinylbenzyl group include, for example, a substituent represented by formula (5) below.
- Examples of the substituent represented by formula (4) include, for example, an acrylate group and a methacrylate group.
- examples of the substituent include vinylbenzyl groups (ethenylbenzyl groups) such as p-ethenylbenzyl and m-ethenylbenzyl groups, vinylphenyl groups, acrylate groups, and methacrylate groups.
- the polyphenylene ether compound has a polyphenylene ether chain in the molecule, and preferably has, for example, a repeating unit represented by the following formula (6) in the molecule.
- R 5 to R 8 are each independent. That is, R 5 to R 8 may be the same group or different groups.
- R 5 to R 8 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferred.
- R 5 to R 8 Specific examples of the functional groups mentioned for R 5 to R 8 include the following.
- the alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
- the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
- the alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
- the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferred, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferred.
- Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
- the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferred, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferred.
- Specific examples include an acryloyl group, a methacryloyl group, and a crotonoyl group.
- the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferred, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferred. Specific examples include a propioloyl group.
- the weight average molecular weight (Mw) of the polyphenylene ether compound is not particularly limited. Specifically, it is preferably 500 to 5000, more preferably 800 to 4000, and even more preferably 1000 to 3000.
- the weight average molecular weight may be measured by a general molecular weight measurement method, and specifically, it may be a value measured using gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- t is preferably a value that causes the weight average molecular weight of the polyphenylene ether compound to be within this range. Specifically, t is preferably 1 to 50.
- the weight average molecular weight of the polyphenylene ether compound When the weight average molecular weight of the polyphenylene ether compound is within this range, it has the excellent low dielectric properties of polyphenylene ether, and the heat resistance of the cured product is excellent, as well as the moldability. This is believed to be due to the following. When the weight average molecular weight of a normal polyphenylene ether is within this range, the heat resistance of the cured product tends to decrease because the molecular weight is relatively low. In this regard, since the polyphenylene ether compound according to this embodiment has one or more unsaturated double bonds at the terminal, it is believed that the heat resistance of the cured product is sufficiently high.
- the weight average molecular weight of the polyphenylene ether compound is within this range, it is believed that the moldability is excellent because the molecular weight is relatively low. Therefore, it is believed that such a polyphenylene ether compound not only has excellent heat resistance, but also has excellent moldability.
- the average number of the substituents (number of terminal functional groups) at the molecular ends per molecule of the polyphenylene ether compound is not particularly limited. Specifically, it is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. Furthermore, if the number of terminal functional groups is too large, the reactivity becomes too high, and there is a risk of problems occurring, such as a decrease in the storage stability of the resin composition or a decrease in the fluidity of the resin composition.
- the number of terminal functional groups of a polyphenylene ether compound may be, for example, a numerical value representing the average number of the above-mentioned substituents per molecule of all modified polyphenylene ether compounds present in 1 mole of the polyphenylene ether compound.
- the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether compound and calculating the reduction from the number of hydroxyl groups of the polyphenylene ether before modification. This reduction from the number of hydroxyl groups of the polyphenylene ether before modification is the number of terminal functional groups.
- the number of hydroxyl groups remaining in the modified polyphenylene ether compound can be measured by adding a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to a solution of the modified polyphenylene ether compound and measuring the UV absorbance of the mixed solution.
- a quaternary ammonium salt tetraethylammonium hydroxide
- polyphenylene ether compound of this embodiment examples include a modified polyphenylene ether compound represented by the following formula (7) and a modified polyphenylene ether compound represented by the following formula (8).
- these modified polyphenylene ether compounds may be used alone, or these two types of modified polyphenylene ether compounds may be used in combination.
- R 9 to R 16 and R 17 to R 24 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
- X 1 and X 2 each independently represent a substituent having a carbon-carbon unsaturated double bond.
- a and B each represent a repeating unit represented by the following formula (9) and formula (10), respectively.
- Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
- R 25 to R 28 and R 29 to R 32 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
- the modified polyphenylene ether compound represented by the formula (7) and the modified polyphenylene ether compound represented by the formula (8) are not particularly limited as long as they satisfy the above-mentioned constitution.
- R 9 to R 16 and R 17 to R 24 are each independent as described above. That is, R 9 to R 16 and R 17 to R 24 may be the same group or different groups.
- R 9 to R 16 and R 17 to R 24 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferred.
- m and n each preferably represent 0 to 20 as described above. Moreover, m and n each preferably represent a numerical value such that the sum of m and n is 1 to 30. Therefore, it is more preferable that m represents 0 to 20, n represents 0 to 20, and the sum of m and n represents 1 to 30. Moreover, R 25 to R 28 and R 29 to R 32 are each independent. That is, R 25 to R 28 and R 29 to R 32 may each be the same group or different groups.
- R 25 to R 28 and R 29 to R 32 represent a hydrogen atom, an alkyl group, an alkenyl group , an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
- a hydrogen atom and an alkyl group are preferable.
- R 9 to R 32 are the same as R 5 to R 8 in the above formula (6).
- Y is, as described above, a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
- Examples of Y include a group represented by the following formula (11).
- R 33 and R 34 each independently represent a hydrogen atom or an alkyl group.
- the alkyl group include a methyl group.
- the group represented by the formula (11) include a methylene group, a methylmethylene group, and a dimethylmethylene group, and among these, a dimethylmethylene group is preferred.
- X 1 and X 2 are each independently a substituent having a carbon-carbon unsaturated double bond.
- the substituents X 1 and X 2 are not particularly limited as long as they are a substituent having a carbon-carbon unsaturated double bond.
- Examples of the substituents X 1 and X 2 include the substituents represented by the formula (3) and the substituents represented by the formula (4).
- X 1 and X 2 may be the same or different substituents.
- modified polyphenylene ether compound represented by the formula (7) is, for example, a modified polyphenylene ether compound represented by the following formula (12).
- modified polyphenylene ether compound represented by formula (8) include the modified polyphenylene ether compound represented by formula (13) below and the modified polyphenylene ether compound represented by formula (14) below.
- the polyphenylene ether compound used in the resin composition of this embodiment can be synthesized by a known method, or a commercially available product can be used.
- commercially available products include "OPE-2st 1200” and “OPE-2st 2200” manufactured by Mitsubishi Gas Chemical Company, Inc., and "SA9000” manufactured by SABIC Innovative Plastics.
- hydrocarbon-based compound that can be used in the present embodiment is not particularly limited as long as it is a hydrocarbon-based compound having a reactive unsaturated group in the molecule.
- Preferred examples of the hydrocarbon-based compound include hydrocarbon resins such as polyfunctional vinyl aromatic polymers, cyclic polyolefin resins, and vinyl aromatic compound-conjugated diene compound copolymers.
- the polyfunctional vinyl aromatic polymer is preferably a polymer containing at least a polyfunctional vinyl aromatic compound and/or a derivative thereof polymerized therein, and is not particularly limited as long as it is a polymer containing a structure derived from a polyfunctional vinyl aromatic compound and/or a derivative thereof, and may be a polymer containing one or more polyfunctional vinyl aromatic compounds and/or a structure derived from their derivatives.
- a reactive monomer In addition to the polyfunctional vinyl aromatic compound and/or its derivative structural unit, one or more structural units derived from a reactive monomer may be further included.
- the reactive monomer is not particularly limited, but may be, for example, a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monovinyl aromatic compound such as styrene.
- examples of the polyfunctional vinyl compounds include those having two or more vinyl groups in the molecule.
- Further examples of the polyfunctional vinyl compounds include divinylbenzene, divinylnaphthalene, divinylbiphenyl, and polybutadiene.
- examples of such compounds include maleimide compounds having two or more N-substituted maleimide groups in one molecule, maleimide compounds having an indane structure, maleimide compounds having at least one group selected from an alkyl group having 6 or more carbon atoms and an alkylene group having 6 or more carbon atoms, and maleimide compounds having a benzene ring in the molecule.
- the maleimide compound used in this embodiment may be a commercially available product, such as MIR-3000 and MIR-5000 manufactured by Nippon Kayaku Co., Ltd.; BMI-4000, BMI-2300, BMI-TMH, BMI-4000, BMI-5100, etc. manufactured by Daiwa Kasei Kogyo Co., Ltd.; and BMI-689, BMI-1500, BMI-3000J, BMI-5000, etc. manufactured by Designer Molecules Inc.
- thermosetting compounds include phenolic resins, benzoxazine compounds, styrene compounds, styrene derivatives, compounds having an acryloyl group in the molecule, compounds having a methacryloyl group in the molecule, compounds having a vinyl group in the molecule, compounds having an allyl group in the molecule, compounds having an acenaphthylene structure in the molecule, isocyanurate compounds having an isocyanurate group in the molecule, and monomaleimide compounds.
- phenolic resins benzoxazine compounds, styrene compounds, styrene derivatives, compounds having an acryloyl group in the molecule, compounds having a methacryloyl group in the molecule, compounds having a vinyl group in the molecule, compounds having an allyl group in the molecule, compounds having an acenaphthylene structure in the molecule, isocyanurate compounds having an isocyanurate group in the molecule,
- benzoxazine compound for example, a benzoxazine compound represented by the following general formula (15) can be used.
- R a represents a k-valent group
- R b each independently represents a halogen atom, an alkyl group, or an aryl group
- k represents an integer of 2 to 4
- l represents an integer of 0 to 4.
- the styrene compound is not particularly limited as long as it has a styrene skeleton in the molecule, but a preferred example is a resin compound whose terminals are modified with a styrene skeleton.
- styrene derivatives examples include bromostyrene and dibromostyrene.
- the compound having an acryloyl group in the molecule is an acrylate compound.
- the acrylate compound include monofunctional acrylate compounds having one acryloyl group in the molecule, and polyfunctional acrylate compounds having two or more acryloyl groups in the molecule.
- the monofunctional acrylate compounds include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
- the polyfunctional acrylate compounds include tricyclodecane dimethanol diacrylate.
- the compound having a methacryloyl group in the molecule is a methacrylate compound.
- the methacrylate compound include monofunctional methacrylate compounds having one methacryloyl group in the molecule, and polyfunctional methacrylate compounds having two or more methacryloyl groups in the molecule.
- the monofunctional methacrylate compounds include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
- Examples of the polyfunctional methacrylate compounds include tricyclodecane dimethanol dimethacrylate.
- the compound having a vinyl group in the molecule is a vinyl compound.
- the vinyl compound include a monofunctional vinyl compound (monovinyl compound) having one vinyl group in the molecule.
- the compound having an allyl group in the molecule is an allyl compound.
- the allyl compound include monofunctional allyl compounds having one allyl group in the molecule, and polyfunctional allyl compounds having two or more allyl groups in the molecule.
- the polyfunctional allyl compounds include diallyl phthalate (DAP).
- the compound having an acenaphthylene structure in the molecule is an acenaphthylene compound.
- the acenaphthylene compound include acenaphthylene, alkyl acenaphthylenes, halogenated acenaphthylenes, and phenyl acenaphthylenes.
- alkyl acenaphthylenes examples include 1-methyl acenaphthylene, 3-methyl acenaphthylene, 4-methyl acenaphthylene, 5-methyl acenaphthylene, 1-ethyl acenaphthylene, 3-ethyl acenaphthylene, 4-ethyl acenaphthylene, and 5-ethyl acenaphthylene.
- halogenated acenaphthylenes examples include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, 3-bromoacenaphthylene, 4-bromoacenaphthylene, and 5-bromoacenaphthylene.
- phenylacenaphthylenes examples include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, and 5-phenylacenaphthylene.
- the acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule as described above, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule.
- the compound having an isocyanurate group in the molecule is an isocyanurate compound.
- isocyanurate compounds include compounds further having an alkenyl group in the molecule (alkenyl isocyanurate compounds), such as triallyl isocyanurate (TAIC) and other trialkenyl isocyanurate compounds.
- TAIC triallyl isocyanurate
- benzoxazine compounds for example, benzoxazine compounds, isocyanurate compounds having an isocyanurate group in the molecule, N-phenylmaleimide, and resin compounds whose ends are modified with a styrene skeleton.
- thermosetting compounds used as curing agents as described above may be used alone or in combination of two or more.
- the content of the thermosetting compound (A) is preferably 15 to 60 parts by mass, and more preferably 20 to 55 parts by mass, per 100 parts by mass of the total of the thermosetting compound (A) and the inorganic filler (B). If the content of the thermosetting compound (A) is within the above range, it is believed that a resin composition that can produce a cured product with low dielectric properties and high heat resistance can be more reliably obtained.
- the content ratio of the radically polymerizable compound (A1):other thermosetting compound is preferably about 95:5 to 50:50 by mass. If the content ratio is within this range, the resin composition will have better heat resistance in the cured product. This is thought to be because the curing reaction between the resin component of this embodiment and the curing agent proceeds smoothly.
- the resin composition according to this embodiment further includes an inorganic filler (B) including a boron nitride filler (B1).
- the boron nitride filler is not particularly limited as long as it can be used as an inorganic filler contained in the resin composition.
- the boron nitride filler (B1) hexagonal boron nitride (h-BN) having a graphite-type layered structure, diamond-type cubic boron nitride (c-BN), and amorphous boron nitride (a-BN) can be used as the boron nitride filler (B1).
- h-BN hexagonal boron nitride
- c-BN diamond-type cubic boron nitride
- a-BN amorphous boron nitride
- h-BN is particularly useful because it can be synthesized relatively easily and has excellent thermal conductivity, electrical insulation, chemical stability, and heat resistance.
- boron nitride particles can be used as the boron nitride filler (B1).
- the boron nitride particles are usually white in color.
- the shape of the boron nitride particles is not particularly limited. The shape of the boron nitride particles may be, for example, scale-like, spherical, elliptical, rod-like, or the like.
- the average particle size of the boron nitride particles is not particularly limited.
- the average particle size of the boron nitride particles may be, for example, 0.05 ⁇ m or more and 100 ⁇ m or less, or 0.1 ⁇ m or more and 50 ⁇ m or less.
- the average particle size of the boron nitride particles means the median diameter.
- the median diameter means the particle size (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%.
- the volume-based particle size distribution is measured, for example, by a laser diffraction measuring device.
- polydopamine (C) having a functional group (X) that reacts with the radically polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1).
- the polydopamine (C) may cover at least a portion of the surface of the boron nitride filler (B1). In this case, the polydopamine (C) may cover the entire surface of the boron nitride filler (B1), or may cover only a portion of the surface of the boron nitride filler (B1).
- n is an integer of 1 or more, particularly 2 or more.
- the polydopamine (C) of this embodiment is obtained by introducing a functional group (X) into such polydopamine. That is, the polydopamine (C) of this embodiment has a functional group (X) that reacts with the radical polymerizable compound (A1).
- the polydopamine (C) having the functional group (X) that reacts with the radical polymerizable compound (A1) is attached to the boron nitride filler (B1), the adhesion between the radical polymerizable compound (A1) and the boron nitride filler (B1) is improved.
- the functional group (X) derived from dopamine in the polydopamine (C) may be partially changed.
- the polydopamine (C) may be in the form of a thin film on the surface of the boron nitride filler (B1).
- the thickness of the thin film of polydopamine (C) is, for example, 0.1 nm to 300 nm, and more preferably 0.1 nm to 100 nm.
- the thin film of polydopamine (C) may cover at least a portion of the surface of the boron nitride filler (B1), or may cover the entire surface of the boron nitride filler (B1).
- the functional group (X) is not particularly limited as long as it reacts with the radical polymerizable compound (A1) and the thermosetting compound (which acts as a curing agent).
- the functional group (X) of the polydopamine (C) contains at least one selected from the group consisting of an epoxy group, a phenylamino group, a vinyl group, an acrylic group, a methacrylic group, an allyl group, a styrene structure, and a maleimide group.
- styrene structure refers to the structure shown in the following formula (S).
- the boron nitride filler (B1) of this embodiment can be obtained by, for example, attaching polydopamine to the surface of the boron nitride filler and then introducing a functional group (X) to the attached polydopamine to obtain a boron nitride filler (B1) having attached thereto polydopamine (C) having a functional group (X). Note that, before introducing the functional group (X) to the polydopamine, the boron nitride filler having attached thereto polydopamine may be heat-treated.
- the method for attaching polydopamine to the surface of the boron nitride filler is not particularly limited, and polydopamine can be attached to the surface of the boron nitride filler by contacting the boron nitride filler with a dopamine solution and oxidizing and polymerizing the dopamine.
- the dopamine solution can be obtained, for example, by adding dopamine hydrochloride to a Tris-HCl solution whose pH has been adjusted to 8.5, and stirring the mixture.
- concentration of the dopamine solution there is no particular limit to the concentration of the dopamine solution, and it is, for example, in the range of 0.01 mg/mL to 30 mg/mL.
- the pH of the dopamine solution is in the range of pH 6 to pH 11, and may be in the range of pH 8 to pH 10.
- the pH of the dopamine solution can be adjusted by mixing with a Tris-HCl solution or the like.
- the temperature of the dopamine solution during oxidative polymerization is, for example, 10°C to 100°C.
- the polymerization time is, for example, 1 hour to 48 hours.
- the maximum thickness of the polydopamine layer is preferably, for example, 0.1 nm or more and 100 nm or less. This has the advantage of being able to increase adhesion to the thermosetting resin while maintaining the low dielectric tangent of boron nitride.
- the thickness of the polydopamine layer can be controlled by the polymerization time.
- the boron nitride filler may be heat-treated. This will result in a polydopamine film with even higher purity.
- Heat treatment can be carried out using known heat treatment devices such as a sintering device, electric furnace, or hot plate. In particular, it is desirable to carry out the heat treatment using a sintering device or electric furnace, as this makes it easy to control the temperature.
- the heat treatment can be carried out by heating the ambient temperature of the boron nitride filler to a range of 100°C to 400°C.
- the heating time is, for example, 1 hour to 48 hours.
- a functional group (X) is introduced into the polydopamine attached to the surface of the boron nitride filler.
- a polydopamine layer is formed by polydopamine (C).
- the introduction of the functional group (X) is not particularly limited, but can be carried out, for example, by acylation treatment or treatment with a silane coupling agent.
- the acylation treatment of polydopamine (C) can introduce functional groups (X) by reacting polydopamine with an acylating agent in the presence of a catalyst to acylate at least a portion of the hydroxyl groups of polydopamine.
- the acylating agent is not particularly limited as long as it is capable of reacting with polar functional groups such as hydroxyl groups contained in polydopamine to acylate them.
- the acylating agent may be an acid anhydride.
- known acylating agents include carboxylic acid anhydrides. More specifically, examples of such agents include methacrylic acid anhydride, acetic anhydride, benzoic acid anhydride, and propanoic acid anhydride.
- the acid anhydride may include at least one selected from the group consisting of methacrylic acid anhydride, acrylic acid anhydride, acetic anhydride, and benzoic acid anhydride.
- the acylating agent When the acylating agent has a double bond at the end, this double bond reacts with the reactive residue of the resin of the insulating layer to form a bond, thereby improving the adhesion between the thermosetting compound (A) and the inorganic filler (B).
- the acylating agent is preferably methacrylic acid anhydride or acetic anhydride.
- functional groups (X) can be introduced into polydopamine (C) by treating it with a silane coupling agent having various functional groups.
- silane coupling agents include methacryl silane coupling agents, vinyl silane coupling agents, styryl silane coupling agents, acrylic silane coupling agents, phenylamino silane coupling agents, epoxy silane coupling agents, maleimide silane coupling agents, etc.
- the method of treatment with a silane coupling agent is not particularly limited, but for example, polydopamine (C) in which at least a portion of the hydroxyl groups contained in the polydopamine are substituted with the functional group (X) as described above can be obtained by mixing the boron nitride filler to which polydopamine is attached in an aqueous solution containing a silane coupling agent having a functional group (X) and then drying.
- the polydopamine (C) of this embodiment may further have at least one structure selected from the structures represented by the following formula (1) and the following formula (2).
- thermosetting resin (A) the cured thermosetting resin (A) and the boron nitride filler to which the polydopamine film (C) is attached is stronger.
- the resin composition of the present embodiment may contain only the boron nitride filler (B1) as the inorganic filler (B), or may contain an inorganic filler other than the boron nitride filler (B1).
- the inorganic filler other than the boron nitride filler (B1) is not particularly limited as long as it can be used as an inorganic filler contained in the resin composition.
- boron nitride filler other than the boron nitride filler (B1) silica filler, alumina filler, titanium oxide filler, metal oxide filler such as magnesium oxide and mica, aluminum hydroxide filler, metal hydroxide filler such as magnesium hydroxide, talc filler, aluminum borate filler, barium sulfate filler, aluminum nitride filler, silicon nitride filler, magnesium carbonate filler such as anhydrous magnesium carbonate, and calcium carbonate filler.
- preferred inorganic fillers other than the boron nitride filler (B1) include silica filler, anhydrous magnesium carbonate filler, alumina filler, silicon nitride filler, boron nitride filler with no dopamine attached to the surface, and the like.
- the silica filler is not particularly limited, and examples thereof include crushed silica filler and silica particle filler, and silica particle filler is preferred.
- the magnesium carbonate filler is not particularly limited, but anhydrous magnesium carbonate (synthetic magnesite) filler is preferred.
- the inorganic filler other than the boron nitride filler (B1) may be a surface-treated inorganic filler or an inorganic filler that has not been surface-treated.
- examples of the surface treatment include treatment with a silane coupling agent.
- the content of the inorganic filler (B) is preferably 40 to 85 parts by weight per 100 parts by weight of the total of the thermosetting compound (A) and the inorganic filler (B). More preferably, it is 40 to 80 parts by weight.
- the content of the boron nitride filler (B1) in the inorganic filler (B) is preferably 10 to 90 mass% and more preferably 10 to 70 mass% with respect to the total amount of the inorganic filler (B). It is believed that having the content of the boron nitride filler (B1) in the above range has the advantage of ensuring high thermal conductivity and adhesion.
- the resin composition of the present embodiment may further contain a silane coupling agent, which is believed to more reliably substitute the hydroxyl groups in the polydopamine (C) with the functional groups (X), thereby further improving the adhesion between the resin component and boron nitride.
- the silane coupling agent may, for example, be a silane coupling agent having at least one functional group selected from the group consisting of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group.
- the silane coupling agent may be a compound having at least one of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group as a reactive functional group, and further having a hydrolyzable group such as a methoxy group or an ethoxy group.
- the silane coupling agent has a vinyl group, and examples thereof include vinyltriethoxysilane and vinyltrimethoxysilane.
- the silane coupling agent has a styryl group, and examples thereof include p-styryltrimethoxysilane and p-styryltriethoxysilane, which have a styrene structure represented by the above formula (S).
- the content is preferably about 0.1 to 10 parts by mass per 100 parts by mass of the thermosetting compound (A).
- the resin composition of the present embodiment may further contain a reaction initiator.
- the radical polymerization (curing) reaction of the resin composition may proceed even without a reaction initiator. However, depending on the process conditions, it may be difficult to raise the temperature to a level where curing proceeds, so a reaction initiator may be added.
- the reaction initiator is not particularly limited as long as it can accelerate the curing reaction of the resin composition.
- Specific examples include metal oxides, azo compounds, and peroxides, and preferably includes at least one of peroxides and azo compounds.
- metal oxides include metal carboxylates.
- Organic peroxides include ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne, benzoyl peroxide, 3,3',5,5'-tetramethyl-1,4-diphenoquinone, chloranil, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, azobisisobutyronitrile, etc.
- azo compounds include 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(N-butyl-2-methylpropionamide), and 2,2'-azobis(2-methylbutyronitrile).
- reaction initiators may be used alone or in combination of two or more.
- the resin composition of this embodiment contains the reaction initiator
- its content is not particularly limited, but for example, it is preferably 0.1 to 5.0 parts by mass, more preferably 0.5 to 3.0 parts by mass, and even more preferably 0.5 to 2.0 parts by mass, relative to 100 parts by mass of the thermosetting compound (A).
- the resin composition according to the present embodiment may contain components other than the above-mentioned components (other components) as necessary within a range that does not impair the effects of the present invention.
- the other components contained in the resin composition according to the present embodiment may further contain additives such as, for example, a flame retardant, an antifoaming agent, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a dye or pigment, a dispersant, and a lubricant.
- the method for producing the resin composition of the present embodiment is not particularly limited, and examples thereof include a method in which the thermosetting compound (A) is mixed with other organic components as necessary, and then the inorganic filler (B) is added, etc. Specifically, in the case of obtaining a varnish-like composition containing an organic solvent, the method described in the description of the prepreg described later can be used.
- the cured product of the resin composition preferably has a thermal conductivity of 1.0 W/m ⁇ K or more and a dielectric loss tangent of 0.003 or less at a frequency of 10 GHz.
- a thermal conductivity 1.0 W/m ⁇ K or more and a dielectric loss tangent of 0.003 or less at a frequency of 10 GHz.
- Prepreg 1 is a schematic cross-sectional view showing an example of a prepreg 1 according to an embodiment of the present invention.
- each reference symbol indicates the following: 1 prepreg, 2 resin composition or semi-cured resin composition, 3 fibrous base material, 11 metal-clad laminate, 12 insulating layer, 13 metal foil, 14 wiring, 21 wiring board, 31 resin-attached metal foil, 32, 42 resin layer, 41 resin-attached film, 43 support film.
- the prepreg 1 comprises the resin composition or a semi-cured product of the resin composition 2, and a fibrous base material 3.
- This prepreg 1 comprises the resin composition or a semi-cured product of the resin composition 2, and the fibrous base material 3 present in the resin composition or the semi-cured product of the resin composition 2.
- the semi-cured product refers to a resin composition that has been partially cured to the extent that it can be further cured.
- the semi-cured product is a resin composition that has been semi-cured (B-staged).
- the semi-cured product can be described as the state between when the viscosity starts to increase and when it is completely cured.
- the prepreg obtained using the resin composition according to this embodiment may comprise a semi-cured product of the resin composition as described above, or may comprise the uncured resin composition itself. That is, it may be a prepreg comprising a semi-cured product of the resin composition (the resin composition in B stage) and a fibrous base material, or a prepreg comprising the resin composition before curing (the resin composition in A stage) and a fibrous base material.
- the resin composition or the semi-cured product of the resin composition may be the resin composition that has been dried or heat-dried.
- the resin composition 2 is often prepared in a varnish form and used to impregnate the fibrous base material 3, which is the base material for forming the prepreg.
- the resin composition 2 is usually often a resin varnish prepared in a varnish form.
- a varnish-like resin composition (resin varnish) is prepared, for example, as follows.
- each component of the resin composition that is soluble in an organic solvent is added to the organic solvent and dissolved. Heating may be performed if necessary.
- components that are not soluble in the organic solvent e.g., inorganic fillers, etc.
- the varnish-like resin composition is prepared by dispersing the components until a predetermined dispersion state is reached using a ball mill, bead mill, planetary mixer, roll mill, etc.
- the organic solvent used here is not particularly limited as long as it dissolves the modified polyphenylene ether compound and the curing agent, etc., and does not inhibit the curing reaction. Specific examples include toluene and methyl ethyl ketone (MEK).
- the method for producing the prepreg is not particularly limited as long as it is capable of producing the prepreg.
- the resin composition used in the present embodiment described above is often prepared in a varnish form and used as a resin varnish, as described above.
- the fibrous substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
- glass cloth When glass cloth is used, a laminate with excellent mechanical strength is obtained, and flattened glass cloth is particularly preferable.
- a specific example of the flattening process is a method in which glass cloth is continuously pressed with a press roll at an appropriate pressure to compress the yarns flat.
- the thickness of the fibrous substrate that is generally used is, for example, 0.01 mm or more and 0.3 mm or less.
- the method for producing the prepreg is not particularly limited as long as it is capable of producing the prepreg.
- the resin composition according to the present embodiment described above is often prepared in a varnish form as described above and used as a resin varnish.
- the method of manufacturing the prepreg 1 includes, for example, a method of impregnating the fibrous base material 3 with the resin composition 2, for example, a resin composition 2 prepared in a varnish form, and then drying the resin composition 2.
- the resin composition 2 is impregnated into the fibrous base material 3 by immersion, coating, or the like. Impregnation can be repeated multiple times as necessary. In this case, it is also possible to adjust the composition and impregnation amount to the final desired one by repeating the impregnation using multiple resin compositions with different compositions and concentrations.
- the fibrous substrate 3 impregnated with the resin composition (resin varnish) 2 is heated under the desired heating conditions, for example, at 80°C to 180°C for 1 minute to 10 minutes. By heating, a prepreg 1 in an uncured (A stage) or semi-cured (B stage) state is obtained. The heating can also volatilize the organic solvent from the resin varnish, thereby reducing or removing the organic solvent.
- the prepreg comprising the resin composition according to this embodiment or a semi-cured product of this resin composition is a prepreg that can suitably produce a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion.
- FIG. 2 is a schematic cross-sectional view showing an example of a metal-clad laminate 11 according to an embodiment of the present invention.
- the metal-clad laminate 11 is composed of an insulating layer 12 containing the cured product of the prepreg 1 shown in FIG. 1, and a metal foil 13 laminated together with the insulating layer 12. That is, the metal-clad laminate 11 has an insulating layer 12 containing a cured product of a resin composition, and a metal foil 13 provided on the insulating layer 12.
- the insulating layer 12 may be made of the cured product of the resin composition, or may be made of the cured product of the prepreg.
- the thickness of the metal foil 13 varies depending on the performance required for the final wiring board, and is not particularly limited. The thickness of the metal foil 13 can be appropriately set depending on the desired purpose, and is preferably, for example, 0.2 to 70 ⁇ m. Examples of the metal foil 13 include copper foil and aluminum foil, and when the metal foil is thin, it may be a carrier-attached copper foil having a release layer and a carrier to improve handling.
- the method for producing the metal-clad laminate 11 is not particularly limited as long as the metal-clad laminate 11 can be produced. Specifically, a method for producing the metal-clad laminate 11 using the prepreg 1 can be mentioned. This method includes a method in which one or more prepregs 1 are stacked, and then a metal foil 13 such as copper foil is stacked on both sides or one side of the prepreg 1, and the metal foil 13 and the prepreg 1 are heated and pressurized to laminate and integrate them, thereby producing a laminate 11 with metal foil on both sides or one side. That is, the metal-clad laminate 11 is obtained by stacking the metal foil 13 on the prepreg 1 and heating and pressurizing it.
- the heating and pressurizing conditions can be appropriately set depending on the thickness of the metal-clad laminate 11 to be produced and the type of composition of the prepreg 1.
- the temperature can be 170 to 230°C
- the pressure can be 3 to 4 MPa
- the time can be 60 to 150 minutes.
- the metal-clad laminate may also be produced without using a prepreg. For example, a method is used in which a varnish-like resin composition is applied onto a metal foil, a layer containing the resin composition is formed on the metal foil, and then the layer is heated and pressurized.
- the metal-clad laminate having an insulating layer containing the cured product of the resin composition according to this embodiment is a metal-clad laminate having an insulating layer that has low dielectric properties, high thermal conductivity, and excellent adhesion to the metal foil.
- FIG. 3 is a schematic cross-sectional view showing an example of a wiring board 21 according to an embodiment of the present invention.
- the wiring board 21 is composed of an insulating layer 12 used by curing the prepreg 1 shown in FIG. 1, and wiring 14 laminated together with the insulating layer 12 and formed by partially removing the metal foil 13. That is, the wiring board 21 has an insulating layer 12 containing a cured product of a resin composition, and wiring 14 provided on the insulating layer 12. Furthermore, the insulating layer 12 may be made of a cured product of the resin composition, or may be made of a cured product of the prepreg.
- the method for manufacturing the wiring board 21 is not particularly limited as long as the wiring board 21 can be manufactured. Specifically, a method for manufacturing the wiring board 21 using the prepreg 1 can be mentioned.
- the method includes a method for manufacturing the wiring board 21 in which wiring is provided as a circuit on the surface of the insulating layer 12 by etching the metal foil 13 on the surface of the metal-clad laminate 11 manufactured as described above. That is, the wiring board 21 is obtained by forming a circuit by partially removing the metal foil 13 on the surface of the metal-clad laminate 11.
- other methods for forming a circuit include, for example, a semi-additive process (SAP) or a modified semi-additive process (MSAP).
- SAP semi-additive process
- MSAP modified semi-additive process
- the wiring board 21 has an insulating layer 12 that has low dielectric properties, high heat resistance, and can favorably maintain its low dielectric properties even after water absorption treatment.
- Such a wiring board has an insulating layer that has low dielectric properties, high thermal conductivity, and excellent adhesion to the metal foil.
- FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated metal foil 31 according to the present embodiment.
- the resin-coated metal foil 31 comprises a resin layer 32 containing the resin composition or a semi-cured product of the resin composition, and a metal foil 13.
- This resin-coated metal foil 31 has the metal foil 13 on the surface of the resin layer 32. That is, this resin-coated metal foil 31 comprises the resin layer 32 and the metal foil 13 laminated together with the resin layer 32.
- the resin-coated metal foil 31 may also comprise another layer between the resin layer 32 and the metal foil 13.
- the resin layer 32 may contain the semi-cured product of the resin composition as described above, or may contain the uncured resin composition. That is, the resin-attached metal foil 31 may include a resin layer containing the semi-cured product of the resin composition (the resin composition in the B stage) and a metal foil, or may be a resin-attached metal foil including a resin layer containing the resin composition before curing (the resin composition in the A stage) and a metal foil.
- the resin layer may contain the resin composition or the semi-cured product of the resin composition, and may or may not contain a fibrous substrate.
- the resin composition or the semi-cured product of the resin composition may be the resin composition that has been dried or heated.
- the fibrous substrate may be the same as the fibrous substrate of the prepreg.
- the metal foil may be any metal foil used in metal-clad laminates, without any limitations. Examples of metal foil include copper foil and aluminum foil.
- the resin-coated metal foil 31 and the resin-coated film 41 may be provided with a cover film or the like as necessary.
- a cover film By providing a cover film, it is possible to prevent the inclusion of foreign matter.
- the cover film is not particularly limited, but examples thereof include polyolefin film, polyester film, polymethylpentene film, and films formed by providing a release agent layer on these films.
- the method for producing the resin-coated metal foil 31 is not particularly limited as long as the resin-coated metal foil 31 can be produced.
- Examples of the method for producing the resin-coated metal foil 31 include a method in which the varnish-like resin composition (resin varnish) is applied to the metal foil 13 and heated.
- the varnish-like resin composition is applied to the metal foil 13, for example, by using a bar coater.
- the applied resin composition is heated, for example, under conditions of 80° C. or higher and 180° C. or lower, and 1 minute or longer and 10 minutes or shorter.
- the heated resin composition is formed on the metal foil 13 as an uncured resin layer 32.
- the organic solvent can be volatilized from the resin varnish by the heating, thereby reducing or removing the organic solvent.
- the resin-coated metal foil having a resin layer containing the resin composition according to this embodiment or a semi-cured product of this resin composition is a resin-coated metal foil that is suitable for producing a cured product that has low dielectric properties, high thermal conductivity, and excellent adhesion to the metal foil.
- FIG. 5 is a schematic cross-sectional view showing an example of a resin-attached film 41 according to the present embodiment.
- the resin-attached film 41 includes a resin layer 42 containing the resin composition or a semi-cured product of the resin composition, and a support film 43.
- This resin-attached film 41 includes the resin layer 42 and a support film 43 laminated together with the resin layer 42.
- the resin-attached film 41 may also include other layers between the resin layer 42 and the support film 43.
- the resin layer 42 may contain the semi-cured product of the resin composition as described above, or may contain the uncured resin composition. That is, the resin-attached film 41 may include a resin layer containing the semi-cured product of the resin composition (the resin composition in the B stage) and a support film, or may be a resin-attached film including a resin layer containing the resin composition before curing (the resin composition in the A stage) and a support film.
- the resin layer may contain the resin composition or the semi-cured product of the resin composition, and may or may not contain a fibrous substrate.
- the resin composition or the semi-cured product of the resin composition may be the resin composition that has been dried or heated.
- the fibrous substrate may be the same as the fibrous substrate of the prepreg.
- any support film used for a resin-coated film can be used without any restrictions.
- the support film include electrically insulating films such as polyester film, polyethylene terephthalate (PET) film, polyimide film, polyparabanic acid film, polyether ether ketone film, polyphenylene sulfide film, polyamide film, polycarbonate film, and polyarylate film.
- the resin-coated film 41 may be provided with a cover film or the like as necessary. By providing a cover film, it is possible to prevent the intrusion of foreign matter.
- the cover film is not particularly limited, but examples thereof include polyolefin film, polyester film, and polymethylpentene film.
- the support film and cover film may be subjected to surface treatments such as matte treatment, corona treatment, release treatment, and roughening treatment, as necessary.
- the method for producing the resin-attached film 41 is not particularly limited as long as the resin-attached film 41 can be produced.
- Examples of the method for producing the resin-attached film 41 include a method in which the varnish-like resin composition (resin varnish) is applied to the support film 43 and heated.
- the varnish-like resin composition is applied to the support film 43 by using a bar coater, for example.
- the applied resin composition is heated, for example, at 80° C. or higher and 180° C. or lower, for 1 minute or longer and 10 minutes or shorter.
- the heated resin composition is formed on the support film 43 as an uncured resin layer 42.
- the organic solvent can be volatilized from the resin varnish by the heating, thereby reducing or removing the organic solvent.
- the resin-attached film having a resin layer containing the resin composition according to this embodiment or a semi-cured product of this resin composition is a resin-attached film that can suitably produce a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion.
- the resin composition according to the first aspect of the present invention is a resin composition containing a thermosetting compound (A) and an inorganic filler (B), characterized in that the thermosetting compound (A) contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups, the inorganic filler (B) contains a boron nitride filler (B1), and polydopamine (C) having a functional group (X) that reacts with the radically polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1).
- the thermosetting compound (A) contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups
- the resin composition according to the second embodiment is the resin composition according to the first embodiment, wherein the functional group (X) contains at least one selected from the group consisting of an epoxy group, a phenylamino group, a vinyl group, an acrylic group, a methacrylic group, an allyl group, a styrene structure, and a maleimide group.
- the functional group (X) contains at least one selected from the group consisting of an epoxy group, a phenylamino group, a vinyl group, an acrylic group, a methacrylic group, an allyl group, a styrene structure, and a maleimide group.
- the resin composition according to the third aspect is the second resin composition, in which the polydopamine (C) further has at least one structure selected from the structures represented by the above formula (1) and the above formula (2).
- the resin composition according to the fourth aspect is the resin composition according to any one of the first to third aspects, in which the polydopamine (C) forms a polydopamine layer on the surface of the boron nitride filler (B1), and the maximum thickness of the dopamine layer is 0.1 nm or more and 100 nm or less.
- the resin composition according to the fifth aspect is a resin composition according to any one of the first to fourth aspects, in which the thermal conductivity of the cured product of the resin composition is 1 W/mK or more and 50 W/mK or less.
- the resin composition according to the sixth aspect is the resin composition according to any one of the first to fifth aspects, in which the content of the inorganic filler (B) is 40 to 85 parts by weight per 100 parts by weight of the total of the thermosetting compound (A) and the inorganic filler (B).
- the resin composition according to the seventh aspect is the resin composition according to any one of the first to sixth aspects, in which the content of the boron nitride filler (B1) is 10 to 90 mass% relative to the inorganic filler (B).
- the resin composition according to the eighth aspect is the resin composition according to any one of the first to seventh aspects, further comprising a silane coupling agent.
- the prepreg according to the ninth aspect of the present invention is characterized by comprising the resin composition according to any one of the first to eighth aspects or a semi-cured product of the resin composition, and a fibrous base material.
- the resin-coated film according to the tenth aspect of the present invention is characterized by comprising a resin layer containing the resin composition according to any one of the first to eighth aspects or a semi-cured product of the resin composition, and a support film.
- the resin-coated metal foil according to the eleventh aspect of the present invention is characterized by comprising a resin layer containing the resin composition according to any one of the first to eighth aspects or a semi-cured product of the resin composition, and a metal foil.
- the metal-clad laminate according to the twelfth aspect of the present invention is characterized by comprising an insulating layer containing a cured product of the resin composition according to any one of the first to eighth aspects or a cured product of the prepreg according to the ninth aspect, and a metal foil.
- the wiring board according to the thirteenth aspect of the present invention is characterized by having an insulating layer containing a cured product of the resin composition according to any one of the first to eighth aspects or a cured product of the prepreg according to the ninth aspect, and wiring.
- Modified polyphenylene ether compound Modified PPE: polyphenylene ether compound having a methacryloyl group at the end ("SA9000” manufactured by SABIC Innovative Plastics, weight average molecular weight Mw 2000, number of terminal functional groups 2)
- Hydrocarbon compound Polybutadiene (Cray Valley Corporation's "Ricon (registered trademark)")
- Maleimide compound bismaleimide ("MIR-5000” manufactured by Nippon Kayaku Co., Ltd.)
- Curing agent 1 Triallyl isocyanurate (TAIC manufactured by Nippon Kasei Chemical Industry Co., Ltd.)
- Hardener 2 Benzoxazine compound ("P-d” manufactured by Shikoku Chemical Industry Co., Ltd.)
- Other thermosetting compounds Unmodified polyphenylene ether compounds (SA90 manufactured by SABIC Innovative Plastics)
- boron nitride filler 1 Polydopamine-treated boron nitride filler (no functional groups) As boron nitride (BN), h-BN (manufactured by Denka, "SGP") was used. Dopamine hydrochloride was added to a Tris-HCl solution whose pH had been adjusted to 8.5, and the mixture was stirred to obtain a dopamine solution (concentration: 23 mg/mL). 4.5 g of the boron nitride was added to the obtained dopamine solution. The solution temperature was set to 80°C, and the mixture was stirred with a magnetic stirrer for 1 hour. Thereafter, a solid was obtained by filtration.
- the obtained solid was washed with water and then dried. In this way, boron nitride particles having polydopamine attached thereto were obtained. Next, the obtained particles were heat-treated in an electric furnace at 200°C for 24 hours to obtain a polydopamine-treated boron nitride filler (surface-treated boron nitride filler 1, no functional group). The thickness of the polydopamine layer was 2 nm.
- the thickness of the polydopamine layer was measured using X-ray photoelectron spectroscopy (XPS). Specifically, XPS was used to detect the amounts of B, C, N, and O in the boron nitride in the depth direction from the surface, and areas where the amounts of C and O derived from the polydopamine film were increased compared to untreated boron nitride were identified, and these areas were defined as the polydopamine layer and measurements were carried out.
- XPS X-ray photoelectron spectroscopy
- Surface-treated boron nitride filler 4 Polydopamine (C)-treated boron nitride filler (functional group (X): styrene structure)
- Surface-treated boron nitride filler 4 (containing a styrene structure) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the methacryl silane coupling agent ("KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to a styryl silane coupling agent ("KBM-1403" manufactured by Shin-Etsu Chemical Co., Ltd.).
- Surface-treated boron nitride filler 5 Polydopamine (C)-treated boron nitride filler (functional group (X): acrylic group)
- C Polydopamine
- Surface-treated boron nitride filler 5 (containing acrylic groups) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the methacryl silane coupling agent ("KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an acrylic silane coupling agent ("KBM-5103" manufactured by Shin-Etsu Chemical Co., Ltd.).
- Surface-treated boron nitride filler 6 Polydopamine (C)-treated boron nitride filler (functional group (X): methacryl group) Surface-treated boron nitride filler 6 (containing methacrylic groups, dopamine layer thickness 20 nm) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the stirring time using a magnetic stirrer after adding boron nitride to the dopamine solution was changed from 1 hour to 4 hours.
- Surface-treated boron nitride filler 7 Polydopamine (C)-treated boron nitride filler (functional group (X): methacryl group) Surface-treated boron nitride filler 7 (containing methacryl groups, dopamine layer thickness 100 nm) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the stirring time using a magnetic stirrer after adding boron nitride to the dopamine solution was changed from 1 hour to 12 hours.
- Surface-treated boron nitride filler 8 Polydopamine (C)-treated boron nitride filler (acylated) 2.0 g of the surface-treated boron nitride filler 1 was added to 20 ml of deionized water, and 0.1 g of DMAP was added as a catalyst to dissolve it. Next, 2 ml of methacrylic anhydride was added as an acylating agent to obtain a mixed solution. The temperature of the mixed solution was set to 25°C, and the mixture was stirred for 24 hours using a magnetic stirrer. The mixed solution was then filtered to obtain a solid. The obtained solid was washed with toluene and then dried.
- C Polydopamine
- acylated acylated
- each organic resin component other than the inorganic filler was added to toluene as a solvent and mixed in the composition (parts by mass) shown in Tables 1 and 2 so that the solid content concentration was about 40 to 80 mass%. The mixture was stirred for 60 minutes. Thereafter, each inorganic filler and coupling agent was added to the obtained liquid in the formulation (parts by mass) shown in Tables 1 and 2, and the inorganic filler was dispersed using a bead mill. By doing so, a varnish-like resin composition (varnish) was obtained.
- an evaluation board (cured prepreg) was obtained as follows.
- the resulting varnish was impregnated into a fibrous substrate (glass cloth: Asahi Kasei Corporation's #1078 type, L glass), which was then heated and dried at 110°C for 3 minutes to produce prepregs.
- a fibrous substrate glass cloth: Asahi Kasei Corporation's #1078 type, L glass
- One, two, or four of the resulting prepregs were then stacked on top of each other, and copper foil (Furukawa Electric Co., Ltd.'s "FV-WS" copper foil thickness: 18 ⁇ m) was attached to both sides of each stack.
- the stack was heated to 200°C at a heating rate of 4°C/min, and heated and pressed at 200°C for 120 minutes at a pressure of 3 MPa to produce copper-clad laminates of three different thicknesses.
- the copper-clad laminate prepared as described above was used as the evaluation substrate and was evaluated by the method described below.
- a cured product of one prepreg, a copper-clad laminate of two prepregs from which the copper foil had been removed, and a copper-clad laminate of four prepregs from which the copper foil had been removed (cured prepreg) were used, and in the evaluation test of dielectric properties (dielectric constant), a copper-clad laminate of four prepregs from which the copper foil had been removed (cured prepreg) was used.
- the thermal conductivity of the obtained evaluation board (cured prepreg) was measured by a method conforming to ASTM D5470. Specifically, a thermal property evaluation device (T3Ster DynTIM Tester manufactured by Mentor Graphics) was used to measure the thermal resistance and thickness of the obtained evaluation board (cured product of one prepreg, cured product of two prepregs, and cured product of four prepregs), and the measured values were plotted on a graph and approximated by a straight line, and the thermal conductivity was calculated from the increase in thermal resistance and thickness.
- the pass standard for thermal conductivity in this example was set to 1.0 W/m ⁇ K or more.
- the dielectric loss tangent (Df) of the evaluation board (cured prepreg) at 10 GHz was measured by a cavity resonator perturbation method. Specifically, the dielectric loss tangent of the evaluation board at 10 GHz was measured using a network analyzer (N5230A manufactured by Keysight Technologies, Inc.). The pass criterion in this example was set to Df ⁇ 0.003.
- a copper clad laminate (CCL) was prepared using the prepregs of each Example and Comparative Example. Specifically, four prepregs were stacked, and 18 ⁇ m thick copper foil (FV-WS manufactured by Furukawa Electric Co., Ltd.) was attached to both surfaces of the stacked prepregs, and the stacked prepregs were heated and pressed for 120 minutes under vacuum conditions at a temperature of 200° C. and a pressure of 3 MPa to obtain a copper clad laminate (CCL) (evaluation board) having a thickness of 510 ⁇ m and copper foil attached to both surfaces.
- CCL copper clad laminate
- the peel strength of the copper foil from the insulating layer was measured in accordance with JIS C 6481.
- a pattern 10 mm wide and 100 mm long was formed, and the copper foil was peeled off at a speed of 50 mm/min using a tensile tester, and the peel strength at that time was measured.
- the unit of measurement is kN/m.
- the pass standard in this example was set to 0.40 kN/m or more.
- Comparative Example 1 which does not contain the radical polymerizable compound (A1), was unable to obtain sufficient dielectric properties and adhesion. Furthermore, the samples of Comparative Examples 2 and 3, which used boron nitride filler that was not surface-treated via a polydopamine film as an inorganic filler, resulted in poor adhesion. Comparing Comparative Examples 2 and 3, it was confirmed that increasing the content of boron nitride filler improves the thermal conductivity, but also leads to poorer adhesion. Furthermore, Comparative Example 4, which used a boron nitride filler that was surface-treated with polydopamine but did not have a functional group (X), also failed to obtain sufficient adhesion.
- X functional group
- the present invention has wide industrial applicability in technical fields such as electronic materials, electronic devices, and optical devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板に関する。 The present invention relates to a resin composition, a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board.
各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が進展している。また、各種電子機器に用いられる配線板としては、例えば、車載用途におけるミリ波レーダ基板等の、高周波対応の配線板であることが求められる。各種電子機器において用いられる配線板には、信号の伝送速度を高めるために、信号伝送時の損失を低減させることが求められ、高周波対応の配線板には、特にそれが求められる。この要求を満たすためには、各種電子機器において用いられる配線板の基材を構成するための基材材料には、誘電率及び誘電正接が低いことが求められる。 As the amount of information processed increases in various electronic devices, mounting technologies such as higher integration of the semiconductor devices mounted thereon, higher density wiring, and multi-layering are advancing. Furthermore, wiring boards used in various electronic devices are required to be high-frequency compatible wiring boards, such as millimeter wave radar boards for in-vehicle applications. In order to increase the signal transmission speed, wiring boards used in various electronic devices are required to reduce loss during signal transmission, and this is especially true for wiring boards that are high-frequency compatible. To meet this requirement, the substrate material that constitutes the substrate for the wiring boards used in various electronic devices is required to have a low dielectric constant and dielectric tangent.
このような基材材料としては、例えば、PPE(ポリフェニレンエーテル)と架橋型硬化性化合物とホスファフェナントレン誘導体とを含むPPE含有樹脂組成物が低誘電特性に優れていることが報告されている(特許文献1)。 As such a substrate material, for example, a PPE-containing resin composition containing PPE (polyphenylene ether), a crosslinked curable compound, and a phosphaphenanthrene derivative has been reported to have excellent low dielectric properties (Patent Document 1).
一方、基地局のPA(パワーアンプ)基板などに使用される電子材料には、誘電特性が低いことに加えて、熱伝導率が高いことも求められる。これまでに、樹脂組成物の熱伝導率を向上させる手法の一つとして、無機充填剤として窒化ホウ素を使用する技術が報告されている(特許文献2)。 On the other hand, electronic materials used in PA (power amplifier) boards for base stations are required to have high thermal conductivity in addition to low dielectric properties. One method that has been reported so far is to use boron nitride as an inorganic filler as a method for improving the thermal conductivity of resin compositions (Patent Document 2).
上記特許文献2に記載の窒化ホウ素フィラーは確かに樹脂組成物の熱伝導率を改善する。しかし、樹脂組成物を基板材料等の成形材料として使用する際には、さらに優れた密着性も求められる。この点、窒化ホウ素は樹脂との密着性が十分ではないことがわかってきた。無機充填剤と樹脂との密着性が不良となると、樹脂組成物の硬化物等において破断が生じやすくなり、当該無機充填剤を含む樹脂組成物を金属張積層板等の基板材料に用いた場合、金属箔との密着性にも劣ることになる。特許文献2記載の技術では、熱伝導率を高めるために、アルデヒド化合物を無機充填剤の表面修飾剤として用いているが、上記密着性の問題については解消されていない。 The boron nitride filler described in Patent Document 2 does indeed improve the thermal conductivity of the resin composition. However, when the resin composition is used as a molding material for substrate materials, etc., even better adhesion is also required. In this regard, it has been found that boron nitride does not have sufficient adhesion to resins. When the adhesion between the inorganic filler and the resin is poor, breaks are likely to occur in the cured product of the resin composition, and when a resin composition containing the inorganic filler is used as a substrate material for metal-clad laminates, the adhesion to the metal foil will also be poor. In the technology described in Patent Document 2, an aldehyde compound is used as a surface modifier for the inorganic filler to increase the thermal conductivity, but the above-mentioned adhesion problem is not resolved.
本発明は、かかる事情に鑑みてなされたものであって、誘電特性が低く、熱伝導率が高く、かつ、密着性に優れた硬化物を得ることができる樹脂組成物を提供することを目的とする。また、本発明は、前記樹脂組成物を用いて得られる、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板を提供することを目的とする。 The present invention has been made in consideration of these circumstances, and aims to provide a resin composition that can give a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion. The present invention also aims to provide a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board that are obtained using the resin composition.
本発明者らは、種々検討した結果、上記目的は以下の構成により達成されることを見出し、さらに検討を重ねて本発明を達成した。 After extensive investigation, the inventors discovered that the above object can be achieved by the following configuration, and after further investigation, they achieved the present invention.
本発明の一態様に係る樹脂組成物は、熱硬化性化合物(A)と無機充填剤(B)とを含む樹脂組成物であって、前記熱硬化性化合物(A)が、反応性不飽和基を有するポリフェニレンエーテル化合物、反応性不飽和基を有する炭化水素系化合物、及び、マレイミド基を2つ以上有するマレイミド化合物からなる群から選択される少なくとも1つのラジカル重合性化合物(A1)を含み、前記無機充填剤(B)が窒化ホウ素フィラー(B1)含み、かつ、前記窒化ホウ素フィラー(B1)の表面に、前記ラジカル重合性化合物(A1)と反応する官能基(X)を有するポリドーパミン(C)が付着していることを特徴とする。 The resin composition according to one embodiment of the present invention is a resin composition containing a thermosetting compound (A) and an inorganic filler (B), characterized in that the thermosetting compound (A) contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups, the inorganic filler (B) contains a boron nitride filler (B1), and polydopamine (C) having a functional group (X) that reacts with the radically polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1).
以下、本発明に係る実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。 The following describes specific embodiments of the present invention, but the present invention is not limited to these.
[樹脂組成物]
本発明の実施形態に係る樹脂組成物は、熱硬化性化合物(A)と無機充填剤(B)とを含む樹脂組成物である。前記熱硬化性化合物(A)は、反応性不飽和基を有するポリフェニレンエーテル化合物、反応性不飽和基を有する炭化水素系化合物、及び、マレイミド基を2つ以上有するマレイミド化合物からなる群から選択される少なくとも1つのラジカル重合性化合物(A1)を含んでいる。また、前記無機充填剤(B)は窒化ホウ素フィラー(B1)含み、前記窒化ホウ素フィラー(B1)の表面には、前記ラジカル重合性化合物(A1)と反応する官能基(X)を有するポリドーパミン(C)が付着している。
[Resin composition]
The resin composition according to the embodiment of the present invention is a resin composition containing a thermosetting compound (A) and an inorganic filler (B). The thermosetting compound (A) contains at least one radical polymerizable compound (A1) selected from the group consisting of a polyphenylene ether compound having a reactive unsaturated group, a hydrocarbon-based compound having a reactive unsaturated group, and a maleimide compound having two or more maleimide groups. The inorganic filler (B) contains a boron nitride filler (B1), and a polydopamine (C) having a functional group (X) that reacts with the radical polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1).
上記構成により、誘電特性が低く、熱伝導率が高く、かつ、密着性に優れた硬化物を得ることができる樹脂組成物を提供できる。また、前記樹脂組成物を用いて得られ、優れた特性を有するプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板を提供することができる。 The above-mentioned configuration makes it possible to provide a resin composition that can give a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion. In addition, it is possible to provide a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board that are obtained using the resin composition and have excellent properties.
まず、本実施形態の樹脂組成物の各成分について説明する。 First, we will explain each component of the resin composition of this embodiment.
(熱硬化性化合物(A))
本実施形態の熱硬化性樹化合物(A)は、ラジカル重合性化合物(A1)を含む熱硬化性化合物である。本実施形態で使用されるラジカル重合性化合物(A1)は、ラジカル重合性を有する化合物であり、例えば、反応性の不飽和基を有する化合物、マレイミド基を有する化合物などが挙げられる。より具体的には、例えば、ポリフェニレンエーテル化合物、シアネートエステル化合物、活性エステル化合物、不飽和基を有する化合物等が挙げられる。前記不飽和基を有する化合物としては、例えば、アクリル化合物、メタクリル化合物、ビニル化合物、アリル化合物、プロペニル化合物、マレイミド化合物、不飽和二重結合を有する炭化水素系化合物等が挙げられる。
(Thermosetting compound (A))
The thermosetting resin compound (A) of this embodiment is a thermosetting compound containing a radically polymerizable compound (A1). The radically polymerizable compound (A1) used in this embodiment is a compound having radical polymerizability, such as a compound having a reactive unsaturated group, a compound having a maleimide group, etc. More specifically, for example, a polyphenylene ether compound, a cyanate ester compound, an active ester compound, a compound having an unsaturated group, etc. can be mentioned. Examples of the compound having an unsaturated group include an acrylic compound, a methacrylic compound, a vinyl compound, an allyl compound, a propenyl compound, a maleimide compound, a hydrocarbon-based compound having an unsaturated double bond, etc.
これらのうち、本実施形態の熱硬化性樹化合物(A)は、反応性不飽和基を有するポリフェニレンエーテル化合物、反応性不飽和基を有する炭化水素系化合物、及び、マレイミド基を2つ以上有するマレイミド化合物からなる群から選択される少なくとも1つのラジカル重合性化合物(A1)を含んでいる。これらのラジカル重合性化合物(A1)を含んでいることにより、その硬化物においてより優れた低誘電特性を備える樹脂組成物を得ることができる。以下、それぞれについてより詳しく説明する。 Among these, the thermosetting resin compound (A) of this embodiment contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon-based compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups. By containing these radically polymerizable compounds (A1), it is possible to obtain a resin composition having excellent low dielectric properties in the cured product. Each of these will be described in more detail below.
・ポリフェニレンエーテル化合物
本実施形態で使用できるポリフェニレンエーテル化合物としては、分子中に反応性不飽和基を有するポリフェニレンエーテル化合物であれば特に限定はされない。本明細書において、「反応性不飽和基」とは、例えば、不飽和二重結合等を有する基のことを意味する。具体的な反応性不飽和基を有するポリフェニレンエーテル化合物としては、例えば、下記式(3)または式(4)で表される基を有するポリフェニレンエーテル化合物等が挙げられる。このような変性ポリフェニレンエーテル化合物を含有することによって、誘電特性が低く、耐熱性の高い硬化物を得ることができる樹脂組成物となると考えられる。
Polyphenylene ether compound The polyphenylene ether compound that can be used in this embodiment is not particularly limited as long as it is a polyphenylene ether compound having a reactive unsaturated group in the molecule. In this specification, the term "reactive unsaturated group" refers to, for example, a group having an unsaturated double bond. Specific examples of polyphenylene ether compounds having a reactive unsaturated group include polyphenylene ether compounds having a group represented by the following formula (3) or formula (4). It is believed that the inclusion of such a modified polyphenylene ether compound results in a resin composition that can obtain a cured product with low dielectric properties and high heat resistance.
式(3)中、sは0~10の整数を示す。また、Zは、アリーレン基を示す。また、R1~R3は、それぞれ独立している。すなわち、R1~R3は、それぞれ同一の基であっても、異なる基であってもよい。また、R1~R3は、水素原子又はアルキル基を示す。 In formula (3), s represents an integer of 0 to 10. Z represents an arylene group. R 1 to R 3 are each independent. That is, R 1 to R 3 may be the same group or different groups. R 1 to R 3 represent a hydrogen atom or an alkyl group.
なお、式(3)において、sが0である場合は、Zがポリフェニレンエーテルの末端に直接結合していることを示す。 In addition, in formula (3), when s is 0, this indicates that Z is directly bonded to the end of the polyphenylene ether.
上記Zのアリーレン基は、特に限定されない。このアリーレン基としては、例えば、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子が、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。また、前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 The arylene group of Z is not particularly limited. Examples of the arylene group include monocyclic aromatic groups such as phenylene groups, and polycyclic aromatic groups in which the aromatic ring is not monocyclic but is polycyclic aromatic such as naphthalene rings. The arylene group also includes derivatives in which the hydrogen atom bonded to the aromatic ring is replaced with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. The alkyl group is not particularly limited, and is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
式(4)中、R4は、水素原子又はアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 In formula (4), R4 represents a hydrogen atom or an alkyl group. The alkyl group is not particularly limited, and is preferably, for example, an alkyl group having 1 to 18 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
前記式(3)で表される置換基の好ましい具体例としては、例えば、ビニルベンジル基を含む置換基等が挙げられる。前記ビニルベンジル基を含む置換基としては、例えば、下記式(5)で表される置換基等が挙げられる。また、前記式(4)で表される置換基としては、例えば、アクリレート基及びメタクリレート基等が挙げられる。 Preferred specific examples of the substituent represented by formula (3) include, for example, a substituent containing a vinylbenzyl group. Examples of the substituent containing a vinylbenzyl group include, for example, a substituent represented by formula (5) below. Examples of the substituent represented by formula (4) include, for example, an acrylate group and a methacrylate group.
前記置換基としては、より具体的には、p-エテニルベンジル基及びm-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、及びメタクリレート基等が挙げられる。 More specifically, examples of the substituent include vinylbenzyl groups (ethenylbenzyl groups) such as p-ethenylbenzyl and m-ethenylbenzyl groups, vinylphenyl groups, acrylate groups, and methacrylate groups.
前記ポリフェニレンエーテル化合物は、ポリフェニレンエーテル鎖を分子中に有しており、例えば、下記式(6)で表される繰り返し単位を分子中に有していることが好ましい。 The polyphenylene ether compound has a polyphenylene ether chain in the molecule, and preferably has, for example, a repeating unit represented by the following formula (6) in the molecule.
式(6)において、tは、1~50を示す。また、R5~R8は、それぞれ独立している。すなわち、R5~R8は、それぞれ同一の基であっても、異なる基であってもよい。また、R5~R8は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 In formula (6), t represents 1 to 50. R 5 to R 8 are each independent. That is, R 5 to R 8 may be the same group or different groups. R 5 to R 8 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferred.
R5~R8において、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。 Specific examples of the functional groups mentioned for R 5 to R 8 include the following.
アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 The alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。 The alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。 The alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。 The alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferred, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferred. Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。 The alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferred, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferred. Specific examples include an acryloyl group, a methacryloyl group, and a crotonoyl group.
アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。 The alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferred, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferred. Specific examples include a propioloyl group.
前記ポリフェニレンエーテル化合物の重量平均分子量(Mw)は、特に限定されない。具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、ポリフェニレンエーテル化合物が、前記式(6)で表される繰り返し単位を分子中に有している場合、tは、ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、tは、1~50であることが好ましい。 The weight average molecular weight (Mw) of the polyphenylene ether compound is not particularly limited. Specifically, it is preferably 500 to 5000, more preferably 800 to 4000, and even more preferably 1000 to 3000. The weight average molecular weight may be measured by a general molecular weight measurement method, and specifically, it may be a value measured using gel permeation chromatography (GPC). In addition, when the polyphenylene ether compound has a repeating unit represented by the formula (6) in the molecule, t is preferably a value that causes the weight average molecular weight of the polyphenylene ether compound to be within this range. Specifically, t is preferably 1 to 50.
前記ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテルの有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルでは、その重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、硬化物の耐熱性が低下する傾向がある。この点、本実施形態に係るポリフェニレンエーテル化合物は、末端に不飽和二重結合を1つ以上有するので、硬化物の耐熱性が充分に高いものが得られると考えられる。また、ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このようなポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。 When the weight average molecular weight of the polyphenylene ether compound is within this range, it has the excellent low dielectric properties of polyphenylene ether, and the heat resistance of the cured product is excellent, as well as the moldability. This is believed to be due to the following. When the weight average molecular weight of a normal polyphenylene ether is within this range, the heat resistance of the cured product tends to decrease because the molecular weight is relatively low. In this regard, since the polyphenylene ether compound according to this embodiment has one or more unsaturated double bonds at the terminal, it is believed that the heat resistance of the cured product is sufficiently high. In addition, when the weight average molecular weight of the polyphenylene ether compound is within this range, it is believed that the moldability is excellent because the molecular weight is relatively low. Therefore, it is believed that such a polyphenylene ether compound not only has excellent heat resistance, but also has excellent moldability.
前記ポリフェニレンエーテル化合物における、ポリフェニレンエーテル化合物1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。 The average number of the substituents (number of terminal functional groups) at the molecular ends per molecule of the polyphenylene ether compound is not particularly limited. Specifically, it is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. Furthermore, if the number of terminal functional groups is too large, the reactivity becomes too high, and there is a risk of problems occurring, such as a decrease in the storage stability of the resin composition or a decrease in the fluidity of the resin composition.
なお、ポリフェニレンエーテル化合物の末端官能基数は、ポリフェニレンエーテル化合物1モル中に存在する全ての変性ポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、変性ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。 The number of terminal functional groups of a polyphenylene ether compound may be, for example, a numerical value representing the average number of the above-mentioned substituents per molecule of all modified polyphenylene ether compounds present in 1 mole of the polyphenylene ether compound. The number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether compound and calculating the reduction from the number of hydroxyl groups of the polyphenylene ether before modification. This reduction from the number of hydroxyl groups of the polyphenylene ether before modification is the number of terminal functional groups. The number of hydroxyl groups remaining in the modified polyphenylene ether compound can be measured by adding a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to a solution of the modified polyphenylene ether compound and measuring the UV absorbance of the mixed solution.
本実施形態のポリフェニレンエーテル化合物としては、例えば、下記式(7)で表される変性ポリフェニレンエーテル化合物、及び下記式(8)で表される変性ポリフェニレンエーテル化合物等が挙げられる。また、本実施形態のポリフェニレンエーテル化合物としては、これらの変性ポリフェニレンエーテル化合物を単独で用いてもよいし、この2種の変性ポリフェニレンエーテル化合物を組み合わせて用いてもよい。 Examples of the polyphenylene ether compound of this embodiment include a modified polyphenylene ether compound represented by the following formula (7) and a modified polyphenylene ether compound represented by the following formula (8). In addition, as the polyphenylene ether compound of this embodiment, these modified polyphenylene ether compounds may be used alone, or these two types of modified polyphenylene ether compounds may be used in combination.
式(7)及び式(8)中、R9~R16並びにR17~R24は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。X1及びX2は、それぞれ独立して、炭素-炭素不飽和二重結合を有する置換基を示す。A及びBは、それぞれ、下記式(9)及び下記式(10)で表される繰り返し単位を示す。また、式(8)中、Yは、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素を示す。 In formula (7) and formula (8), R 9 to R 16 and R 17 to R 24 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. X 1 and X 2 each independently represent a substituent having a carbon-carbon unsaturated double bond. A and B each represent a repeating unit represented by the following formula (9) and formula (10), respectively. In addition, in formula (8), Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
式(9)及び式(10)中、m及びnは、それぞれ、0~20を示す。R25~R28並びにR29~R32は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。 In formula (9) and formula (10), m and n each represent an integer of 0 to 20. R 25 to R 28 and R 29 to R 32 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
前記式(7)で表される変性ポリフェニレンエーテル化合物、及び前記式(8)で表される変性ポリフェニレンエーテル化合物は、上記構成を満たす化合物であれば特に限定されない。具体的には、前記式(7)及び前記式(8)において、R9~R16並びにR17~R24は、上述したように、それぞれ独立している。すなわち、R9~R16並びにR17~R24は、それぞれ同一の基であっても、異なる基であってもよい。また、R9~R16並びにR17~R24は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 The modified polyphenylene ether compound represented by the formula (7) and the modified polyphenylene ether compound represented by the formula (8) are not particularly limited as long as they satisfy the above-mentioned constitution. Specifically, in the formula (7) and the formula (8), R 9 to R 16 and R 17 to R 24 are each independent as described above. That is, R 9 to R 16 and R 17 to R 24 may be the same group or different groups. In addition, R 9 to R 16 and R 17 to R 24 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferred.
式(9)及び式(10)中、m及びnは、それぞれ、上述したように、0~20を示すことが好ましい。また、m及びnは、mとnとの合計値が、1~30となる数値を示すことが好ましい。よって、mは、0~20を示し、nは、0~20を示し、mとnとの合計は、1~30を示すことがより好ましい。また、R25~R28並びにR29~R32は、それぞれ独立している。すなわち、R25~R28並びにR29~R32は、それぞれ同一の基であっても、異なる基であってもよい。また、R25~R28並びにR29~R32は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 In formula (9) and formula (10), m and n each preferably represent 0 to 20 as described above. Moreover, m and n each preferably represent a numerical value such that the sum of m and n is 1 to 30. Therefore, it is more preferable that m represents 0 to 20, n represents 0 to 20, and the sum of m and n represents 1 to 30. Moreover, R 25 to R 28 and R 29 to R 32 are each independent. That is, R 25 to R 28 and R 29 to R 32 may each be the same group or different groups. Moreover, R 25 to R 28 and R 29 to R 32 represent a hydrogen atom, an alkyl group, an alkenyl group , an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferable.
R9~R32は、上記式(6)におけるR5~R8と同じである。 R 9 to R 32 are the same as R 5 to R 8 in the above formula (6).
前記式(8)中において、Yは、上述したように、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素である。Yとしては、例えば、下記式(11)で表される基等が挙げられる。 In the formula (8), Y is, as described above, a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms. Examples of Y include a group represented by the following formula (11).
前記式(11)中、R33及びR34は、それぞれ独立して、水素原子またはアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(11)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられ、この中でも、ジメチルメチレン基が好ましい。 In the formula (11), R 33 and R 34 each independently represent a hydrogen atom or an alkyl group. Examples of the alkyl group include a methyl group. Examples of the group represented by the formula (11) include a methylene group, a methylmethylene group, and a dimethylmethylene group, and among these, a dimethylmethylene group is preferred.
前記式(7)及び前記式(8)中において、X1及びX2は、それぞれ独立して、炭素-炭素不飽和二重結合を有する置換基である。この置換基X1及びX2としては、炭素-炭素不飽和二重結合を有する置換基であれば、特に限定されない。前記置換基X1及びX2としては、例えば、上記式(3)で表される置換基及び上記式(4)で表される置換基等が挙げられる。なお、前記式(7)で表される変性ポリフェニレンエーテル化合物及び前記式(8)で表される変性ポリフェニレンエーテル化合物において、X1及びX2は、同一の置換基であってもよいし、異なる置換基であってもよい。 In the formula (7) and the formula (8), X 1 and X 2 are each independently a substituent having a carbon-carbon unsaturated double bond. The substituents X 1 and X 2 are not particularly limited as long as they are a substituent having a carbon-carbon unsaturated double bond. Examples of the substituents X 1 and X 2 include the substituents represented by the formula (3) and the substituents represented by the formula (4). In the modified polyphenylene ether compound represented by the formula (7) and the modified polyphenylene ether compound represented by the formula (8), X 1 and X 2 may be the same or different substituents.
前記式(7)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(12)で表される変性ポリフェニレンエーテル化合物等が挙げられる。 A more specific example of the modified polyphenylene ether compound represented by the formula (7) is, for example, a modified polyphenylene ether compound represented by the following formula (12).
前記式(8)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(13)で表される変性ポリフェニレンエーテル化合物、及び下記式(14)で表される変性ポリフェニレンエーテル化合物等が挙げられる。 More specific examples of the modified polyphenylene ether compound represented by formula (8) include the modified polyphenylene ether compound represented by formula (13) below and the modified polyphenylene ether compound represented by formula (14) below.
上記式(12)~式(14)において、m及びnは、上記式(9)及び上記式(10)におけるm及びnと同じである。また、上記式(12)及び上記式(13)において、R1~R3、p及びZは、それぞれ、上記式(3)におけるR1~R3、s及びZと同じである。また、上記式(13)及び上記式(14)において、Yは、上記(8)におけるYと同じである。また、上記式(14)において、R4は、上記式(4)におけるR4と同じである。 In the above formulas (12) to (14), m and n are the same as m and n in the above formulas (9) and (10). In addition, in the above formulas (12) and (13), R 1 to R 3 , p and Z are the same as R 1 to R 3 , s and Z in the above formula (3), respectively. In addition, in the above formulas (13) and (14), Y is the same as Y in the above formula (8). In addition, in the above formula (14), R 4 is the same as R 4 in the above formula (4).
上述したような変性ポリフェニレンエーテル化合物を用いることにより、低誘電正接などの低誘電特性と優れた耐熱性等を維持しつつ、高Tg及び密着性をも向上させることができると考えられる。 By using the modified polyphenylene ether compounds described above, it is believed that it is possible to maintain low dielectric properties such as low dielectric tangent and excellent heat resistance, while also improving high Tg and adhesion.
なお、変性ポリフェニレンエーテル化合物は1種単独で使用することもできるし、2種以上を組み合わせて用いることもできる。 The modified polyphenylene ether compounds can be used alone or in combination of two or more.
本実施形態の樹脂組成物で使用するポリフェニレンエーテル化合物は公知の方法で合成することもできるし、市販のものを使用することもできる。市販品としては、例えば、三菱ガス化学株式会社製の「OPE-2st 1200」、「OPE-2st 2200」、SABICイノベーティブプラスチックス社製の「SA9000」等が挙げられる。 The polyphenylene ether compound used in the resin composition of this embodiment can be synthesized by a known method, or a commercially available product can be used. Examples of commercially available products include "OPE-2st 1200" and "OPE-2st 2200" manufactured by Mitsubishi Gas Chemical Company, Inc., and "SA9000" manufactured by SABIC Innovative Plastics.
・反応性不飽和基を有する炭化水素系化合物
本実施形態で使用可能な炭化水素系化合物として、分子中に反応性不飽和基を有する炭化水素系化合物であれば特に限定はされないが、例えば、多官能ビニル芳香族重合体、環状ポリオレフィン樹脂、ビニル芳香族化合物-共役ジエン系化合物共重合体の炭化水素系樹脂が好ましく例示される。
Hydrocarbon-Based Compound Having a Reactive Unsaturated Group The hydrocarbon-based compound that can be used in the present embodiment is not particularly limited as long as it is a hydrocarbon-based compound having a reactive unsaturated group in the molecule. Preferred examples of the hydrocarbon-based compound include hydrocarbon resins such as polyfunctional vinyl aromatic polymers, cyclic polyolefin resins, and vinyl aromatic compound-conjugated diene compound copolymers.
多官能ビニル芳香族重合体としては、少なくとも多官能ビニル芳香族化合物又は/及びその誘導体が重合されたものを含む重合体が好ましく、多官能ビニル芳香族化合物又は/及びその誘導体由来の構造を含む重合体であれば特に限定されず、1種以上の多官能ビニル芳香族化合物又は/及びそれら誘導体由来の構造を含む重合体であってもよい。 The polyfunctional vinyl aromatic polymer is preferably a polymer containing at least a polyfunctional vinyl aromatic compound and/or a derivative thereof polymerized therein, and is not particularly limited as long as it is a polymer containing a structure derived from a polyfunctional vinyl aromatic compound and/or a derivative thereof, and may be a polymer containing one or more polyfunctional vinyl aromatic compounds and/or a structure derived from their derivatives.
また多官能ビニル芳香族化合物又は/及びその誘導体構造単位以外に、更に反応性モノマー由来の構造単位1種以上を含んでもよい。反応性モノマーとしては特に限定されないが、例えばスチレン等のモノビニル芳香族化合物由来の構造単位を有する多官能ビニル芳香族共重合体であってもよい。 In addition to the polyfunctional vinyl aromatic compound and/or its derivative structural unit, one or more structural units derived from a reactive monomer may be further included. The reactive monomer is not particularly limited, but may be, for example, a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monovinyl aromatic compound such as styrene.
より具体的には、例えば、分子中にビニル基を2個以上有する多官能ビニル化合物が挙げられる。さらに前記多官能ビニル化合物としては、例えば、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル及びポリブタジエン等が挙げられる。 More specifically, examples of the polyfunctional vinyl compounds include those having two or more vinyl groups in the molecule. Further examples of the polyfunctional vinyl compounds include divinylbenzene, divinylnaphthalene, divinylbiphenyl, and polybutadiene.
・マレイミド化合物
本実施形態で使用可能なマレイミド化合物としては、分子中にマレイミド基を2つ以上有する化合物であれば特に限定なく使用できる。具体的には、前記マレイミド化合物としては、分子中にマレイミド基を2個以上有する多官能マレイミド化合物、及び、その変性マレイミド化合物等が挙げられる。前記変性マレイミド化合物としては、例えば、分子中の一部がアミン化合物で変性された変性マレイミド化合物、分子中の一部がシリコーン化合物で変性された変性マレイミド化合物、及び分子中の一部がアミン化合物及びシリコーン化合物で変性された変性マレイミド化合物等が挙げられる。
Maleimide Compound The maleimide compound that can be used in this embodiment is not particularly limited as long as it has two or more maleimide groups in the molecule. Specifically, the maleimide compound includes a polyfunctional maleimide compound having two or more maleimide groups in the molecule, and a modified maleimide compound thereof. Examples of the modified maleimide compound include a modified maleimide compound in which a part of the molecule is modified with an amine compound, a modified maleimide compound in which a part of the molecule is modified with a silicone compound, and a modified maleimide compound in which a part of the molecule is modified with an amine compound and a silicone compound.
より具体的には、例えば、1分子中に2個以上のN-置換マレイミド基を有するマレイミド化合物、インダン構造を有するマレイミド化合物、炭素数6以上のアルキル基及び炭素数6以上のアルキレン基から選択される少なくとも1つを有するマレイミド化合物、ベンゼン環を分子中に有するマレイミド化合物等が挙げられる。 More specifically, examples of such compounds include maleimide compounds having two or more N-substituted maleimide groups in one molecule, maleimide compounds having an indane structure, maleimide compounds having at least one group selected from an alkyl group having 6 or more carbon atoms and an alkylene group having 6 or more carbon atoms, and maleimide compounds having a benzene ring in the molecule.
本実施形態で使用するマレイミド化合物は、市販のものであってもよく、例えば、日本化薬株式会社製のMIR-3000、MIR-5000;大和化成工業株式会社製のBMI-4000、BMI-2300、BMI-TMH、BMI-4000、BMI-5100等;Designer Molecules Inc.製のBMI-689、BMI-1500、BMI-3000J、BMI-5000等を用いてもよい。 The maleimide compound used in this embodiment may be a commercially available product, such as MIR-3000 and MIR-5000 manufactured by Nippon Kayaku Co., Ltd.; BMI-4000, BMI-2300, BMI-TMH, BMI-4000, BMI-5100, etc. manufactured by Daiwa Kasei Kogyo Co., Ltd.; and BMI-689, BMI-1500, BMI-3000J, BMI-5000, etc. manufactured by Designer Molecules Inc.
・その他の熱硬化性化合物(硬化剤)
本実施形態の樹脂組成物は、さらに、上述したようなラジカル重合性化合物(A1)以外の熱硬化性化合物を含んでいてもよい。その場合、当該熱硬化性化合物は、上述したようなラジカル重合性化合物と反応可能な硬化剤として作用する熱硬化性化合物であることが好ましい。
・Other thermosetting compounds (hardeners)
The resin composition of the present embodiment may further contain a thermosetting compound other than the radically polymerizable compound (A1) as described above. In that case, the thermosetting compound is preferably a thermosetting compound that acts as a curing agent capable of reacting with the radically polymerizable compound as described above.
具体的には、熱硬化性化合物の中でも、例えば、フェノール樹脂、ベンゾオキサジン化合物、スチレン化合物、スチレン誘導体、分子中にアクリロイル基を有する化合物、分子中にメタクリロイル基を有する化合物、分子中にビニル基を有する化合物、分子中にアリル基を有する化合物、分子中にアセナフチレン構造を有する化合物、及び分子中にイソシアヌレート基を有するイソシアヌレート化合物、モノマレイミド化合物などが、硬化剤として好ましく例示される。これらは単独で使用することもできるし、上述したようなラジカル重合性化合物(A1)と2種以上の硬化剤とを組み合わせて用いてもよい。 Specific examples of preferred thermosetting compounds include phenolic resins, benzoxazine compounds, styrene compounds, styrene derivatives, compounds having an acryloyl group in the molecule, compounds having a methacryloyl group in the molecule, compounds having a vinyl group in the molecule, compounds having an allyl group in the molecule, compounds having an acenaphthylene structure in the molecule, isocyanurate compounds having an isocyanurate group in the molecule, and monomaleimide compounds. These can be used alone, or the above-mentioned radical polymerizable compound (A1) can be used in combination with two or more types of curing agents.
ベンゾオキサジン化合物としては、例えば、下記一般式(15)で表されるベンゾオキサジン化合物を使用することができる。 As a benzoxazine compound, for example, a benzoxazine compound represented by the following general formula (15) can be used.
式(15)中、Raはk価の基を表し、Rbはそれぞれ独立にハロゲン原子、アルキル基、又はアリール基を表す。kは2~4の整数を表し、lは0~4の整数を表す。 In formula (15), R a represents a k-valent group, and R b each independently represents a halogen atom, an alkyl group, or an aryl group, k represents an integer of 2 to 4, and l represents an integer of 0 to 4.
市販品としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;四国化成工業社製の「P-d」、「F-a」、「ALP-d」;昭和高分子社製の「HFB2006M」等が挙げられる。 Commercially available products include "JBZ-OP100D" and "ODA-BOZ" manufactured by JFE Chemical Corporation; "P-d", "F-a", and "ALP-d" manufactured by Shikoku Chemical Industry Co., Ltd.; and "HFB2006M" manufactured by Showa Polymer Co., Ltd.
前記スチレン化合物としては、分子中にスチレン骨格を有している化合物であれば特に限定はないが、末端をスチレン骨格で変性した樹脂化合物等が好ましく例示される。 The styrene compound is not particularly limited as long as it has a styrene skeleton in the molecule, but a preferred example is a resin compound whose terminals are modified with a styrene skeleton.
前記スチレン誘導体としては、例えば、ブロモスチレン及びジブロモスチレン等が挙げられる。 Examples of the styrene derivatives include bromostyrene and dibromostyrene.
前記分子中にアクリロイル基を有する化合物が、アクリレート化合物である。前記アクリレート化合物としては、分子中にアクリロイル基を1個有する単官能アクリレート化合物、及び分子中にアクリロイル基を2個以上有する多官能アクリレート化合物が挙げられる。前記単官能アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、及びブチルアクリレート等が挙げられる。前記多官能アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等が挙げられる。 The compound having an acryloyl group in the molecule is an acrylate compound. Examples of the acrylate compound include monofunctional acrylate compounds having one acryloyl group in the molecule, and polyfunctional acrylate compounds having two or more acryloyl groups in the molecule. Examples of the monofunctional acrylate compounds include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate. Examples of the polyfunctional acrylate compounds include tricyclodecane dimethanol diacrylate.
前記分子中にメタクリロイル基を有する化合物が、メタクリレート化合物である。前記メタクリレート化合物としては、分子中にメタクリロイル基を1個有する単官能メタクリレート化合物、及び分子中にメタクリロイル基を2個以上有する多官能メタクリレート化合物が挙げられる。前記単官能メタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、及びブチルメタクリレート等が挙げられる。前記多官能メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート等が挙げられる。 The compound having a methacryloyl group in the molecule is a methacrylate compound. Examples of the methacrylate compound include monofunctional methacrylate compounds having one methacryloyl group in the molecule, and polyfunctional methacrylate compounds having two or more methacryloyl groups in the molecule. Examples of the monofunctional methacrylate compounds include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. Examples of the polyfunctional methacrylate compounds include tricyclodecane dimethanol dimethacrylate.
前記分子中にビニル基を有する化合物が、ビニル化合物である。前記ビニル化合物としては、分子中にビニル基を1個有する単官能ビニル化合物(モノビニル化合物)等が挙げられる。 The compound having a vinyl group in the molecule is a vinyl compound. Examples of the vinyl compound include a monofunctional vinyl compound (monovinyl compound) having one vinyl group in the molecule.
前記分子中にアリル基を有する化合物が、アリル化合物である。前記アリル化合物としては、分子中にアリル基を1個有する単官能アリル化合物、及び分子中にアリル基を2個以上有する多官能アリル化合物が挙げられる。前記多官能アリル化合物としては、例えば、ジアリルフタレート(DAP)等が挙げられる。 The compound having an allyl group in the molecule is an allyl compound. Examples of the allyl compound include monofunctional allyl compounds having one allyl group in the molecule, and polyfunctional allyl compounds having two or more allyl groups in the molecule. Examples of the polyfunctional allyl compounds include diallyl phthalate (DAP).
前記分子中にアセナフチレン構造を有する化合物が、アセナフチレン化合物である。前記アセナフチレン化合物としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン化合物としては、前記のような、分子中にアセナフチレン構造を1個有する単官能アセナフチレン化合物であってもよいし、分子中にアセナフチレン構造を2個以上有する多官能アセナフチレン化合物であってもよい。 The compound having an acenaphthylene structure in the molecule is an acenaphthylene compound. Examples of the acenaphthylene compound include acenaphthylene, alkyl acenaphthylenes, halogenated acenaphthylenes, and phenyl acenaphthylenes. Examples of the alkyl acenaphthylenes include 1-methyl acenaphthylene, 3-methyl acenaphthylene, 4-methyl acenaphthylene, 5-methyl acenaphthylene, 1-ethyl acenaphthylene, 3-ethyl acenaphthylene, 4-ethyl acenaphthylene, and 5-ethyl acenaphthylene. Examples of the halogenated acenaphthylenes include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, 3-bromoacenaphthylene, 4-bromoacenaphthylene, and 5-bromoacenaphthylene. Examples of the phenylacenaphthylenes include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, and 5-phenylacenaphthylene. The acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule as described above, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule.
前記分子中にイソシアヌレート基を有する化合物が、イソシアヌレート化合物である。前記イソシアヌレート化合物としては、分子中にアルケニル基をさらに有する化合物(アルケニルイソシアヌレート化合物)等が挙げられ、例えば、トリアリルイソシアヌレート(TAIC)等のトリアルケニルイソシアヌレート化合物等が挙げられる。 The compound having an isocyanurate group in the molecule is an isocyanurate compound. Examples of the isocyanurate compound include compounds further having an alkenyl group in the molecule (alkenyl isocyanurate compounds), such as triallyl isocyanurate (TAIC) and other trialkenyl isocyanurate compounds.
上記の中でも、例えば、ベンゾオキサジン化合物、分子中にイソシアヌレート基を有するイソシアヌレート化合物、N-フェニルマレイミド、末端をスチレン骨格で変性した樹脂化合物等を用いることが好ましい。 Among the above, it is preferable to use, for example, benzoxazine compounds, isocyanurate compounds having an isocyanurate group in the molecule, N-phenylmaleimide, and resin compounds whose ends are modified with a styrene skeleton.
上述したような、硬化剤として使用される熱硬化性化合物は、いずれも単独で用いてもよいし、2種以上組み合わせて用いてもよい。 The thermosetting compounds used as curing agents as described above may be used alone or in combination of two or more.
本実施形態の樹脂組成物中、前記熱硬化性化合物(A)の含有量は、熱硬化性化合物(A)と無機充填剤(B)の合計100質量部に対して、15~60質量部であることが好ましく、20~55質量部であることがより好ましい。前記熱硬化性化合物(A)の含有量が上記範囲内であれば、誘電特性が低く、耐熱性が高い硬化物が得られる樹脂組成物がより確実に得られると考えられる。 In the resin composition of this embodiment, the content of the thermosetting compound (A) is preferably 15 to 60 parts by mass, and more preferably 20 to 55 parts by mass, per 100 parts by mass of the total of the thermosetting compound (A) and the inorganic filler (B). If the content of the thermosetting compound (A) is within the above range, it is believed that a resin composition that can produce a cured product with low dielectric properties and high heat resistance can be more reliably obtained.
本実施形態の樹脂組成物が、前記ラジカル重合性化合物(A1)以外に、熱硬化性化合物(硬化剤として作用するもの)を含む場合、それらの含有比率は、前記ラジカル重合性化合物(A1):その他の熱硬化性化合物が、質量比で95:5~50:50程度であることが好ましい。前記含有比率がこの範囲であれば、硬化物の耐熱性により優れた樹脂組成物になる。このことは、本実施形態の樹脂成分と前記硬化剤との硬化反応が好適に進行するためと考えられる。 When the resin composition of this embodiment contains a thermosetting compound (which acts as a curing agent) in addition to the radically polymerizable compound (A1), the content ratio of the radically polymerizable compound (A1):other thermosetting compound is preferably about 95:5 to 50:50 by mass. If the content ratio is within this range, the resin composition will have better heat resistance in the cured product. This is thought to be because the curing reaction between the resin component of this embodiment and the curing agent proceeds smoothly.
(無機充填剤(B))
・窒化ホウ素フィラー(B1)
本実施形態に係る樹脂組成物は、さらに、窒化ホウ素フィラー(B1)を含む無機充填剤(B)を含む。前記窒化ホウ素フィラーは、樹脂組成物に含有される無機充填剤として使用することができれば、特に限定されない。本実施形態では、窒化ホウ素フィラー(B1)として、黒鉛型の層状構造を有する六方晶窒化ホウ素(h-BN)、ダイヤモンド型の立方晶窒化ホウ素(c-BN)、およびアモルファス窒化ホウ素(a-BN)などを用いることができる。h-BNは、比較的容易に合成でき、かつ熱伝導性、電気絶縁性、化学的安定性、および耐熱性に優れるという特徴を有するため、特に有用である。また、窒化ホウ素フィラー(B1)として、窒化ホウ素粒子を使用することができる。窒化ホウ素粒子は、通常、白色を呈している。窒化ホウ素粒子の形状は、特に限定されない。窒化ホウ素粒子の形状は、例えば、鱗片状、球状、楕円球状、ロッド状などであってもよい。
(Inorganic Filler (B))
Boron nitride filler (B1)
The resin composition according to this embodiment further includes an inorganic filler (B) including a boron nitride filler (B1). The boron nitride filler is not particularly limited as long as it can be used as an inorganic filler contained in the resin composition. In this embodiment, as the boron nitride filler (B1), hexagonal boron nitride (h-BN) having a graphite-type layered structure, diamond-type cubic boron nitride (c-BN), and amorphous boron nitride (a-BN) can be used. h-BN is particularly useful because it can be synthesized relatively easily and has excellent thermal conductivity, electrical insulation, chemical stability, and heat resistance. In addition, boron nitride particles can be used as the boron nitride filler (B1). The boron nitride particles are usually white in color. The shape of the boron nitride particles is not particularly limited. The shape of the boron nitride particles may be, for example, scale-like, spherical, elliptical, rod-like, or the like.
窒化ホウ素粒子の平均粒径は、特に限定されない。窒化ホウ素粒子の平均粒径は、例えば、0.05μm以上かつ100μm以下であってもよく、0.1μm以上かつ50μm以下であってもよい。本実施形態において、窒化ホウ素粒子の平均粒径は、メジアン径を意味する。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径(d50)を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置により測定される。 The average particle size of the boron nitride particles is not particularly limited. The average particle size of the boron nitride particles may be, for example, 0.05 μm or more and 100 μm or less, or 0.1 μm or more and 50 μm or less. In this embodiment, the average particle size of the boron nitride particles means the median diameter. The median diameter means the particle size (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%. The volume-based particle size distribution is measured, for example, by a laser diffraction measuring device.
本実施形態の窒化ホウ素フィラー(B1)の表面には、前記ラジカル重合性化合物(A1)と反応する官能基(X)を有するポリドーパミン(C)が付着している。ポリドーパミン(C)は、窒化ホウ素フィラー(B1)の表面の少なくとも一部を被覆していてもよい。その場合、ポリドーパミン(C)は、窒化ホウ素フィラー(B1)の表面の全体を被覆していてもよいし、窒化ホウ素フィラー(B1)の表面の一部のみを被覆していてもよい。 In this embodiment, polydopamine (C) having a functional group (X) that reacts with the radically polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1). The polydopamine (C) may cover at least a portion of the surface of the boron nitride filler (B1). In this case, the polydopamine (C) may cover the entire surface of the boron nitride filler (B1), or may cover only a portion of the surface of the boron nitride filler (B1).
・ポリドーパミン
ポリドーパミンは、ドーパミンの重合体であって、例えば下記式(16)で表される繰り返し単位を有しうる。ただし、下記式(16)において、インドリン骨格の部分は、インドール骨格であってもよい。
Polydopamine Polydopamine is a polymer of dopamine and may have a repeating unit represented by the following formula (16), for example: In the following formula (16), the indoline skeleton may be an indole skeleton.
上記組成式(16)において、nは1以上、特に2以上の整数である。 In the above composition formula (16), n is an integer of 1 or more, particularly 2 or more.
ポリドーパミンは、上記式(16)に示したように、インドリン骨格および/またはインドール骨格を有しうる。しかし、ポリドーパミンには、完全に環化されていないものが含まれうる。すなわち、ポリドーパミンには、第一級アミンと第二級アミンとが混在しうる。また、式(16)において、5,6‐ジヒドロキシインドリン構造の部分について下記構造式で示される構造のいずれかのキノン構造を含んでいてもよい。 As shown in formula (16) above, polydopamine may have an indoline skeleton and/or an indole skeleton. However, polydopamine may include those that are not completely cyclized. In other words, polydopamine may contain a mixture of primary and secondary amines. In addition, in formula (16), the 5,6-dihydroxyindoline structure may contain any of the quinone structures shown in the following structural formulas.
このようなポリドーパミンに対して官能基(X)を導入したものが、本実施形態のポリドーパミン(C)である。つまり、本実施形態のポリドーパミン(C)は、前記ラジカル重合性化合物(A1)と反応する官能基(X)を有する。前記ラジカル重合性化合物(A1)と反応する官能基(X)を有するポリドーパミン(C)を窒化ホウ素フィラー(B1)に付着させることで、ラジカル重合性化合物(A1)と窒化ホウ素フィラー(B1)との密着性が向上する。その結果、無機充填剤(B)と熱硬化性樹脂(A)との間で起こる剥離を抑制することができ、樹脂組成物と金属箔などとの密着性が向上する。また、ポリドーパミン(C)はドーパミンに由来する官能基(X)の一部が変化していてもよい。 The polydopamine (C) of this embodiment is obtained by introducing a functional group (X) into such polydopamine. That is, the polydopamine (C) of this embodiment has a functional group (X) that reacts with the radical polymerizable compound (A1). By attaching the polydopamine (C) having the functional group (X) that reacts with the radical polymerizable compound (A1) to the boron nitride filler (B1), the adhesion between the radical polymerizable compound (A1) and the boron nitride filler (B1) is improved. As a result, peeling between the inorganic filler (B) and the thermosetting resin (A) can be suppressed, and the adhesion between the resin composition and metal foil or the like is improved. In addition, the functional group (X) derived from dopamine in the polydopamine (C) may be partially changed.
ポリドーパミン(C)は、窒化ホウ素フィラー(B1)の表面において薄膜の形状を有していてもよい。ポリドーパミン(C)の薄膜の厚みは、例えば、0.1nmから300nmであり、より好ましくは0.1nmから100nmである。ポリドーパミン(C)の薄膜は、窒化ホウ素フィラー(B1)の表面の少なくとも一部を覆っていればよく、窒化ホウ素フィラー(B1)の表面の全体を覆っていてもよい。 The polydopamine (C) may be in the form of a thin film on the surface of the boron nitride filler (B1). The thickness of the thin film of polydopamine (C) is, for example, 0.1 nm to 300 nm, and more preferably 0.1 nm to 100 nm. The thin film of polydopamine (C) may cover at least a portion of the surface of the boron nitride filler (B1), or may cover the entire surface of the boron nitride filler (B1).
前記官能基(X)は、ラジカル重合性化合物(A1)および熱硬化性化合物(硬化剤として作用するもの)と反応するものである限り特に限定はされない。 The functional group (X) is not particularly limited as long as it reacts with the radical polymerizable compound (A1) and the thermosetting compound (which acts as a curing agent).
例えば、ポリドーパミン(C)が有する官能基(X)は、エポキシ基、フェニルアミノ基、ビニル基、アクリル基、メタクリル基、アリル基、スチレン構造、マレイミド基からなる群から選択される少なくとも一つを含むことが好ましい。 For example, it is preferable that the functional group (X) of the polydopamine (C) contains at least one selected from the group consisting of an epoxy group, a phenylamino group, a vinyl group, an acrylic group, a methacrylic group, an allyl group, a styrene structure, and a maleimide group.
なお、本明細書において「スチレン構造」とは、以下の式(S)で示される構造を意味する。 In this specification, the term "styrene structure" refers to the structure shown in the following formula (S).
・ラジカル重合性化合物(A1)と反応する官能基(X)を有するポリドーパミン(C)が付着した窒化ホウ素フィラー(B1)の製造方法
本実施形態の窒化ホウ素フィラー(B1)は、例えば、窒化ホウ素フィラーの表面にポリドーパミンを付着させ、その後、付着させたポリドーパミンに官能基(X)を導入することで、官能基(X)を有するポリドーパミン(C)が表面に付着した窒化ホウ素フィラー(B1)を得ることができる。なお、ポリドーパミンに官能基(X)を導入する前に、表面にポリドーパミンを付着させた窒化ホウ素フィラーを加熱処理してもよい。
- Manufacturing method of boron nitride filler (B1) having attached thereto polydopamine (C) having a functional group (X) that reacts with radical polymerizable compound (A1) The boron nitride filler (B1) of this embodiment can be obtained by, for example, attaching polydopamine to the surface of the boron nitride filler and then introducing a functional group (X) to the attached polydopamine to obtain a boron nitride filler (B1) having attached thereto polydopamine (C) having a functional group (X). Note that, before introducing the functional group (X) to the polydopamine, the boron nitride filler having attached thereto polydopamine may be heat-treated.
窒化ホウ素フィラーの表面にポリドーパミンを付着させる方法は特に限定はされず、ドーパミン溶液と窒化ホウ素フィラーを接触させ、ドーパミンを酸化重合させることで、窒化ホウ素フィラーの表面にポリドーパミンを付着させることができる。 The method for attaching polydopamine to the surface of the boron nitride filler is not particularly limited, and polydopamine can be attached to the surface of the boron nitride filler by contacting the boron nitride filler with a dopamine solution and oxidizing and polymerizing the dopamine.
ドーパミン溶液は、例えば、pHを8.5に調整したTris-HCl溶液にドーパミン塩酸塩を加えて攪拌することにより得ることができる。ドーパミン溶液の濃度に特に制限はなく、例えば、0.01mg/mLから30mg/mLの範囲である。ドーパミン溶液のpHは、pH6からpH11の範囲であり、pH8からpH10の範囲であってもよい。ドーパミン溶液のpHは、Tris-HCl溶液等を混合することにより調節することができる。酸化重合時のドーパミン溶液の温度は、例えば、10℃から100℃である。重合時間は、例えば、1時間から48時間である。
The dopamine solution can be obtained, for example, by adding dopamine hydrochloride to a Tris-HCl solution whose pH has been adjusted to 8.5, and stirring the mixture. There is no particular limit to the concentration of the dopamine solution, and it is, for example, in the range of 0.01 mg/mL to 30 mg/mL. The pH of the dopamine solution is in the range of pH 6 to
また、窒化ホウ素フィラーの表面の少なくとも一部を被覆して、ポリドーパミン層(ポリドーパミンの薄膜)を形成する場合、そのポリドーパミン層の厚みの最大値は、例えば、0.1nm以上100nm以下であることが好ましい。それにより、窒化ホウ素の持つ低誘電正接を保持しながら、熱硬化性樹脂との密着性を高めることが出来るといった利点がある。ポリドーパミン層の厚みは、重合時間によりコントロールが可能である。 In addition, when at least a portion of the surface of the boron nitride filler is coated to form a polydopamine layer (a thin film of polydopamine), the maximum thickness of the polydopamine layer is preferably, for example, 0.1 nm or more and 100 nm or less. This has the advantage of being able to increase adhesion to the thermosetting resin while maintaining the low dielectric tangent of boron nitride. The thickness of the polydopamine layer can be controlled by the polymerization time.
表面にポリドーパミンを付着させた後、窒化ホウ素フィラーの加熱処理を行ってもよい。それにより更に純度の高いポリドーパミン膜が得られる。加熱処理の方法は特に制限されない。焼結装置、電気炉、ホットプレートなどの公知の加熱処理装置を使用して加熱処理を実施することができる。特に、温度調節が容易であることから、焼結装置または電気炉を使用して加熱処理を実施することが望ましい。 After attaching polydopamine to the surface, the boron nitride filler may be heat-treated. This will result in a polydopamine film with even higher purity. There are no particular limitations on the method of heat treatment. Heat treatment can be carried out using known heat treatment devices such as a sintering device, electric furnace, or hot plate. In particular, it is desirable to carry out the heat treatment using a sintering device or electric furnace, as this makes it easy to control the temperature.
加熱処理は、窒化ホウ素フィラーの周囲温度を100℃以上400℃以下の範囲に加熱することにより行うことができる。加熱時間は、例えば、1時間以上48時間以下である。 The heat treatment can be carried out by heating the ambient temperature of the boron nitride filler to a range of 100°C to 400°C. The heating time is, for example, 1 hour to 48 hours.
その後、窒化ホウ素フィラー表面に付着したポリドーパミンに官能基(X)を導入する。それによって、ポリドーパミン層がポリドーパミン(C)によって形成されることになる。官能基(X)の導入は、特に限定はされないが、例えば、アシル化処理、または、シランカップリング剤による処理によって導入することができる。 Then, a functional group (X) is introduced into the polydopamine attached to the surface of the boron nitride filler. As a result, a polydopamine layer is formed by polydopamine (C). The introduction of the functional group (X) is not particularly limited, but can be carried out, for example, by acylation treatment or treatment with a silane coupling agent.
ポリドーパミン(C)のアシル化処理は、ポリドーパミンとアシル化剤とを触媒の存在下で反応させ、ポリドーパミンの有する水酸基の少なくとも一部をアシル化することで、官能基(X)の導入を行うことができる。 The acylation treatment of polydopamine (C) can introduce functional groups (X) by reacting polydopamine with an acylating agent in the presence of a catalyst to acylate at least a portion of the hydroxyl groups of polydopamine.
アシル化剤は、ポリドーパミンに含まれる水酸基などの極性官能基と反応して、これらをアシル化することが可能なものである限り、特に限定されない。アシル化剤は、酸無水物であってもよい。公知のアシル化剤として、例えば、カルボン酸無水物を挙げることができる。より具体的には、メタクリル酸無水物、無水酢酸、安息香酸無水物、プロパン酸無水物などが挙げられる。酸無水物は、メタクリル酸無水物、アクリル酸無水物、無水酢酸、および安息香酸無水物からなる群より選ばれる少なくとも1つを含んでいてもよい。アシル化剤が末端に二重結合を有する場合、この二重結合が、絶縁層の樹脂の反応性残基と反応して結合を形成することにより、熱硬化性化合物(A)と無機充填剤(B)との密着性が向上する。このような観点から、アシル化剤は、特にメタクリル酸無水物または無水酢酸が望ましい。 The acylating agent is not particularly limited as long as it is capable of reacting with polar functional groups such as hydroxyl groups contained in polydopamine to acylate them. The acylating agent may be an acid anhydride. Examples of known acylating agents include carboxylic acid anhydrides. More specifically, examples of such agents include methacrylic acid anhydride, acetic anhydride, benzoic acid anhydride, and propanoic acid anhydride. The acid anhydride may include at least one selected from the group consisting of methacrylic acid anhydride, acrylic acid anhydride, acetic anhydride, and benzoic acid anhydride. When the acylating agent has a double bond at the end, this double bond reacts with the reactive residue of the resin of the insulating layer to form a bond, thereby improving the adhesion between the thermosetting compound (A) and the inorganic filler (B). From this perspective, the acylating agent is preferably methacrylic acid anhydride or acetic anhydride.
また、上述したようなアシル化処理以外でも、各種官能基を有するシランカップリング剤で処理することによって、ポリドーパミン(C)に官能基(X)を導入することができる。 In addition to the above-mentioned acylation treatment, functional groups (X) can be introduced into polydopamine (C) by treating it with a silane coupling agent having various functional groups.
シランカップリング剤としては、例えば、メタクリルシランカップリング剤、ビニルシランカップリング剤、スチリルシランカップリング剤、アクリルシランカップリング剤、フェニルアミノシランカップリング剤、エポキシシランカップリング剤、マレイミドシランカップリング剤等が挙げられる。シランカップリング剤による処理方法としては特に限定はされないが、例えば、官能基(X)を有するシランカップリング剤を含む水溶液中にてポリドーパミンが付着した窒化ホウ素フィラーと混合を行った後に、乾燥することによって、ポリドーパミンに含まれる水酸基の少なくとも一部が上述したような官能基(X)に置換されているポリドーパミン(C)を得ることができる。 Examples of silane coupling agents include methacryl silane coupling agents, vinyl silane coupling agents, styryl silane coupling agents, acrylic silane coupling agents, phenylamino silane coupling agents, epoxy silane coupling agents, maleimide silane coupling agents, etc. The method of treatment with a silane coupling agent is not particularly limited, but for example, polydopamine (C) in which at least a portion of the hydroxyl groups contained in the polydopamine are substituted with the functional group (X) as described above can be obtained by mixing the boron nitride filler to which polydopamine is attached in an aqueous solution containing a silane coupling agent having a functional group (X) and then drying.
上記アシル化処理または上記シランカップリング剤によって官能基(X)を導入する処理を行う場合、本実施形態のポリドーパミン(C)は、さらに下記式(1)及び下記式(2)で表される構造から選択される少なくとも1つの構造を有していてもよい。 When the above-mentioned acylation treatment or the treatment of introducing the functional group (X) using the above-mentioned silane coupling agent is performed, the polydopamine (C) of this embodiment may further have at least one structure selected from the structures represented by the following formula (1) and the following formula (2).
このような構造を有することによって、前記熱硬化性樹脂硬化物(A)とポリドーパミン膜(C)が付着した窒化ホウ素フィラー間の結合がより強固になるといった利点があると考えられる。 It is believed that having such a structure has the advantage that the bond between the cured thermosetting resin (A) and the boron nitride filler to which the polydopamine film (C) is attached is stronger.
・その他の無機充填剤
本実施形態の樹脂組成物は、無機充填剤(B)として前記窒化ホウ素フィラー(B1)のみを含んでいてもよいし、前記窒化ホウ素フィラー(B1)以外の無機充填剤を含んでいてもよい。
Other Inorganic Fillers The resin composition of the present embodiment may contain only the boron nitride filler (B1) as the inorganic filler (B), or may contain an inorganic filler other than the boron nitride filler (B1).
前記窒化ホウ素フィラー(B1)以外の無機充填剤としては、樹脂組成物に含有される無機充填剤として使用できるものであれば、特に限定されない。例えば、前記窒化ホウ素フィラー(B1)以外の窒化ホウ素フィラー、シリカフィラー、アルミナフィラー、酸化チタフィラーン、酸化マグネシウム及びマイカ等の金属酸化物フィラー、水酸化アルミニウムフィラー、及び水酸化マグネシウム等の金属水酸化物フィラー、タルクフィラー、ホウ酸アルミニウムフィラー、硫酸バリウムフィラー、窒化アルミニウムフィラー、窒化ケイ素フィラー、無水炭酸マグネシウム等の炭酸マグネシウムフィラー、及び炭酸カルシウムフィラー等が挙げられる。前記窒化ホウ素フィラー(B1)以外の無機充填剤としては、この中でも、シリカフィラー、無水炭酸マグネシウムフィラー、アルミナフィラー、及び窒化ケイ素フィラー、表面にドーパミンが付着されていない窒化ホウ素フィラー等が好ましい。前記シリカフィラーは、特に限定されず、例えば、破砕状シリカフィラー及びシリカ粒子フィラー等が挙げられ、シリカ粒子フィラーが好ましい。また、前記炭酸マグネシウムフィラーは、特に限定されないが、無水炭酸マグネシウム(合成マグネサイト)フィラーが好ましい。 The inorganic filler other than the boron nitride filler (B1) is not particularly limited as long as it can be used as an inorganic filler contained in the resin composition. For example, boron nitride filler other than the boron nitride filler (B1), silica filler, alumina filler, titanium oxide filler, metal oxide filler such as magnesium oxide and mica, aluminum hydroxide filler, metal hydroxide filler such as magnesium hydroxide, talc filler, aluminum borate filler, barium sulfate filler, aluminum nitride filler, silicon nitride filler, magnesium carbonate filler such as anhydrous magnesium carbonate, and calcium carbonate filler. Among these, preferred inorganic fillers other than the boron nitride filler (B1) include silica filler, anhydrous magnesium carbonate filler, alumina filler, silicon nitride filler, boron nitride filler with no dopamine attached to the surface, and the like. The silica filler is not particularly limited, and examples thereof include crushed silica filler and silica particle filler, and silica particle filler is preferred. The magnesium carbonate filler is not particularly limited, but anhydrous magnesium carbonate (synthetic magnesite) filler is preferred.
前記窒化ホウ素フィラー(B1)以外の無機充填剤は、表面処理された無機充填剤であってもよいし、表面処理されていない無機充填剤であってもよい。また、前記表面処理としては、例えば、シランカップリング剤による処理等が挙げられる。 The inorganic filler other than the boron nitride filler (B1) may be a surface-treated inorganic filler or an inorganic filler that has not been surface-treated. In addition, examples of the surface treatment include treatment with a silane coupling agent.
前記無機充填剤(B)の含有量は、熱硬化性化合物(A)と無機充填剤(B)の合計100重量部に対して、40~85重量部であることが好ましい。より好ましくは、40~80重量部である。また、無機充填剤(B)中の前記窒化ホウ素フィラー(B1)の含有量は、前記無機充填剤(B)全量に対して、10~90質量%であることが好ましく、10~70質量%であることがより好ましい。前記窒化ホウ素フィラー(B1)の含有量が前記範囲であることにより、高い熱伝導率と密着性を担保できるといった利点があると考えられる。 The content of the inorganic filler (B) is preferably 40 to 85 parts by weight per 100 parts by weight of the total of the thermosetting compound (A) and the inorganic filler (B). More preferably, it is 40 to 80 parts by weight. The content of the boron nitride filler (B1) in the inorganic filler (B) is preferably 10 to 90 mass% and more preferably 10 to 70 mass% with respect to the total amount of the inorganic filler (B). It is believed that having the content of the boron nitride filler (B1) in the above range has the advantage of ensuring high thermal conductivity and adhesion.
(シランカップリング剤)
本実施形態の樹脂組成物は、さらにシランカップリング剤を含んでいてもよい。それによって、前記ポリドーパミン(C)における水酸基を、より確実に官能基(X)で置換することができるため、樹脂成分と窒化ホウ素との密着性をより向上させることができると考えられる。
(Silane coupling agent)
The resin composition of the present embodiment may further contain a silane coupling agent, which is believed to more reliably substitute the hydroxyl groups in the polydopamine (C) with the functional groups (X), thereby further improving the adhesion between the resin component and boron nitride.
前記シランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリロイル基、アクリロイル基、フェニルアミノ基からなる群から選ばれる少なくとも1種の官能基を有するシランカップリング剤等が挙げられる。すなわち、このシランカップリング剤は、反応性官能基として、ビニル基、スチリル基、メタクリロイル基、アクリロイル基、及びフェニルアミノ基のうち、少なくとも1つを有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。 The silane coupling agent may, for example, be a silane coupling agent having at least one functional group selected from the group consisting of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group. In other words, the silane coupling agent may be a compound having at least one of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group as a reactive functional group, and further having a hydrolyzable group such as a methoxy group or an ethoxy group.
前記シランカップリング剤としては、ビニル基を有するものとして、例えば、ビニルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。前記シランカップリング剤としては、スチリル基を有するものとして、例えば、上記式(S)で示されるスチレン構造を有する、p-スチリルトリメトキシシラン、及びp-スチリルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、メタクリロイル基を有するものとして、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、及び3-メタクリロキシプロピルエチルジエトキシシラン等が挙げられる。前記シランカップリング剤としては、アクリロイル基を有するものとして、例えば、3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、フェニルアミノ基を有するものとして、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン及びN-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。 The silane coupling agent has a vinyl group, and examples thereof include vinyltriethoxysilane and vinyltrimethoxysilane. The silane coupling agent has a styryl group, and examples thereof include p-styryltrimethoxysilane and p-styryltriethoxysilane, which have a styrene structure represented by the above formula (S). The silane coupling agent has a methacryloyl group, and examples thereof include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropylethyldiethoxysilane. The silane coupling agent has an acryloyl group, and examples thereof include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane. Examples of the silane coupling agent that has a phenylamino group include N-phenyl-3-aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltriethoxysilane.
本実施形態の樹脂組成物がシランカップリング剤を含む場合、その含有量は、熱硬化性化合物(A)100質量部に対し、0.1~10質量部程度であることが好ましい。 When the resin composition of this embodiment contains a silane coupling agent, the content is preferably about 0.1 to 10 parts by mass per 100 parts by mass of the thermosetting compound (A).
(反応開始剤)
本実施形態の樹脂組成物は、さらに、反応開始剤を含んでいてもよい。前記樹脂組成物は、反応開始剤がなくてもラジカル重合(硬化)反応は進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。
(Reaction initiator)
The resin composition of the present embodiment may further contain a reaction initiator. The radical polymerization (curing) reaction of the resin composition may proceed even without a reaction initiator. However, depending on the process conditions, it may be difficult to raise the temperature to a level where curing proceeds, so a reaction initiator may be added.
前記反応開始剤は、前記樹脂組成物の硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、金属酸化物、アゾ化合物、過酸化物等が挙げられ、好ましくは、過酸化物及びアゾ化合物のうち少なくとも一つを含む。 The reaction initiator is not particularly limited as long as it can accelerate the curing reaction of the resin composition. Specific examples include metal oxides, azo compounds, and peroxides, and preferably includes at least one of peroxides and azo compounds.
金属酸化物としては、具体的には、カルボン酸金属塩等が挙げられる。 Specific examples of metal oxides include metal carboxylates.
有機過酸化物としては、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等が挙げられる。 Organic peroxides include α,α'-di(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne, benzoyl peroxide, 3,3',5,5'-tetramethyl-1,4-diphenoquinone, chloranil, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, azobisisobutyronitrile, etc.
アゾ化合物としては、具体的には、2,2’-アゾビス(2,4,4―トリメチルペンタン)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(2-メチルブチロニトリル)等が挙げられる。 Specific examples of azo compounds include 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(N-butyl-2-methylpropionamide), and 2,2'-azobis(2-methylbutyronitrile).
上述したような反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The above-mentioned reaction initiators may be used alone or in combination of two or more.
本実施形態の樹脂組成物が前記反応開始剤を含む場合、その含有量としては、特に限定されないが、例えば、前記熱硬化性化合物(A)100質量部に対して、0.1~5.0質量部であることが好ましく、0.5~3.0質量部であることがより好ましく、0.5~2.0質量部であることがさらに好ましい。 When the resin composition of this embodiment contains the reaction initiator, its content is not particularly limited, but for example, it is preferably 0.1 to 5.0 parts by mass, more preferably 0.5 to 3.0 parts by mass, and even more preferably 0.5 to 2.0 parts by mass, relative to 100 parts by mass of the thermosetting compound (A).
(その他の成分)
本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、上述した成分以外の成分(その他の成分)を含有してもよい。本実施形態に係る樹脂組成物に含有されるその他の成分としては、例えば、難燃剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、分散剤及び滑剤等の添加剤をさらに含んでもよい。
(Other ingredients)
The resin composition according to the present embodiment may contain components other than the above-mentioned components (other components) as necessary within a range that does not impair the effects of the present invention. The other components contained in the resin composition according to the present embodiment may further contain additives such as, for example, a flame retardant, an antifoaming agent, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a dye or pigment, a dispersant, and a lubricant.
(製造方法)
本実施形態の樹脂組成物を製造する方法としては、特に限定されず、例えば、前記熱硬化性化合物(A)と、必要に応じてその他の有機成分を混合し、その後、無機充填剤(B)を添加する方法等が挙げられる。具体的には、有機溶媒を含むワニス状の組成物を得る場合は、後述するプリプレグの説明において記載している方法等が挙げられる。
(Production method)
The method for producing the resin composition of the present embodiment is not particularly limited, and examples thereof include a method in which the thermosetting compound (A) is mixed with other organic components as necessary, and then the inorganic filler (B) is added, etc. Specifically, in the case of obtaining a varnish-like composition containing an organic solvent, the method described in the description of the prepreg described later can be used.
また、本実施形態に係る樹脂組成物を用いることによって、以下のように、プリプレグ、金属張積層板、配線板、樹脂付き金属箔、及び樹脂付きフィルムを得ることができる。 In addition, by using the resin composition according to this embodiment, it is possible to obtain prepregs, metal-clad laminates, wiring boards, metal foils with resin, and films with resin, as described below.
前記樹脂組成物の硬化物は、熱伝導率が1.0W/m・K以上であり、かつ、周波数10GHzにおける誘電正接が0.003以下であることが好ましい。このように本実施形態の樹脂組成物を用いることによって、その硬化物における高い熱伝導率と低誘電特性を両立することができ、かつ、優れた密着性も得ることができる。前記熱伝導率の上限値は特に限定はされないが、樹脂組成物中への無機充填剤の充填性の観点から50W/m・K以下であることが好ましい。 The cured product of the resin composition preferably has a thermal conductivity of 1.0 W/m·K or more and a dielectric loss tangent of 0.003 or less at a frequency of 10 GHz. By using the resin composition of this embodiment in this way, it is possible to achieve both high thermal conductivity and low dielectric properties in the cured product, and excellent adhesion can also be obtained. There is no particular upper limit to the thermal conductivity, but from the viewpoint of the filling ability of the inorganic filler in the resin composition, it is preferable that it is 50 W/m·K or less.
[プリプレグ]
図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。以下の説明において、各符号は以下を示す:1 プリプレグ、2 樹脂組成物又は樹脂組成物の半硬化物、3 繊維質基材、11 金属張積層板、12 絶縁層、13 金属箔、14 配線、21 配線基板、31 樹脂付き金属箔、32、42 樹脂層、41 樹脂付きフィルム、43 支持フィルム。
[Prepreg]
1 is a schematic cross-sectional view showing an example of a
本実施形態に係るプリプレグ1は、図1に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1は、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、前記樹脂組成物又は前記樹脂組成物の半硬化物2の中に存在する繊維質基材3とを備える。
As shown in Figure 1, the
なお、本実施形態において、半硬化物とは、樹脂組成物をさらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、粘度が徐々に低下し、その後、硬化が開始し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。 In this embodiment, the semi-cured product refers to a resin composition that has been partially cured to the extent that it can be further cured. In other words, the semi-cured product is a resin composition that has been semi-cured (B-staged). For example, when the resin composition is heated, the viscosity first gradually decreases, and then curing begins, and then curing begins and the viscosity gradually increases. In such a case, the semi-cured product can be described as the state between when the viscosity starts to increase and when it is completely cured.
また、本実施形態に係る樹脂組成物を用いて得られるプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。 The prepreg obtained using the resin composition according to this embodiment may comprise a semi-cured product of the resin composition as described above, or may comprise the uncured resin composition itself. That is, it may be a prepreg comprising a semi-cured product of the resin composition (the resin composition in B stage) and a fibrous base material, or a prepreg comprising the resin composition before curing (the resin composition in A stage) and a fibrous base material. The resin composition or the semi-cured product of the resin composition may be the resin composition that has been dried or heat-dried.
プリプレグを製造する際には、プリプレグを形成するための基材である繊維質基材3に含浸するために、樹脂組成物2は、ワニス状に調製されて用いられることが多い。すなわち、樹脂組成物2は、通常、ワニス状に調製された樹脂ワニスであることが多い。このようなワニス状の樹脂組成物(樹脂ワニス)は、例えば、以下のようにして調製される。
When manufacturing prepregs, the resin composition 2 is often prepared in a varnish form and used to impregnate the
まず、樹脂組成物の組成のうち有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて用いられる、有機溶媒に溶解しない成分(例えば、無機充填剤など)を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の樹脂組成物が調製される。ここで用いられる有機溶媒としては、前記変性ポリフェニレンエーテル化合物や前記硬化剤等を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエンやメチルエチルケトン(MEK)等が挙げられる。 First, each component of the resin composition that is soluble in an organic solvent is added to the organic solvent and dissolved. Heating may be performed if necessary. Then, components that are not soluble in the organic solvent (e.g., inorganic fillers, etc.) are added as necessary, and the varnish-like resin composition is prepared by dispersing the components until a predetermined dispersion state is reached using a ball mill, bead mill, planetary mixer, roll mill, etc. The organic solvent used here is not particularly limited as long as it dissolves the modified polyphenylene ether compound and the curing agent, etc., and does not inhibit the curing reaction. Specific examples include toluene and methyl ethyl ketone (MEK).
前記プリプレグの製造方法は、前記プリプレグを製造することができれば、特に限定されない。具体的には、プリプレグを製造する際には、上述した本実施形態で用いる樹脂組成物は、上述したように、ワニス状に調製し、樹脂ワニスとして用いられることが多い。 The method for producing the prepreg is not particularly limited as long as it is capable of producing the prepreg. Specifically, when producing the prepreg, the resin composition used in the present embodiment described above is often prepared in a varnish form and used as a resin varnish, as described above.
前記繊維質基材としては、具体的には、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。偏平処理加工として、具体的には、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮する方法が挙げられる。なお、一般的に使用される繊維質基材の厚さは、例えば、0.01mm以上、0.3mm以下である。 Specific examples of the fibrous substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper. When glass cloth is used, a laminate with excellent mechanical strength is obtained, and flattened glass cloth is particularly preferable. A specific example of the flattening process is a method in which glass cloth is continuously pressed with a press roll at an appropriate pressure to compress the yarns flat. The thickness of the fibrous substrate that is generally used is, for example, 0.01 mm or more and 0.3 mm or less.
前記プリプレグの製造方法は、前記プリプレグを製造することができれば、特に限定されない。具体的には、プリプレグを製造する際には、上述した本実施形態に係る樹脂組成物は、上述したように、ワニス状に調製し、樹脂ワニスとして用いられることが多い。 The method for producing the prepreg is not particularly limited as long as it is capable of producing the prepreg. Specifically, when producing the prepreg, the resin composition according to the present embodiment described above is often prepared in a varnish form as described above and used as a resin varnish.
プリプレグ1を製造する方法としては、例えば、樹脂組成物2、例えば、ワニス状に調製された樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。樹脂組成物2は、繊維質基材3へ、浸漬及び塗布等によって含浸される。必要に応じて複数回繰り返して含浸することも可能である。また、この際、組成や濃度の異なる複数の樹脂組成物を用いて含浸を繰り返すことにより、最終的に希望とする組成及び含浸量に調整することも可能である。
The method of manufacturing the
樹脂組成物(樹脂ワニス)2が含浸された繊維質基材3は、所望の加熱条件、例えば、80℃以上180℃以下で1分間以上10分間以下加熱される。加熱によって、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。
The
本実施形態に係る樹脂組成物又はこの樹脂組成物の半硬化物を備えるプリプレグは、誘電特性が低く、熱伝導率が高く、密着性にも優れる硬化物が好適に得られるプリプレグである。 The prepreg comprising the resin composition according to this embodiment or a semi-cured product of this resin composition is a prepreg that can suitably produce a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion.
[金属張積層板]
図2は、本発明の実施形態に係る金属張積層板11の一例を示す概略断面図である。
[Metal-clad laminate]
FIG. 2 is a schematic cross-sectional view showing an example of a metal-clad
金属張積層板11は、図2に示すように、図1に示したプリプレグ1の硬化物を含む絶縁層12と、絶縁層12とともに積層される金属箔13とから構成されている。すなわち、金属張積層板11は、樹脂組成物の硬化物を含む絶縁層12と、絶縁層12の上に設けられた金属箔13とを有する。また、絶縁層12は、前記樹脂組成物の硬化物からなるものであってもよいし、前記プリプレグの硬化物からなるものであってもよい。また、前記金属箔13の厚みは、最終的に得られる配線板に求められる性能等に応じて異なり、特に限定されない。金属箔13の厚みは、所望の目的に応じて、適宜設定することができ、例えば、0.2~70μmであることが好ましい。また、前記金属箔13としては、例えば、銅箔及びアルミニウム箔等が挙げられ、前記金属箔が薄い場合は、ハンドリング性を向上のために剥離層及びキャリアを備えたキャリア付銅箔であってもよい。
As shown in FIG. 2, the metal-clad
前記金属張積層板11を製造する方法としては、前記金属張積層板11を製造することができれば、特に限定されない。具体的には、プリプレグ1を用いて金属張積層板11を作製する方法が挙げられる。この方法としては、プリプレグ1を1枚又は複数枚重ね、さらに、その上下の両面又は片面に銅箔等の金属箔13を重ね、金属箔13およびプリプレグ1を加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層板11を作製する方法等が挙げられる。すなわち、金属張積層板11は、プリプレグ1に金属箔13を積層して、加熱加圧成形して得られる。また、加熱加圧条件は、製造する金属張積層板11の厚みやプリプレグ1の組成物の種類等により適宜設定することができる。例えば、温度を170~230℃、圧力を3~4MPa、時間を60~150分間とすることができる。また、前記金属張積層板は、プリプレグを用いずに製造してもよい。例えば、ワニス状の樹脂組成物を金属箔上に塗布し、金属箔上に樹脂組成物を含む層を形成した後に、加熱加圧する方法等が挙げられる。
The method for producing the metal-clad
本実施形態に係る樹脂組成物の硬化物を含む絶縁層を備える金属張積層板は、誘電特性が低く、熱伝導率が高く、金属箔との密着性にも優れた絶縁層を備える金属張積層板である。 The metal-clad laminate having an insulating layer containing the cured product of the resin composition according to this embodiment is a metal-clad laminate having an insulating layer that has low dielectric properties, high thermal conductivity, and excellent adhesion to the metal foil.
[配線板]
図3は、本発明の実施形態に係る配線板21の一例を示す概略断面図である。
[Wiring board]
FIG. 3 is a schematic cross-sectional view showing an example of a
本実施形態に係る配線板21は、図3に示すように、図1に示したプリプレグ1を硬化して用いられる絶縁層12と、絶縁層12ともに積層され、金属箔13を部分的に除去して形成された配線14とから構成されている。すなわち、前記配線板21は、樹脂組成物の硬化物を含む絶縁層12と、絶縁層12の上に設けられた配線14とを有する。また、絶縁層12は、前記樹脂組成物の硬化物からなるものであってもよいし、前記プリプレグの硬化物からなるものであってもよい。
As shown in FIG. 3, the
前記配線板21を製造する方法は、前記配線板21を製造することができれば、特に限定されない。具体的には、前記プリプレグ1を用いて配線板21を作製する方法等が挙げられる。この方法としては、例えば、上記のように作製された金属張積層板11の表面の金属箔13をエッチング加工等して配線形成をすることによって、絶縁層12の表面に回路として配線が設けられた配線板21を作製する方法等が挙げられる。すなわち、配線板21は、金属張積層板11の表面の金属箔13を部分的に除去することにより回路形成して得られる。また、回路形成する方法としては、上記の方法以外に、例えば、セミアディティブ法(SAP:Semi Additive Process)やモディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)による回路形成等が挙げられる。配線板21は、誘電特性が低く、耐熱性の高く、吸水処理後であっても、低誘電特性を好適に維持することができる絶縁層12を有する。
The method for manufacturing the
このような配線板は、誘電特性が低く、熱伝導率が高く、金属箔との密着性にも優れた絶縁層を備える配線板である。 Such a wiring board has an insulating layer that has low dielectric properties, high thermal conductivity, and excellent adhesion to the metal foil.
[樹脂付き金属箔]
図4は、本実施の形態に係る樹脂付き金属箔31の一例を示す概略断面図である。
[Metal foil with resin]
FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated
本実施形態に係る樹脂付き金属箔31は、図4に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層32と、金属箔13とを備える。この樹脂付き金属箔31は、前記樹脂層32の表面上に金属箔13を有する。すなわち、この樹脂付き金属箔31は、前記樹脂層32と、前記樹脂層32とともに積層される金属箔13とを備える。また、前記樹脂付き金属箔31は、前記樹脂層32と前記金属箔13との間に、他の層を備えていてもよい。
As shown in FIG. 4, the resin-coated
また、前記樹脂層32としては、上記のような、前記樹脂組成物の半硬化物を含むものであってもよいし、また、硬化させていない前記樹脂組成物を含むものであってもよい。すなわち、前記樹脂付き金属箔31は、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備えるであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付き金属箔であってもよい。また、前記樹脂層としては、前記樹脂組成物又は前記樹脂組成物の半硬化物を含んでいればよく、繊維質基材を含んでいても、含んでいなくてもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。また、繊維質基材としては、プリプレグの繊維質基材と同様のものを用いることができる。
The
また、金属箔としては、金属張積層板に用いられる金属箔を限定なく用いることができる。金属箔としては、例えば、銅箔及びアルミニウム箔等が挙げられる。 The metal foil may be any metal foil used in metal-clad laminates, without any limitations. Examples of metal foil include copper foil and aluminum foil.
前記樹脂付き金属箔31及び前記樹脂付きフィルム41は、必要に応じて、カバーフィル等を備えてもよい。カバーフィルムを備えることにより、異物の混入等を防ぐことができる。前記カバーフィルムとしては、特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、ポリメチルペンテンフィルム、及びこれらのフィルムに離型剤層を設けて形成されたフィルム等が挙げられる。
The resin-coated
前記樹脂付き金属箔31を製造する方法は、前記樹脂付き金属箔31を製造することができれば、特に限定されない。前記樹脂付き金属箔31の製造方法としては、上記ワニス状の樹脂組成物(樹脂ワニス)を金属箔13上に塗布し、加熱することにより製造する方法等が挙げられる。ワニス状の樹脂組成物は、例えば、バーコーターを用いることにより、金属箔13上に塗布される。塗布された樹脂組成物は、例えば、80℃以上180℃以下、1分以上10分以下の条件で加熱される。加熱された樹脂組成物は、未硬化の樹脂層32として、金属箔13上に形成される。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。
The method for producing the resin-coated
本実施形態に係る樹脂組成物又はこの樹脂組成物の半硬化物を含む樹脂層を備える樹脂付き金属箔は、誘電特性が低く、熱伝導率が高く、金属箔との密着性にも優れた硬化物が好適に得られる樹脂付き金属箔である。 The resin-coated metal foil having a resin layer containing the resin composition according to this embodiment or a semi-cured product of this resin composition is a resin-coated metal foil that is suitable for producing a cured product that has low dielectric properties, high thermal conductivity, and excellent adhesion to the metal foil.
[樹脂付きフィルム]
図5は、本実施の形態に係る樹脂付きフィルム41の一例を示す概略断面図である。
[Resin-coated film]
FIG. 5 is a schematic cross-sectional view showing an example of a resin-attached
本実施形態に係る樹脂付きフィルム41は、図5に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層42と、支持フィルム43とを備える。この樹脂付きフィルム41は、前記樹脂層42と、前記樹脂層42とともに積層される支持フィルム43とを備える。また、前記樹脂付きフィルム41は、前記樹脂層42と前記支持フィルム43との間に、他の層を備えていてもよい。
As shown in FIG. 5, the resin-attached
また、前記樹脂層42としては、上記のような、前記樹脂組成物の半硬化物を含むものであってもよいし、また、硬化させていない前記樹脂組成物を含むものであってもよい。すなわち、前記樹脂付きフィルム41は、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、支持フィルムとを備えるであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、支持フィルムとを備える樹脂付きフィルムであってもよい。また、前記樹脂層としては、前記樹脂組成物又は前記樹脂組成物の半硬化物を含んでいればよく、繊維質基材を含んでいても、含んでいなくてもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。また、繊維質基材としては、プリプレグの繊維質基材と同様のものを用いることができる。
The
また、支持フィルム43としては、樹脂付きフィルムに用いられる支持フィルムを限定なく用いることができる。前記支持フィルムとしては、例えば、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、ポリアミドフィルム、ポリカーボネートフィルム、及びポリアリレートフィルム等の電気絶縁性フィルム等が挙げられる。
Furthermore, as the
前記樹脂付きフィルム41は、必要に応じて、カバーフィルム等を備えてもよい。カバーフィルムを備えることにより、異物の混入等を防ぐことができる。前記カバーフィルムとしては、特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、及びポリメチルペンテンフィルム等が挙げられる。
The resin-coated
前記支持フィルム及びカバーフィルムとしては、必要に応じて、マット処理、コロナ処理、離型処理、及び粗化処理等の表面処理が施されたものであってもよい。 The support film and cover film may be subjected to surface treatments such as matte treatment, corona treatment, release treatment, and roughening treatment, as necessary.
前記樹脂付きフィルム41を製造する方法は、前記樹脂付きフィルム41を製造することができれば、特に限定されない。前記樹脂付きフィルム41の製造方法は、例えば、上記ワニス状の樹脂組成物(樹脂ワニス)を支持フィルム43上に塗布し、加熱することにより製造する方法等が挙げられる。ワニス状の樹脂組成物は、例えば、バーコーターを用いることにより、支持フィルム43上に塗布される。塗布された樹脂組成物は、例えば、80℃以上180℃以下、1分以上10分以下の条件で加熱される。加熱された樹脂組成物は、未硬化の樹脂層42として、支持フィルム43上に形成される。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。
The method for producing the resin-attached
本実施形態に係る樹脂組成物又はこの樹脂組成物の半硬化物を含む樹脂層を備える樹脂付きフィルムは、誘電特性が低く、熱伝導率が高く、密着性にも優れた硬化物が好適に得られる樹脂付きフィルムである。 The resin-attached film having a resin layer containing the resin composition according to this embodiment or a semi-cured product of this resin composition is a resin-attached film that can suitably produce a cured product with low dielectric properties, high thermal conductivity, and excellent adhesion.
本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various aspects of the technology as described above, but the main technologies are summarized below.
本発明の第1の態様に係る樹脂組成物は、熱硬化性化合物(A)と無機充填剤(B)とを含む樹脂組成物であって、前記熱硬化性化合物(A)が、反応性不飽和基を有するポリフェニレンエーテル化合物、反応性不飽和基を有する炭化水素系化合物、及び、マレイミド基を2つ以上有するマレイミド化合物からなる群から選択される少なくとも1つのラジカル重合性化合物(A1)を含み、前記無機充填剤(B)が窒化ホウ素フィラー(B1)含み、前記窒化ホウ素フィラー(B1)の表面に、前記ラジカル重合性化合物(A1)と反応する官能基(X)を有するポリドーパミン(C)が付着していることを特徴とする。 The resin composition according to the first aspect of the present invention is a resin composition containing a thermosetting compound (A) and an inorganic filler (B), characterized in that the thermosetting compound (A) contains at least one radically polymerizable compound (A1) selected from the group consisting of polyphenylene ether compounds having reactive unsaturated groups, hydrocarbon compounds having reactive unsaturated groups, and maleimide compounds having two or more maleimide groups, the inorganic filler (B) contains a boron nitride filler (B1), and polydopamine (C) having a functional group (X) that reacts with the radically polymerizable compound (A1) is attached to the surface of the boron nitride filler (B1).
第2の態様に係る樹脂組成物は、第1の態様の樹脂組成物において、前記官能基(X)が、エポキシ基、フェニルアミノ基、ビニル基、アクリル基、メタクリル基、アリル基、スチレン構造、マレイミド基からなる群から選択される少なくとも一つを含んでいる。 The resin composition according to the second embodiment is the resin composition according to the first embodiment, wherein the functional group (X) contains at least one selected from the group consisting of an epoxy group, a phenylamino group, a vinyl group, an acrylic group, a methacrylic group, an allyl group, a styrene structure, and a maleimide group.
第3の態様に係る樹脂組成物は、第2の樹脂組成物において、前記ポリドーパミン(C)が、さらに、上記式(1)及び上記式(2)で表される構造から選択される少なくとも1つの構造を有している。 The resin composition according to the third aspect is the second resin composition, in which the polydopamine (C) further has at least one structure selected from the structures represented by the above formula (1) and the above formula (2).
第4の態様に係る樹脂組成物は、第1~3のいずれかの態様の樹脂組成物において、前記ポリドーパミン(C)が前記窒化ホウ素フィラー(B1)の表面にポリドーパミン層を形成しており、かつ、前記ドーパミン層の厚みの最大値が0.1nm以上100nm以下である。 The resin composition according to the fourth aspect is the resin composition according to any one of the first to third aspects, in which the polydopamine (C) forms a polydopamine layer on the surface of the boron nitride filler (B1), and the maximum thickness of the dopamine layer is 0.1 nm or more and 100 nm or less.
第5の態様に係る樹脂組成物は、第1~4のいずれかの態様の樹脂組成物において、前記樹脂組成物の硬化物における熱伝導率が1W/mK以上50W/mK以下である。 The resin composition according to the fifth aspect is a resin composition according to any one of the first to fourth aspects, in which the thermal conductivity of the cured product of the resin composition is 1 W/mK or more and 50 W/mK or less.
第6の態様に係る樹脂組成物は、第1~5のいずれかの態様の樹脂組成物において、前記無機充填剤(B)の含有量が、熱硬化性化合物(A)と無機充填剤(B)の合計100重量部に対して、40~85重量部である。 The resin composition according to the sixth aspect is the resin composition according to any one of the first to fifth aspects, in which the content of the inorganic filler (B) is 40 to 85 parts by weight per 100 parts by weight of the total of the thermosetting compound (A) and the inorganic filler (B).
第7の態様に係る樹脂組成物は、第1~6のいずれかの態様の樹脂組成物において、前記窒化ホウ素フィラー(B1)の含有量が、前記無機充填剤(B)に対して、10~90質量%である。 The resin composition according to the seventh aspect is the resin composition according to any one of the first to sixth aspects, in which the content of the boron nitride filler (B1) is 10 to 90 mass% relative to the inorganic filler (B).
第8の態様に係る樹脂組成物は、第1~7のいずれかの態様の樹脂組成物において、さらにシランカップリング剤を含んでいる。 The resin composition according to the eighth aspect is the resin composition according to any one of the first to seventh aspects, further comprising a silane coupling agent.
本発明の第9の態様に係るプリプレグは、第1~8の態様の樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えることを特徴とする。 The prepreg according to the ninth aspect of the present invention is characterized by comprising the resin composition according to any one of the first to eighth aspects or a semi-cured product of the resin composition, and a fibrous base material.
本発明の第10の態様に係る樹脂付きフィルムは、第1~8の態様の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを備えることを特徴とする。 The resin-coated film according to the tenth aspect of the present invention is characterized by comprising a resin layer containing the resin composition according to any one of the first to eighth aspects or a semi-cured product of the resin composition, and a support film.
本発明の第11の態様に係る樹脂付き金属箔は、第1~8の態様の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを備えることを特徴とする。 The resin-coated metal foil according to the eleventh aspect of the present invention is characterized by comprising a resin layer containing the resin composition according to any one of the first to eighth aspects or a semi-cured product of the resin composition, and a metal foil.
本発明の第12の態様に係る金属張積層板は、第1~8の態様の樹脂組成物の硬化物又は第9の態様のプリプレグの硬化物を含む絶縁層と、金属箔とを備えることを特徴とする。 The metal-clad laminate according to the twelfth aspect of the present invention is characterized by comprising an insulating layer containing a cured product of the resin composition according to any one of the first to eighth aspects or a cured product of the prepreg according to the ninth aspect, and a metal foil.
本発明の第13の態様に係る配線板は、第1~8の態様の樹脂組成物の硬化物又は第9の態様のプリプレグの硬化物を含む絶縁層と、配線とを備えることを特徴とする。 The wiring board according to the thirteenth aspect of the present invention is characterized by having an insulating layer containing a cured product of the resin composition according to any one of the first to eighth aspects or a cured product of the prepreg according to the ninth aspect, and wiring.
以下に、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the scope of the present invention is not limited to these examples.
本実施例において、樹脂組成物を調製する際に用いる各成分について説明する。 In this example, we will explain each component used in preparing the resin composition.
(ラジカル重合性化合物(A1))
・変性ポリフェニレンエーテル化合物(変性PPE):末端にメタクリロイル基を有するポリフェニレンエーテル化合物(SABICイノベーティブプラスチックス社製の「SA9000」、重量平均分子量Mw2000、末端官能基数2個)
・炭化水素系化合物:ポリブタジエン(クレイバレー社製の「Ricon(登録商標)」)
・マレイミド化合物:ビスマレイミド(日本化薬株式会社製の「MIR-5000」)
(Radically polymerizable compound (A1))
Modified polyphenylene ether compound (modified PPE): polyphenylene ether compound having a methacryloyl group at the end ("SA9000" manufactured by SABIC Innovative Plastics, weight average molecular weight Mw 2000, number of terminal functional groups 2)
Hydrocarbon compound: Polybutadiene (Cray Valley Corporation's "Ricon (registered trademark)")
Maleimide compound: bismaleimide ("MIR-5000" manufactured by Nippon Kayaku Co., Ltd.)
(その他の熱硬化性化合物)
・硬化剤1:トリアリルイソシアヌレート(日本化成株式会社製のTAIC)
・硬化剤2:ベンゾオキサジン化合物(四国化成工業社製の「P-d」)
・その他の熱硬化性化合物:未変性ポリフェニレンエーテル化合物(SABICイノベーティブプラスチックス社製の「SA90」)
(Other thermosetting compounds)
Curing agent 1: Triallyl isocyanurate (TAIC manufactured by Nippon Kasei Chemical Industry Co., Ltd.)
Hardener 2: Benzoxazine compound ("P-d" manufactured by Shikoku Chemical Industry Co., Ltd.)
Other thermosetting compounds: Unmodified polyphenylene ether compounds (SA90 manufactured by SABIC Innovative Plastics)
(反応開始剤)
・過酸化物開始剤:PBP(1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン;日油株式会社製のパーブチルP)
(Reaction initiator)
Peroxide initiator: PBP (1,3-bis(butylperoxyisopropyl)benzene; Perbutyl P manufactured by NOF Corporation)
(無機充填剤)
・未処理窒化ホウ素フィラー(BN):h-BN(デンカ株式会社製「SGP」(平均粒径:18μm)
・シリカフィラー:デンカ株式会社製「FB-7SDC」
・アルミナフィラー:デンカ株式会社製「DAW-03AC」
(Inorganic filler)
Untreated boron nitride filler (BN): h-BN ("SGP" manufactured by Denka Co., Ltd. (average particle size: 18 μm)
・Silica filler: "FB-7SDC" manufactured by Denka Co., Ltd.
Alumina filler: "DAW-03AC" manufactured by Denka Co., Ltd.
・表面処理窒化ホウ素フィラー1:ポリドーパミン処理窒化ホウ素フィラー(官能基なし)
窒化ホウ素(BN)は、h-BN(デンカ社製、「SGP」を用いた。pHを8.5に調整したTris-HCl溶液にドーパミン塩酸塩を加えて攪拌することにより、ドーパミン溶液(濃度:23mg/mL)を得た。得られたドーパミン溶液に、前記窒化ホウ素を4.5g加えた。溶液温度を80℃に設定し、マグネティックスターラーで1時間攪拌した。その後、濾過により固体を得た。得られた固体を水洗した後、乾燥させた。これにより、ポリドーパミンを付着させた窒化ホウ素の粒子を得た。次に、電気炉を用いて、200℃、24時間の条件で、得られた粒子を加熱処理し、ポリドーパミン処理窒化ホウ素フィラー(表面処理窒化ホウ素フィラー1、官能基なし)を得た。ポリドーパミン層の厚みは2nmであった。
Surface-treated boron nitride filler 1: Polydopamine-treated boron nitride filler (no functional groups)
As boron nitride (BN), h-BN (manufactured by Denka, "SGP") was used. Dopamine hydrochloride was added to a Tris-HCl solution whose pH had been adjusted to 8.5, and the mixture was stirred to obtain a dopamine solution (concentration: 23 mg/mL). 4.5 g of the boron nitride was added to the obtained dopamine solution. The solution temperature was set to 80°C, and the mixture was stirred with a magnetic stirrer for 1 hour. Thereafter, a solid was obtained by filtration. The obtained solid was washed with water and then dried. In this way, boron nitride particles having polydopamine attached thereto were obtained. Next, the obtained particles were heat-treated in an electric furnace at 200°C for 24 hours to obtain a polydopamine-treated boron nitride filler (surface-treated
ポリドーパミン層の厚みは、X線光電子分光法(XPS)にて測定を行った。具体的にはXPSにおいて窒化ホウ素のB、C、N、O量を表面からの深さ方向に対して検出し、未処理の窒化ホウ素に対してポリドーパミン膜由来のC、O量が増加している領域を確認し、当該領域をポリドーパミン層と規定して測定を実施した。 The thickness of the polydopamine layer was measured using X-ray photoelectron spectroscopy (XPS). Specifically, XPS was used to detect the amounts of B, C, N, and O in the boron nitride in the depth direction from the surface, and areas where the amounts of C and O derived from the polydopamine film were increased compared to untreated boron nitride were identified, and these areas were defined as the polydopamine layer and measurements were carried out.
(窒化ホウ素フィラー(B1))
・表面処理窒化ホウ素フィラー2:ポリドーパミン(C)処理窒化ホウ素フィラー(官能基(X):メタクリル基)
トルエン1Lにメタクリルシランカップリング剤(信越化学工業株式会社製「KBM-503」)を50mL投入した。そこへ、前記表面処理窒化ホウ素フィラー1を300g投入した。加温したオイルバス中で液温が100℃になるように調整し、500rpmで3時間攪拌した。次いで、得られた固体をトルエン中にて冷却し、ろ過した後、トルエンを用いて洗浄し、乾燥させ、表面処理窒化ホウ素フィラー2(メタクリル基含有)を得た。
(Boron nitride filler (B1))
Surface-treated boron nitride filler 2: Polydopamine (C)-treated boron nitride filler (functional group (X): methacryl group)
50 mL of a methacrylsilane coupling agent ("KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 1 L of toluene. 300 g of the surface-treated
・表面処理窒化ホウ素フィラー3:ポリドーパミン(C)処理窒化ホウ素フィラー(官能基(X):ビニル基)
メタクリルシランカップリング剤(信越化学工業株式会社製「KBM-503」)をビニルシランカップリング剤(信越化学工業株式会社製「KBM-1003」)に変更した以外は、表面処理窒化ホウ素フィラー2と同様にして、表面処理窒化ホウ素フィラー3(ビニル基含有)を得た。
Surface-treated boron nitride filler 3: Polydopamine (C)-treated boron nitride filler (functional group (X): vinyl group)
Surface-treated boron nitride filler 3 (containing vinyl groups) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the methacryl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., "KBM-503") was changed to a vinyl silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., "KBM-1003").
・表面処理窒化ホウ素フィラー4:ポリドーパミン(C)処理窒化ホウ素フィラー(官能基(X):スチレン構造)
メタクリルシランカップリング剤(信越化学工業株式会社製「KBM-503」)をスチリルシランカップリング剤(信越化学工業株式会社製「KBM-1403」)に変更した以外は、表面処理窒化ホウ素フィラー2と同様にして、表面処理窒化ホウ素フィラー4(スチレン構造含有)を得た。
Surface-treated boron nitride filler 4: Polydopamine (C)-treated boron nitride filler (functional group (X): styrene structure)
Surface-treated boron nitride filler 4 (containing a styrene structure) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the methacryl silane coupling agent ("KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to a styryl silane coupling agent ("KBM-1403" manufactured by Shin-Etsu Chemical Co., Ltd.).
・表面処理窒化ホウ素フィラー5:ポリドーパミン(C)処理窒化ホウ素フィラー(官能基(X):アクリル基)
メタクリルシランカップリング剤(信越化学工業株式会社製「KBM-503」)をアクリルシランカップリング剤(信越化学工業株式会社製「KBM-5103」)に変更した以外は、表面処理窒化ホウ素フィラー2と同様にして、表面処理窒化ホウ素フィラー5(アクリル基含有)を得た。
Surface-treated boron nitride filler 5: Polydopamine (C)-treated boron nitride filler (functional group (X): acrylic group)
Surface-treated boron nitride filler 5 (containing acrylic groups) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the methacryl silane coupling agent ("KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to an acrylic silane coupling agent ("KBM-5103" manufactured by Shin-Etsu Chemical Co., Ltd.).
・表面処理窒化ホウ素フィラー6:ポリドーパミン(C)処理窒化ホウ素フィラー(官能基(X):メタクリル基)
ドーパミン溶液に窒化ホウ素を加えた後の、マグネティックスターラーによる攪拌時間を1時間から4時間に変更した以外は、表面処理窒化ホウ素フィラー2と同様にして、表面処理窒化ホウ素フィラー6(メタクリル基含有、ドーパミン層の厚み20nm)を得た。
Surface-treated boron nitride filler 6: Polydopamine (C)-treated boron nitride filler (functional group (X): methacryl group)
Surface-treated boron nitride filler 6 (containing methacrylic groups, dopamine layer thickness 20 nm) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the stirring time using a magnetic stirrer after adding boron nitride to the dopamine solution was changed from 1 hour to 4 hours.
・表面処理窒化ホウ素フィラー7:ポリドーパミン(C)処理窒化ホウ素フィラー(官能基(X):メタクリル基)
ドーパミン溶液に窒化ホウ素を加えた後の、マグネティックスターラーによる攪拌時間を1時間から12時間に変更した以外は、表面処理窒化ホウ素フィラー2と同様にして、表面処理窒化ホウ素フィラー7(メタクリル基含有、ドーパミン層の厚み100nm)を得た。
Surface-treated boron nitride filler 7: Polydopamine (C)-treated boron nitride filler (functional group (X): methacryl group)
Surface-treated boron nitride filler 7 (containing methacryl groups, dopamine layer thickness 100 nm) was obtained in the same manner as for surface-treated boron nitride filler 2, except that the stirring time using a magnetic stirrer after adding boron nitride to the dopamine solution was changed from 1 hour to 12 hours.
・表面処理窒化ホウ素フィラー8:ポリドーパミン(C)処理窒化ホウ素フィラー(アシル化)
表面処理窒化ホウ素フィラー1を2.0g脱イオン水20mlに加え、さらに、触媒としてDMAP0.1gを添加して溶解した。次に、アシル化剤としてメタクリル酸無水物2mlを添加し、混合溶液を得た。混合溶液の温度を25℃に設定し、マグネティックスターラーによって24時間攪拌した。その後、混合溶液を濾過することにより固体を得た。得られた固体をトルエンで洗浄した後、乾燥させた。これにより、表面処理窒化ホウ素フィラー8(アシル化、メタクリル基含有、ドーパミン層の厚み2nm)(式(1)で表される構造を有するポリドーパミンが付着した窒化ホウ素フィラー)を得た。
Surface-treated boron nitride filler 8: Polydopamine (C)-treated boron nitride filler (acylated)
2.0 g of the surface-treated
(シランカップリング剤)
・メタクリルシランカップリング剤(信越化学工業株式会社製「KBM-503」)
(Silane coupling agent)
- Methacrylic silane coupling agent ("KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd.)
[実施例1~20、及び比較例1~4]
(調製方法)
まず、無機充填剤以外の各有機樹脂成分を表1及び表2に記載の組成(質量部)で、固形分濃度が約40~80質量%となるように、溶媒としてトルエンに添加し、混合させた。その混合物を60分間攪拌した。その後、得られた液体に表1及び表2に記載の配合(質量部)で各無機充填剤およびカップリング剤を添加し、ビーズミルで無機充填剤を分散させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
[Examples 1 to 20 and Comparative Examples 1 to 4]
(Preparation Method)
First, each organic resin component other than the inorganic filler was added to toluene as a solvent and mixed in the composition (parts by mass) shown in Tables 1 and 2 so that the solid content concentration was about 40 to 80 mass%. The mixture was stirred for 60 minutes. Thereafter, each inorganic filler and coupling agent was added to the obtained liquid in the formulation (parts by mass) shown in Tables 1 and 2, and the inorganic filler was dispersed using a bead mill. By doing so, a varnish-like resin composition (varnish) was obtained.
次に、以下のようにして、評価基板(プリプレグの硬化物)を得た。 Next, an evaluation board (cured prepreg) was obtained as follows.
得られたワニスを繊維質基材(ガラスクロス:旭化成株式会社製の#1078タイプ、Lガラス)に含浸させた後、110℃で3分間加熱乾燥することによりプリプレグを作製した。そして、得られた各プリプレグを1、2、または4枚重ねたものの、それぞれ両面に銅箔(古河電気工業株式会社製「FV-WS」銅箔厚み:18μm)と張り合わせ昇温速度4℃/分で温度200℃まで加熱し、200℃、120分間、圧力3MPaの条件で加熱加圧することにより、3種類の板厚の銅張積層板を作成した。 The resulting varnish was impregnated into a fibrous substrate (glass cloth: Asahi Kasei Corporation's #1078 type, L glass), which was then heated and dried at 110°C for 3 minutes to produce prepregs. One, two, or four of the resulting prepregs were then stacked on top of each other, and copper foil (Furukawa Electric Co., Ltd.'s "FV-WS" copper foil thickness: 18 μm) was attached to both sides of each stack. The stack was heated to 200°C at a heating rate of 4°C/min, and heated and pressed at 200°C for 120 minutes at a pressure of 3 MPa to produce copper-clad laminates of three different thicknesses.
上記のように調製された、銅張積層板を、評価基板とし、以下に示す方法により評価を行った。なお、後述の熱伝導率の測定においては、プリプレグ1枚の硬化物およびプリプレグ2枚重ねの銅張積層板から銅箔を除去したもの、および、プリプレグ4枚重ねの銅張積層板から銅箔を除去したもの(プリプレグの硬化物)を使用し、誘電特性(比誘電率)の評価試験においては、プリプレグ4枚重ねの銅張積層板から銅箔を除去したもの(プリプレグの硬化物)を使用した。 The copper-clad laminate prepared as described above was used as the evaluation substrate and was evaluated by the method described below. In the thermal conductivity measurement described below, a cured product of one prepreg, a copper-clad laminate of two prepregs from which the copper foil had been removed, and a copper-clad laminate of four prepregs from which the copper foil had been removed (cured prepreg) were used, and in the evaluation test of dielectric properties (dielectric constant), a copper-clad laminate of four prepregs from which the copper foil had been removed (cured prepreg) was used.
[熱伝導率]
得られた評価基板(プリプレグの硬化物)の熱伝導率を、ASTM D5470に準拠した方法により測定した。具体的には、熱特性評価装置(メンター・グラフィックス社製のT3Ster DynTIM Tester)を用いて、得られた評価基板(プリプレグ1枚の硬化物、プリプレグ2枚重ねの硬化物、4枚重ねの硬化物)の熱抵抗と厚みを測定し、その測定値をグラフにプロット、直線で近似し、熱抵抗と厚みの増加分から熱伝導率を算出した。本実施例における熱伝導率の合格基準は、1.0W/m・K以上とした。
[Thermal conductivity]
The thermal conductivity of the obtained evaluation board (cured prepreg) was measured by a method conforming to ASTM D5470. Specifically, a thermal property evaluation device (T3Ster DynTIM Tester manufactured by Mentor Graphics) was used to measure the thermal resistance and thickness of the obtained evaluation board (cured product of one prepreg, cured product of two prepregs, and cured product of four prepregs), and the measured values were plotted on a graph and approximated by a straight line, and the thermal conductivity was calculated from the increase in thermal resistance and thickness. The pass standard for thermal conductivity in this example was set to 1.0 W/m·K or more.
[誘電特性(比誘電率)]
10GHzにおける評価基板(プリプレグの硬化物)の誘電正接(Df)を、空洞共振器摂動法で測定した。具体的には、ネットワークアナライザ(キーサイト・テクノロジー株式会社製のN5230A)を用い、10GHzにおける評価基板の誘電正接を測定した。本実施例における合格基準は、Df≦0.003とした。
[Dielectric properties (dielectric constant)]
The dielectric loss tangent (Df) of the evaluation board (cured prepreg) at 10 GHz was measured by a cavity resonator perturbation method. Specifically, the dielectric loss tangent of the evaluation board at 10 GHz was measured using a network analyzer (N5230A manufactured by Keysight Technologies, Inc.). The pass criterion in this example was set to Df≦0.003.
[銅箔ピール強度]
まず、ピール強度(銅箔ピール)試験のために、各実施例および比較例のプリプレグを用いて、銅張積層版(CCL)を作成した。具体的には、プリプレグを4枚重ね、その両表面に厚さ18μmの銅箔(古河電工株式会社製「FV-WS」)を貼り合わせて、真空条件下、温度200℃、圧力3MPaの条件で120分加熱・加圧して両面に銅箔が接着された、厚み510μmの銅張積層板(CCL)(評価基板)を得た。
[Copper foil peel strength]
First, for the peel strength (copper foil peel) test, a copper clad laminate (CCL) was prepared using the prepregs of each Example and Comparative Example. Specifically, four prepregs were stacked, and 18 μm thick copper foil (FV-WS manufactured by Furukawa Electric Co., Ltd.) was attached to both surfaces of the stacked prepregs, and the stacked prepregs were heated and pressed for 120 minutes under vacuum conditions at a temperature of 200° C. and a pressure of 3 MPa to obtain a copper clad laminate (CCL) (evaluation board) having a thickness of 510 μm and copper foil attached to both surfaces.
そして、得られたCCLを用いて、絶縁層からの銅箔の引き剥がし強さをJIS C 6481に準拠して測定した。幅10mm、長さ100mmのパターンを形成し、引っ張り試験機により50mm/分の速度で引き剥がし、その時の引き剥がし強さ(ピール強度)を測定した。測定単位はkN/mである。本実施例における合格基準は0.40kN/m以上とした。 Then, using the obtained CCL, the peel strength of the copper foil from the insulating layer was measured in accordance with JIS C 6481. A pattern 10 mm wide and 100 mm long was formed, and the copper foil was peeled off at a speed of 50 mm/min using a tensile tester, and the peel strength at that time was measured. The unit of measurement is kN/m. The pass standard in this example was set to 0.40 kN/m or more.
上記各評価における結果は、表1および表2に示す。 The results of each of the above evaluations are shown in Tables 1 and 2.
(考察)
表1および2からわかるように、本発明の樹脂組成物を使用した実施例では、いずれも、誘電特性が低く、熱伝導率が高く、密着性に優れた硬化物を得られることが確認された。
(Discussion)
As can be seen from Tables 1 and 2, it was confirmed that in all of the examples using the resin composition of the present invention, cured products having low dielectric properties, high thermal conductivity, and excellent adhesion were obtained.
一方、表2に示されるように、ラジカル重合性化合物(A1)を含まない比較例1のサンプルでは、十分な誘電特性及び密着性を得ることができなかった。また、無機充填剤としてポリドーパミン膜を介した表面処理をしていない窒化ホウ素フィラーを用いた比較例2および3のサンプルでは、密着性に劣る結果となった。比較例2および3の比較から、窒化ホウ素フィラーの含有量が増えれば熱伝導率は向上するが、密着性がより劣ってしまうことも確認された。さらに、ポリドーパミンにより表面処理はされているが、官能基(X)を備えていない窒化ホウ素フィラーを用いた比較例4でも、十分な密着性を得ることができなかった。 On the other hand, as shown in Table 2, the sample of Comparative Example 1, which does not contain the radical polymerizable compound (A1), was unable to obtain sufficient dielectric properties and adhesion. Furthermore, the samples of Comparative Examples 2 and 3, which used boron nitride filler that was not surface-treated via a polydopamine film as an inorganic filler, resulted in poor adhesion. Comparing Comparative Examples 2 and 3, it was confirmed that increasing the content of boron nitride filler improves the thermal conductivity, but also leads to poorer adhesion. Furthermore, Comparative Example 4, which used a boron nitride filler that was surface-treated with polydopamine but did not have a functional group (X), also failed to obtain sufficient adhesion.
この出願は、2023年8月31日に出願された日本国特許出願特願2023-140937を基礎とし、その内容は本願に含まれる。 This application is based on Japanese Patent Application No. 2023-140937, filed on August 31, 2023, the contents of which are incorporated herein by reference.
本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and sufficiently described above through embodiments with reference to specific examples and drawings, etc., but it should be recognized that a person skilled in the art could easily modify and/or improve the above-mentioned embodiments. Therefore, as long as the modifications or improvements implemented by a person skilled in the art are not at a level that deviates from the scope of the rights of the claims described in the claims, the modifications or improvements are interpreted as being included in the scope of the rights of the claims.
本発明は、電子材料、電子デバイス、光学デバイス等の技術分野において、広範な産業上の利用可能性を有する。
The present invention has wide industrial applicability in technical fields such as electronic materials, electronic devices, and optical devices.
Claims (15)
前記熱硬化性化合物(A)が、反応性不飽和基を有するポリフェニレンエーテル化合物、反応性不飽和基を有する炭化水素系化合物、及び、マレイミド基を2つ以上有するマレイミド化合物からなる群から選択される少なくとも1つのラジカル重合性化合物(A1)を含み、
前記無機充填剤(B)が窒化ホウ素フィラー(B1)含み、
前記窒化ホウ素フィラー(B1)の表面に、前記ラジカル重合性化合物(A1)と反応する官能基(X)を有するポリドーパミン(C)が付着している、樹脂組成物。 A resin composition comprising a thermosetting compound (A) and an inorganic filler (B),
the thermosetting compound (A) contains at least one radically polymerizable compound (A1) selected from the group consisting of a polyphenylene ether compound having a reactive unsaturated group, a hydrocarbon-based compound having a reactive unsaturated group, and a maleimide compound having two or more maleimide groups;
The inorganic filler (B) contains a boron nitride filler (B1),
A resin composition comprising the boron nitride filler (B1) and a polydopamine (C) having a functional group (X) reactive with the radical polymerizable compound (A1) attached to the surface of the boron nitride filler (B1).
前記ドーパミン層の厚みの最大値が0.1nm以上100nm以下である、請求項1に記載の樹脂組成物。 The polydopamine (C) forms a polydopamine layer on the surface of the boron nitride filler (B1);
The resin composition according to claim 1 , wherein the maximum thickness of the dopamine layer is 0.1 nm or more and 100 nm or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023140937 | 2023-08-31 | ||
JP2023-140937 | 2023-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025047299A1 true WO2025047299A1 (en) | 2025-03-06 |
Family
ID=94818849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/027819 WO2025047299A1 (en) | 2023-08-31 | 2024-08-02 | Resin composition, prepreg, resin-bearing film, resin-bearing metal foil, metal-clad laminate sheet, and wiring board |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202511380A (en) |
WO (1) | WO2025047299A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018521210A (en) * | 2015-10-21 | 2018-08-02 | ▲広▼▲東▼生益科技股▲ふん▼有限公司Shengyi Technology Co., Ltd. | Polyphenylene ether resin composition and high-frequency circuit board using the same |
WO2018147053A1 (en) * | 2017-02-07 | 2018-08-16 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, metal foil attached laminate sheet, resin sheet, and printed wiring board |
CN110903608A (en) * | 2019-12-13 | 2020-03-24 | 华北电力大学 | High-thermal-conductivity epoxy composite material and preparation method thereof |
-
2024
- 2024-08-02 WO PCT/JP2024/027819 patent/WO2025047299A1/en unknown
- 2024-08-13 TW TW113130316A patent/TW202511380A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018521210A (en) * | 2015-10-21 | 2018-08-02 | ▲広▼▲東▼生益科技股▲ふん▼有限公司Shengyi Technology Co., Ltd. | Polyphenylene ether resin composition and high-frequency circuit board using the same |
WO2018147053A1 (en) * | 2017-02-07 | 2018-08-16 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, metal foil attached laminate sheet, resin sheet, and printed wiring board |
CN110903608A (en) * | 2019-12-13 | 2020-03-24 | 华北电力大学 | High-thermal-conductivity epoxy composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202511380A (en) | 2025-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI830741B (en) | Resin compositions and their applications | |
JP6653458B2 (en) | Curable composition, prepreg, metal foil with resin, metal-clad laminate, and printed wiring board | |
KR20070037993A (en) | Low dielectric loss tangent varnish with excellent stability and wiring board material using the same | |
WO2017122249A1 (en) | Metal-clad laminate and metal foil with resin | |
JP7378090B2 (en) | Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and wiring boards | |
US20230331957A1 (en) | Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board | |
CN120289924A (en) | Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board | |
US20230257578A1 (en) | Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board | |
JP7511163B2 (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
US20230357558A1 (en) | Resin composition, prepreg using same, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board | |
WO2022014582A1 (en) | Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board | |
JP7507382B2 (en) | Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same | |
TW202440763A (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate and wiring board | |
US20240190112A1 (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
WO2025047299A1 (en) | Resin composition, prepreg, resin-bearing film, resin-bearing metal foil, metal-clad laminate sheet, and wiring board | |
WO2018061736A1 (en) | Metal-clad laminate, printed wiring board and metal foil with resin | |
US20230399511A1 (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
WO2025047300A1 (en) | Resin composition, prepreg, resin-bearing film, resin-bearing metal foil, metal-clad laminate sheet, and wiring board | |
JP7289074B2 (en) | Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same | |
CN113994769A (en) | Metal-clad laminate and printed wiring board | |
WO2025115466A1 (en) | Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminate, and wiring board | |
JP7300613B2 (en) | Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same | |
US12286500B2 (en) | Resin composition, prepreg, resin-equipped film, resin- equipped metal foil, metal-clad laminate, and wiring board | |
WO2024202840A1 (en) | Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board | |
WO2025070328A1 (en) | Metal foil with resin, metal-clad laminate, and wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24859341 Country of ref document: EP Kind code of ref document: A1 |