[go: up one dir, main page]

WO2025046980A1 - Method for controlling scale generation amount of metal material in heating furnace, scale generation amount control device, and heating furnace operation method - Google Patents

Method for controlling scale generation amount of metal material in heating furnace, scale generation amount control device, and heating furnace operation method Download PDF

Info

Publication number
WO2025046980A1
WO2025046980A1 PCT/JP2024/015558 JP2024015558W WO2025046980A1 WO 2025046980 A1 WO2025046980 A1 WO 2025046980A1 JP 2024015558 W JP2024015558 W JP 2024015558W WO 2025046980 A1 WO2025046980 A1 WO 2025046980A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating furnace
amount
heating
hydrogen
scale
Prior art date
Application number
PCT/JP2024/015558
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 田村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2025046980A1 publication Critical patent/WO2025046980A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers

Definitions

  • the present invention relates to a method for controlling the amount of scale formation on metal materials in a heating furnace, a device for controlling the amount of scale formation, and a method for operating a heating furnace using the method for controlling the amount of scale formation.
  • scale also called oxide scale
  • the scale formed in the heating furnace is also called primary scale, and is removed by descaling equipment installed in hot rolling lines, etc. Therefore, if the scale formed in the heating furnace becomes too thick, the weight of the steel material to be made into steel plate products decreases, resulting in a problem of lower product yield.
  • Patent Document 1 discloses a non-oxidizing heating method for steel as a technology for suppressing excessive scale formation, in which high-temperature non-oxidizing gas that has been preheated to a temperature equal to or higher than the temperature of the steel being heated or approximately equal to the furnace temperature is supplied around the steel in a heating furnace.
  • Patent Document 2 discloses a steel heating furnace that is equipped with a plurality of regenerative heating devices that supply high-temperature inert gas into the furnace and a plurality of gas burners that supply combustion gas into the furnace, and that is controlled so that the supply of high-temperature inert gas and the supply of combustion gas are carried out independently. It is said that this makes it possible to heat steel without oxidizing it by alternately supplying high-temperature inert gas from multiple regenerative heating devices.
  • Patent Document 3 discloses a method for heating steel in which, when steel to be subjected to hot rolling is heated in a heating furnace, moisture is supplied into the heating furnace to adjust the dew point inside the heating furnace. This promotes oxidation of the steel surface, and casting defects concentrated within a position of about 0.5 mm from the surface layer of the steel can be removed together with the scale, which is said to improve the surface quality of steel plate products.
  • Patent Document 4 discloses a method for heating a slab for hot rolling in which the scale thickness of the slab when removed from the heating furnace is predicted, and the heating temperature and heating time of the slab are set so that the scale thickness becomes a predetermined value.
  • Japanese Patent Application Publication No. 9-20919 JP 2000-248314 A Japanese Patent Application Publication No. 5-331532 Japanese Patent Application Publication No. 7-54036
  • Patent Document 1 supplies a high-temperature non-oxidizing gas into a heating furnace in order to create a localized non-oxidizing atmosphere around steel material charged in the heating furnace.
  • hydrogen or ammonia is burned as fuel gas in a heating furnace
  • the hydrogen in the fuel gas combines with the oxygen in the combustion air to generate water vapor, which poses a problem that the generated water vapor promotes the growth of scale on the steel surface even if a non-oxidizing atmosphere is formed in the heating furnace.
  • Patent Document 2 uses a regenerative heating device to recover the sensible heat contained in the exhaust gas produced by burning fuel gas using a heat storage body, and then passes an inert gas through the heat storage body to supply high-temperature inert gas into the heating furnace, thereby attempting to suppress scale growth on steel in the heating furnace.
  • the heat storage body also recovers water vapor in the exhaust gas, so that the inert gas passing through the heat storage body is humidified before being supplied to the heating furnace. Therefore, as in the above, even if high-temperature inert gas is supplied to the heating furnace, there is a problem that the amount of scale generation cannot be controlled within an appropriate range because the water vapor promotes the generation of scale on the steel surface.
  • Patent Document 3 is expected to have the effect of promoting oxidation of the steel surface by supplying moisture into the heating furnace, thereby improving the surface quality of steel plate products.
  • hydrogen or ammonia is used as the fuel gas, the oxidation of the steel is further promoted, causing excessive scale growth, and the amount of scale generation cannot be controlled within an appropriate range.
  • Patent Document 4 describes a method for controlling the amount of scale generation by setting the heating temperature and heating time.
  • the internal volume of a steel heating furnace is large, it takes a long time to change the heating temperature.
  • changing the heating time may result in a longer heating time for the steel, and in either case, there is room for improvement in that the production efficiency of the heating furnace decreases.
  • the present invention has been made to solve the above problems, and its purpose is to provide a method for controlling the amount of scale formation on metal materials, a scale formation control device, and a method for operating a heating furnace, for controlling the amount of scale formation within an appropriate range when attempting to reduce carbon dioxide emissions by using hydrogen or ammonia as fuel gas in a heating furnace that heats metal materials.
  • the method for controlling the amount of scale generation according to the present invention which advantageously solves the above problems, is configured as follows.
  • a method for controlling the amount of scale formation on a metallic material in a heating furnace comprising the steps of: burning-heating the metallic material using a hydrogen-based gas containing either hydrogen or ammonia or both as fuel; setting a flow rate of the hydrogen-based gas used as fuel for the burner heating as an operational parameter of the heating furnace; and controlling the amount of scale formation on the surface of the metallic material based on the set flow rate of the hydrogen-based gas.
  • a method for controlling the amount of scale formation on a metallic material further comprising the step of heating the metallic material with a burner using a mixed gas as fuel, the mixed gas being a mixture of the hydrogen-based gas and one or more gases selected from coal gas and a hydrocarbon-based gas.
  • a method for controlling the amount of scale formation on a metallic material in a heating furnace further comprises setting at least one selected from a heating time and a heating temperature of the metallic material in the heating furnace as an operation parameter of the heating furnace, and controlling the amount of scale formation formed on the surface of the metallic material based on the set operation parameter.
  • the heating furnace includes a pre-heating zone, a heating zone, and a soaking zone, and a hydrogen-based gas is used as a fuel for burner heating in the soaking zone, and a flow rate of the hydrogen-based gas used as a fuel for burner heating in the soaking zone is set as an operation parameter of the heating furnace, and the amount of scale formation on the surface of the metal material is controlled based on the set flow rate of the hydrogen-based gas.
  • a method for controlling the amount of scale formation on a metallic material in a heating furnace controls the amount of scale formation on the metallic material based on the operation parameters of the heating furnace so that the amount of scale formation falls within a preset range.
  • the method for controlling the amount of scale formation on a metallic material in a heating furnace controls the amount of scale formation on the metallic material based on the operational parameters of the heating furnace so that the amount of scale formation falls within a preset range.
  • a device for controlling the amount of scale formation on a metallic material in a heating furnace comprising a control unit including an acquisition unit that acquires operating parameters of the heating furnace including a flow rate of a hydrogen-based gas, the total amount of which is either hydrogen or ammonia or both, used as fuel for burner heating, a prediction unit that predicts the amount of scale formation on the metallic material using the acquired operating parameters, a determination unit that determines whether the predicted amount of scale formation is within a predetermined range, and a setting unit that sets the operating parameters of the heating furnace if the predicted amount of scale formation is not within the predetermined range.
  • the device for controlling the amount of scale formation on metal materials in a heating furnace includes an acquisition unit that acquires operation parameters of the heating furnace including a flow rate of a mixed gas obtained by mixing the hydrogen-based gas with one or more gases selected from coal gas and a hydrocarbon-based gas.
  • the present invention by using hydrogen or ammonia as the fuel gas for the heating furnace, it is possible to reduce carbon dioxide emissions, and by controlling the amount of scale generation within an appropriate range, it is possible to reduce the occurrence of surface defects in metal materials while suppressing deterioration of product yield.
  • FIG. 1 is a schematic diagram illustrating a heating furnace according to one embodiment.
  • FIG. 2 is a configuration diagram showing the arrangement of burner equipment in a heating furnace.
  • FIG. 1 is a configuration diagram of an example of a burner facility. 1 is a block diagram showing a schematic configuration of a hydrogen-based burner facility for a heating furnace according to one embodiment;
  • FIG. 1 is a configuration diagram of a scale generation amount control device according to an embodiment. 1 is a graph showing the relationship between the scale thickness on the surface of the steel material and the water vapor concentration in the furnace when the surface temperature of the heated material in the furnace is changed.
  • the following describes the device for controlling the amount of scale formation on metal materials in a heating furnace according to this embodiment.
  • the scale generation amount control device includes an acquisition unit that acquires operating parameters of the heating furnace, including the flow rate of hydrogen-based gas, the total amount of which is either hydrogen or ammonia or both, used as fuel for burner heating; a prediction unit that predicts the amount of scale generation of the metal material using the acquired operating parameters; a determination unit that determines whether the predicted amount of scale generation is within a preset range; and a setting unit that sets the operating parameters of the heating furnace if the predicted amount of scale generation is not within the preset range.
  • FIG. 1 is a schematic cross-sectional view of a heating facility for metal materials according to an embodiment of the present invention.
  • the heating facility is a facility in which a material to be heated is placed inside and heated to a predetermined temperature.
  • the material to be heated is a metal material, but it may be either an iron-based metal or a non-ferrous metal as long as it is a metal material that generates an oxide (hereinafter referred to as scale) on its surface due to oxidation.
  • the heating temperature of the material to be heated is 500 to 1400° C.
  • a heating facility for heating steel material will be described, taking steel material as the metal material.
  • the heating equipment 100 includes a heating furnace 1 that heats steel material by burner heating using a fuel gas containing a hydrogen-based gas whose total amount is either hydrogen or ammonia or both. The process of heating the metal material to be heated in the heating furnace 1 is called the heating process.
  • a control computer 101 is preferably installed for performing data analysis of various operational parameters in order to control the operation of the heating process.
  • the heating furnace 1 includes a charging section 8 for charging (hereinafter also referred to as “carrying in”) the steel material S, and an unloading section 9 for unloading (hereinafter also referred to as "extracting") the steel material S.
  • a charging section 8 for charging hereinafter also referred to as “carrying in”
  • an unloading section 9 for unloading hereinafter also referred to as "extracting”
  • the steel material S For example, steel material (slabs) produced in a continuous casting line is transported to a yard on the charging side of the heating furnace 1, and is charged into the heating furnace 1 from the charging section 8 according to a production schedule of a hot rolling line or the like.
  • the inside of the heating furnace 1 is divided into a plurality of zones, and from the upstream side in the conveying direction of the steel material, it is composed of a preheating zone 3 divided into 1 to 3 zones, a heating zone 4 divided into 2 to 8 zones, and a soaking zone 5 divided into 1 to 3 zones.
  • a conveying device 10 is arranged in the heating furnace 1 to convey the steel material S sequentially from a charging section 8 to an unloading section 9.
  • Each zone of the heating furnace 1 is controlled to a different atmospheric temperature, and the conveying device 10 conveys the steel material S through the preheating zone 3, the heating zone 4, and the soaking zone 5 in that order, so that the average temperature of the steel material S charged into the heating furnace 1 gradually increases and the steel material S is heated to a predetermined heating temperature (target heating temperature) in the heating furnace 1.
  • a predetermined heating temperature target heating temperature
  • the transport device 10 is equipped with a support mechanism for the steel material S called a skid, and includes a fixed skid 10a that supports the steel material S, and a movable skid 10b that lifts and moves the steel material S.
  • the movable skid 10b transports the steel material S toward the discharge section 9 by repeatedly ascending and descending, moving forward, descending, and retreating within the heating furnace 1.
  • the burners 6 are arranged in each of several zones inside the heating furnace 1. However, the number of zones does not necessarily have to match the number of burners.
  • upper burners 6a are arranged on the upper surface side of the steel material S from the loading section 8 toward the discharge section 9, and lower burners 6b are arranged on the lower surface side of the steel material S.
  • side burners that spray flames from one side wall surface in the conveying direction of the steel material S toward the opposing side wall surface are shown as a schematic, but axial burners that spray flames in the same direction as the conveying direction of the steel material S or roof burners that spray flames from the ceiling of the heating furnace into the interior may also be used.
  • FIG. 2 shows the piping system of the burner 6 arranged in the heating furnace 1, taking as an example some of the zones that make up the heating furnace 6.
  • the burners 6 (upper burner 6a, lower burner 6b) arranged in the heating furnace 1 are connected to a fuel gas supply system 31 that supplies fuel gas G and a combustion air supply system 32 that supplies combustion air A.
  • the fuel gas supply system 31 and the combustion air supply system 32 are connected to a blower (not shown) and the like, and supply the fuel gas G and the combustion air A to the burner 6.
  • the fuel gas G and the combustion air A are sprayed from the burner 6, and the fuel gas G is burned by diffusing, and a flame is blown into the inside of the heating furnace.
  • the combustion air A may be air collected from the atmosphere.
  • combustion air air that has been reformed by removing nitrogen from the air or adding pure oxygen may be used as the combustion air.
  • the oxidation reaction of the fuel gas G can be promoted, and the flow rate of the combustion air supplied from the combustion air supply system 32 can be reduced, thereby reducing the power consumption of pumps and the like.
  • a mixed gas of oxygen and combustion exhaust gas may be used as the combustion air A.
  • the atmosphere inside the heating furnace can be made reducing, which promotes the reduction of nitrogen oxides generated by the combustion of ammonia, etc.
  • FIG. 3 shows a schematic diagram of burner equipment 60 that performs burner heating.
  • burner refers to equipment that injects a flame into the furnace, and specifically refers to the part that injects the flame into the furnace.
  • burner equipment refers to the entire device, including the ancillary equipment for injecting the flame.
  • the burner equipment 60 includes a burner nozzle 7 that forms a flow path for fuel gas G and combustion air A for spraying a flame by the burner 6, a fuel gas supply system 31 that supplies fuel gas G to the burner nozzle 7, and a combustion air supply system 32 that supplies combustion air A to the burner nozzle 7.
  • the burner nozzle 7 is, for example, a double-pipe nozzle, and fuel gas G is injected into the furnace from the inside, and combustion air A is supplied to the outside. As a result, a combustible mixture is formed by mixing the fuel gas G and the combustion air A, and a flame is injected from the burner 6 into the heating furnace 1.
  • the burner equipment 60 may include a fuel gas flow rate control valve 33 for adjusting the flow rate of the fuel gas G supplied from the fuel gas supply system 31 to the burner nozzle 7, and a fuel gas flow meter 34 for measuring the flow rate of the fuel gas G. This makes it possible to adjust the combustion energy supplied into the heating furnace 1.
  • the burner equipment 60 may further include a combustion air flow rate control valve 35 for adjusting the flow rate of the combustion air A supplied from the combustion air supply system 32 to the burner nozzle 7, and a combustion air flow meter 36 for measuring the flow rate of the combustion air A. This makes it possible to adjust the air ratio of the fuel gas to the theoretical air amount in the burner 6.
  • the burner equipment 60 may also use a nozzle mix type burner that mixes the fuel gas and the combustion air midway through the burner nozzle.
  • the combustion air may be preheated using exhaust gas or the like before it is mixed with the fuel gas.
  • Coal gases include coke oven gas, blast furnace gas, converter gas, and electric furnace gas.
  • Blast furnace gas is a by-product gas generated when reducing iron ore in a blast furnace to produce pig iron.
  • Coke oven gas is a by-product gas generated by high-temperature carbonization of coal to produce coke.
  • Converter gas is a by-product gas generated during the steelmaking process in a converter.
  • Electric furnace gas is a by-product gas generated by incomplete combustion of auxiliary fuel (recarburizer) used in an electric furnace.
  • By-product gases have various component compositions depending on the process in which they are generated.
  • the typical composition of blast furnace gas is 21-30 vol% of combustible carbon monoxide, 50-60 vol% of non-combustible nitrogen, and 10-22 vol% of carbon dioxide.
  • the lower heating value of blast furnace gas is about 3.45 MJ/ Nm3 .
  • the typical composition of coke oven gas is 46-60 vol% of hydrogen, 20-35 vol% of methane, 5-10 vol% of carbon monoxide, and 2-4 vol% of hydrocarbons such as ethylene.
  • the lower heating value of coke oven gas is about 18.0 MJ/ Nm3 .
  • the typical composition of converter gas is about 75 vol% of carbon monoxide, about 13 vol% of carbon dioxide, and also contains small amounts of oxygen, nitrogen, and hydrogen.
  • the lower heating value of converter gas is about 8.2 MJ/ Nm3 .
  • the typical composition of electric furnace gas is about 10 vol% of carbon monoxide, about 22 vol% of carbon dioxide, about 5 vol% of oxygen, and about 56 vol% of nitrogen.
  • the lower heating value of electric furnace gas is about 2.8 MJ/ Nm3 .
  • Coal gas also includes a suitable mixture of blast furnace gas, coke oven gas, and converter gas (sometimes called M gas). By mixing coal gases with different heating values, the amount of heat required to heat the material to be heated can be supplied, ensuring stable operation of the heating furnace.
  • At least one of the burner equipments arranged in the heating furnace uses a hydrogen-based gas containing either or both of hydrogen and ammonia as a fuel gas.
  • a hydrogen-based burner equipment the burner equipment using a fuel gas containing either or both of hydrogen and ammonia as a fuel gas.
  • hydrogen and ammonia used as fuel gas are called hydrogen-based gases.
  • Hydrogen is a colorless gas at room temperature, with an ignition point of 560°C and a lower heating value of about 10.5 MJ/ Nm3 .
  • the flame temperature is high and the combustion speed is fast, so the tip of the burner nozzle is likely to become hot. For this reason, it is advisable to use a burner nozzle in which hydrogen is mixed with combustion air after being ejected. This allows for slow combustion and reduces the thermal load on the burner nozzle.
  • combustion is performed under operating conditions of, for example, a flow rate of hydrogen ejected from the burner of 185 Nm3 /hr and a flow rate of combustion air of 370 to 601 Nm3 /hr.
  • Ammonia is a colorless gas at room temperature with an ignition point of 651°C and a lower heating value of approximately 14.1 MJ/ Nm3 .
  • the flame temperature is relatively low and the combustion speed is slow, so the ammonia combustion reaction can be stabilized by using a burner nozzle that actively mixes ammonia with combustion air.
  • combustion is performed under operating conditions of, for example, ammonia injected from the burner at a flow rate of 185 Nm3 /hr and combustion air at a flow rate of 370 to 601 Nm3 /hr.
  • the hydrogen-based burner equipment 70 applied to this embodiment can be the same as the burner equipment 60 shown in FIG. 3.
  • the hydrogen-based burner equipment 70 is the same burner equipment as the burner equipment that uses coal gas as the fuel gas, and is a burner equipment that uses hydrogen-based gas HG as the fuel gas G.
  • the hydrogen-based burner equipment suppresses the generation of carbon dioxide, and therefore the amount of carbon dioxide emitted from the heating furnace can be reduced.
  • the configuration of the hydrogen-based burner equipment 70 applied to this embodiment will be described with reference to FIG. 3.
  • the hydrogen-based burner equipment 70 performs burner heating by injecting a flame into the furnace using hydrogen-based gas HG as fuel gas G and combustion air A.
  • the hydrogen-based burner equipment 70 includes a burner nozzle 7 for injecting a flame into the furnace, a fuel gas supply system 31 that supplies fuel gas G to the burner nozzle 7, and a combustion air supply system 32 that supplies combustion air A to the burner nozzle 7.
  • the burner nozzle 7 is, for example, a double-tube nozzle, and fuel gas G is injected into the furnace from the inside, and combustion air A is supplied to the outside.
  • a combustible mixture is formed in which hydrogen-based gas HG is used as fuel gas G and combustion air A is mixed, and a flame is injected from the burner 6 toward the inside of the heating furnace 1.
  • the hydrogen-based burner equipment 70 preferably includes a fuel gas flow rate adjustment valve 33 for adjusting the flow rate of fuel gas G supplied from the fuel gas supply system 31 to the burner nozzle 7, and a fuel gas flow meter 34 for measuring the flow rate of fuel gas G.
  • the hydrogen-based burner equipment 70 also preferably includes a flow rate setting unit 47 for setting the flow rate of the hydrogen-based gas.
  • the flow rate setting unit 47 is, for example, a control controller, and issues a control command to adjust the valve opening of the fuel gas flow rate adjustment valve 33 so that the actual flow rate measured by the fuel gas flow meter 34 matches the flow rate set value of the hydrogen-based gas HG that is set in advance. This makes it possible to control the combustion energy of the flame injected from the hydrogen-based burner equipment 70 into the heating furnace 1 and the amount of carbon dioxide exhausted from the heating furnace 1.
  • the hydrogen-based burner equipment 70 is preferably provided with a steam amount control unit 48 that controls the amount of steam in the heating furnace 1 within a preset range, in addition to the flow rate setting unit 47.
  • the steam amount control unit 48 is configured by, for example, a computer.
  • the water vapor amount control unit 48 calculates the amount of water vapor in the heating furnace 1, and sends a command to the flow rate setting unit 47 for the flow rate setting value of the hydrogen-based gas HG to be supplied to the hydrogen-based burner equipment 70 so that the calculated amount of water vapor in the furnace falls within a predetermined target range for the water vapor amount (target water vapor range).
  • the water vapor amount control unit 48 can control the scale formation behavior on the surface of the steel material S by sending a command for the flow rate setting value of the hydrogen-based gas HG to the flow rate setting unit 47.
  • a burner equipment 60 using coal gas CG as fuel gas G and a hydrogen-based burner equipment 70 using hydrogen-based gas HG as fuel gas G are arranged in the furnace as the burners 6 of the heating furnace 1.
  • a fuel gas supply system that supplies fuel gas G to the burner nozzle 7 of the burner equipment 60 is connected to a supply source of coal gas CG, and the burner equipment 60 injects a flame generated by combustion of coal gas into the inside of the heating furnace 1.
  • a fuel gas supply system that supplies fuel gas G to the burner nozzle 7 of the hydrogen-based burner equipment 70 is connected to a supply source of hydrogen-based gas HG, and the hydrogen-based burner equipment 70 injects a flame produced by combustion of the hydrogen-based gas into the heating furnace 1.
  • the combustion air supply system that supplies combustion air A to the burner equipment 60 and the hydrogen-based burner equipment 70 may be shared by the burner equipment 60 and the hydrogen-based burner equipment 70.
  • the heating furnace shown in Figure 4 includes hydrogen-based burner equipment that uses hydrogen-based gas HG as fuel gas G, compared to conventional heating furnaces that use coal gas CG as fuel gas G, and therefore reduces the amount of carbon dioxide emissions emitted from the heating furnace.
  • the mixed gas refers to a case where a hydrogen-based gas containing either or both of hydrogen and ammonia is mixed with coal gas (containing hydrogen) or a hydrocarbon-based gas (methane, ethane, propane, etc.).
  • the hydrogen-based burner equipment may use a mixed gas containing hydrogen-based gas HG and other fuels as the fuel gas G.
  • a mixed gas of hydrogen-based gas and coal gas may be used as the fuel gas G.
  • FIG. 5 shows another example of a hydrogen-based burner equipment, a hydrogen-based burner equipment 71, which uses a mixed gas of hydrogen-based gas HG and coal gas CG as fuel gas G.
  • the hydrogen-based burner equipment 71 shown in FIG. 5 is similar to the hydrogen-based burner equipment 70 shown in FIG. 3 in that it includes a burner nozzle 7 that emits a flame into the heating furnace, a fuel gas supply system 31 that supplies fuel gas G to the burner nozzle 7, and a combustion air supply system 32 that supplies combustion air A to the burner nozzle 7.
  • combustion air A is supplied from the combustion air supply system 32 to the burner nozzle 7, a combustible mixture is formed by mixing the fuel gas G and the combustion air A, and a flame is emitted from the burner 6 toward the inside of the heating furnace.
  • the fuel gas supply system 31 of the hydrogen-based burner equipment 71 shown in FIG. 5 is equipped with a mixing section 40 that mixes hydrogen-based gas HG supplied through a hydrogen-based gas supply system 45 and coal gas CG supplied through a coal gas supply system 46.
  • the mixing section 40 generates fuel gas G by mixing the hydrogen-based gas HG and the coal gas CG.
  • the fuel gas G generated in the mixing section 40 is further mixed with combustion air A to form a combustible mixture, which is sprayed as a flame from the burner 6 toward the inside of the heating furnace 1.
  • the mixing section 40 refers to the area where the hydrogen-based gas supply system 45, which supplies the hydrogen-based gas HG, and the coal gas supply system 46, which supplies the coal gas CG, join together.
  • the hydrogen-based gas HG and the coal gas CG are supplied from their respective supply pipes, and by joining together, mixing is achieved without the need for a special stirring mechanism. Therefore, the mixing section 40 may be configured as a fixed space at the area where these supply pipes intersect.
  • the mixing section 40 may be equipped with a static mixing device such as a static mixer, or a dynamic mixer with a stirring function. This is preferable because it results in a more uniform mixed gas of the hydrogen-based gas HG and the coal gas CG.
  • the hydrogen-based burner equipment 71 may be provided with a hydrogen-based gas flow rate control valve 41 for adjusting the flow rate of the hydrogen-based gas HG supplied to the mixing section 40 through the hydrogen-based gas supply system 45, and a hydrogen-based gas flow meter 42 for measuring the flow rate of the hydrogen-based gas HG.
  • the hydrogen-based burner equipment 71 may also be provided with a coal gas flow rate control valve 43 for adjusting the flow rate of the coal gas CG supplied from the coal gas supply system 46 to the mixing section 40, and a coal gas flow meter 44 for measuring the flow rate of the coal gas CG.
  • ammonia when used as the hydrogen-based gas, ammonia is a flame-retardant fuel that is more difficult to ignite and burns slower than general fuel gases, so if the mixture ratio of ammonia contained in the fuel gas G becomes large, combustion in the burner 6 may become unstable.
  • the mixture ratio of ammonia and coal gas contained in the fuel gas G it is possible to ensure the stability of burner heating while reducing carbon dioxide emissions.
  • the hydrogen-based burner equipment 71 preferably further includes a flow rate setting unit 47 that sets the flow rate of the hydrogen-based gas HG supplied to the mixing unit 40.
  • the flow rate setting unit 47 is, for example, a control controller, and issues a control command to adjust the valve opening of the hydrogen-based gas flow rate adjustment valve 41 so that the actual flow rate measured by the hydrogen-based gas flowmeter 42 matches the flow rate set value for the hydrogen-based gas HG that is set in advance. This makes it possible to control the combustion energy of the flame sprayed from the hydrogen-based burner equipment 71 into the heating furnace 1 and the amount of carbon dioxide exhausted from the heating furnace 1.
  • the flow rate setting unit 47 in addition to the function of setting the flow rate of the hydrogen-based gas HG supplied to the mixing unit 40, may be configured to give a control command to adjust the valve opening of the coal gas flow rate adjustment valve 43 so that the actual flow rate measured by the coal gas flowmeter 44 matches the flow rate setting value of the coal gas CG, which is set in advance. This makes it possible to set the flow rates of the hydrogen-based gas HG and the coal gas CG supplied to the mixing unit 40 separately, and to adjust the amount of combustion energy supplied into the heating furnace 1 and the amount of carbon dioxide exhausted from the heating furnace 1.
  • the hydrogen-based burner equipment 71 may be provided with a steam amount control unit 48 that controls the amount of steam in the heating furnace 1 within a preset range, in addition to the flow rate setting unit 47.
  • the function of the steam amount control unit 48 is the same as that of the steam amount control unit 48 described above in FIG. 3.
  • the hydrogen mixing ratio (the ratio of the hydrogen flow rate supplied through the hydrogen-based gas supply system 45 to the flow rate of hydrogen supplied through the M gas and hydrogen-based gas supply system 45) can be selected arbitrarily.
  • the hydrogen mixing ratio is 60%, combustion is performed under the operating conditions of the hydrogen flow rate injected from the burner of 111 Nm 3 /hr, the M gas flow rate of 74 Nm 3 /hr, and the combustion air flow rate of 370 to 601 Nm 3 /hr.
  • the M gas composition is 20 vol% carbon monoxide, 13 vol% carbon dioxide, 24 vol% hydrogen, 13 vol% methane, 1.2 vol% hydrocarbons such as ethylene, and 28.8 vol% nitrogen.
  • the ammonia mixing ratio the ratio of the ammonia flow rate supplied through the hydrogen-based gas supply system 45 to the flow rate of the M gas and ammonia supplied through the hydrogen-based gas supply system 45
  • the ammonia mixing ratio is about 50%.
  • combustion is performed under the operating conditions of an ammonia flow rate injected from the burner of 50 Nm 3 /hr, an M gas flow rate of 117 Nm 3 /hr, and a combustion air flow rate of 480 to 624 Nm 3 /hr.
  • the scale formation amount control device of this embodiment comprises a control unit including an acquisition unit that acquires operating parameters of the heating furnace including the flow rate of hydrogen-based gas, the total amount of which is either hydrogen or ammonia or both, used as fuel for burner heating, a prediction unit that predicts the scale formation amount of the metal material using the acquired operating parameters, a determination unit that determines whether the predicted scale formation amount is within a preset range, and a setting unit that sets the operating parameters of the heating furnace if the predicted scale formation amount is not within the preset range.
  • the acquisition unit can also acquire operation parameters of the heating furnace including a flow rate of a mixed gas obtained by mixing the hydrogen-based gas with one or more gases selected from coal gas and a hydrocarbon-based gas.
  • FIG. 7 shows the configuration of the scale generation amount control device according to this embodiment.
  • the scale generation amount control device 51 shown in FIG. 7 is, for example, a general-purpose computer such as a workstation or a personal computer.
  • the scale generation amount control device 51 has a control unit 52, an input unit 53, an output unit 54, and a memory unit 55.
  • the control unit 52 is, for example, a CPU, and executes various programs stored in the memory unit 55, causing the control unit 52 to function as an acquisition unit 56, a prediction unit 57, a determination unit 58, and a setting unit 59.
  • the input unit 53 is, for example, a keyboard, a touch panel that is provided integrally with a display, or the like.
  • the output unit 54 is, for example, an LCD or CRT display, etc.
  • the storage unit 55 is, for example, an information recording medium such as an updatable flash memory, a built-in hard disk or a memory card connected via a data communication terminal, and a read/write device for the same.
  • the storage unit 55 stores programs and data for implementing control of the amount of scale generation by the scale generation amount control device 51.
  • the storage unit 55 also stores a scale thickness prediction model that has been generated in advance.
  • a hydrogen-based gas containing either or both of hydrogen and ammonia as a fuel is used to burner-heat a metal material, the flow rate of the hydrogen-based gas used as the fuel for burner heating is set as an operational parameter of the heating furnace, and the amount of scale formation formed on the surface of the metal material is controlled based on the set flow rate of the hydrogen-based gas. It is also possible to heat metal materials with a burner by using as fuel a mixed gas obtained by mixing one or more gases selected from coal gas and hydrocarbon gas with a hydrogen-based gas.
  • the amount of scale formed refers to the thickness or amount of scale formed on the surface of the metal material being heated.
  • the operating parameters of the heating furnace refer to the operating conditions of the heating furnace that affect the heating state of the material being heated in the heating furnace.
  • the heating furnace 1 burner heating using hydrogen-based gas HG is performed, and water vapor is generated by the combustion of hydrogen and ammonia contained in the fuel gas G.
  • water penetrates from the surface of the metal material in the heating furnace 1, and the oxygen constituting the water molecules oxidizes the metal material in the heating furnace 1 and releases hydrogen.
  • the hydrogen diffuses inside the oxide layer formed on the surface of the metal material and combines with the oxygen in the oxide layer at the interface between the oxide layer and the base material to generate water vapor.
  • the generated water vapor further oxidizes the metal material, promoting the generation of an oxide layer.
  • water vapor contained in the combustion gas penetrates the interface with the oxide layer of the metal material and promotes the oxidation of the metal material, making it difficult to suppress scale formation on the metal material even when the inside of the heating furnace is controlled to a non-oxidizing atmosphere.
  • the combustion of hydrogen-based gas can promote the formation of scale on the metal material. Therefore, after the metal material is removed from the heating equipment 100, the oxide layer can be removed using a descaling device or the like, thereby suppressing the occurrence of surface defects in the metal material.
  • a flow rate setting unit 47 in the hydrogen-based burner equipment it is preferable to provide a flow rate setting unit 47 in the hydrogen-based burner equipment to control the flow rate of the hydrogen-based gas HG.
  • the flow rate of the hydrogen-based gas HG By changing the flow rate of the hydrogen-based gas HG, the amount of water vapor generated in the heating furnace 1 changes, and this makes it possible to control the thickness of the oxide layer that forms on the surface of the metal material.
  • a water vapor amount control unit 48 that controls the amount of water vapor in the heating furnace 1 to a preset range, and to set the flow rate setting unit 47 to a flow rate setting value of the hydrogen-based gas HG to be supplied to the hydrogen-based burner equipment 70, 71 based on the amount of water vapor in the heating furnace 1 calculated by the water vapor amount control unit 48.
  • the water vapor amount control unit 48 estimates the amount of water vapor in the heating furnace 1 based on dew point information acquired by a dew point meter 49 installed in the heating furnace 1, and sends a command to the flow rate setting unit 47 for the flow rate setting value of the hydrogen-based gas HG to be supplied to the hydrogen-based burner equipment 70, 71 so that the estimated amount of water vapor falls within a preset target range of water vapor amount (target water vapor range). This makes it possible to control the amount of scale generation on the surface of the metal material in the heating process.
  • the water vapor amount control unit 48 acquires a measured value of the dew point of the atmospheric gas acquired by the dew point meter 49. From the acquired measured value of the dew point, the water vapor pressure of the atmospheric gas is calculated using a known relationship between the amount of saturated water vapor and temperature. Then, the volume fraction of water vapor contained in the atmospheric gas is calculated from the calculated water vapor pressure and the pressure (total pressure) of the atmospheric gas, and the amount of water vapor in the heating furnace 1 can be calculated using the inner volume of the heating furnace 1. As the known relationship between the amount of saturated water vapor and temperature, for example, the Tenens equation or the Murray equation may be applied. In this manner, the steam amount control unit 48 can estimate the amount of steam in the heating furnace 1 .
  • the steel material S is preferably heated in the heating step so that the surface temperature of the steel material S reaches 1000 to 1250° C.
  • burner heating using hydrogen-based gas HG is performed in a furnace, and the oxidation of the steel material S is promoted by the water vapor contained in the combustion gas of the hydrogen-based gas HG, so that a predetermined scale thickness can be formed by the time the heating step is completed.
  • the steel material before the heating step contains impurities generated during casting or foreign matter due to mold powder mixed in during casting, the occurrence of surface defects can be suppressed by removing the scale using a descaling device or the like after the heating step is completed.
  • the heating temperature is less than 1000°C, scale of the appropriate thickness may not be generated, so the heating temperature must be 1000°C or higher.
  • the heating temperature is more preferably 1050°C or higher.
  • the heating temperature exceeds 1250°C, the thickness of the scale generated in the heating process becomes too thick, resulting in a decrease in product yield, so the heating temperature must be 1250°C or lower.
  • the heating temperature is more preferably 1200°C or lower.
  • is the scale thickness ( ⁇ m)
  • A is the frequency factor (1/s)
  • Q is the activation energy (J/mol)
  • T is the surface temperature of the steel (K)
  • R is the gas constant (J/molK)
  • t is the elapsed time (s).
  • the frequency factor is a value that indicates the number of collisions between reactive molecules per unit time.
  • the frequency factor A and the activation energy Q vary depending on the component composition of the steel material, and are therefore determined in advance by experiment for each type of steel material to be subjected to the heating process.
  • a temperature model of the steel material in the heating furnace is used that takes into consideration the effect of radiant heat from the furnace wall to the steel material, and the surface temperature of the steel material is calculated based on the actual measured atmospheric temperature in the heating furnace, position information (tracking information) of the steel material in the heating furnace, etc.
  • the temperature model of the steel material may be loaded into a control computer (process computer) 101 to execute temperature calculations.
  • the temperature calculation method is to replace the steel material with a mesh divided into finite parts in the thickness and width directions, and solve the heat conduction equation using the finite difference method or finite element method to calculate the temperature at the thickness and width directions.
  • the surface temperature of the steel material is the temperature calculated for the mesh located at the outermost layer in the thickness direction.
  • the heating process it is preferable to further control the amount of water vapor in the heating furnace 1 to 10-30% by volume by setting the flow rate of the hydrogen-based gas HG used for burner heating. If the amount of water vapor in the heating furnace 1 where the heating process is carried out is less than 10% by volume, the thickness of the scale formed on the surface of the steel material may be insufficient. On the other hand, if the amount of water vapor in the heating furnace 1 exceeds 30% by volume, scale on the surface of the steel material is likely to grow, and excessive scale may be formed.
  • FIG. 6 shows an example in which the thickness of scale formed on the surface of the steel material S was investigated after the steel material S was heated for a specified time while the heating temperature was set to 1050° C. in the heating process and the water vapor in the furnace was controlled to 5 volume %, 15 volume %, and 25 volume %.
  • the target thickness of the scale formed on the surface of the steel material is set to 350 ⁇ m or more and the reference value of the heating time in the heating process is set to 60 minutes (3,600 seconds), it can be seen from Figure 6 that when the water vapor in the heating furnace is as low as 5 volume %, the thickness of the scale formed on the surface of the steel material does not reach the target thickness.
  • the operating conditions of the heating furnace require the heating time to be extended beyond the standard value, which causes a problem of reduced production efficiency of the heating equipment 100.
  • the steam in the heating furnace is 15 or 25 volume %
  • the thickness of the scale formed on the surface of the steel material is equal to or greater than the target thickness, and it is considered that sufficient scale can be formed to remove casting defects, etc. present on the surface of the steel material.
  • the burner heating of the above embodiment in addition to setting the flow rate of the hydrogen-based gas used as the fuel for the burner heating, it is preferable to set at least one selected from the heating time and heating temperature of the metal material in the heating furnace as an operation parameter of the heating furnace, because, as shown in the above formula (1), the scale growth of the steel material in the heating furnace 1 is diffusion-limited and is affected by the heating time and heating temperature.
  • the flow rate of the hydrogen-based gas used as fuel for burner heating to a high value to promote scale formation in the heating furnace, while shortening the heating time of the metal material in the heating furnace to a time shorter than a preset time, it is possible to improve the production efficiency of the heating equipment while ensuring an appropriate amount of scale formation.
  • the heating furnace includes a preheating zone, a heating zone, and a soaking zone
  • the preheating zone 3, heating zone 4, and soaking zone 5 of the heating furnace 1 are often controlled to different atmospheric temperatures, with the soaking zone 5 having the highest atmospheric temperature. Since the formation of scale on metallic materials is promoted under conditions of high atmospheric temperature, the amount of scale formed on metallic materials can be significantly changed by changing the flow rate of the hydrogen-based gas.
  • Another embodiment of the method for controlling the amount of scale formation sets the operating parameters of the heating furnace so that the amount of scale formation on the surface of the heated material is within a preset range. This makes it possible to prevent the occurrence of surface defects in the metal material and further suppress a decrease in product yield.
  • the amount of scale formation will be explained using the thickness of scale formed on the surface of the heated material as an example.
  • a target thickness (hereinafter referred to as the target scale thickness) of the scale (oxide layer) formed on the surface of the metal material in the heating process is set in advance.
  • the target scale thickness is preferably set to a thickness equivalent to the thickness from the surface where impurities generated during casting and foreign matter caused by mold powder mixed in during casting that are distributed near the surface of the metal material before the heating process is performed are distributed, which is specified in advance.
  • the target scale thickness of the metal material to be heated may be set to about 50 to 1000 ⁇ m.
  • the target scale thickness may be set to 300 to 600 ⁇ m. This is because impurities generated during casting and foreign matter caused by mold powder mixed in during casting are often present in the range of approximately 300 to 600 ⁇ m from the surface of the steel material.
  • the thickness of the scale formed on the surface of the metal material in the heating process may be estimated using a mathematical model that models the growth behavior of oxides (hereinafter referred to as a scale thickness prediction model).
  • a scale thickness prediction model For example, the scale growth of a steel material can be estimated using the following equation (2).
  • f is a function of the oxygen partial pressure PO2 and the water vapor partial pressure PH2O in the heating furnace, and is determined in advance by an offline heating experiment. It is known that the oxygen partial pressure and the water vapor partial pressure affect the growth behavior of scale, but it is difficult to formulate this theoretically.
  • the scale thickness prediction model determined in advance as described above is loaded into the control computer 101 that sets the operating conditions of the heating equipment 100, and the predicted value of the scale thickness that will form on the surface of the metal material is calculated based on the information that the control computer 101 acquires from the heating furnace 1.
  • the operating parameters of the heating furnace 1 are acquired from the control computer 101 (acquisition step).
  • the scale thickness at the stage when the heating process is completed is predicted (prediction step).
  • a command is issued to the control computer 101 to maintain the current operating conditions of the heating furnace 1.
  • a setting command is issued to the control computer 101 to change the operating parameters of the heating furnace 1 (setting step).
  • the heating time and heating temperature of the heating process may be used. Changing the flow rate of the hydrogen-based gas HG used in the heating process changes the water vapor generated by the burner heating, which allows the amount of scale generated on the metal material to be controlled.
  • changing the heating time of the heating process changes the thickness of the oxide layer of the metal material generated in the heating process.
  • changing the heating temperature of the heating process (ambient temperature in each zone inside the heating furnace) changes the thickness of the oxide layer of the metal material generated in the heating process. In this case, the heating temperature of the heating process may be changed by changing the ambient temperature of the soaking zone.
  • the acquisition unit 56 acquires the operation parameters of the heating furnace 1 from the control computer 101.
  • the acquisition unit 56 acquires the flow rate of the hydrogen-based gas HG used as fuel for the hydrogen-based burner equipment 70, 71 of the heating furnace 1 as the operation parameters of the heating furnace 1.
  • the acquisition unit 56 acquires the set values of the heating time and heating temperature of the metal material in the heating furnace 1 as the operation parameters of the heating furnace 1.
  • the acquisition unit 56 may also acquire measured values of the temperature and dew point of the atmospheric gas in the heating furnace 1.
  • the prediction unit 57 When the prediction unit 57 acquires the operating parameters of the heating furnace 1 from the acquisition unit 56, it reads out the scale thickness prediction model stored in the memory unit 55. The prediction unit 57 inputs the operating parameters of the heating furnace 1 into the scale thickness prediction model and outputs a predicted value of the scale thickness (predicted scale thickness), thereby predicting the amount of scale generation. The prediction unit 57 may display the predicted predicted scale thickness on the output unit 54. This allows the operator to confirm the predicted value of the amount of scale generation in the heating process by visually checking the output unit 54.
  • the prediction unit 57 outputs the predicted scale thickness to the judgment unit 58.
  • the judgment unit 58 judges whether the predicted value of the scale thickness obtained from the prediction unit 57 is within the range of the target scale thickness.
  • the target scale thickness may be obtained from the control computer 101 and stored in the memory unit 55.
  • the target scale thickness may be input by the operator from the input unit 53, or may be input in advance by the operator and stored in the memory unit 55.
  • the judgment unit 58 outputs the judgment result of whether the predicted value of the scale thickness is within the range of the target scale thickness to the setting unit 59.
  • the setting unit 59 When the setting unit 59 obtains a judgment result from the judgment unit 58 that the scale predicted thickness is within the range of the scale target thickness, the setting unit 59 outputs a command to maintain the current operating parameters of the heating furnace 1 to the control computer 101, since the operating parameters of the heating furnace 1 obtained by the acquisition unit 56 can be used to control the scale predicted thickness to a predetermined range of the scale target thickness. On the other hand, when the setting unit 59 obtains a judgment result from the judgment unit 58 that the scale predicted thickness is not within the range of the scale target thickness, the setting unit 59 changes the operating parameters of the heating furnace 1 obtained by the acquisition unit 56.
  • the setting unit 59 assumes new setting values obtained by changing the operating parameters of the heating furnace 1 from the current setting values, and outputs the setting values to the prediction unit 57.
  • the prediction unit 57 again inputs the new setting values into the scale thickness prediction model, predicts the scale thickness, and outputs the setting values to the judgment unit 58.
  • the judgment unit 58 judges whether the newly acquired predicted value of the scale thickness is within the range of the scale target thickness.
  • the prediction unit 57 and the judgment unit 58 repeat this process until the predicted value of the scale thickness is within the range of the scale target thickness.
  • the setting unit 59 then identifies the operating parameters of the heating furnace 1 that will bring the predicted value of the scale thickness within the range of the target scale thickness, and outputs these to the control computer 101.
  • the control computer 101 controls the heating equipment 100 to realize the set operating parameters of the heating furnace 1 based on the information obtained from the setting unit 59.
  • test device that simulates the above heating process.
  • the test device used in this example is a combustion gas heating furnace that performs burner heating.
  • the combustion gas heating furnace in which the heating process is carried out has internal dimensions of 800mm high x 500mm wide x 1000mm long.
  • the combustion gas heating furnace has burners placed on the top and bottom of the test pieces to be placed inside the furnace, and is configured to supply a mixed gas of hydrogen-based gas and coal gas from a fuel gas supply system.
  • the hydrogen-based gas used in the mixed gas was ammonia, and the coal gas used was M gas, a mixture of by-product gases generated in steelworks.
  • the combustion conditions used in the examples were as follows: ammonia flow rate supplied to the burner was 50 Nm3 /hr, M gas flow rate was 117 Nm3 /hr, ammonia volume ratio in the mixed gas was 30%, and M gas volume ratio was 70%. Note that the M gas used had a composition that would result in 13 volume % of carbon dioxide being discharged into the exhaust gas under complete combustion conditions. On the other hand, in the embodiment, the mixture ratio of ammonia was adjusted to set the burner heating conditions so that the carbon dioxide concentration in the exhaust gas in the heating step was 9% by volume.
  • carbon steel with plate thickness of 220 mm x plate width of 300 mm x plate length of 500 mm was used as the metal material to be heated.
  • the heated material was taken by machining from the slab after casting, and a ⁇ 0.5 mm K-sheathed thermocouple was attached at a position 2 mm deep from the surface in the center of the plate width and length. This allowed the temperature rise behavior of the heated material during the heating process to be measured, and the surface temperature of the heated material was estimated based on the measurement results.
  • Figure 8 shows the relationship between the water vapor concentration in the combustion gas heating furnace and the thickness of the scale on the heated material for each heating temperature.
  • the heating time was 60 minutes.
  • the thickness of the scale when the surface temperature set in the combustion gas heating furnace was reached, the heated material was removed from the combustion gas heating furnace and immediately cooled with water. This prevented further scale growth. An evaluation sample was then machined from the heated material, and the cross section of the heated material was observed under an optical microscope to determine the thickness of the scale.
  • Figure 8 shows that the scale thickness of the heated material can be controlled by changing the water vapor concentration in the combustion gas heating furnace according to the heating temperature.
  • a scale thickness prediction model was generated based on the results of the preliminary experiment in Figure 8, as well as the results of an investigation in which the heating time was changed.
  • a mathematical model was used that models the oxide growth behavior shown in formula (2).
  • the generated scale thickness prediction model was stored in the memory unit 55 of the scale formation amount control device 51, and the amount of scale formation on the metal material was controlled by setting the flow rate of the hydrogen-based gas used as fuel for burner heating as an operating parameter of the heating furnace.
  • the target scale thickness of the carbon steel used for the heated material was set to the range of 350 to 600 ⁇ m.
  • the range in which the carbon steel used for the heated material contains impurities generated during casting and foreign matter caused by mold powder mixed in during casting was specified in advance, and the target scale thickness was set to this range. That is, if the thickness of scale generated on the evaluation sample taken from the heated material is less than 350 ⁇ m, the thickness of the scale may be insufficient and surface defects may occur when the material is subjected to hot rolling, etc. On the other hand, if the thickness of the scale exceeds 600 ⁇ m, excessive scale generation may result in a decrease in product yield.
  • heating conditions and test results are shown in Table 1.
  • "heating temperature,”"hydrogen-basedgas,” and “mixing ratio of hydrogen-based gas” represent initial conditions for the operation parameters of the heating furnace that were previously set.
  • "Operation parameters of the heating furnace to be changed” indicates the operation parameters that are reset by the setting unit 59 when the determination unit 58 determines that the predicted value of the scale thickness is not within the range of the target scale thickness.
  • conditions 5 and 6 mean that the heating time or the heating temperature is reset in addition to the hydrogen-based gas flow rate as the operation parameter to be reset by the setting unit 59.
  • the “water vapor amount” indicates the concentration of water vapor in the furnace after the operation parameters of the heating furnace are set by the setting unit 59.
  • the "scale thickness” indicates the scale thickness obtained by taking an evaluation sample in the same manner as above and observing the cross section of the heated material with an optical microscope.
  • the scale thickness generated on the evaluation sample taken from the heated material was within the range of the target scale thickness of 350 to 600 ⁇ m, and therefore was judged to be pass ( ⁇ ).
  • the heating temperature was set at a relatively high 1100° C.
  • the amount of water vapor in the furnace was controlled to be low, so the scale thickness of the heated material was within the range of the target scale thickness.
  • the heating temperature was relatively low at 1,050°C and the mixture ratio of hydrogen-based gas was low, so the heating conditions were not conducive to promoting scale formation.
  • the scale thickness of the heated material was within the range of the target scale thickness.
  • this embodiment can reduce carbon dioxide emissions by using hydrogen or ammonia as fuel gas for the heating furnace, and can also control the amount of scale generation within an appropriate range, reducing the occurrence of surface defects in metal materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Provided are: a method for controlling a scale generation amount of a metal material to control the scale generation amount to within an appropriate range in a case where a carbon dioxide discharge amount is to be reduced by using hydrogen or ammonia as a fuel gas of a heating furnace for heating the metal material; a scale generation amount control device; and a heating furnace operation method. According to the method for controlling a scale generation amount of a metal material in a heating furnace, the metal material is burner-heated using, as a fuel, a hydrogen-based gas containing in full either one or both of hydrogen and ammonia, the flow rate of the hydrogen-based gas used as the burner heating fuel is set as a heating furnace operating parameter, and the scale generation amount generated on the surface of the metal material is controlled on the basis of the flow rate of the hydrogen-based gas thus set. At least one item selected from a heating time and a heating temperature of the metal material in the heating furnace is also preferably set as a heating furnace operating parameter.

Description

加熱炉における金属材料のスケール生成量制御方法、スケール生成量制御装置および加熱炉の操業方法Method for controlling the amount of scale formation on metal materials in a heating furnace, device for controlling the amount of scale formation, and method for operating a heating furnace

 本発明は、加熱炉における金属材料のスケール生成量制御方法、スケール生成量制御装置およびそのスケール生成量制御方法を用いた加熱炉の操業方法に関する。 The present invention relates to a method for controlling the amount of scale formation on metal materials in a heating furnace, a device for controlling the amount of scale formation, and a method for operating a heating furnace using the method for controlling the amount of scale formation.

 銑鋼一貫製鉄所においては、鉄鉱石を還元して溶銑を製造する高炉の炉頂から排出される高炉ガスをはじめとして、転炉やコークス炉で発生する副生ガスを燃料ガス等として有効利用してきた。しかし、近年二酸化炭素の排出量削減の要求に伴い、これらの副生ガスの使用量を低減するための燃焼技術が求められるようになってきた。例えば、銑鋼一貫製鉄所の熱間圧延ラインで鋼材の加熱を行う加熱炉でも、副生ガスの使用量を低減し、二酸化炭素の排出量を削減することが求められるようになっている。この場合、加熱炉の燃料ガスとして、水素やアンモニアを利用する技術が着目される。すなわち、炭素元素を含まない水素やアンモニアは、燃焼しても主として水や窒素を発生するのみであるから二酸化炭素排出量の削減効果が大きく、加熱炉への適用が望まれている。 In integrated steelworks, blast furnace gas discharged from the top of the blast furnace, which reduces iron ore to produce molten iron, and by-product gases generated in converters and coke ovens have been effectively used as fuel gas. However, in recent years, with the demand for reducing carbon dioxide emissions, combustion technology has been required to reduce the amount of by-product gas used. For example, in the heating furnaces that heat steel materials in the hot rolling lines of integrated steelworks, there is a demand to reduce the amount of by-product gas used and the amount of carbon dioxide emissions. In this case, technology that uses hydrogen and ammonia as fuel gas for heating furnaces is attracting attention. In other words, hydrogen and ammonia, which do not contain carbon elements, mainly produce water and nitrogen when burned, so they are effective in reducing carbon dioxide emissions, and their application to heating furnaces is desirable.

 ところで、加熱炉では、鋼材を加熱する過程で、鋼材の表面にスケール(酸化スケールとも呼ばれる。)が生成する。加熱炉で生成するスケールは1次スケールとも呼ばれ、熱間圧延ライン等に配置されるデスケーリング装置により除去される。そのため、加熱炉で生成するスケールの厚みが厚くなると、鋼板製品となる鋼材の重量が減少し、製品歩留まりが低下するという問題がある。 In the heating furnace, scale (also called oxide scale) forms on the surface of the steel material during the process of heating the steel material. The scale formed in the heating furnace is also called primary scale, and is removed by descaling equipment installed in hot rolling lines, etc. Therefore, if the scale formed in the heating furnace becomes too thick, the weight of the steel material to be made into steel plate products decreases, resulting in a problem of lower product yield.

 一方で、加熱炉に装入される鋼材の表面近傍には、鋳造時に生成する不純物や鋳造時に混入するモールドパウダー等に起因した異物が存在することがある。加熱炉から抽出される鋼材の表面に不純物や異物が存在したまま熱間圧延が行われると、鋼材と圧延ロールとの間にこれらが噛み込まれ、鋼板の表面に欠陥が生じる。そのため、加熱炉で生成する鋼材のスケールをある程度の厚みまで生成させ、デスケーリング装置によって表面の不純物や異物をスケールと共に除去してから熱間圧延が行われる。 On the other hand, impurities generated during casting and foreign matter caused by mold powder mixed in during casting may be present near the surface of the steel material fed into the heating furnace. If hot rolling is performed with impurities or foreign matter still present on the surface of the steel material extracted from the heating furnace, these will become caught between the steel material and the rolling rolls, causing defects on the surface of the steel plate. For this reason, the scale generated on the steel material in the heating furnace is allowed to grow to a certain thickness, and then the surface impurities and foreign matter are removed together with the scale by a descaling device before hot rolling is performed.

 つまり、鋼材の加熱炉では、過度なスケール生成を抑えることで製品歩留まりの低下を抑えると共に、所定量のスケールを積極的に生成させることにより表面欠陥の発生を抑制するために、適正な量にスケール生成を制御することが求められる。 In other words, in steel heating furnaces, it is necessary to control the amount of scale generation to an appropriate level in order to prevent a decrease in product yield by preventing excessive scale generation, and to actively generate a specified amount of scale to prevent the occurrence of surface defects.

 そこで、これらの問題を解決するため、鋼材表面のスケール生成の制御技術が提案されている。
 特許文献1には、過度なスケール生成を抑える技術として、加熱炉内の鋼材まわりに、加熱中の鋼材温度以上または炉温と略等しい温度に予熱した高温無酸化性ガスを供給する鋼材の無酸化加熱方法が開示されている。
In order to solve these problems, techniques for controlling the formation of scale on the steel surface have been proposed.
Patent Document 1 discloses a non-oxidizing heating method for steel as a technology for suppressing excessive scale formation, in which high-temperature non-oxidizing gas that has been preheated to a temperature equal to or higher than the temperature of the steel being heated or approximately equal to the furnace temperature is supplied around the steel in a heating furnace.

 特許文献2には、加熱炉の炉内へ高温の不活性ガスを供給する複数の蓄熱式加熱装置と、炉内へ燃焼ガスを供給する複数のガスバーナとを備え、しかも高温の不活性ガスの供給と燃焼ガスの供給が独立して行われるように制御される鋼材の加熱炉が開示されている。
 これにより、高温の不活性ガスを複数の蓄熱式加熱装置から交互に供給することにより鋼材を無酸化で加熱できるとされている。
Patent Document 2 discloses a steel heating furnace that is equipped with a plurality of regenerative heating devices that supply high-temperature inert gas into the furnace and a plurality of gas burners that supply combustion gas into the furnace, and that is controlled so that the supply of high-temperature inert gas and the supply of combustion gas are carried out independently.
It is said that this makes it possible to heat steel without oxidizing it by alternately supplying high-temperature inert gas from multiple regenerative heating devices.

 一方、所定量のスケールを生成させる技術として、特許文献3には、熱間圧延に供する鋼材を加熱炉で加熱する際に、加熱炉内へ水分を供給し、加熱炉内の露点を調整する、鋼材の加熱方法が開示されている。これにより、鋼材表面の酸化が促進され、鋼材の表層から0.5mm程度の位置までに集中している鋳造欠陥を、スケールと共に除去できるので、鋼板製品の表面品質を向上させることができるとされている。 On the other hand, as a technology for generating a predetermined amount of scale, Patent Document 3 discloses a method for heating steel in which, when steel to be subjected to hot rolling is heated in a heating furnace, moisture is supplied into the heating furnace to adjust the dew point inside the heating furnace. This promotes oxidation of the steel surface, and casting defects concentrated within a position of about 0.5 mm from the surface layer of the steel can be removed together with the scale, which is said to improve the surface quality of steel plate products.

 また、スケール生成量を適正な範囲に制御する技術として、特許文献4には、熱間圧延用スラブの加熱方法として、加熱炉抽出時のスラブのスケール厚を予測し、スケール厚が所定の値となるようにスラブの加熱温度や加熱時間を設定する方法が開示されている。 As a technique for controlling the amount of scale generation within an appropriate range, Patent Document 4 discloses a method for heating a slab for hot rolling in which the scale thickness of the slab when removed from the heating furnace is predicted, and the heating temperature and heating time of the slab are set so that the scale thickness becomes a predetermined value.

特開平9-20919号公報Japanese Patent Application Publication No. 9-20919 特開2000-248314号公報JP 2000-248314 A 特開平5-331532号公報Japanese Patent Application Publication No. 5-331532 特開平7-54036号公報Japanese Patent Application Publication No. 7-54036

 しかし、燃料ガスとして水素やアンモニアを使用する加熱炉において鋼材のスケール生成量を適正な範囲に制御する上で、従来技術を適用した場合には以下のような課題が生じる。 However, when applying conventional technology to control the amount of scale formation on steel within an appropriate range in a heating furnace that uses hydrogen or ammonia as fuel gas, the following problems arise:

 特許文献1に記載された技術は、加熱炉内に装入された鋼材まわりに局所的な無酸化性雰囲気を作るために、高温無酸化性ガスを加熱炉内に供給する。
 ところが、水素やアンモニアを燃料ガスとして加熱炉内で燃焼させると、燃料ガス中の水素と、燃焼用空気中の酸素とが結合して水蒸気が生成される。そのため、加熱炉内で無酸化雰囲気を形成したとしても、生成した水蒸気により鋼材表面のスケール成長が促進されるという課題がある。
The technique described in Patent Document 1 supplies a high-temperature non-oxidizing gas into a heating furnace in order to create a localized non-oxidizing atmosphere around steel material charged in the heating furnace.
However, when hydrogen or ammonia is burned as fuel gas in a heating furnace, the hydrogen in the fuel gas combines with the oxygen in the combustion air to generate water vapor, which poses a problem that the generated water vapor promotes the growth of scale on the steel surface even if a non-oxidizing atmosphere is formed in the heating furnace.

 特許文献2に記載された技術は、蓄熱式加熱装置を用いて、燃料ガスを燃焼させた排ガスが有する顕熱を蓄熱体により回収し、続いて蓄熱体に不活性ガスを通過させることにより高温の不活性ガスを加熱炉内に供給することで、加熱炉内での鋼材のスケール成長を抑制しようとするものである。
 しかし、燃料ガスとして水素やアンモニアを使用すると、蓄熱体が排ガス中の水蒸気も回収するため、蓄熱体を通過する不活性ガスが加湿されて加熱炉内に供給される。そのため、上記と同様に、加熱炉内に高温の不活性ガスを供給したとしても、水蒸気により鋼材表面のスケール生成が促進されるため、スケール生成量を適切な範囲に制御できないというという課題がある。
The technology described in Patent Document 2 uses a regenerative heating device to recover the sensible heat contained in the exhaust gas produced by burning fuel gas using a heat storage body, and then passes an inert gas through the heat storage body to supply high-temperature inert gas into the heating furnace, thereby attempting to suppress scale growth on steel in the heating furnace.
However, when hydrogen or ammonia is used as the fuel gas, the heat storage body also recovers water vapor in the exhaust gas, so that the inert gas passing through the heat storage body is humidified before being supplied to the heating furnace. Therefore, as in the above, even if high-temperature inert gas is supplied to the heating furnace, there is a problem that the amount of scale generation cannot be controlled within an appropriate range because the water vapor promotes the generation of scale on the steel surface.

 特許文献3は、加熱炉内へ水分を供給することにより鋼材表面の酸化を促進して鋼板製品の表面品質を向上させる効果が期待できるものの、燃料ガスとして水素やアンモニアを使用する場合には、鋼材の酸化が一層促進されるため、スケールが過大に成長してしまい、スケール生成量を適切な範囲に制御できないという課題が生じる。 Patent Document 3 is expected to have the effect of promoting oxidation of the steel surface by supplying moisture into the heating furnace, thereby improving the surface quality of steel plate products. However, when hydrogen or ammonia is used as the fuel gas, the oxidation of the steel is further promoted, causing excessive scale growth, and the amount of scale generation cannot be controlled within an appropriate range.

 特許文献4は、加熱温度や加熱時間を設定することにより、スケール生成量を制御するものである。しかし、鋼材の加熱炉は炉内容量が大きいため加熱温度を変更するには長時間を要する。また、加熱時間を変更する場合も、鋼材の加熱時間が長くなることがあり、いずれにしても加熱炉の生産能率が低下する点で改善の余地がある。 Patent Document 4 describes a method for controlling the amount of scale generation by setting the heating temperature and heating time. However, because the internal volume of a steel heating furnace is large, it takes a long time to change the heating temperature. Also, changing the heating time may result in a longer heating time for the steel, and in either case, there is room for improvement in that the production efficiency of the heating furnace decreases.

 本発明は、上記課題を解決するためになされたものであって、その目的は、金属材料を加熱する加熱炉の燃料ガスとして水素やアンモニアを使用することにより二酸化炭素の排出量を低減しようとする場合に、スケール生成量を適切な範囲に制御するための金属材料のスケール生成量制御方法、スケール生成量制御装置および加熱炉の操業方法を提供することにある。 The present invention has been made to solve the above problems, and its purpose is to provide a method for controlling the amount of scale formation on metal materials, a scale formation control device, and a method for operating a heating furnace, for controlling the amount of scale formation within an appropriate range when attempting to reduce carbon dioxide emissions by using hydrogen or ammonia as fuel gas in a heating furnace that heats metal materials.

 上記課題を有利に解決する本発明に係るスケール生成量制御方法は、以下のように構成される。 The method for controlling the amount of scale generation according to the present invention, which advantageously solves the above problems, is configured as follows.

[1]加熱炉における金属材料のスケール生成量制御方法であって、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスを燃料に用いて前記金属材料をバーナ加熱し、前記加熱炉の操業パラメータとして、前記バーナ加熱の燃料に用いる前記水素系ガスの流量を設定し、設定された水素系ガスの流量に基づいて金属材料の表面に生成するスケール生成量を制御する、加熱炉における金属材料のスケール生成量制御方法である。
[2]上記の[1]において、前記水素系ガスに、石炭ガスおよび炭化水素系ガスから選ばれる1種以上のガスを混合した混合ガスを燃料に用いて前記金属材料をバーナ加熱する、金属材料のスケール生成量制御方法である。
[3]上記の[1]又は[2]において、前記加熱炉の操業パラメータとして、さらに前記加熱炉における金属材料の加熱時間及び加熱温度から選択される少なくとも一つを設定し、設定された操業パラメータに基づいて金属材料の表面に生成するスケール生成量を制御する、加熱炉における金属材料のスケール生成量制御方法である。
[4]上記の[1]又は[2]において、前記加熱炉は予熱帯、加熱帯及び均熱帯を含み、水素系ガスを燃料に用いて、前記均熱帯でバーナ加熱し、前記加熱炉の操業パラメータとして、前記均熱帯のバーナ加熱の燃料に用いる前記水素系ガスの流量を設定し、設定された水素系ガスの流量に基づいて金属材料の表面に生成するスケール生成量を制御する、加熱炉における金属材料のスケール生成量制御方法である。
[5]上記の[1]又は[2]において、金属材料のスケール生成量が予め設定された範囲になるように、加熱炉の前記操業パラメータに基づいて、スケール生成量を制御する、加熱炉における金属材料のスケール生成量制御方法である。
[6]上記の[3]において、金属材料のスケール生成量が予め設定された範囲になるように、加熱炉の前記操業パラメータに基づいて、スケール生成量を制御する、加熱炉における金属材料のスケール生成量制御方法である。
[7]上記の[4]において、金属材料のスケール生成量が予め設定された範囲になるように、加熱炉の前記操業パラメータに基づいて、スケール生成量を制御する、加熱炉における金属材料のスケール生成量制御方法である。
[1] A method for controlling the amount of scale formation on a metallic material in a heating furnace, comprising the steps of: burning-heating the metallic material using a hydrogen-based gas containing either hydrogen or ammonia or both as fuel; setting a flow rate of the hydrogen-based gas used as fuel for the burner heating as an operational parameter of the heating furnace; and controlling the amount of scale formation on the surface of the metallic material based on the set flow rate of the hydrogen-based gas.
[2] The method for controlling the amount of scale formation on a metallic material according to the above-mentioned [1], further comprising the step of heating the metallic material with a burner using a mixed gas as fuel, the mixed gas being a mixture of the hydrogen-based gas and one or more gases selected from coal gas and a hydrocarbon-based gas.
[3] In the above-mentioned [1] or [2], a method for controlling the amount of scale formation on a metallic material in a heating furnace further comprises setting at least one selected from a heating time and a heating temperature of the metallic material in the heating furnace as an operation parameter of the heating furnace, and controlling the amount of scale formation formed on the surface of the metallic material based on the set operation parameter.
[4] In the above-mentioned [1] or [2], the heating furnace includes a pre-heating zone, a heating zone, and a soaking zone, and a hydrogen-based gas is used as a fuel for burner heating in the soaking zone, and a flow rate of the hydrogen-based gas used as a fuel for burner heating in the soaking zone is set as an operation parameter of the heating furnace, and the amount of scale formation on the surface of the metal material is controlled based on the set flow rate of the hydrogen-based gas.
[5] In the above [1] or [2], a method for controlling the amount of scale formation on a metallic material in a heating furnace, the method controls the amount of scale formation on the metallic material based on the operation parameters of the heating furnace so that the amount of scale formation falls within a preset range.
[6] In the above [3], the method for controlling the amount of scale formation on a metallic material in a heating furnace controls the amount of scale formation on the metallic material based on the operational parameters of the heating furnace so that the amount of scale formation falls within a preset range.
[7] A method for controlling the amount of scale formation on a metallic material in a heating furnace according to the above-mentioned [4], wherein the amount of scale formation on the metallic material is controlled based on the operational parameters of the heating furnace so that the amount of scale formation falls within a preset range.

 上記課題を有利に解決する本発明に係るスケール生成量制御装置および加熱炉の操業方法は、以下のように構成される。
[8]加熱炉における金属材料のスケール生成量制御装置であって、バーナ加熱の燃料に用いる、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスの流量を含む加熱炉の操業パラメータを取得する取得部と、取得した操業パラメータを用いて前記金属材料のスケール生成量を予測する予測部と、予測したスケール生成量が予め設定された範囲であるか判定する判定部と、及び予測したスケール生成量が予め設定された範囲にない場合に前記加熱炉の操業パラメータを設定する設定部と、を含む制御部を備える、加熱炉における金属材料のスケール生成量制御装置である。
[9]上記の[8]において、前記水素系ガスに、石炭ガスおよび炭化水素系ガスから選ばれる1種以上のガスを混合した混合ガスの流量を含む加熱炉の操業パラメータを取得する取得部とする、加熱炉における金属材料のスケール生成量制御装置である。
[10]上記の[5]に記載の、加熱炉における金属材料のスケール生成量制御方法を用いて鋼素材を加熱する加熱炉の操業方法である。
[11]上記の[6]に記載の、加熱炉における金属材料のスケール生成量制御方法を用いて鋼素材を加熱する加熱炉の操業方法である。
[12]上記の[7]に記載の、加熱炉における金属材料のスケール生成量制御方法を用いて鋼素材を加熱する加熱炉の操業方法である。
The scale formation amount control device and the heating furnace operation method according to the present invention, which advantageously solve the above problems, are configured as follows.
[8] A device for controlling the amount of scale formation on a metallic material in a heating furnace, the device comprising a control unit including an acquisition unit that acquires operating parameters of the heating furnace including a flow rate of a hydrogen-based gas, the total amount of which is either hydrogen or ammonia or both, used as fuel for burner heating, a prediction unit that predicts the amount of scale formation on the metallic material using the acquired operating parameters, a determination unit that determines whether the predicted amount of scale formation is within a predetermined range, and a setting unit that sets the operating parameters of the heating furnace if the predicted amount of scale formation is not within the predetermined range.
[9] In the above [8], the device for controlling the amount of scale formation on metal materials in a heating furnace includes an acquisition unit that acquires operation parameters of the heating furnace including a flow rate of a mixed gas obtained by mixing the hydrogen-based gas with one or more gases selected from coal gas and a hydrocarbon-based gas.
[10] A method for operating a heating furnace in which a steel material is heated using the method for controlling the amount of scale formation on a metallic material in a heating furnace according to [5] above.
[11] A method for operating a heating furnace in which a steel material is heated using the method for controlling the amount of scale formation on a metallic material in a heating furnace according to [6] above.
[12] A method for operating a heating furnace in which a steel material is heated using the method for controlling the amount of scale formation on a metallic material in a heating furnace according to [7] above.

 本発明によれば、加熱炉の燃料ガスとして水素やアンモニアを使用することにより二酸化炭素の排出量を低減できると共に、スケール生成量を適切な範囲に制御して、金属材料の表面欠陥の発生を低減しながら、製品歩留まりの悪化を抑制することができる。 According to the present invention, by using hydrogen or ammonia as the fuel gas for the heating furnace, it is possible to reduce carbon dioxide emissions, and by controlling the amount of scale generation within an appropriate range, it is possible to reduce the occurrence of surface defects in metal materials while suppressing deterioration of product yield.

一実施形態に係る、加熱炉の概略を示す構成図である。FIG. 1 is a schematic diagram illustrating a heating furnace according to one embodiment. 加熱炉におけるバーナ設備の配置を示す構成図である。FIG. 2 is a configuration diagram showing the arrangement of burner equipment in a heating furnace. バーナ設備の一例の構成図である。FIG. 1 is a configuration diagram of an example of a burner facility. 一実施形態に係る、加熱炉の水素系バーナ設備の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a hydrogen-based burner facility for a heating furnace according to one embodiment; 水素系バーナ設備の一例の構成図である。FIG. 1 is a configuration diagram of an example of a hydrogen-based burner facility. 鋼材の表面のスケール厚みと炉内の水蒸気量を変化させた場合の加熱時間の関係を示すグラフである。1 is a graph showing the relationship between the scale thickness on the surface of the steel material and the heating time when the amount of water vapor in the furnace is changed. 一実施形態に係るスケール生成量制御装置の構成図である。FIG. 1 is a configuration diagram of a scale generation amount control device according to an embodiment. 鋼材の表面のスケール厚みと炉内の被加熱材の表面温度を変化させた場合の炉内の水蒸気濃度の関係を示すグラフである。1 is a graph showing the relationship between the scale thickness on the surface of the steel material and the water vapor concentration in the furnace when the surface temperature of the heated material in the furnace is changed.

 以下、本実施形態に係る加熱炉における金属材料のスケール生成量制御装置について説明する。 The following describes the device for controlling the amount of scale formation on metal materials in a heating furnace according to this embodiment.

 本実施形態に係るスケール生成量制御装置は、バーナ加熱の燃料に用いる、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスの流量を含む加熱炉の操業パラメータを取得する取得部と、取得した操業パラメータを用いて前記金属材料のスケール生成量を予測する予測部と、予測したスケール生成量が予め設定された範囲であるか判定する判定部と、予測したスケール生成量が予め設定された範囲にない場合に前記加熱炉の操業パラメータを設定する設定部と、を備える。 The scale generation amount control device according to this embodiment includes an acquisition unit that acquires operating parameters of the heating furnace, including the flow rate of hydrogen-based gas, the total amount of which is either hydrogen or ammonia or both, used as fuel for burner heating; a prediction unit that predicts the amount of scale generation of the metal material using the acquired operating parameters; a determination unit that determines whether the predicted amount of scale generation is within a preset range; and a setting unit that sets the operating parameters of the heating furnace if the predicted amount of scale generation is not within the preset range.

 まず、バーナ設備を備える加熱炉について説明する。
<加熱設備>
 図1は、本発明の一実施形態に係る金属材料の加熱設備の断面図を模式的に示したものである。加熱設備は、内部に被加熱材を装入して所定の温度まで昇温させる設備である。被加熱材は金属材料を対象とするが、酸化により表面に酸化物(以下スケールという。)を生成する金属材料であれば、鉄系金属であっても非鉄系金属であってもよい。被加熱材の加熱温度は、500~1400℃である。以下では、金属材料として鋼材を対象に、鋼材を加熱する加熱設備について説明する。
First, a heating furnace equipped with a burner system will be described.
<Heating equipment>
FIG. 1 is a schematic cross-sectional view of a heating facility for metal materials according to an embodiment of the present invention. The heating facility is a facility in which a material to be heated is placed inside and heated to a predetermined temperature. The material to be heated is a metal material, but it may be either an iron-based metal or a non-ferrous metal as long as it is a metal material that generates an oxide (hereinafter referred to as scale) on its surface due to oxidation. The heating temperature of the material to be heated is 500 to 1400° C. In the following, a heating facility for heating steel material will be described, taking steel material as the metal material.

 図1に示す加熱設備100は、例えば鋼板や鋼帯を製造する熱間圧延ラインに設置され、鋳造された鋼材を所定の加熱温度(1100~1300℃程度)に加熱する。ただし、被加熱材である鋼材は、鋼板素材となるスラブに限定されず、ビレットやブルームなど、形鋼、棒線、鋼管などの素材となる鋼材を含む。
 加熱設備100は、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスを含む燃料ガスを用いたバーナ加熱により鋼材を加熱する加熱炉1を備える。加熱炉1で被加熱材である金属材料を加熱する工程を加熱工程と呼ぶ。
 また、加熱設備100では、加熱工程の操業を制御するため、各種の操業パラメータのデータ解析を行う制御用計算機101が設置されるのが好ましい。
1 is installed in a hot rolling line for producing steel plates or steel strips, for example, and heats cast steel material to a predetermined heating temperature (approximately 1100 to 1300° C.). However, the steel material to be heated is not limited to slabs that are used as steel plate materials, but includes billets, blooms, and other steel materials that are used as materials for shaped steel, wire rods, steel pipes, and the like.
The heating equipment 100 includes a heating furnace 1 that heats steel material by burner heating using a fuel gas containing a hydrogen-based gas whose total amount is either hydrogen or ammonia or both. The process of heating the metal material to be heated in the heating furnace 1 is called the heating process.
In addition, in the heating equipment 100, a control computer 101 is preferably installed for performing data analysis of various operational parameters in order to control the operation of the heating process.

<加熱炉>
 加熱炉1は、鋼材Sを装入(以下搬入ともいう。)する装入部8と、鋼材Sを搬出(以下抽出ともいう。)する搬出部9と、を備える。例えば、連続鋳造ラインで製造された鋼材(スラブ)は、加熱炉1の装入側のヤードに搬送され、熱間圧延ライン等の生産スケジュールに従って装入部8から加熱炉1に装入される。
<Heating furnace>
The heating furnace 1 includes a charging section 8 for charging (hereinafter also referred to as "carrying in") the steel material S, and an unloading section 9 for unloading (hereinafter also referred to as "extracting") the steel material S. For example, steel material (slabs) produced in a continuous casting line is transported to a yard on the charging side of the heating furnace 1, and is charged into the heating furnace 1 from the charging section 8 according to a production schedule of a hot rolling line or the like.

 加熱炉1の内部は複数の帯域に区切られており、鋼材の搬送方向の上流側から、1~3個の帯域に区切られた予熱帯3と、2~8個の帯域に区切られた加熱帯4と、1~3個の帯域に区切られた均熱帯5とから構成される。加熱炉1には、鋼材Sを装入部8から搬出部9に向けて順次搬送する搬送装置10が配置される。
 加熱炉1の各帯域は異なる雰囲気温度に制御されており、搬送装置10が鋼材Sを予熱帯3、加熱帯4、均熱帯5の順に搬送することにより、加熱炉1に装入された鋼材Sの平均温度が徐々に昇温して加熱炉1における所定の加熱温度(目標加熱温度)まで加熱される。
The inside of the heating furnace 1 is divided into a plurality of zones, and from the upstream side in the conveying direction of the steel material, it is composed of a preheating zone 3 divided into 1 to 3 zones, a heating zone 4 divided into 2 to 8 zones, and a soaking zone 5 divided into 1 to 3 zones. A conveying device 10 is arranged in the heating furnace 1 to convey the steel material S sequentially from a charging section 8 to an unloading section 9.
Each zone of the heating furnace 1 is controlled to a different atmospheric temperature, and the conveying device 10 conveys the steel material S through the preheating zone 3, the heating zone 4, and the soaking zone 5 in that order, so that the average temperature of the steel material S charged into the heating furnace 1 gradually increases and the steel material S is heated to a predetermined heating temperature (target heating temperature) in the heating furnace 1.

 搬送装置10は、スキッドと呼ばれる鋼材Sの支持機構を備えており、鋼材Sを支持する固定スキッド10aと、鋼材Sを持ち上げて移動させる移動スキッド10bがある。移動スキッド10bは、加熱炉1内で昇降、前進、下降、後退を繰り返すことにより、鋼材Sを搬出部9に向けて搬送する。 The transport device 10 is equipped with a support mechanism for the steel material S called a skid, and includes a fixed skid 10a that supports the steel material S, and a movable skid 10b that lifts and moves the steel material S. The movable skid 10b transports the steel material S toward the discharge section 9 by repeatedly ascending and descending, moving forward, descending, and retreating within the heating furnace 1.

 加熱炉1の内部には、鋼材Sの搬送方向に沿って複数のバーナ6が備えられている。バーナ6は、燃焼により加熱炉1の内部を昇温するために配置される。バーナ6により加熱炉1の内部が昇温されると、加熱炉1の炉壁からの輻射により鋼材Sの温度が上昇する。
 また、加熱炉1の内部において雰囲気ガスの流動が生じ、対流により鋼材Sが昇温されることがある。さらに、バーナ6の火炎が直接鋼材Sに接触することにより鋼材Sが昇温されてもよい。いずれにしても、バーナ6は、加熱炉1の内部を昇温させることにより、加熱炉1内部の鋼材Sを加熱する。
A plurality of burners 6 are provided inside the heating furnace 1 along the transport direction of the steel material S. The burners 6 are arranged to heat the inside of the heating furnace 1 by combustion. When the inside of the heating furnace 1 is heated by the burners 6, the temperature of the steel material S increases due to radiation from the furnace wall of the heating furnace 1.
Also, a flow of atmospheric gas may occur inside the heating furnace 1, and the temperature of the steel material S may be increased by convection. Furthermore, the temperature of the steel material S may be increased by the direct contact of the flame of the burner 6 with the steel material S. In any case, the burner 6 heats the steel material S inside the heating furnace 1 by increasing the temperature inside the heating furnace 1.

 バーナ6は、加熱炉1内部の複数の帯域ごとに配置される。ただし、帯域の数とバーナの数とは必ずしも一致しなくてもよい。図1に示す加熱炉1には、装入部8から搬出部9に向けて、鋼材Sの上面側に上部バーナ6aが配置され、鋼材Sの下面側に下部バーナ6bが配置されている。また、図1に示す加熱炉1には、鋼材Sの搬送方向に対する一方の側壁面から対向する側壁面の方向に向けて火炎を噴射するサイドバーナを模式的に記載しているが、鋼材Sの搬送方向と同一の方向に火炎を噴射する軸流バーナや加熱炉の天井から内部に火炎を噴射するルーフバーナが用いられてもよい。 The burners 6 are arranged in each of several zones inside the heating furnace 1. However, the number of zones does not necessarily have to match the number of burners. In the heating furnace 1 shown in FIG. 1, upper burners 6a are arranged on the upper surface side of the steel material S from the loading section 8 toward the discharge section 9, and lower burners 6b are arranged on the lower surface side of the steel material S. Also, in the heating furnace 1 shown in FIG. 1, side burners that spray flames from one side wall surface in the conveying direction of the steel material S toward the opposing side wall surface are shown as a schematic, but axial burners that spray flames in the same direction as the conveying direction of the steel material S or roof burners that spray flames from the ceiling of the heating furnace into the interior may also be used.

 図2は、加熱炉6を構成する一部の帯域を例として、加熱炉1に配置されるバーナ6の配管系統を示す。加熱炉1に配置されるバーナ6(上部バーナ6a、下部バーナ6b)は、燃料ガスGを供給する燃料ガス供給系統31および燃焼用空気Aを供給する燃焼用空気供給系統32と接続されている。燃料ガス供給系統31および燃焼用空気供給系統32は、ブロア(図示せず)などと接続されており、バーナ6に燃料ガスGおよび燃焼用空気Aを供給する。これによりバーナ6から燃料ガスGおよび燃焼用空気Aが噴射され、燃料ガスGが拡散することにより燃焼して火炎が加熱炉の内部に吹き込まれる。燃焼用空気Aは、大気から収集される空気を用いてよい。ただし、空気中の窒素を取り除いたり、純酸素を加えたりするなどして、改質した空気を燃焼用空気として用いてよい。燃焼用空気の酸素含有量を増加させることにより、燃料ガスGの酸化反応を促進し、燃焼用空気供給系統32から供給する燃焼用空気の流量を低減できるためポンプなどの消費電力を低減できる。また、燃焼用空気Aは、酸素に燃焼排ガスを混合した混合ガスを用いてもよい。燃焼用空気の酸素含有量を低下させることにより、加熱炉の炉内の雰囲気を還元性雰囲気にすることができ、アンモニア等の燃焼によって生成する窒素酸化物の還元が促進される。 FIG. 2 shows the piping system of the burner 6 arranged in the heating furnace 1, taking as an example some of the zones that make up the heating furnace 6. The burners 6 (upper burner 6a, lower burner 6b) arranged in the heating furnace 1 are connected to a fuel gas supply system 31 that supplies fuel gas G and a combustion air supply system 32 that supplies combustion air A. The fuel gas supply system 31 and the combustion air supply system 32 are connected to a blower (not shown) and the like, and supply the fuel gas G and the combustion air A to the burner 6. As a result, the fuel gas G and the combustion air A are sprayed from the burner 6, and the fuel gas G is burned by diffusing, and a flame is blown into the inside of the heating furnace. The combustion air A may be air collected from the atmosphere. However, air that has been reformed by removing nitrogen from the air or adding pure oxygen may be used as the combustion air. By increasing the oxygen content of the combustion air, the oxidation reaction of the fuel gas G can be promoted, and the flow rate of the combustion air supplied from the combustion air supply system 32 can be reduced, thereby reducing the power consumption of pumps and the like. In addition, a mixed gas of oxygen and combustion exhaust gas may be used as the combustion air A. By reducing the oxygen content of the combustion air, the atmosphere inside the heating furnace can be made reducing, which promotes the reduction of nitrogen oxides generated by the combustion of ammonia, etc.

 図3は、バーナ加熱を行うバーナ設備60の概略図を示す。なお、バーナとは、炉内に火炎を噴射する機器を意味し、特に炉内に火炎を噴射する部分を指す。また、バーナ設備とは火炎を噴射するための付帯機器を含めた装置全体をいう。 Figure 3 shows a schematic diagram of burner equipment 60 that performs burner heating. Note that burner refers to equipment that injects a flame into the furnace, and specifically refers to the part that injects the flame into the furnace. Also, burner equipment refers to the entire device, including the ancillary equipment for injecting the flame.

 バーナ設備60は、バーナ6により火炎を噴射するための燃料ガスGと燃焼用空気Aの流路を形成するバーナノズル7、バーナノズル7に燃料ガスGを供給する燃料ガス供給系統31と、バーナノズル7に燃焼用空気Aを供給する燃焼用空気供給系統32とを備える。
 バーナノズル7は、例えば2重管のノズルであり、内側から燃料ガスGが炉内に向けて噴射され、外側は燃焼用空気Aが供給される。これにより、燃料ガスGと燃焼用空気Aが混合した可燃性混合体を形成して、バーナ6から加熱炉1内部に向けて火炎が噴射される。
The burner equipment 60 includes a burner nozzle 7 that forms a flow path for fuel gas G and combustion air A for spraying a flame by the burner 6, a fuel gas supply system 31 that supplies fuel gas G to the burner nozzle 7, and a combustion air supply system 32 that supplies combustion air A to the burner nozzle 7.
The burner nozzle 7 is, for example, a double-pipe nozzle, and fuel gas G is injected into the furnace from the inside, and combustion air A is supplied to the outside. As a result, a combustible mixture is formed by mixing the fuel gas G and the combustion air A, and a flame is injected from the burner 6 into the heating furnace 1.

 バーナ設備60には、燃料ガス供給系統31からバーナノズル7に供給する燃料ガスGの流量を調整するための燃料ガス流量調整弁33と、燃料ガスGの流量を計測するための燃料ガス流量計34を備えてよい。これにより、加熱炉1内に供給する燃焼エネルギーを調整できる。
 また、バーナ設備60には、燃焼用空気供給系統32からバーナノズル7に供給する燃焼用空気Aの流量を調整するための燃焼用空気流量調整弁35と、燃焼用空気Aの流量を計測するための燃焼用空気流量計36を備えてよい。これにより、バーナ6において、燃料ガスの理論空気量に対する空気比を調整できる。
The burner equipment 60 may include a fuel gas flow rate control valve 33 for adjusting the flow rate of the fuel gas G supplied from the fuel gas supply system 31 to the burner nozzle 7, and a fuel gas flow meter 34 for measuring the flow rate of the fuel gas G. This makes it possible to adjust the combustion energy supplied into the heating furnace 1.
The burner equipment 60 may further include a combustion air flow rate control valve 35 for adjusting the flow rate of the combustion air A supplied from the combustion air supply system 32 to the burner nozzle 7, and a combustion air flow meter 36 for measuring the flow rate of the combustion air A. This makes it possible to adjust the air ratio of the fuel gas to the theoretical air amount in the burner 6.

 また、バーナ設備60には、上記の2重管ノズルを用いたノズルだけでなく、燃料ガスと燃焼用空気をバーナノズルの途中で混合するノズルミックス型バーナを用いてよい。この場合、燃焼用空気が燃料ガスと混合する前に、燃焼用空気を排ガスなど利用して予熱するように構成してもよい。 In addition to the nozzle using the double-tube nozzle described above, the burner equipment 60 may also use a nozzle mix type burner that mixes the fuel gas and the combustion air midway through the burner nozzle. In this case, the combustion air may be preheated using exhaust gas or the like before it is mixed with the fuel gas.

 図2に示すバーナ設備は、バーナ6に燃焼用空気を供給する燃焼用空気供給系統32に、個々のバーナ6へ供給する燃焼用空気の流量を調整する燃焼用空気流量調整弁35と、燃焼用空気の流量を測定する燃焼用空気流量計36が配置されている。しかし、燃焼用空気流量調整弁35や燃焼用空気流量計36は、バーナ6ごとに設けられる必要はなく、複数のバーナを一つの群として、群単位で燃焼用空気の流量が調整されるようにしてよい。 The burner equipment shown in FIG. 2 is provided with a combustion air supply system 32 that supplies combustion air to the burners 6, and includes a combustion air flow control valve 35 that adjusts the flow rate of the combustion air supplied to each burner 6, and a combustion air flow meter 36 that measures the flow rate of the combustion air. However, the combustion air flow control valve 35 and the combustion air flow meter 36 do not need to be provided for each burner 6, and multiple burners may be treated as one group, and the flow rate of the combustion air may be adjusted for each group.

<石炭ガスを用いたバーナ加熱>
 従来の鋼材の加熱炉は、バーナ設備に供給する燃料ガスとして、製鉄所等で生成される副生ガスが用いられてきた。副生ガスは、主として石炭から得られるガスであり、石炭の不完全燃焼に起因して生成することから、石炭ガスとも呼ばれる。石炭ガスには、コークス炉ガス、高炉ガス、転炉ガス、電気炉ガスなどが含まれる。高炉ガスは、高炉で鉄鉱石を還元して銑鉄を製造する際の副生ガスである。コークス炉ガスは、コークスを製造するために石炭を高温乾留して生成される副生ガスである。転炉ガスは、転炉における製鋼工程で生じる副生ガスである。電気炉ガスとは、電気炉において使用する補助燃料(加炭材)の不完全燃焼によって生じる副生ガスである。副生ガスは、生成する工程により種々の成分組成を有する。
<Burner heating using coal gas>
Conventional steel heating furnaces have used by-product gases generated in steelworks and other facilities as fuel gases to be supplied to the burner equipment. By-product gases are mainly derived from coal, and are also called coal gases because they are generated due to incomplete combustion of coal. Coal gases include coke oven gas, blast furnace gas, converter gas, and electric furnace gas. Blast furnace gas is a by-product gas generated when reducing iron ore in a blast furnace to produce pig iron. Coke oven gas is a by-product gas generated by high-temperature carbonization of coal to produce coke. Converter gas is a by-product gas generated during the steelmaking process in a converter. Electric furnace gas is a by-product gas generated by incomplete combustion of auxiliary fuel (recarburizer) used in an electric furnace. By-product gases have various component compositions depending on the process in which they are generated.

 例えば、高炉ガスは可燃成分の一酸化炭素が21~30体積%、不燃成分の窒素が50~60体積%、二酸化炭素が10~22体積%が代表的な組成である。高炉ガスの低位発熱量は3.45MJ/Nm程度である。コークス炉ガスは、水素46~60体積%、メタン20~35体積%、一酸化炭素5~10体積%、エチレンなどの炭化水素2~4体積%が代表的な組成である。コークス炉ガスの低位発熱量は18.0MJ/Nm程度である。転炉ガスは、一酸化炭素が約75体積%程度、二酸化炭素が約13体積%程度であり、他に微量の酸素、窒素、水素が含有される。転炉ガスの低位発熱量は8.2MJ/Nm程度である。電気炉ガスは、一酸化炭素10体積%程度、二酸化炭素22体積%程度、酸素5体積%程度、窒素56体積%程度が代表的な組成である。電気炉ガスの低位発熱量は2.8MJ/Nm程度である。また、石炭ガスには、高炉ガス、コークス炉ガス、転炉ガスが適宜混合されたガス(Mガスと呼ばれることがある。)が含まれる。発熱量が異なる石炭ガスを混合することにより、被加熱材の加熱に必要な熱量を供給し、安定した加熱炉の操業を行うためである。 For example, the typical composition of blast furnace gas is 21-30 vol% of combustible carbon monoxide, 50-60 vol% of non-combustible nitrogen, and 10-22 vol% of carbon dioxide. The lower heating value of blast furnace gas is about 3.45 MJ/ Nm3 . The typical composition of coke oven gas is 46-60 vol% of hydrogen, 20-35 vol% of methane, 5-10 vol% of carbon monoxide, and 2-4 vol% of hydrocarbons such as ethylene. The lower heating value of coke oven gas is about 18.0 MJ/ Nm3 . The typical composition of converter gas is about 75 vol% of carbon monoxide, about 13 vol% of carbon dioxide, and also contains small amounts of oxygen, nitrogen, and hydrogen. The lower heating value of converter gas is about 8.2 MJ/ Nm3 . The typical composition of electric furnace gas is about 10 vol% of carbon monoxide, about 22 vol% of carbon dioxide, about 5 vol% of oxygen, and about 56 vol% of nitrogen. The lower heating value of electric furnace gas is about 2.8 MJ/ Nm3 . Coal gas also includes a suitable mixture of blast furnace gas, coke oven gas, and converter gas (sometimes called M gas). By mixing coal gases with different heating values, the amount of heat required to heat the material to be heated can be supplied, ensuring stable operation of the heating furnace.

<水素系バーナ設備>
 本実施形態の加熱設備100は、加熱炉に配置されるバーナ設備のうち、少なくとも一つのバーナ設備は、燃料ガスとして、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスを用いる。以下では、加熱炉に配置されるバーナ設備の中で、水素及びアンモニアのいずれか一方若しくは両方を全量とする燃料ガスを用いるバーナ設備を、水素系バーナ設備と呼ぶ。
 また、燃料ガスに用いられる水素とアンモニアを水素系ガスと呼ぶ。
<Hydrogen burner equipment>
In the heating equipment 100 of this embodiment, at least one of the burner equipments arranged in the heating furnace uses a hydrogen-based gas containing either or both of hydrogen and ammonia as a fuel gas. Hereinafter, among the burner equipments arranged in the heating furnace, the burner equipment using a fuel gas containing either or both of hydrogen and ammonia as a fuel gas is referred to as a hydrogen-based burner equipment.
Moreover, hydrogen and ammonia used as fuel gas are called hydrogen-based gases.

 まず、水素及びアンモニアのいずれか一方若しくは両方を全量として含む水素系ガスを燃料に用いる実施形態を述べる。 First, an embodiment will be described in which a hydrogen-based gas containing either hydrogen or ammonia or both in total is used as fuel.

 水素は、常温無色の気体であり、発火点は560℃、低位発熱量は10.5MJ/Nm程度である。水素を燃焼させると、火炎温度が高く燃焼速度が速いことから、バーナノズルの先端部が高温になりやすい。そのため、水素を噴出した後に燃焼用空気と混合する形式のバーナノズルを用いるとよい。これにより、緩慢燃焼を実現でき、バーナノズルの熱負荷を軽減できる。水素を燃料ガスGに用いる水素系バーナ設備では、一例としてバーナから噴射する水素の流量185Nm/hr、燃焼用空気の流量370~601Nm/hrの操業条件で燃焼が行われる。 Hydrogen is a colorless gas at room temperature, with an ignition point of 560°C and a lower heating value of about 10.5 MJ/ Nm3 . When hydrogen is burned, the flame temperature is high and the combustion speed is fast, so the tip of the burner nozzle is likely to become hot. For this reason, it is advisable to use a burner nozzle in which hydrogen is mixed with combustion air after being ejected. This allows for slow combustion and reduces the thermal load on the burner nozzle. In a hydrogen-based burner facility that uses hydrogen as fuel gas G, combustion is performed under operating conditions of, for example, a flow rate of hydrogen ejected from the burner of 185 Nm3 /hr and a flow rate of combustion air of 370 to 601 Nm3 /hr.

 アンモニアは、常温無色の気体であり、発火点は651℃、低位発熱量は14.1MJ/Nm程度である。アンモニアを燃焼させると、比較的火炎温度が低く燃焼速度が遅いことから、アンモニアと燃焼用空気とを積極的に混合させる形式のバーナノズルを用いることにより、アンモニアの燃焼反応を安定させることができる。アンモニアを燃料ガスGに用いる水素系バーナ設備では、一例としてバーナから噴射するアンモニアの流量185Nm/hr、燃焼用空気の流量370~601Nm/hrの操業条件で燃焼が行われる。 Ammonia is a colorless gas at room temperature with an ignition point of 651°C and a lower heating value of approximately 14.1 MJ/ Nm3 . When ammonia is burned, the flame temperature is relatively low and the combustion speed is slow, so the ammonia combustion reaction can be stabilized by using a burner nozzle that actively mixes ammonia with combustion air. In a hydrogen-based burner facility that uses ammonia as fuel gas G, combustion is performed under operating conditions of, for example, ammonia injected from the burner at a flow rate of 185 Nm3 /hr and combustion air at a flow rate of 370 to 601 Nm3 /hr.

 本実施形態に適用される水素系バーナ設備70は、図3に示すバーナ設備60と同様のものを用いることができる。すなわち、水素系バーナ設備70は、燃料ガスとして石炭ガスを用いるバーナ設備と同一のバーナ設備であって、燃料ガスGとして水素系ガスHGを用いるバーナ設備である。水素系バーナ設備は、水素系ガスを燃料ガスに用いることで、二酸化炭素の生成が抑制されるため、加熱炉から排出される二酸化炭素の量を削減できる。 The hydrogen-based burner equipment 70 applied to this embodiment can be the same as the burner equipment 60 shown in FIG. 3. In other words, the hydrogen-based burner equipment 70 is the same burner equipment as the burner equipment that uses coal gas as the fuel gas, and is a burner equipment that uses hydrogen-based gas HG as the fuel gas G. By using hydrogen-based gas as the fuel gas, the hydrogen-based burner equipment suppresses the generation of carbon dioxide, and therefore the amount of carbon dioxide emitted from the heating furnace can be reduced.

 図3を用いて、本実施形態に適用される水素系バーナ設備70の構成を説明する。水素系バーナ設備70は、水素系ガスHGを燃料ガスGとして燃焼用空気Aを用いて、炉内に火炎を噴射するバーナ加熱を行う。水素系バーナ設備70は、炉内に火炎を噴射するためのバーナノズル7と、燃料ガスGをバーナノズル7に供給する燃料ガス供給系統31と、燃焼用空気Aをバーナノズル7に供給する燃焼用空気供給系統32とを備えている。バーナノズル7は、例えば2重管のノズルであり、内側から燃料ガスGが炉内に向けて噴射され、外側は燃焼用空気Aが供給される。これにより、水素系ガスHGを燃料ガスGとして、燃焼用空気Aが混合した可燃性混合体を形成し、バーナ6から加熱炉1内部に向けて火炎が噴射される。 The configuration of the hydrogen-based burner equipment 70 applied to this embodiment will be described with reference to FIG. 3. The hydrogen-based burner equipment 70 performs burner heating by injecting a flame into the furnace using hydrogen-based gas HG as fuel gas G and combustion air A. The hydrogen-based burner equipment 70 includes a burner nozzle 7 for injecting a flame into the furnace, a fuel gas supply system 31 that supplies fuel gas G to the burner nozzle 7, and a combustion air supply system 32 that supplies combustion air A to the burner nozzle 7. The burner nozzle 7 is, for example, a double-tube nozzle, and fuel gas G is injected into the furnace from the inside, and combustion air A is supplied to the outside. As a result, a combustible mixture is formed in which hydrogen-based gas HG is used as fuel gas G and combustion air A is mixed, and a flame is injected from the burner 6 toward the inside of the heating furnace 1.

 水素系バーナ設備70は、燃料ガス供給系統31からバーナノズル7に供給する燃料ガスGの流量を調整するための燃料ガス流量調整弁33と燃料ガスGの流量を測定する燃料ガス流量計34を備えるのが好ましい。また、水素系バーナ設備70は、水素系ガスの流量を設定する流量設定部47を備えるのが好ましい。流量設定部47は、例えば制御用コントローラであり、予め設定される水素系ガスHGの流量設定値に対して、燃料ガス流量計34で測定される流量の実績値が、流量設定値に一致するように燃料ガス流量調整弁33の弁開度を調整する制御指令を与える。これにより、水素系バーナ設備70から加熱炉1内に噴射する火炎の燃焼エネルギーと、加熱炉1から排出される二酸化炭素の排出量を制御できる。 The hydrogen-based burner equipment 70 preferably includes a fuel gas flow rate adjustment valve 33 for adjusting the flow rate of fuel gas G supplied from the fuel gas supply system 31 to the burner nozzle 7, and a fuel gas flow meter 34 for measuring the flow rate of fuel gas G. The hydrogen-based burner equipment 70 also preferably includes a flow rate setting unit 47 for setting the flow rate of the hydrogen-based gas. The flow rate setting unit 47 is, for example, a control controller, and issues a control command to adjust the valve opening of the fuel gas flow rate adjustment valve 33 so that the actual flow rate measured by the fuel gas flow meter 34 matches the flow rate set value of the hydrogen-based gas HG that is set in advance. This makes it possible to control the combustion energy of the flame injected from the hydrogen-based burner equipment 70 into the heating furnace 1 and the amount of carbon dioxide exhausted from the heating furnace 1.

 水素系バーナ設備70は、流量設定部47に加えて、加熱炉1内の水蒸気量を予め設定した範囲に制御する水蒸気量制御部48を設けることが好ましい。水蒸気量制御部48は、例えばコンピュータにより構成される。
 水蒸気量制御部48は、加熱炉1の炉内における水蒸気量を算出し、算出した炉内の水蒸気量が、予め設定した水蒸気量の目標範囲(水蒸気目標範囲)になるように、流量設定部47に対して水素系バーナ設備70に供給される水素系ガスHGの流量設定値の指令を送る。
 加熱炉1内の水蒸気量は、鋼材Sの表面におけるスケール生成挙動に影響を与えるため、水蒸気量制御部48が流量設定部47に対して水素系ガスHGの流量設定値の指令を送ることにより、鋼材Sの表面におけるスケール生成挙動を制御することができる。
 この場合、加熱炉1内に露点計49を設置して、露点計49が取得する露点情報に基づいて加熱炉1内の水蒸気量を推定するのが好ましい。加熱炉1内の水蒸気量の推定方法については後述する。
The hydrogen-based burner equipment 70 is preferably provided with a steam amount control unit 48 that controls the amount of steam in the heating furnace 1 within a preset range, in addition to the flow rate setting unit 47. The steam amount control unit 48 is configured by, for example, a computer.
The water vapor amount control unit 48 calculates the amount of water vapor in the heating furnace 1, and sends a command to the flow rate setting unit 47 for the flow rate setting value of the hydrogen-based gas HG to be supplied to the hydrogen-based burner equipment 70 so that the calculated amount of water vapor in the furnace falls within a predetermined target range for the water vapor amount (target water vapor range).
Since the amount of water vapor in the heating furnace 1 affects the scale formation behavior on the surface of the steel material S, the water vapor amount control unit 48 can control the scale formation behavior on the surface of the steel material S by sending a command for the flow rate setting value of the hydrogen-based gas HG to the flow rate setting unit 47.
In this case, it is preferable to install a dew point meter 49 in the heating furnace 1 and estimate the amount of water vapor in the heating furnace 1 based on dew point information acquired by the dew point meter 49. The method of estimating the amount of water vapor in the heating furnace 1 will be described later.

 図4は、加熱炉1のバーナ6として、燃料ガスGとして石炭ガスCGを用いるバーナ設備60と、燃料ガスGとして水素系ガスHGを用いる水素系バーナ設備70とを、炉内に配置する例を示す。この場合、バーナ設備60のバーナノズル7に燃料ガスGを供給する燃料ガス供給系統が、石炭ガスCGの供給源と接続されており、バーナ設備60は加熱炉1の内部に石炭ガスの燃焼による火炎を噴射する。
 一方、水素系バーナ設備70のバーナノズル7に燃料ガスGを供給する燃料ガス供給系統が、水素系ガスHGの供給源と接続されており、水素系バーナ設備70は加熱炉1の内部に水素系ガスの燃焼による火炎を噴射する。この場合、バーナ設備60と水素系バーナ設備70に燃焼用空気Aを供給する燃焼用空気供給系統は、バーナ設備60と水素系バーナ設備70で共用してよい。
4 shows an example in which a burner equipment 60 using coal gas CG as fuel gas G and a hydrogen-based burner equipment 70 using hydrogen-based gas HG as fuel gas G are arranged in the furnace as the burners 6 of the heating furnace 1. In this case, a fuel gas supply system that supplies fuel gas G to the burner nozzle 7 of the burner equipment 60 is connected to a supply source of coal gas CG, and the burner equipment 60 injects a flame generated by combustion of coal gas into the inside of the heating furnace 1.
On the other hand, a fuel gas supply system that supplies fuel gas G to the burner nozzle 7 of the hydrogen-based burner equipment 70 is connected to a supply source of hydrogen-based gas HG, and the hydrogen-based burner equipment 70 injects a flame produced by combustion of the hydrogen-based gas into the heating furnace 1. In this case, the combustion air supply system that supplies combustion air A to the burner equipment 60 and the hydrogen-based burner equipment 70 may be shared by the burner equipment 60 and the hydrogen-based burner equipment 70.

 図4に示す加熱炉は、すべてのバーナ設備が、燃料ガスGとして石炭ガスCGを用いる従来の加熱炉に比べて、燃料ガスGとして水素系ガスHGを用いる水素系バーナ設備を含むことから、加熱炉から排出される二酸化炭素の排出量が削減される。 The heating furnace shown in Figure 4 includes hydrogen-based burner equipment that uses hydrogen-based gas HG as fuel gas G, compared to conventional heating furnaces that use coal gas CG as fuel gas G, and therefore reduces the amount of carbon dioxide emissions emitted from the heating furnace.

<水素系バーナ設備の他の実施形態>
 水素系バーナ設備の他の実施形態として、水素系ガスに、石炭ガスおよび炭化水素系ガスから選ばれる1種以上のガスを混合した混合ガスを燃料ガスとする、他の実施形態について述べる。
 ここで、混合ガスとは、水素及びアンモニアのいずれか一方若しくは両方を含む水素系ガスに対して、石炭ガス(水素含む)又は炭化水素系ガス(メタン、エタン、プロパンなど)などを混合する場合をいう。
<Another embodiment of the hydrogen burner equipment>
Another embodiment of the hydrogen-based burner equipment will be described, in which a mixed gas obtained by mixing hydrogen-based gas with one or more gases selected from coal gas and hydrocarbon-based gas is used as the fuel gas.
Here, the mixed gas refers to a case where a hydrogen-based gas containing either or both of hydrogen and ammonia is mixed with coal gas (containing hydrogen) or a hydrocarbon-based gas (methane, ethane, propane, etc.).

 水素系バーナ設備は、燃料ガスGとして水素系ガスHGを含み他の燃料と混合した混合ガスを用いてもよい。例えば、燃料ガスGとして水素系ガスと石炭ガスとの混合ガスを用いることができる。 The hydrogen-based burner equipment may use a mixed gas containing hydrogen-based gas HG and other fuels as the fuel gas G. For example, a mixed gas of hydrogen-based gas and coal gas may be used as the fuel gas G.

 図5は、水素系バーナ設備の他の例として、燃料ガスGとして水素系ガスHGと石炭ガスCGとの混合ガスを用いた水素系バーナ設備71を示す。図5に示す水素系バーナ設備71は、加熱炉内に火炎を放出するバーナノズル7、バーナノズル7に燃料ガスGを供給する燃料ガス供給系統31、バーナノズル7に燃焼用空気Aを供給する燃焼用空気供給系統32を備える点で、図3に示す水素系バーナ設備70と同様である。また、燃焼用空気供給系統32からバーナノズル7に燃焼用空気Aが供給され、燃料ガスGと燃焼用空気Aが混合した可燃性混合体を形成して、バーナ6から加熱炉内部に向けて火炎が放出される点も同様である。 FIG. 5 shows another example of a hydrogen-based burner equipment, a hydrogen-based burner equipment 71, which uses a mixed gas of hydrogen-based gas HG and coal gas CG as fuel gas G. The hydrogen-based burner equipment 71 shown in FIG. 5 is similar to the hydrogen-based burner equipment 70 shown in FIG. 3 in that it includes a burner nozzle 7 that emits a flame into the heating furnace, a fuel gas supply system 31 that supplies fuel gas G to the burner nozzle 7, and a combustion air supply system 32 that supplies combustion air A to the burner nozzle 7. It is also similar in that combustion air A is supplied from the combustion air supply system 32 to the burner nozzle 7, a combustible mixture is formed by mixing the fuel gas G and the combustion air A, and a flame is emitted from the burner 6 toward the inside of the heating furnace.

 一方、図5に示す水素系バーナ設備71の燃料ガス供給系統31には、水素系ガス供給系統45を通じて供給される水素系ガスHGと石炭ガス供給系統46を通じて供給される石炭ガスCGとを混合する混合部40を備える。混合部40は、水素系ガスHGと石炭ガスCGとを混合した燃料ガスGを生成する。混合部40で生成された燃料ガスGは、燃焼用空気Aとさらに混合した可燃性混合体を形成し、バーナ6から加熱炉1内部に向けて火炎として噴射される。 On the other hand, the fuel gas supply system 31 of the hydrogen-based burner equipment 71 shown in FIG. 5 is equipped with a mixing section 40 that mixes hydrogen-based gas HG supplied through a hydrogen-based gas supply system 45 and coal gas CG supplied through a coal gas supply system 46. The mixing section 40 generates fuel gas G by mixing the hydrogen-based gas HG and the coal gas CG. The fuel gas G generated in the mixing section 40 is further mixed with combustion air A to form a combustible mixture, which is sprayed as a flame from the burner 6 toward the inside of the heating furnace 1.

 混合部40は、水素系ガスHGを供給する水素系ガス供給系統45と石炭ガスCGを供給する石炭ガス供給系統46とが合流する部分を指す。水素系ガスHGと石炭ガスCGはそれぞれの供給配管から供給され、合流することにより、特別な攪拌機構を設けなくても混合が行われる。したがって、混合部40はこれらの供給配管が交流する部分に一定の空間として構成すればよい。 The mixing section 40 refers to the area where the hydrogen-based gas supply system 45, which supplies the hydrogen-based gas HG, and the coal gas supply system 46, which supplies the coal gas CG, join together. The hydrogen-based gas HG and the coal gas CG are supplied from their respective supply pipes, and by joining together, mixing is achieved without the need for a special stirring mechanism. Therefore, the mixing section 40 may be configured as a fixed space at the area where these supply pipes intersect.

 ただし、混合部40は、スタティックミキサなどの静的混合機器や、攪拌機能を備える動的混合器を備えてよい。これにより、水素系ガスHGと石炭ガスCGとがより均一に混合した混合ガスとなる点で好ましい。 However, the mixing section 40 may be equipped with a static mixing device such as a static mixer, or a dynamic mixer with a stirring function. This is preferable because it results in a more uniform mixed gas of the hydrogen-based gas HG and the coal gas CG.

 水素系バーナ設備71には、水素系ガス供給系統45を通じて混合部40に供給する水素系ガスHGの流量を調整するための水素系ガス流量調整弁41と水素系ガスHGの流量を計測するための水素系ガス流量計42を備えてよい。また、水素系バーナ設備71には、石炭ガス供給系統46から混合部40に供給する石炭ガスCGの流量を調整するための石炭ガス流量調整弁43と、石炭ガスCGの流量を計測するための石炭ガス流量計44を備えてよい。 The hydrogen-based burner equipment 71 may be provided with a hydrogen-based gas flow rate control valve 41 for adjusting the flow rate of the hydrogen-based gas HG supplied to the mixing section 40 through the hydrogen-based gas supply system 45, and a hydrogen-based gas flow meter 42 for measuring the flow rate of the hydrogen-based gas HG. The hydrogen-based burner equipment 71 may also be provided with a coal gas flow rate control valve 43 for adjusting the flow rate of the coal gas CG supplied from the coal gas supply system 46 to the mixing section 40, and a coal gas flow meter 44 for measuring the flow rate of the coal gas CG.

 これらにより燃料ガスGに含まれる、水素系ガスHGと石炭ガスCGとの混合比率を調整できる。燃料ガスGに含まれ水素系ガスHGの混合比率が大きくなると、石炭ガスCGのみを燃料ガスとする従来のバーナ加熱に比べて加熱炉1から排出される二酸化炭素の排出削減効果が大きくなる。 This allows the mixing ratio of hydrogen-based gas HG and coal gas CG contained in the fuel gas G to be adjusted. When the mixing ratio of hydrogen-based gas HG contained in the fuel gas G is increased, the effect of reducing carbon dioxide emissions from the heating furnace 1 becomes greater compared to conventional burner heating that uses only coal gas CG as fuel gas.

 一方、水素系ガスとしてアンモニアを用いる場合には、アンモニアは難燃性燃料であり、一般の燃料ガスより着火しにくく燃焼速度も遅いため、燃料ガスGに含まれるアンモニアの混合比率が大きくなるとバーナ6での燃焼が不安定になることがある。燃料ガスGに含まれるアンモニアと石炭ガスとの混合比率を調整することで、二酸化炭素の排出量を削減しながらバーナ加熱の安定性を確保できる。 On the other hand, when ammonia is used as the hydrogen-based gas, ammonia is a flame-retardant fuel that is more difficult to ignite and burns slower than general fuel gases, so if the mixture ratio of ammonia contained in the fuel gas G becomes large, combustion in the burner 6 may become unstable. By adjusting the mixture ratio of ammonia and coal gas contained in the fuel gas G, it is possible to ensure the stability of burner heating while reducing carbon dioxide emissions.

 水素系バーナ設備71には、さらに、混合部40に供給する水素系ガスHGの流量を設定する流量設定部47を備えるのが好ましい。流量設定部47は、例えば制御用コントローラであり、予め設定される水素系ガスHGの流量設定値に対して、水素系ガス流量計42で測定される流量の実績値が、流量設定値に一致するように水素系ガス流量調整弁41の弁開度を調整する制御指令を与える。これにより、水素系バーナ設備71から加熱炉1内に噴射する火炎の燃焼エネルギーと、加熱炉1から排出される二酸化炭素の排出量を制御できる。 The hydrogen-based burner equipment 71 preferably further includes a flow rate setting unit 47 that sets the flow rate of the hydrogen-based gas HG supplied to the mixing unit 40. The flow rate setting unit 47 is, for example, a control controller, and issues a control command to adjust the valve opening of the hydrogen-based gas flow rate adjustment valve 41 so that the actual flow rate measured by the hydrogen-based gas flowmeter 42 matches the flow rate set value for the hydrogen-based gas HG that is set in advance. This makes it possible to control the combustion energy of the flame sprayed from the hydrogen-based burner equipment 71 into the heating furnace 1 and the amount of carbon dioxide exhausted from the heating furnace 1.

 また、流量設定部47は、混合部40に供給する水素系ガスHGの流量を設定する機能に加えて、予め設定される石炭ガスCGの流量設定値に対して、石炭ガス流量計44で測定される流量の実績値が、石炭ガスCGの流量設定値に一致するように石炭ガス流量調整弁43の弁開度を調整する制御指令を与えるように構成してよい。これにより、混合部40に供給される、水素系ガスHGの流量と、石炭ガスCGの流量とを個別に設定でき、加熱炉1内に供給する燃焼エネルギーと、加熱炉1から排出される二酸化炭素の排出量を調整できる。 Furthermore, the flow rate setting unit 47, in addition to the function of setting the flow rate of the hydrogen-based gas HG supplied to the mixing unit 40, may be configured to give a control command to adjust the valve opening of the coal gas flow rate adjustment valve 43 so that the actual flow rate measured by the coal gas flowmeter 44 matches the flow rate setting value of the coal gas CG, which is set in advance. This makes it possible to set the flow rates of the hydrogen-based gas HG and the coal gas CG supplied to the mixing unit 40 separately, and to adjust the amount of combustion energy supplied into the heating furnace 1 and the amount of carbon dioxide exhausted from the heating furnace 1.

 水素系バーナ設備71は、流量設定部47に加えて、加熱炉1内の水蒸気量を予め設定した範囲に制御する水蒸気量制御部48を設けるとよい。水蒸気量制御部48の機能については、上述の図3で説明した水蒸気量制御部48と同様である。 The hydrogen-based burner equipment 71 may be provided with a steam amount control unit 48 that controls the amount of steam in the heating furnace 1 within a preset range, in addition to the flow rate setting unit 47. The function of the steam amount control unit 48 is the same as that of the steam amount control unit 48 described above in FIG. 3.

 石炭ガスであるMガスと水素系ガスである水素とを混合して燃焼する場合、水素の混合比率(Mガスと水素系ガス供給系統45を通じて供給する水素の流量に対する水素系ガス供給系統45を通じて供給する水素流量の比率)は任意に選択することができる。一例として、水素の混合比率を60%とすると、バーナから噴射する水素流量111Nm/hr、Mガス流量74Nm/hr、燃焼用空気の流量370~601Nm/hrとする操業条件で燃焼が行われる。なお、Mガス組成は、一酸化炭素20体積%、二酸化炭素13体積%、水素24体積%、メタン13体積%、エチレンなどの炭化水素1.2体積%、窒素28.8体積%である。
 Mガスとアンモニアを混合して燃焼する場合は、アンモニアの混合比率(Mガスと水素系ガス供給系統45を通じて供給するアンモニアの流量に対する水素系ガス供給系統45を通じて供給するアンモニア流量の比率)が高くなると燃焼が不安定となるので、アンモニアの混合比率は50%程度である。
 また、一例として、アンモニアの混合比率を30%とすると、バーナから噴射するアンモニア流量50Nm/hr、Mガス流量117Nm/hr、燃焼用空気の流量は480~624Nm/hrとする操業条件で燃焼が行われる。
When M gas, which is coal gas, and hydrogen, which is a hydrogen-based gas, are mixed and burned, the hydrogen mixing ratio (the ratio of the hydrogen flow rate supplied through the hydrogen-based gas supply system 45 to the flow rate of hydrogen supplied through the M gas and hydrogen-based gas supply system 45) can be selected arbitrarily. As an example, when the hydrogen mixing ratio is 60%, combustion is performed under the operating conditions of the hydrogen flow rate injected from the burner of 111 Nm 3 /hr, the M gas flow rate of 74 Nm 3 /hr, and the combustion air flow rate of 370 to 601 Nm 3 /hr. The M gas composition is 20 vol% carbon monoxide, 13 vol% carbon dioxide, 24 vol% hydrogen, 13 vol% methane, 1.2 vol% hydrocarbons such as ethylene, and 28.8 vol% nitrogen.
When M gas and ammonia are mixed and burned, the combustion becomes unstable when the ammonia mixing ratio (the ratio of the ammonia flow rate supplied through the hydrogen-based gas supply system 45 to the flow rate of the M gas and ammonia supplied through the hydrogen-based gas supply system 45) becomes high, so the ammonia mixing ratio is about 50%.
As an example, when the mixture ratio of ammonia is 30%, combustion is performed under the operating conditions of an ammonia flow rate injected from the burner of 50 Nm 3 /hr, an M gas flow rate of 117 Nm 3 /hr, and a combustion air flow rate of 480 to 624 Nm 3 /hr.

 次に、本実施形態に係るスケール生成量制御装置について説明する。
<スケール生成量制御装置>
 本実施形態に係るスケール生成量制御装置は、バーナ加熱の燃料に用いる、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスの流量を含む加熱炉の操業パラメータを取得する取得部と、取得した操業パラメータを用いて前記金属材料のスケール生成量を予測する予測部と、予測したスケール生成量が予め設定された範囲であるか判定する判定部と、及び予測したスケール生成量が予め設定された範囲にない場合に前記加熱炉の操業パラメータを設定する設定部と、を含む制御部を備える。
 また、取得部は、前記水素系ガスに、石炭ガスおよび炭化水素系ガスから選ばれる1種以上のガスを混合した混合ガスの流量を含む加熱炉の操業パラメータを取得することが可能である。
Next, the scale formation amount control device according to this embodiment will be described.
<Scale generation amount control device>
The scale formation amount control device of this embodiment comprises a control unit including an acquisition unit that acquires operating parameters of the heating furnace including the flow rate of hydrogen-based gas, the total amount of which is either hydrogen or ammonia or both, used as fuel for burner heating, a prediction unit that predicts the scale formation amount of the metal material using the acquired operating parameters, a determination unit that determines whether the predicted scale formation amount is within a preset range, and a setting unit that sets the operating parameters of the heating furnace if the predicted scale formation amount is not within the preset range.
The acquisition unit can also acquire operation parameters of the heating furnace including a flow rate of a mixed gas obtained by mixing the hydrogen-based gas with one or more gases selected from coal gas and a hydrocarbon-based gas.

 図7は、本実施形態に係るスケール生成量制御装置の構成を示す。図7に示すスケール生成量制御装置51は、例えば、ワークステーションやパソコン等の汎用コンピュータである。スケール生成量制御装置51は、制御部52と、入力部53と、出力部54と、記憶部55とを有する。制御部52は、例えば、CPU等であって、記憶部55に格納されている種々のプログラムを実行することにより、制御部52を取得部56、予測部57、判定部58および設定部59として機能させる。 FIG. 7 shows the configuration of the scale generation amount control device according to this embodiment. The scale generation amount control device 51 shown in FIG. 7 is, for example, a general-purpose computer such as a workstation or a personal computer. The scale generation amount control device 51 has a control unit 52, an input unit 53, an output unit 54, and a memory unit 55. The control unit 52 is, for example, a CPU, and executes various programs stored in the memory unit 55, causing the control unit 52 to function as an acquisition unit 56, a prediction unit 57, a determination unit 58, and a setting unit 59.

 入力部53は、例えば、キーボード、ディスプレイと一体的に設けられたタッチパネル等である。
 出力部54は、例えば、LCDまたはCRTディスプレイ等である。記憶部55は、例えば、更新記録可能なフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカード等の情報記録媒体およびその読み書き装置である。
 記憶部55には、スケール生成量制御装置51によるスケール生成量の制御を実現するためのプログラムやデータが格納されている。また、記憶部55には、予め生成したスケール厚予測モデルが記憶されている。
The input unit 53 is, for example, a keyboard, a touch panel that is provided integrally with a display, or the like.
The output unit 54 is, for example, an LCD or CRT display, etc. The storage unit 55 is, for example, an information recording medium such as an updatable flash memory, a built-in hard disk or a memory card connected via a data communication terminal, and a read/write device for the same.
The storage unit 55 stores programs and data for implementing control of the amount of scale generation by the scale generation amount control device 51. The storage unit 55 also stores a scale thickness prediction model that has been generated in advance.

 次に、本実施形態に係る加熱炉における金属材料のスケール生成量制御方法について説明する。
<スケール生成量制御方法>
 本実施形態に係るスケール生成量制御方法は、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスを燃料に用いて金属材料をバーナ加熱し、加熱炉の操業パラメータとして、バーナ加熱の燃料に用いる水素系ガスの流量を設定し、設定された水素系ガスの流量に基づいて金属材料の表面に生成するスケール生成量を制御する。
 また、水素系ガスに、石炭ガスおよび炭化水素系ガスから選ばれる1種以上のガスを混合した混合ガスを燃料に用いて金属材料をバーナ加熱することが可能である。
Next, a method for controlling the amount of scale generation on a metallic material in a heating furnace according to this embodiment will be described.
<Method for controlling the amount of scale generation>
In the method for controlling the amount of scale formation according to this embodiment, a hydrogen-based gas containing either or both of hydrogen and ammonia as a fuel is used to burner-heat a metal material, the flow rate of the hydrogen-based gas used as the fuel for burner heating is set as an operational parameter of the heating furnace, and the amount of scale formation formed on the surface of the metal material is controlled based on the set flow rate of the hydrogen-based gas.
It is also possible to heat metal materials with a burner by using as fuel a mixed gas obtained by mixing one or more gases selected from coal gas and hydrocarbon gas with a hydrogen-based gas.

 ここで、スケール生成量とは、被加熱材である金属材料の表面に生成するスケールの厚み又は量をいう。加熱炉の操業パラメータとは、加熱炉における被加熱材の加熱状態に影響を与える加熱炉の操業条件をいう。 Here, the amount of scale formed refers to the thickness or amount of scale formed on the surface of the metal material being heated. The operating parameters of the heating furnace refer to the operating conditions of the heating furnace that affect the heating state of the material being heated in the heating furnace.

 加熱炉1内では、水素系ガスHGを用いたバーナ加熱を行うので、燃料ガスGに含まれる水素やアンモニアの燃焼により水蒸気が生成する。その状況では、加熱炉1内の金属材料の表面から水が浸入して、水分子を構成する酸素が加熱炉1内の金属材料を酸化させると共に水素を放出する。水素は、金属材料の表面に生成した酸化物層の内部を拡散し、酸化物層と母材との界面において、酸化物層の酸素と結合し水蒸気を生成する。
 そして、生成した水蒸気がさらに金属材料を酸化することにより、酸化物層の生成が促進される。
 したがって、燃料ガスとして水素やアンモニアを使用する加熱炉では、燃焼ガスに含まれる水蒸気が金属材料の酸化物層との界面に侵入して金属材料の酸化を促進するため、加熱炉内を無酸化雰囲気に制御した場合であっても金属材料のスケール生成を抑制することが難しい。
In the heating furnace 1, burner heating using hydrogen-based gas HG is performed, and water vapor is generated by the combustion of hydrogen and ammonia contained in the fuel gas G. In this situation, water penetrates from the surface of the metal material in the heating furnace 1, and the oxygen constituting the water molecules oxidizes the metal material in the heating furnace 1 and releases hydrogen. The hydrogen diffuses inside the oxide layer formed on the surface of the metal material and combines with the oxygen in the oxide layer at the interface between the oxide layer and the base material to generate water vapor.
The generated water vapor further oxidizes the metal material, promoting the generation of an oxide layer.
Therefore, in heating furnaces that use hydrogen or ammonia as fuel gas, water vapor contained in the combustion gas penetrates the interface with the oxide layer of the metal material and promotes the oxidation of the metal material, making it difficult to suppress scale formation on the metal material even when the inside of the heating furnace is controlled to a non-oxidizing atmosphere.

 一方、加熱設備100に装入される前の金属材料の表面に、鋳造時に生成する不純物や鋳造時に混入するモールドパウダー等に起因した異物が存在している場合には、水素系ガスの燃焼により金属材料のスケール生成を促進させることができる。そこで、加熱設備100から搬出された後に、デスケーリング装置等により酸化物層を除去することで金属材料における表面欠陥の発生を抑制できる。 On the other hand, if there are foreign matters on the surface of the metal material before it is loaded into the heating equipment 100, such as impurities generated during casting or mold powder mixed in during casting, the combustion of hydrogen-based gas can promote the formation of scale on the metal material. Therefore, after the metal material is removed from the heating equipment 100, the oxide layer can be removed using a descaling device or the like, thereby suppressing the occurrence of surface defects in the metal material.

 本実施形態では、上記の水素系バーナ設備に流量設定部47を設け、水素系ガスHGの流量を制御するのが好ましい。水素系ガスHGの流量を変更することにより、加熱炉1内で発生する水蒸気量が変化するため、これにより金属材料の表面に生成する酸化物層の厚みを制御できる。 In this embodiment, it is preferable to provide a flow rate setting unit 47 in the hydrogen-based burner equipment to control the flow rate of the hydrogen-based gas HG. By changing the flow rate of the hydrogen-based gas HG, the amount of water vapor generated in the heating furnace 1 changes, and this makes it possible to control the thickness of the oxide layer that forms on the surface of the metal material.

 さらに、加熱炉1内の水蒸気量を予め設定した範囲に制御する水蒸気量制御部48を設け、水蒸気量制御部48が算出する加熱炉1の炉内における水蒸気量に基づいて、流量設定部47に対して水素系バーナ設備70、71に供給する水素系ガスHGの流量設定値を設定するのが好ましい。この場合、水蒸気量制御部48は、加熱炉1内に設置した露点計49が取得する露点情報に基づいて、加熱炉1内の水蒸気量を推定し、推定した水蒸気量が予め設定した水蒸気量の目標範囲(水蒸気目標範囲)になるように、流量設定部47に対して水素系バーナ設備70、71に供給される水素系ガスHGの流量設定値の指令を送るのが好ましい。これにより、加熱工程において金属材料の表面におけるスケール生成量を制御することができる。 Furthermore, it is preferable to provide a water vapor amount control unit 48 that controls the amount of water vapor in the heating furnace 1 to a preset range, and to set the flow rate setting unit 47 to a flow rate setting value of the hydrogen-based gas HG to be supplied to the hydrogen-based burner equipment 70, 71 based on the amount of water vapor in the heating furnace 1 calculated by the water vapor amount control unit 48. In this case, it is preferable that the water vapor amount control unit 48 estimates the amount of water vapor in the heating furnace 1 based on dew point information acquired by a dew point meter 49 installed in the heating furnace 1, and sends a command to the flow rate setting unit 47 for the flow rate setting value of the hydrogen-based gas HG to be supplied to the hydrogen-based burner equipment 70, 71 so that the estimated amount of water vapor falls within a preset target range of water vapor amount (target water vapor range). This makes it possible to control the amount of scale generation on the surface of the metal material in the heating process.

 水蒸気量制御部48が行う加熱炉1の炉内における水蒸気量の推定方法について説明する。先ず、水蒸気量制御部48は露点計49が取得する雰囲気ガスの露点の測定値を取得する。取得した露点の測定値から、飽和水蒸気量と温度の公知の関係を用いて、雰囲気ガスの水蒸気圧力を算出する。そして、算出した水蒸気圧力と雰囲気ガスの圧力(全圧)から雰囲気ガスに含まれる水蒸気の体積率を求め、これにより加熱炉1の炉内容積を用いて加熱炉1内の水蒸気量を算出できる。飽和水蒸気量と温度の公知の関係としては、例えばTenensの式やMurrayの式を適用してよい。
 以上のようにして、水蒸気量制御部48において、加熱炉1の炉内における水蒸気量を推定できる。
A method for estimating the amount of water vapor in the heating furnace 1 performed by the water vapor amount control unit 48 will be described. First, the water vapor amount control unit 48 acquires a measured value of the dew point of the atmospheric gas acquired by the dew point meter 49. From the acquired measured value of the dew point, the water vapor pressure of the atmospheric gas is calculated using a known relationship between the amount of saturated water vapor and temperature. Then, the volume fraction of water vapor contained in the atmospheric gas is calculated from the calculated water vapor pressure and the pressure (total pressure) of the atmospheric gas, and the amount of water vapor in the heating furnace 1 can be calculated using the inner volume of the heating furnace 1. As the known relationship between the amount of saturated water vapor and temperature, for example, the Tenens equation or the Murray equation may be applied.
In this manner, the steam amount control unit 48 can estimate the amount of steam in the heating furnace 1 .

 金属材料のスケール生成量制御方法として、鋼材を加熱する例について説明する。
 本実施形態の金属材料のスケール生成量制御方法は、加熱工程として鋼材Sの表面温度が1000~1250℃となるよう加熱するのが好ましい。加熱工程では、炉内で水素系ガスHGを用いたバーナ加熱を行うので、水素系ガスHGの燃焼ガスに含まれる水蒸気によって鋼材Sの酸化が促進され、加熱工程が終了する段階までに所定のスケール厚みを生成させることができる。これにより、加熱工程に供する前の鋼材に鋳造時に生成した不純物や鋳造時に混入したモールドパウダー等に起因した異物が存在する場合でも、加熱工程が終了した後にデスケーリング装置等によりスケールを除去することによって表面欠陥の発生を抑制できる。
As an example of a method for controlling the amount of scale formation on a metallic material, an example in which a steel material is heated will be described.
In the method for controlling the amount of scale formation on a metallic material according to this embodiment, the steel material S is preferably heated in the heating step so that the surface temperature of the steel material S reaches 1000 to 1250° C. In the heating step, burner heating using hydrogen-based gas HG is performed in a furnace, and the oxidation of the steel material S is promoted by the water vapor contained in the combustion gas of the hydrogen-based gas HG, so that a predetermined scale thickness can be formed by the time the heating step is completed. As a result, even if the steel material before the heating step contains impurities generated during casting or foreign matter due to mold powder mixed in during casting, the occurrence of surface defects can be suppressed by removing the scale using a descaling device or the like after the heating step is completed.

 ただし、加熱温度が1000℃未満の場合には、適正な厚みのスケールが生成されないことがあるため、加熱温度は1000℃以上とする。加熱温度は、より好ましくは1050℃以上である。一方、加熱温度が1250℃を超えると、加熱工程で生成するスケールの厚みが厚くなりすぎて製品歩留まりが低下するため、加熱温度は1250℃以下とする。加熱温度は、より好ましくは1200℃以下である。 However, if the heating temperature is less than 1000°C, scale of the appropriate thickness may not be generated, so the heating temperature must be 1000°C or higher. The heating temperature is more preferably 1050°C or higher. On the other hand, if the heating temperature exceeds 1250°C, the thickness of the scale generated in the heating process becomes too thick, resulting in a decrease in product yield, so the heating temperature must be 1250°C or lower. The heating temperature is more preferably 1200°C or lower.

 ここで、鋼材の加熱炉1内でのスケール成長は拡散律速であり、式(1)のように、表面温度に対して指数関数的に増加することが知られている。

Figure JPOXMLDOC01-appb-M000001
 ここで、ξはスケール厚み(μm)、Aは頻度因子(1/s)、Qは活性化エネルギー(J/mol)、Tは鋼材の表面温度(K)、Rは気体定数(J/molK)、tは経過時間(s)である。頻度因子とは、単位時間当りに反応分子同士が衝突する回数を表す数値である。
 頻度因子Aおよび活性化エネルギーQは、鋼材の成分組成によって変化するため、加熱工程を実行する鋼材の鋼種ごとに予め実験により決定しておく。 Here, it is known that the growth of scale on the steel material in the heating furnace 1 is diffusion-limited and increases exponentially with respect to the surface temperature, as shown in formula (1).
Figure JPOXMLDOC01-appb-M000001
Here, ξ is the scale thickness (μm), A is the frequency factor (1/s), Q is the activation energy (J/mol), T is the surface temperature of the steel (K), R is the gas constant (J/molK), and t is the elapsed time (s). The frequency factor is a value that indicates the number of collisions between reactive molecules per unit time.
The frequency factor A and the activation energy Q vary depending on the component composition of the steel material, and are therefore determined in advance by experiment for each type of steel material to be subjected to the heating process.

 なお、加熱炉1の内部で搬送される鋼材Sの温度を直接測定するのは難しいことがあり、鋼材Sの温度計算を行う温度モデルを用いて、加熱炉1内での鋼材Sの表面温度を推定し、推定した温度が目標加熱温度となるように加熱工程の操業条件を制御するのが好ましい。
 この場合、加熱炉の炉内における鋼材の温度モデルは、加熱炉の炉壁から鋼材への輻射熱の影響を考慮したものが用いられ、加熱炉内の雰囲気温度の実測値や、鋼材の加熱炉内での位置情報(トラッキング情報)等に基づいて、鋼材の表面温度を計算する。鋼材の温度モデルは、制御用計算機(プロセスコンピューター)101に搭載して温度計算を実行するとよい。
 温度計算の方法としては、鋼材を板厚方向および幅方向に有限に区切ったメッシュに置き換え、板厚方向位置および幅方向位置での温度を差分法または有限要素法を用いて熱伝導方程式を解く方法が適用できる。この場合、鋼材の表面温度は、板厚方向の最表層に位置するメッシュに対して算出された温度である。
It may be difficult to directly measure the temperature of the steel material S being transported inside the heating furnace 1, and it is preferable to estimate the surface temperature of the steel material S inside the heating furnace 1 using a temperature model that calculates the temperature of the steel material S, and to control the operating conditions of the heating process so that the estimated temperature becomes the target heating temperature.
In this case, a temperature model of the steel material in the heating furnace is used that takes into consideration the effect of radiant heat from the furnace wall to the steel material, and the surface temperature of the steel material is calculated based on the actual measured atmospheric temperature in the heating furnace, position information (tracking information) of the steel material in the heating furnace, etc. The temperature model of the steel material may be loaded into a control computer (process computer) 101 to execute temperature calculations.
The temperature calculation method is to replace the steel material with a mesh divided into finite parts in the thickness and width directions, and solve the heat conduction equation using the finite difference method or finite element method to calculate the temperature at the thickness and width directions. In this case, the surface temperature of the steel material is the temperature calculated for the mesh located at the outermost layer in the thickness direction.

 加熱工程は、さらにバーナ加熱に用いる水素系ガスHGの流量を設定することにより加熱炉1内の水蒸気量を10~30体積%に制御するのが好ましい。加熱工程を実行する加熱炉1内の水蒸気量が10体積%未満の場合には、鋼材の表面に生成するスケールの厚みが不十分となる場合がある。一方、加熱炉1内の水蒸気量が30体積%を超えると、鋼材の表面のスケールが成長しやすく、過度のスケールが生成される場合がある。 In the heating process, it is preferable to further control the amount of water vapor in the heating furnace 1 to 10-30% by volume by setting the flow rate of the hydrogen-based gas HG used for burner heating. If the amount of water vapor in the heating furnace 1 where the heating process is carried out is less than 10% by volume, the thickness of the scale formed on the surface of the steel material may be insufficient. On the other hand, if the amount of water vapor in the heating furnace 1 exceeds 30% by volume, scale on the surface of the steel material is likely to grow, and excessive scale may be formed.

 図6は、加熱工程において鋼材Sの加熱温度を1050℃として、炉内の水蒸気を5体積%、15体積%および25体積%に制御しながら所定時間加熱した後、鋼材Sの表面に生成したスケールの厚みを調査した例である。
 ここで、鋼材の表面に生成させるスケール厚みの目標厚を350μm以上として、加熱工程における加熱時間の基準値を60分(3600秒)とした場合に、図6からは、加熱炉内の水蒸気が5体積%と低い場合には、鋼材の表面に生成するスケールの厚みが目標厚に達しないことが分かる。
 この場合、加熱炉の操業条件としては加熱時間を基準値よりも延長する必要があり、これにより加熱設備100の生産能率が低下するという問題が生じる。
 一方、加熱炉内の水蒸気が15、25体積%の条件では、鋼材の表面に生成するスケールの厚みが目標厚以上となり、鋼材の表面に存在する鋳造欠陥等を除去するために十分なスケールを生成できると考えられる。
FIG. 6 shows an example in which the thickness of scale formed on the surface of the steel material S was investigated after the steel material S was heated for a specified time while the heating temperature was set to 1050° C. in the heating process and the water vapor in the furnace was controlled to 5 volume %, 15 volume %, and 25 volume %.
Here, if the target thickness of the scale formed on the surface of the steel material is set to 350 μm or more and the reference value of the heating time in the heating process is set to 60 minutes (3,600 seconds), it can be seen from Figure 6 that when the water vapor in the heating furnace is as low as 5 volume %, the thickness of the scale formed on the surface of the steel material does not reach the target thickness.
In this case, the operating conditions of the heating furnace require the heating time to be extended beyond the standard value, which causes a problem of reduced production efficiency of the heating equipment 100.
On the other hand, when the steam in the heating furnace is 15 or 25 volume %, the thickness of the scale formed on the surface of the steel material is equal to or greater than the target thickness, and it is considered that sufficient scale can be formed to remove casting defects, etc. present on the surface of the steel material.

 また、上記実施形態のバーナ加熱において、バーナ加熱の燃料に用いる水素系ガスの流量を設定することに加え、加熱炉の操業パラメータとして加熱炉における金属材料の加熱時間および加熱温度から選択される少なくとも一つを設定するのが好ましい。上記式(1)のとおり、鋼材の加熱炉1内でのスケール成長は拡散律速であり、加熱時間や加熱温度の影響を受けるからである。
 例えば、バーナ加熱の燃料に用いる水素系ガスの流量が大きくなるように設定して加熱炉内でのスケール生成を促進しながら、加熱炉における金属材料の加熱時間を予め設定された時間よりも短くすることで、適切なスケール生成量を確保しながら加熱設備の生産能率を向上させることができる。
 また、バーナ加熱の燃料に用いる水素系ガスの流量が大きくなるように設定して加熱炉内でのスケール生成を促進しながら、加熱炉における金属材料の加熱温度を予め設定された温度よりも低くすることで、適切なスケール生成量を確保しながら加熱設備の燃料原単位を向上させることができる。
In the burner heating of the above embodiment, in addition to setting the flow rate of the hydrogen-based gas used as the fuel for the burner heating, it is preferable to set at least one selected from the heating time and heating temperature of the metal material in the heating furnace as an operation parameter of the heating furnace, because, as shown in the above formula (1), the scale growth of the steel material in the heating furnace 1 is diffusion-limited and is affected by the heating time and heating temperature.
For example, by setting the flow rate of the hydrogen-based gas used as fuel for burner heating to a high value to promote scale formation in the heating furnace, while shortening the heating time of the metal material in the heating furnace to a time shorter than a preset time, it is possible to improve the production efficiency of the heating equipment while ensuring an appropriate amount of scale formation.
In addition, by setting the flow rate of the hydrogen-based gas used as fuel for burner heating to a large value to promote scale formation in the heating furnace, while setting the heating temperature of the metal material in the heating furnace lower than a preset temperature, it is possible to improve the fuel consumption rate of the heating equipment while ensuring an appropriate amount of scale formation.

 さらに、加熱炉が予熱帯、加熱帯および均熱帯を含む場合に、加熱炉の操業パラメータとして、均熱帯のバーナ加熱の燃料に用いる水素系ガスの流量を設定することにより金属材料のスケール生成量を制御するのが好ましい。加熱炉1の予熱帯3、加熱帯4および均熱帯5は異なる雰囲気温度に制御されることが多く、均熱帯5の雰囲気温度が最も高くなっている。
 金属材料のスケール生成は、雰囲気温度が高い条件で促進されるため、水素系ガスの流量を変更することにより、金属材料のスケール生成量を大きく変化させることができる。
Furthermore, when the heating furnace includes a preheating zone, a heating zone, and a soaking zone, it is preferable to control the amount of scale formation on the metal material by setting the flow rate of hydrogen-based gas used as fuel for burner heating in the soaking zone as an operation parameter of the heating furnace. The preheating zone 3, heating zone 4, and soaking zone 5 of the heating furnace 1 are often controlled to different atmospheric temperatures, with the soaking zone 5 having the highest atmospheric temperature.
Since the formation of scale on metallic materials is promoted under conditions of high atmospheric temperature, the amount of scale formed on metallic materials can be significantly changed by changing the flow rate of the hydrogen-based gas.

 スケール生成量制御方法の他の実施形態は、被加熱材の表面に生成するスケール生成量が予め設定された範囲になるように、加熱炉の操業パラメータを設定する。これにより、金属材料の表面欠陥の発生を防止し、製品歩留まりの低下を一層抑えることができる。ここでは、スケール生成量として、被加熱材の表面に生成するスケール厚みを例に説明する。 Another embodiment of the method for controlling the amount of scale formation sets the operating parameters of the heating furnace so that the amount of scale formation on the surface of the heated material is within a preset range. This makes it possible to prevent the occurrence of surface defects in the metal material and further suppress a decrease in product yield. Here, the amount of scale formation will be explained using the thickness of scale formed on the surface of the heated material as an example.

 他の実施形態では、加熱工程において金属材料の表面に生成するスケール(酸化物層)の厚みの目標厚み(以下、スケール目標厚という。)を予め設定する。スケール目標厚は、加熱工程を実行する前の金属材料の表面近傍に分布する鋳造時に生成した不純物や鋳造時に混入するモールドパウダー等に起因した異物が分布する表面からの厚みを予め特定しておき、そのような厚みと同等の厚みに設定するのが好ましい。例えば、加熱を行う金属材料のスケール目標厚を50~1000μm程度に設定するとよい。金属材料が鋼材である場合には、スケール目標厚を300~600μmで設定するとよい。鋳造時に生成した不純物や鋳造時に混入するモールドパウダー等に起因した異物は、鋼材の表面から概ね300~600μmの範囲に多く存在することが多いからである。 In another embodiment, a target thickness (hereinafter referred to as the target scale thickness) of the scale (oxide layer) formed on the surface of the metal material in the heating process is set in advance. The target scale thickness is preferably set to a thickness equivalent to the thickness from the surface where impurities generated during casting and foreign matter caused by mold powder mixed in during casting that are distributed near the surface of the metal material before the heating process is performed are distributed, which is specified in advance. For example, the target scale thickness of the metal material to be heated may be set to about 50 to 1000 μm. When the metal material is a steel material, the target scale thickness may be set to 300 to 600 μm. This is because impurities generated during casting and foreign matter caused by mold powder mixed in during casting are often present in the range of approximately 300 to 600 μm from the surface of the steel material.

 加熱工程において金属材料の表面に生成するスケール厚みは、酸化物の成長挙動をモデル化した数式モデル(以下、スケール厚予測モデルという。)を用いて推定するとよい。
 例えば、鋼材のスケール成長は、以下の式(2)を用いて推定できる。

Figure JPOXMLDOC01-appb-M000002
 ただし、fは加熱炉内の酸素分圧POおよび水蒸気分圧PHOの関数として、予めオフラインの加熱実験により決定しておく。スケールの成長挙動に対して酸素分圧や水蒸気分圧が影響を与えることは知られているが、理論的に定式化することは難しい。そのため、酸素分圧と水蒸気分圧を変化させて金属材料を加熱する実験を予め行っておき、金属材料の表面に生成するスケール厚みが、上記式(2)を満足するように関数fを回帰分析により決定しておくとよい。 The thickness of the scale formed on the surface of the metal material in the heating process may be estimated using a mathematical model that models the growth behavior of oxides (hereinafter referred to as a scale thickness prediction model).
For example, the scale growth of a steel material can be estimated using the following equation (2).
Figure JPOXMLDOC01-appb-M000002
where f is a function of the oxygen partial pressure PO2 and the water vapor partial pressure PH2O in the heating furnace, and is determined in advance by an offline heating experiment. It is known that the oxygen partial pressure and the water vapor partial pressure affect the growth behavior of scale, but it is difficult to formulate this theoretically. Therefore, it is advisable to carry out an experiment in advance in which the metal material is heated while changing the oxygen partial pressure and the water vapor partial pressure, and to determine the function f by regression analysis so that the thickness of the scale formed on the surface of the metal material satisfies the above formula (2).

 以上のようにして予め決定しておいたスケール厚予測モデルは、加熱設備100の操業条件を設定する制御用計算機101に搭載しておき、加熱炉1から制御用計算機101が取得する情報に基づいて、金属材料の表面に生成するスケール厚みの予測値を算出するとよい。 The scale thickness prediction model determined in advance as described above is loaded into the control computer 101 that sets the operating conditions of the heating equipment 100, and the predicted value of the scale thickness that will form on the surface of the metal material is calculated based on the information that the control computer 101 acquires from the heating furnace 1.

 具体的には、制御用計算機101から加熱炉1の操業パラメータを取得する(取得ステップ)。次に、取得した加熱炉1の操業パラメータに基づいて、加熱工程を終了する段階でのスケール厚みを予測する(予測ステップ)。そして、予測したスケール厚み(スケール予測厚)が予め設定されたスケール目標厚の範囲にあるか否かを判定する(判定ステップ)。判定ステップにおいて、スケール予測厚がスケール目標厚の範囲にある場合には制御用計算機101に対して加熱炉1の現在の操業条件を維持する指令を出す。一方、判定ステップにおいて、スケール予測厚がスケール目標厚の範囲にない場合には制御用計算機101に対して加熱炉1の操業パラメータを変更する設定指令を出す(設定ステップ)。 Specifically, the operating parameters of the heating furnace 1 are acquired from the control computer 101 (acquisition step). Next, based on the acquired operating parameters of the heating furnace 1, the scale thickness at the stage when the heating process is completed is predicted (prediction step). Then, it is determined whether the predicted scale thickness (predicted scale thickness) is within a preset range of the target scale thickness (determination step). In the determination step, if the predicted scale thickness is within the range of the target scale thickness, a command is issued to the control computer 101 to maintain the current operating conditions of the heating furnace 1. On the other hand, in the determination step, if the predicted scale thickness is not within the range of the target scale thickness, a setting command is issued to the control computer 101 to change the operating parameters of the heating furnace 1 (setting step).

 設定ステップにより、制御用計算機101に対して設定指令を出す加熱炉1の操業パラメータは、バーナ加熱の燃料に用いる水素系ガスの流量を用いる。また、水素系ガスの流量に加えて、加熱工程の加熱時間や加熱温度を用いてよい。加熱工程に用いられる水素系ガスHGの流量を変更すると、バーナ加熱により生成する水蒸気が変化するので、これにより金属材料のスケール生成量を制御できる。さらに、加熱工程の加熱時間を変更することにより、加熱工程で生成する金属材料の酸化物層の厚みが変化する。また、加熱工程の加熱温度(加熱炉内部の各帯域での雰囲気温度)を変更することにより加熱工程で生成する金属材料の酸化物層の厚みが変化する。この場合、加熱工程の加熱温度は、均熱帯の雰囲気温度を変更するとよい。 The operating parameters of the heating furnace 1, which send a setting command to the control computer 101 in the setting step, use the flow rate of the hydrogen-based gas used as fuel for burner heating. In addition to the flow rate of the hydrogen-based gas, the heating time and heating temperature of the heating process may be used. Changing the flow rate of the hydrogen-based gas HG used in the heating process changes the water vapor generated by the burner heating, which allows the amount of scale generated on the metal material to be controlled. Furthermore, changing the heating time of the heating process changes the thickness of the oxide layer of the metal material generated in the heating process. Also, changing the heating temperature of the heating process (ambient temperature in each zone inside the heating furnace) changes the thickness of the oxide layer of the metal material generated in the heating process. In this case, the heating temperature of the heating process may be changed by changing the ambient temperature of the soaking zone.

 次に、スケール生成量制御装置51によるスケール生成量制御の処理について説明する。取得部56は、制御用計算機101から加熱炉1の操業パラメータを取得する。取得部56は、加熱炉1の操業パラメータとして、加熱炉1の水素系バーナ設備70、71の燃料に用いる水素系ガスHGの流量を取得する。取得部56は、加熱炉1の操業パラメータとして、加熱炉1における金属材料の加熱時間、加熱温度の設定値を取得する。また、取得部56は、加熱炉1内の雰囲気ガスの温度および露点の測定値を取得してよい。 Next, the process of scale generation amount control by the scale generation amount control device 51 will be described. The acquisition unit 56 acquires the operation parameters of the heating furnace 1 from the control computer 101. The acquisition unit 56 acquires the flow rate of the hydrogen-based gas HG used as fuel for the hydrogen-based burner equipment 70, 71 of the heating furnace 1 as the operation parameters of the heating furnace 1. The acquisition unit 56 acquires the set values of the heating time and heating temperature of the metal material in the heating furnace 1 as the operation parameters of the heating furnace 1. The acquisition unit 56 may also acquire measured values of the temperature and dew point of the atmospheric gas in the heating furnace 1.

 予測部57は、取得部56から加熱炉1の操業パラメータを取得すると、記憶部55に格納されているスケール厚予測モデルを読み出す。予測部57は、スケール厚予測モデルに加熱炉1の操業パラメータを入力し、スケール厚みの予測値(スケール予測厚)を出力させることで、スケール生成量を予測する。予測部57は、予測したスケール予測厚を出力部54に表示させてもよい。これにより、オペレータは、当該出力部54を視認することで加熱工程におけるスケール生成量の予測値を確認できる。 When the prediction unit 57 acquires the operating parameters of the heating furnace 1 from the acquisition unit 56, it reads out the scale thickness prediction model stored in the memory unit 55. The prediction unit 57 inputs the operating parameters of the heating furnace 1 into the scale thickness prediction model and outputs a predicted value of the scale thickness (predicted scale thickness), thereby predicting the amount of scale generation. The prediction unit 57 may display the predicted predicted scale thickness on the output unit 54. This allows the operator to confirm the predicted value of the amount of scale generation in the heating process by visually checking the output unit 54.

 次に、スケール生成量制御装置51によるスケール予測厚の判定処理について説明する。予測部57は予測したスケール厚みを判定部58に出力する。判定部58は、予測部57から取得したスケール厚みの予測値がスケール目標厚の範囲内か否か判定する。なお、スケール目標厚は、制御用計算機101から取得して記憶部55に記憶されていてよい。また、スケール目標厚は、入力部53からオペレータによって入力されてもよく、予め、オペレータにより入力され、記憶部55に格納されていてもよい。判定部58は、スケール厚みの予測値がスケール目標厚の範囲内か否かの判定結果を設定部59に出力する。 Next, the process of judging the predicted scale thickness by the scale generation amount control device 51 will be described. The prediction unit 57 outputs the predicted scale thickness to the judgment unit 58. The judgment unit 58 judges whether the predicted value of the scale thickness obtained from the prediction unit 57 is within the range of the target scale thickness. The target scale thickness may be obtained from the control computer 101 and stored in the memory unit 55. The target scale thickness may be input by the operator from the input unit 53, or may be input in advance by the operator and stored in the memory unit 55. The judgment unit 58 outputs the judgment result of whether the predicted value of the scale thickness is within the range of the target scale thickness to the setting unit 59.

 設定部59は、判定部58によりスケール予測厚がスケール目標厚の範囲内であるとの判定結果を取得した場合には、取得部56が取得した加熱炉1の操業パラメータにより所定のスケール目標厚の範囲に制御できることから、現在の加熱炉1の操業パラメータを維持する指令を制御用計算機101に出力する。一方、設定部59は、判定部58によりスケール予測厚がスケール目標厚の範囲内にないとの判定結果を取得した場合には、取得部56が取得した加熱炉1の操業パラメータを変更する。この場合、設定部59は、加熱炉1の操業パラメータを現在の設定値から変更した新たな設定値を仮定し、予測部57に出力する。予測部57は、新たな設定値を再度スケール厚予測モデルに入力し、スケール厚みを予測して、判定部58に出力する。判定部58は、新たに取得したスケール厚みの予測値がスケール目標厚の範囲か否か判定する。予測部57および判定部58はこの処理をスケール厚みの予測値がスケール目標厚の範囲内になるまで繰り返し実施する。そして、設定部59は、スケール厚みの予測値がスケール目標厚の範囲内となるための加熱炉1の操業パラメータを特定し、これを制御用計算機101に出力する。 When the setting unit 59 obtains a judgment result from the judgment unit 58 that the scale predicted thickness is within the range of the scale target thickness, the setting unit 59 outputs a command to maintain the current operating parameters of the heating furnace 1 to the control computer 101, since the operating parameters of the heating furnace 1 obtained by the acquisition unit 56 can be used to control the scale predicted thickness to a predetermined range of the scale target thickness. On the other hand, when the setting unit 59 obtains a judgment result from the judgment unit 58 that the scale predicted thickness is not within the range of the scale target thickness, the setting unit 59 changes the operating parameters of the heating furnace 1 obtained by the acquisition unit 56. In this case, the setting unit 59 assumes new setting values obtained by changing the operating parameters of the heating furnace 1 from the current setting values, and outputs the setting values to the prediction unit 57. The prediction unit 57 again inputs the new setting values into the scale thickness prediction model, predicts the scale thickness, and outputs the setting values to the judgment unit 58. The judgment unit 58 judges whether the newly acquired predicted value of the scale thickness is within the range of the scale target thickness. The prediction unit 57 and the judgment unit 58 repeat this process until the predicted value of the scale thickness is within the range of the scale target thickness. The setting unit 59 then identifies the operating parameters of the heating furnace 1 that will bring the predicted value of the scale thickness within the range of the target scale thickness, and outputs these to the control computer 101.

 制御用計算機101は、設定部59から取得した情報に基づき、設定された加熱炉1の操業パラメータを実現するように加熱設備100を制御する。 The control computer 101 controls the heating equipment 100 to realize the set operating parameters of the heating furnace 1 based on the information obtained from the setting unit 59.

 以下、本実施形態の効果を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されるものではない。 The effects of this embodiment will be specifically explained below based on examples, but the present invention is not limited to these examples.

 本発明の実施例として、上記の加熱工程を模擬した試験装置を用いて、鋼材のスケール生成量制御を行った例について説明する。本実施例に用いた試験装置は、バーナ加熱を行う燃焼ガス加熱炉である。 As an example of the present invention, we will explain an example of controlling the amount of scale formation on steel using a test device that simulates the above heating process. The test device used in this example is a combustion gas heating furnace that performs burner heating.

 加熱工程を実行する燃焼ガス加熱炉は、炉内のサイズが、高さ800mm×幅500mm×長さ1000mmのものである。燃焼ガス加熱炉には、炉内に装入する試験片の上面と下面にバーナが配置されており、燃料ガス供給系統から水素系ガスと石炭ガスとの混合ガスを供給するように構成した。混合ガスに用いた水素系ガスはアンモニアであり、石炭ガスは製鉄所で発生する副生ガスを混合したMガスを使用した。 The combustion gas heating furnace in which the heating process is carried out has internal dimensions of 800mm high x 500mm wide x 1000mm long. The combustion gas heating furnace has burners placed on the top and bottom of the test pieces to be placed inside the furnace, and is configured to supply a mixed gas of hydrogen-based gas and coal gas from a fuel gas supply system. The hydrogen-based gas used in the mixed gas was ammonia, and the coal gas used was M gas, a mixture of by-product gases generated in steelworks.

 実施例に用いた燃焼条件として、バーナに供給されるアンモニア流量を50Nm/hr、Mガス流量を117Nm/hrとして、混合ガス中のアンモニア体積比率を30%、Mガス体積比率を70%とした。なお、使用したMガスは、完全燃焼する条件において、排ガス中に13体積%の二酸化炭素が排出される組成となっていた。
 一方、実施例では、アンモニアの混合比率を調整することにより、加熱工程における排ガス中の二酸化炭素濃度が9体積%となるようにバーナ加熱条件を設定した。
The combustion conditions used in the examples were as follows: ammonia flow rate supplied to the burner was 50 Nm3 /hr, M gas flow rate was 117 Nm3 /hr, ammonia volume ratio in the mixed gas was 30%, and M gas volume ratio was 70%. Note that the M gas used had a composition that would result in 13 volume % of carbon dioxide being discharged into the exhaust gas under complete combustion conditions.
On the other hand, in the embodiment, the mixture ratio of ammonia was adjusted to set the burner heating conditions so that the carbon dioxide concentration in the exhaust gas in the heating step was 9% by volume.

 実施例では、被加熱材となる金属材料として、板厚220mm×板幅300mm×板長500mmの炭素鋼を用いた。被加熱材は、鋳造後のスラブから機械加工により採取し、板幅と板長の中央部に表面から2mm深さの位置にΦ0.5mmのKシース熱電対を取り付けた。これにより、加熱工程における被加熱材の昇温挙動を測定し、測定結果に基づき被加熱材の表面温度を推定した。 In the example, carbon steel with plate thickness of 220 mm x plate width of 300 mm x plate length of 500 mm was used as the metal material to be heated. The heated material was taken by machining from the slab after casting, and a Φ0.5 mm K-sheathed thermocouple was attached at a position 2 mm deep from the surface in the center of the plate width and length. This allowed the temperature rise behavior of the heated material during the heating process to be measured, and the surface temperature of the heated material was estimated based on the measurement results.

 ここでは、予め燃焼ガス加熱炉における加熱条件を変更し、加熱温度と被加熱材の表面に生成するスケール厚みとの関係を事前に調査した。図8に、燃焼ガス加熱炉内の水蒸気濃度と被加熱材のスケール厚みとの関係を、加熱温度ごとに示す。なお、加熱時間は60分とした。スケール厚みについては、燃焼ガス加熱炉において設定された表面温度に到達した時点で、被加熱材を燃焼ガス加熱炉から取り出して、直ちに水冷した。これにより以降のスケール成長を防止した。そして、被加熱材から機械加工により評価サンプルを採取して、被加熱材の断面を光学顕微鏡によって観察し、スケール厚みを求めた。 Here, the heating conditions in the combustion gas heating furnace were changed in advance to investigate the relationship between the heating temperature and the thickness of the scale that forms on the surface of the heated material. Figure 8 shows the relationship between the water vapor concentration in the combustion gas heating furnace and the thickness of the scale on the heated material for each heating temperature. The heating time was 60 minutes. Regarding the thickness of the scale, when the surface temperature set in the combustion gas heating furnace was reached, the heated material was removed from the combustion gas heating furnace and immediately cooled with water. This prevented further scale growth. An evaluation sample was then machined from the heated material, and the cross section of the heated material was observed under an optical microscope to determine the thickness of the scale.

 図8からは、加熱温度に応じて燃焼ガス加熱炉内の水蒸気濃度を変化させることにより被加熱材のスケール厚みを制御できることが分かる。 Figure 8 shows that the scale thickness of the heated material can be controlled by changing the water vapor concentration in the combustion gas heating furnace according to the heating temperature.

 次に、図8の事前実験結果に加え、加熱時間を変更した調査結果に基づいて、スケール厚予測モデルを生成した。スケール厚予測モデルには式(2)に示す酸化物の成長挙動をモデル化した数式モデルを用いた。生成したスケール厚予測モデルは、スケール生成量制御装置51の記憶部55に格納し、加熱炉の操業パラメータとして、バーナ加熱の燃料に用いる水素系ガスの流量を設定することにより金属材料のスケール生成量を制御した。 Next, a scale thickness prediction model was generated based on the results of the preliminary experiment in Figure 8, as well as the results of an investigation in which the heating time was changed. For the scale thickness prediction model, a mathematical model was used that models the oxide growth behavior shown in formula (2). The generated scale thickness prediction model was stored in the memory unit 55 of the scale formation amount control device 51, and the amount of scale formation on the metal material was controlled by setting the flow rate of the hydrogen-based gas used as fuel for burner heating as an operating parameter of the heating furnace.

 ここでは、被加熱材に使用した炭素鋼のスケール目標厚を350~600μmの範囲に設定した。被加熱材に用いた炭素鋼は、鋳造時に生成した不純物や鋳造時に混入するモールドパウダー等に起因した異物が存在する範囲が予め特定されており、スケール目標厚をこの範囲に設定した。
 つまり、被加熱材から採取した評価サンプルに生成されるスケール厚みが350μm未満の場合には、スケール厚みが不十分となって熱間圧延等に供される場合に表面欠陥が発生するおそれがある。一方、スケール厚みが600μmを超えると、過剰なスケール生成により製品歩留まりの低下をもたらすおそれがある。
 以上から、被加熱材から採取した評価サンプルに生成されるスケール厚みが、スケール目標厚350~600μmの範囲内である場合を合格(〇)と判定した。一方、被加熱材から採取した評価サンプルに生成されるスケール厚みが、スケール目標厚350~600μmの範囲外となる場合を不合格(×)と判定した。
Here, the target scale thickness of the carbon steel used for the heated material was set to the range of 350 to 600 μm. The range in which the carbon steel used for the heated material contains impurities generated during casting and foreign matter caused by mold powder mixed in during casting was specified in advance, and the target scale thickness was set to this range.
That is, if the thickness of scale generated on the evaluation sample taken from the heated material is less than 350 μm, the thickness of the scale may be insufficient and surface defects may occur when the material is subjected to hot rolling, etc. On the other hand, if the thickness of the scale exceeds 600 μm, excessive scale generation may result in a decrease in product yield.
From the above, a case where the scale thickness formed on the evaluation sample taken from the heated material was within the range of the target scale thickness of 350 to 600 μm was judged as pass (◯). On the other hand, a case where the scale thickness formed on the evaluation sample taken from the heated material was outside the range of the target scale thickness of 350 to 600 μm was judged as fail (×).

 加熱条件および試験結果を表1に示す。表1の「加熱温度」、「水素系ガス」、「水素系ガスの混合比率」は、予め設定された加熱炉の操業パラメータについての初期条件を表す。「設定変更する加熱炉の操業パラメータ」は、判定部58によりスケール厚みの予測値がスケール目標厚の範囲内にないと判定された場合に、設定部59が再設定する操業パラメータを示す。この場合、条件5、6は、設定部59が再設定する操業パラメータとして水素系ガス流量に加えて、加熱時間または加熱温度を再設定することを意味する。
 一方、「水蒸気量」は、加熱炉の操業パラメータが設定部59により設定された後の炉内水蒸気量濃度を示す。「スケール厚み」は、上記と同様に評価サンプルを採取して被加熱材の断面を光学顕微鏡によって観察して得られたスケール厚みを示す。
The heating conditions and test results are shown in Table 1. In Table 1, "heating temperature,""hydrogen-basedgas," and "mixing ratio of hydrogen-based gas" represent initial conditions for the operation parameters of the heating furnace that were previously set. "Operation parameters of the heating furnace to be changed" indicates the operation parameters that are reset by the setting unit 59 when the determination unit 58 determines that the predicted value of the scale thickness is not within the range of the target scale thickness. In this case, conditions 5 and 6 mean that the heating time or the heating temperature is reset in addition to the hydrogen-based gas flow rate as the operation parameter to be reset by the setting unit 59.
On the other hand, the "water vapor amount" indicates the concentration of water vapor in the furnace after the operation parameters of the heating furnace are set by the setting unit 59. The "scale thickness" indicates the scale thickness obtained by taking an evaluation sample in the same manner as above and observing the cross section of the heated material with an optical microscope.

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 表1から分かるように、発明例である条件1~8では、被加熱材から採取した評価サンプルに生成されるスケール厚みが、スケール目標厚350~600μmの範囲内であることから、合格(〇)と判定した。特に、条件3、4では、加熱温度が1100℃と比較的高く設定されているにも関わらず、炉内の水蒸気量が低くなるように制御が行われたため、被加熱材のスケール厚みがスケール目標厚の範囲に入った。
 一方、条件8では、加熱温度が1050℃と比較的低く、水素系ガスの混合比率が低いことから、スケール生成が促進されにくい加熱条件であったが、水素系ガス流量を制御することにより被加熱材のスケール厚みがスケール目標厚の範囲に入った。
As can be seen from Table 1, in the conditions 1 to 8 of the invention, the scale thickness generated on the evaluation sample taken from the heated material was within the range of the target scale thickness of 350 to 600 μm, and therefore was judged to be pass (◯). In particular, in conditions 3 and 4, even though the heating temperature was set at a relatively high 1100° C., the amount of water vapor in the furnace was controlled to be low, so the scale thickness of the heated material was within the range of the target scale thickness.
On the other hand, under condition 8, the heating temperature was relatively low at 1,050°C and the mixture ratio of hydrogen-based gas was low, so the heating conditions were not conducive to promoting scale formation. However, by controlling the hydrogen-based gas flow rate, the scale thickness of the heated material was within the range of the target scale thickness.

 これに対して、比較例である条件9、10は、判定部58によりスケール厚みの予測値がスケール目標厚の範囲内にないと判定された場合であっても、予め設定された初期条件のまま加熱が行われたため、被加熱材のスケール厚みがスケール目標厚の範囲とはならなかった。 In contrast, in conditions 9 and 10, which are comparative examples, even when the judgment unit 58 judged that the predicted value of the scale thickness was not within the range of the target scale thickness, heating was performed under the preset initial conditions, so the scale thickness of the heated material did not fall within the range of the target scale thickness.

 以上から、本実施例により、加熱炉の燃料ガスとして水素やアンモニアを使用することにより二酸化炭素の排出量を低減できると共に、スケール生成量を適切な範囲に制御して、金属材料の表面欠陥の発生を低減させることが可能であることが分かった。 From the above, it was found that this embodiment can reduce carbon dioxide emissions by using hydrogen or ammonia as fuel gas for the heating furnace, and can also control the amount of scale generation within an appropriate range, reducing the occurrence of surface defects in metal materials.

  100  加熱設備
  101  制御用計算機
  S  鋼材
  D  鋼材の搬送方向
  A  燃焼用空気
  G  燃料ガス
  CG 石炭ガス
  HG 水素ガス
  1  加熱炉
  3  予熱帯
  4  加熱帯
  5  均熱帯
  6  バーナ
  6a  上部バーナ
  6b  下部バーナ
  7  バーナノズル
  8  装入部
  9  搬出部
  10 搬送装置
  10a 固定スキッド
  10b 移動スキッド
  13 排気ダクト
  31 燃料ガス供給系統
  32 燃焼用空気供給系統
  33 燃料ガス流量調整弁
  34 燃料ガス流量計
  35 燃焼用空気流量調整弁
  36 燃焼用空気流量計
  37 炉壁
  38 炉内
  40 混合部
  41 水素系ガス流量調整弁
  42 水素系ガス流量計
  43 石炭ガス流量調整弁
  44 石炭ガス流量計
  45 水素系ガス供給系統
  46 石炭ガス供給系統
  47 流量設定部
  48 水蒸気量制御部
  49 露点計
  51 スケール生成量制御装置
  52 制御部
  53 入力部
  54 出力部
  55 記憶部
  56 取得部
  57 予測部
  58 判定部
  59 設定部
  60 バーナ設備
  70、71 水素系バーナ設備

 
REFERENCE SIGNS LIST 100 Heating equipment 101 Control computer S Steel material D Steel material transport direction A Combustion air G Fuel gas CG Coal gas HG Hydrogen gas 1 Heating furnace 3 Preheating zone 4 Heating zone 5 Uniformity zone 6 Burner 6a Upper burner 6b Lower burner 7 Burner nozzle 8 Charging section 9 Discharge section 10 Transport device 10a Fixed skid 10b Mobile skid 13 Exhaust duct 31 Fuel gas supply system 32 Combustion air supply system 33 Fuel gas flow control valve 34 Fuel gas flow meter 35 Combustion air flow control valve 36 Combustion air flow meter 37 Furnace wall 38 Furnace interior 40 Mixing section 41 Hydrogen-based gas flow control valve 42 Hydrogen-based gas flow meter 43 Coal gas flow control valve 44 Coal gas flow meter 45 Hydrogen-based gas supply system 46 Coal gas supply system 47 Flow rate setting unit 48 Water vapor amount control unit 49 Dew point meter 51 Scale formation amount control device 52 Control unit 53 Input unit 54 Output unit 55 Memory unit 56 Acquisition unit 57 Prediction unit 58 Determination unit 59 Setting unit 60 Burner equipment 70, 71 Hydrogen-based burner equipment

Claims (12)

加熱炉における金属材料のスケール生成量制御方法であって、
水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスを燃料に用いて前記金属材料をバーナ加熱し、
前記加熱炉の操業パラメータとして、前記バーナ加熱の燃料に用いる前記水素系ガスの流量を設定し、設定された水素系ガスの流量に基づいて金属材料の表面に生成するスケール生成量を制御する、
加熱炉における金属材料のスケール生成量制御方法。
A method for controlling the amount of scale formation on a metal material in a heating furnace, comprising:
The metal material is heated with a burner using a hydrogen-based gas containing either or both of hydrogen and ammonia as fuel;
a flow rate of the hydrogen-based gas used as fuel for the burner heating is set as an operation parameter of the heating furnace, and the amount of scale formed on the surface of the metal material is controlled based on the set flow rate of the hydrogen-based gas.
A method for controlling the amount of scale formation on metallic materials in a heating furnace.
前記水素系ガスに、石炭ガスおよび炭化水素系ガスから選ばれる1種以上のガスを混合した混合ガスを燃料に用いて前記金属材料をバーナ加熱する、
請求項1に記載の加熱炉における金属材料のスケール生成量制御方法。
the metal material is heated with a burner using a mixed gas obtained by mixing the hydrogen-based gas with one or more gases selected from coal gas and a hydrocarbon-based gas as fuel;
The method for controlling the amount of scale formation on a metallic material in a heating furnace according to claim 1.
前記加熱炉の操業パラメータとして、さらに前記加熱炉における金属材料の加熱時間及び加熱温度から選択される少なくとも一つを設定し、設定された操業パラメータに基づいて金属材料の表面に生成するスケール生成量を制御する、
請求項1又は2に記載の加熱炉における金属材料のスケール生成量制御方法。
At least one selected from a heating time and a heating temperature of the metal material in the heating furnace is further set as an operation parameter of the heating furnace, and the amount of scale formed on the surface of the metal material is controlled based on the set operation parameter.
3. A method for controlling the amount of scale formation on a metallic material in a heating furnace according to claim 1 or 2.
前記加熱炉は予熱帯、加熱帯及び均熱帯を含み、
水素系ガスを燃料に用いて、前記均熱帯でバーナ加熱し、
前記加熱炉の操業パラメータとして、前記均熱帯のバーナ加熱の燃料に用いる前記水素系ガスの流量を設定し、設定された水素系ガスの流量に基づいて金属材料の表面に生成するスケール生成量を制御する、
請求項1又は2に記載の加熱炉における金属材料のスケール生成量制御方法。
The heating furnace includes a preheating zone, a heating zone, and a soaking zone,
Using hydrogen-based gas as fuel, burner heating is performed in the soaking zone,
a flow rate of the hydrogen-based gas used as fuel for burner heating of the soaking zone is set as an operation parameter of the heating furnace, and an amount of scale formed on a surface of a metal material is controlled based on the set flow rate of the hydrogen-based gas.
3. A method for controlling the amount of scale formation on a metallic material in a heating furnace according to claim 1 or 2.
金属材料のスケール生成量が予め設定された範囲になるように、加熱炉の前記操業パラメータに基づいて、スケール生成量を制御する、請求項1又は2に記載の加熱炉における金属材料のスケール生成量制御方法。 A method for controlling the amount of scale formation on a metal material in a heating furnace according to claim 1 or 2, which controls the amount of scale formation on the metal material based on the operating parameters of the heating furnace so that the amount of scale formation on the metal material is within a preset range. 金属材料のスケール生成量が予め設定された範囲になるように、加熱炉の前記操業パラメータに基づいて、スケール生成量を制御する、請求項3に記載の加熱炉における金属材料のスケール生成量制御方法。 A method for controlling the amount of scale formation on a metal material in a heating furnace as described in claim 3, which controls the amount of scale formation on the metal material based on the operating parameters of the heating furnace so that the amount of scale formation on the metal material is within a preset range. 金属材料のスケール生成量が予め設定された範囲になるように、加熱炉の前記操業パラメータに基づいて、スケール生成量を制御する、請求項4に記載の加熱炉における金属材料のスケール生成量制御方法。 A method for controlling the amount of scale formation on a metal material in a heating furnace as described in claim 4, which controls the amount of scale formation on the metal material based on the operating parameters of the heating furnace so that the amount of scale formation on the metal material is within a preset range. 加熱炉における金属材料のスケール生成量制御装置であって、バーナ加熱の燃料に用いる、水素及びアンモニアのいずれか一方若しくは両方を全量とする水素系ガスの流量を含む加熱炉の操業パラメータを取得する取得部と、
取得した操業パラメータを用いて前記金属材料のスケール生成量を予測する予測部と、
予測したスケール生成量が予め設定された範囲であるか判定する判定部と、及び
予測したスケール生成量が予め設定された範囲にない場合に前記加熱炉の操業パラメータを設定する設定部と、
を含む制御部を備える、加熱炉における金属材料のスケール生成量制御装置。
An apparatus for controlling the amount of scale formation on a metal material in a heating furnace, comprising: an acquisition unit for acquiring operating parameters of the heating furnace including a flow rate of a hydrogen-based gas, the total amount of which is either hydrogen or ammonia or both, used as a fuel for burner heating;
a prediction unit that predicts the amount of scale generation on the metallic material using the acquired operational parameters;
a determining unit that determines whether the predicted amount of scale generation is within a preset range, and a setting unit that sets operation parameters of the heating furnace when the predicted amount of scale generation is not within the preset range;
A device for controlling the amount of scale formation on a metal material in a heating furnace, comprising a control unit including:
前記水素系ガスに、石炭ガスおよび炭化水素系ガスから選ばれる1種以上のガスを混合した混合ガスの流量を含む加熱炉の操業パラメータを取得する取得部とする、
請求項8に記載の加熱炉における金属材料のスケール生成量制御装置。
an acquisition unit that acquires operation parameters of the heating furnace including a flow rate of a mixed gas obtained by mixing the hydrogen-based gas with one or more gases selected from a coal gas and a hydrocarbon-based gas;
The device for controlling the amount of scale formation on metal materials in a heating furnace according to claim 8.
請求項5に記載の加熱炉における金属材料のスケール生成量制御方法を用いて鋼素材を加熱する加熱炉の操業方法。 A method for operating a heating furnace that heats steel material using the method for controlling the amount of scale formation on metal materials in a heating furnace described in claim 5. 請求項6に記載の加熱炉における金属材料のスケール生成量制御方法を用いて鋼素材を加熱する加熱炉の操業方法。 A method for operating a heating furnace that heats steel material using the method for controlling the amount of scale formation on metal materials in a heating furnace described in claim 6. 請求項7に記載の加熱炉における金属材料のスケール生成量制御方法を用いて鋼素材を加熱する加熱炉の操業方法。

 
A method for operating a heating furnace for heating a steel material, using the method for controlling the amount of scale formation on a metallic material in a heating furnace according to claim 7.

PCT/JP2024/015558 2023-08-30 2024-04-19 Method for controlling scale generation amount of metal material in heating furnace, scale generation amount control device, and heating furnace operation method WO2025046980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-139436 2023-08-30
JP2023139436A JP7564511B1 (en) 2023-08-30 2023-08-30 Method for controlling the amount of scale formation on metal materials in a heating furnace, device for controlling the amount of scale formation, and method for operating a heating furnace

Publications (1)

Publication Number Publication Date
WO2025046980A1 true WO2025046980A1 (en) 2025-03-06

Family

ID=92969882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/015558 WO2025046980A1 (en) 2023-08-30 2024-04-19 Method for controlling scale generation amount of metal material in heating furnace, scale generation amount control device, and heating furnace operation method

Country Status (3)

Country Link
JP (1) JP7564511B1 (en)
TW (1) TW202511503A (en)
WO (1) WO2025046980A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140212A (en) * 1977-05-13 1978-12-07 Nippon Steel Corp Heating furnace of multizone type for steel material
JPH06184627A (en) * 1992-12-22 1994-07-05 Kawasaki Steel Corp Method for controlling scale in heating furnace
JPH11286718A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Manufacturing method of steel sheet with excellent surface properties
JP2014169465A (en) * 2013-03-01 2014-09-18 Jfe Steel Corp Manufacturing method of hot-dip galvanized steel sheet, and continuous hot-dip galvanizing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140212A (en) * 1977-05-13 1978-12-07 Nippon Steel Corp Heating furnace of multizone type for steel material
JPH06184627A (en) * 1992-12-22 1994-07-05 Kawasaki Steel Corp Method for controlling scale in heating furnace
JPH11286718A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Manufacturing method of steel sheet with excellent surface properties
JP2014169465A (en) * 2013-03-01 2014-09-18 Jfe Steel Corp Manufacturing method of hot-dip galvanized steel sheet, and continuous hot-dip galvanizing device

Also Published As

Publication number Publication date
JP2025033605A (en) 2025-03-13
TW202511503A (en) 2025-03-16
JP7564511B1 (en) 2024-10-09

Similar Documents

Publication Publication Date Title
KR101665066B1 (en) Apparatus and Method for Manufacturing Sintered Ore
US8974571B2 (en) Partially-reduced iron producing apparatus and partially-reduced iron producing method
KR101121701B1 (en) Process for production of granular metallic iron and equipment for the production
JP7564511B1 (en) Method for controlling the amount of scale formation on metal materials in a heating furnace, device for controlling the amount of scale formation, and method for operating a heating furnace
JP2000144241A (en) Heating method for continuous charging type heating furnace and continuous charging type heating furnace
CN103380216B (en) Apparatus and method for heating a blast furnace stove
Nikolaiev Construction of a cupola information profile for further modeling for the purpose of controlling melting processes
JP5770124B2 (en) Blast furnace operation method
JP2025033608A (en) Method for heating metal materials, heating equipment, and method for operating a heating furnace
KR20210072917A (en) Heating furnace exhaust gas recycling apparatus and method
JP3959773B2 (en) Thermal storage type atmospheric gas heating method and thermal storage type atmospheric gas heating device
JP7633610B1 (en) How to operate a heating furnace
JP2006308249A (en) Regenerative burner and its low NOx combustion method
JP2022182422A (en) Blast furnace operation method
JP3149666B2 (en) Radiant heating device and combustion method thereof
JP7495023B1 (en) Manufacturing facilities and methods of operating manufacturing facilities
JP7320917B2 (en) Combustion furnace with denitration equipment
TW202524032A (en) Operating method of heating furnace and heating furnace
JP2003129119A (en) Supply method of fuel gas to hot blast stove
JP7711687B2 (en) Method of operating a steel heating furnace and steel heating furnace
TW202524015A (en) How to operate the heating furnace
JP2025089649A (en) Heating furnace operation method and heating furnace
JP7712597B1 (en) Method for producing reduced iron using a shaft furnace
SU1364639A1 (en) Method of heating open-hearth furnace
JPH08291327A (en) Continuous heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24859029

Country of ref document: EP

Kind code of ref document: A1