[go: up one dir, main page]

WO2025046654A1 - Automated external defibrillator - Google Patents

Automated external defibrillator Download PDF

Info

Publication number
WO2025046654A1
WO2025046654A1 PCT/JP2023/030715 JP2023030715W WO2025046654A1 WO 2025046654 A1 WO2025046654 A1 WO 2025046654A1 JP 2023030715 W JP2023030715 W JP 2023030715W WO 2025046654 A1 WO2025046654 A1 WO 2025046654A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
waveform
duty ratio
polarity
circuit
Prior art date
Application number
PCT/JP2023/030715
Other languages
French (fr)
Japanese (ja)
Inventor
敏雄 千葉
権太郎 北角
邦彦 松井
Original Assignee
株式会社オンラインマスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オンラインマスター filed Critical 株式会社オンラインマスター
Priority to PCT/JP2023/030715 priority Critical patent/WO2025046654A1/en
Priority to JP2023579652A priority patent/JP7493865B1/en
Priority to JP2024055504A priority patent/JP2025031497A/en
Priority to PCT/JP2024/030101 priority patent/WO2025047627A1/en
Publication of WO2025046654A1 publication Critical patent/WO2025046654A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators

Definitions

  • the present invention relates to an automated external defibrillator.
  • AEDs Automated External Defibrillators
  • Conventional AEDs are relatively large devices and are often installed in places such as train stations, public facilities, and commercial buildings, making them difficult to carry around.
  • Patent Document 1 A known technology for miniaturizing AEDs is described in Patent Document 1.
  • the AED described in Patent Document 1 generates a high-voltage pulse by boosting the output voltage of the power supply unit using a transformer.
  • the AED described in Patent Document 1 can be miniaturized because it does not need to be equipped with a high-voltage, large-capacity capacitor.
  • the AED described in Patent Document 1 uses a simple mechanism to supply power to a transformer by turning on and off a single switch installed between the power supply unit and the transformer. Therefore, it is difficult for the AED described in Patent Document 1 to generate high-voltage pulses with complex waveforms suitable for defibrillation, which can be generated by conventional AEDs.
  • the present invention has been made in consideration of the above-mentioned circumstances, and aims to provide an automated external defibrillator that is small and capable of generating high-voltage pulses suitable for defibrillation.
  • an automated external defibrillator comprising: an inverter circuit that converts a DC voltage into an AC voltage by performing a switching operation with a duty ratio according to a switching control signal; a transformer that boosts the AC voltage converted by the inverter circuit; a rectifier circuit that rectifies the voltage boosted by the transformer; an electrode for applying an electric shock to a rescuee based on an output voltage of the rectifier circuit; a duty ratio control means for supplying the switching control signal to the inverter circuit to control the amount of electric energy supplied from the inverter circuit to the transformer; Equipped with.
  • a memory unit may be provided that stores data representing changes in the duty ratio over time corresponding to the voltage waveform of the electric shock to be applied to the recipient.
  • the duty ratio control means controls the duty ratio of the switching operation of the inverter circuit, for example, according to the data stored in the memory unit.
  • the storage unit stores data representing the change in duty ratio over time, for example, corresponding to each of a plurality of voltage waveforms of the electric shock to be applied to the recipient.
  • a selection means for selecting one of the plurality of voltage waveforms may be further provided.
  • the duty ratio control means controls the duty ratio of the inverter circuit according to the data corresponding to the voltage waveform selected by the selection means.
  • the device may also include a means for measuring the impedance between the electrodes attached to the recipient, a means for storing the basic waveform of the applied voltage, and a means for correcting the basic waveform based on the impedance measured by the measuring means, and for generating data showing the change in duty ratio with respect to time based on the corrected waveform.
  • the device may further include a means for updating data indicating changes in the duty ratio over time stored in the memory unit.
  • the device may further include a polarity reversal circuit that applies the output voltage of the rectifier circuit to the electrodes in a forward or reversed state in accordance with a polarity control signal, and a polarity control means that transmits the polarity control signal to the polarity reversal circuit to apply a voltage of a polarity corresponding to the set waveform to the electrodes.
  • a memory unit may be provided that stores data indicating the polarity of the applied voltage corresponding to the voltage waveform of the electric shock to be applied to the recipient.
  • the polarity control means controls the polarity reversal circuit according to the data stored in the memory means.
  • the device may further include a smoothing circuit that smoothes the voltage output by the rectifier circuit.
  • the duty ratio control means may generate multiple voltage pulses by driving the inverter circuit multiple times at predetermined time intervals.
  • the electrodes may have a needle-like or pad-like outer shape and may be attached to the person being rescued.
  • the present invention makes it possible to achieve compact size and easily generate high-voltage pulses with complex waveforms.
  • FIG. 1 is a diagram showing an example of the appearance of an AED according to an embodiment of the present disclosure.
  • 1A and 1B are diagrams illustrating examples of electrode attachment positions of an AED according to an embodiment of the present disclosure.
  • FIG. 2 is a circuit block diagram of an AED according to an embodiment of the present disclosure.
  • 1A to 1C are diagrams showing examples of waveforms of high-voltage pulses that can be applied by an AED according to an embodiment of the present disclosure.
  • 4 is a diagram showing an example of a circuit configuration of a high voltage generating unit shown in FIG. 3 .
  • 6A to 6D are timing charts illustrating the operation of the full-bridge inverter circuit shown in FIG. 5 .
  • FIG. 6 is a diagram illustrating an example of a circuit configuration of a first driver illustrated in FIG. 5 .
  • FIG. 4 illustrates an example of a functional configuration of a storage unit illustrated in FIG. 3 .
  • 6A to 6F are timing charts illustrating the operation of the high voltage generating unit shown in FIG. 5 .
  • 4 is a flowchart of a high-voltage pulse application process executed by the AED according to the embodiment.
  • 11 is a flowchart showing details of the waveform table generation process shown in FIG. 10 .
  • FIG. 13 is a diagram showing an example of a waveform of a high-voltage pulse in a dual shock mode of an AED according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart for explaining an example of operation of the AED in a dual shock mode according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an example of the appearance of an AED according to a modified example. 13 is a diagram showing an example of an electrode structure of an AED according to a modified example. FIG.
  • an automated external defibrillator according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the same or equivalent parts in the drawings will be given the same reference numerals.
  • an automated external defibrillator will also be referred to as an AED (Automated External Defibrillator).
  • FIG. 1 is a diagram showing an example of the appearance of an AED 1 according to an embodiment of the present disclosure.
  • the AED 1 includes a main body 10, a pair of electrodes 30A, 30B, and cables 40A, 40B that electrically connect the main body 10 to the electrodes 30A, 30B, respectively.
  • the electrodes 30A and 30B are inserted near the right chest and flank of the person being rescued, respectively.
  • the positions at which the electrodes 30A and 30B are attached are not limited to the example in FIG. 2, and may be any positions that form a pair with respect to the heart, i.e., positions at which an electric shock can be administered to the heart.
  • the electrodes 30A and 30B are attached in any positions that allow a current generated by a high-voltage pulse to pass from one of the electrodes 30A and 30B through the heart and reach the other. For example, by inserting the electrodes 30A and 30B into the left and right shoulders, individual differences can be reduced.
  • the main body 10 of the AED 1 has an easily portable shape and size similar to, for example, a mobile terminal, tablet, etc.
  • a display unit 11 and an operation unit 12 are provided on the surface of the main body 10.
  • the display unit 11 includes, for example, a liquid crystal display and its drive circuit.
  • the display unit 11 displays information indicating the operation state of the AED 1, the waveform of the high-voltage pulse to be applied, the operation mode, etc.
  • the operation unit 12 includes an operation knob 12a and a group of buttons 12b.
  • the group of buttons 12b includes various operation buttons such as a power button, a voltage application button that instructs the rescuee to apply a high-voltage pulse, a waveform selection button that selects the waveform of the high-voltage pulse to be applied, and a mode selection button that selects the operating mode.
  • the main body 10 of the AED 1 is provided with a memory unit 13, a control unit 14, a communication unit 15, a high-voltage generation unit 16, an electrocardiogram signal acquisition unit 17, a status detection unit 18, a power supply unit 19, and an audio output unit 20.
  • the power supply unit 19 includes a DC power supply with an output voltage V1 of approximately 100 to 110 V. This DC power supply is, for example, configured by connecting multiple semi-solid lithium batteries in series.
  • the power supply unit 19 supplies DC power to the high voltage generation unit 16.
  • the power supply unit 19 is also connected to various parts other than the high voltage generation unit 16, and supplies operating power to these parts.
  • the high voltage generating unit 16 under the control of the control unit 14, boosts the output voltage of the power supply unit 19 and adjusts the boosted voltage to generate a high voltage pulse (more specifically, a potential difference between electrodes 30A and 30B) between electrodes 30A and 30B to be applied to the recipient.
  • This high voltage pulse has a waveform suitable for defibrillation.
  • the operator operates the operation unit 12 to set the waveform of the high voltage pulse to be generated from among the monophasic waveform shown in FIG. 4(A), the biphasic BTE waveform shown in FIG. 4(B), and the RLB waveform shown in FIG. 4(C).
  • the waveform of the high voltage pulse currently set as the application target is also referred to as the "set waveform.”
  • the high voltage generating unit 16 includes a full bridge inverter circuit 161, a first driver 162, a transformer 163, a rectifying and smoothing circuit 164, a polarity reversing circuit 165, and a second driver 166.
  • the full-bridge inverter circuit 161 includes four switching elements Q1 to Q4 that form the four sides of a bridge circuit.
  • the switching elements Q1 to Q4 are each composed of a MOSFET, an IGBT, or the like. In the following description, it is assumed that the switching elements Q1 to Q4 are composed of an N-channel MOSFET.
  • One end (drain) of the current path of the switching elements Q1 and Q3 is connected to the positive terminal of the power supply unit 19.
  • One end (source) of the current path of the switching elements Q2 and Q4 is connected to the negative terminal of the power supply unit 19.
  • a connection node N1 between the other end (source) of the current path of the switching element Q1 and the other end (drain) of the current path of the switching element Q2 is connected to one end of the primary winding 163a of the transformer 163.
  • a connection node N2 between the other end (source) of the current path of the switching element Q2 and the other end (drain) of the current path of the switching element Q4 is connected to the other end of the primary winding 163a of the transformer 163.
  • a switching control signal S1 is applied to the gates of switching elements Q1 and Q4 from the first driver 162, and a switching control signal S2 is applied to the gates of switching elements Q2 and Q3 from the first driver 162.
  • Switching elements Q1 and Q4 turn on when switching control signal S1 is at a high level. At this time, current flows from the positive terminal of power supply unit 19 ⁇ switching element Q1 ⁇ connection node N1 ⁇ primary winding 163a of transformer 163 ⁇ connection node N2 ⁇ switching element Q4 ⁇ negative terminal of power supply unit 19. On the other hand, switching elements Q2 and Q3 turn on when switching control signal S2 is at a high level. At this time, current flows from the positive terminal of power supply unit 19 ⁇ switching element Q3 ⁇ connection node N2 ⁇ primary winding 163a of transformer 163 ⁇ connection node N1 ⁇ switching element Q2 ⁇ negative terminal of power supply unit 19.
  • the effective value of the primary current Iin is determined by the ratio of the on-period PW1 or PW2 to the on-off cycle ⁇ of the switching elements Q1 to S4, that is, the duty ratios (PW1/ ⁇ ) and (PW2/ ⁇ ). Therefore, by adjusting the duty ratios (PW1/ ⁇ ), (PW2/ ⁇ ), that is, by PWM controlling the switching operations of the switching elements Q1 to Q4, it is possible to adjust the amount of electrical energy supplied to the transformer 163.
  • the on-period PW1 of the pair of switching elements Q1 and Q4 and the on-period PW2 of the pair of switching elements Q2 and Q3 may be the same or different from each other.
  • the transformer 163 shown in FIG. 5 includes a primary winding 163a and a secondary winding 163b.
  • the primary winding 163a and the secondary winding 163b are wound around a core (iron core) made of ferrite or the like.
  • One end of the primary winding 163a is connected to a connection node N1 of the full-bridge inverter circuit 161, and the other end of the primary winding 163a is connected to a connection node N2.
  • One end of the secondary winding 163b is connected to an output terminal T1 of the transformer 163, and the other end of the secondary winding 163b is connected to an output terminal T2 of the transformer 163.
  • the number of turns of the primary winding 163a is relatively small, for example, about 10 turns, and the number of turns of the secondary winding 163b is preferably about 100 to 200 turns.
  • the turn ratio NR of the primary winding 163a and the secondary winding 163b is 1:10 to 1:20.
  • the number of turns of the primary winding 163a is 10
  • the number of turns of the secondary winding 163b is 138
  • the turn ratio is NR 13.8.
  • the resistance of the primary winding 163a to be about 0.025 ⁇ and the resistance of the secondary winding 163b to be about 1.93 ⁇ , and the impedance of the transformer 163 can be suppressed to 3 ⁇ or less, which is sufficiently small and less than 1/10 of the bioimpedance (50 to 1000 ⁇ ).
  • the rectifying and smoothing circuit 164 includes a full-wave rectifying circuit 164a that is made up of diodes D1 to D4, which are rectifying elements, and a smoothing capacitor C1 that constitutes the smoothing circuit.
  • the input terminal of the full-wave rectifier circuit 164a is connected to the output terminals T1 and T2 of the transformer 163, and the voltage between the output terminals T1 and T2 is full-wave rectified, and the pulsating voltage is applied between the positive terminal T3 and the negative terminal T4 of the smoothing capacitor C1.
  • the diodes D1 to D4 are SiC Schottky type diodes that can tolerate large currents and high-frequency switching operations. In order to ensure the withstand voltage, multiple diode elements may be connected in series and used as the diodes D1 to D4.
  • Smoothing capacitor C1 smoothes the pulsating voltage after full wave rectification that is applied between positive terminal T3 and negative terminal T4. It is desirable for smoothing capacitor C1 to have a high withstand voltage and a relatively small capacity. For example, a withstand voltage of 1,600V and a capacity of about 12 ⁇ F is desirable. Smoothing capacitor C1 can suppress pulsations in the output voltage. However, it is also possible to perform only rectification by full wave rectifier circuit 164a without providing smoothing capacitor C1.
  • the voltage V2 between the positive terminal T3 and the negative terminal T4 will vary with the duty ratio, but will be approximately 1500 V at maximum, ensuring a voltage sufficient for use as a high-voltage pulse for the AED 1. It is also possible to obtain a higher voltage by adjusting the power supply voltage V1 and the turns ratio NR.
  • the polarity reversal circuit 165 is a circuit that switches the voltage V2 output by the rectifying and smoothing circuit 164 between the electrodes 30A and 30B in either the forward or reverse direction.
  • the polarity reversal circuit 165 has a configuration similar to that of the full-bridge inverter circuit 161, and includes four switching elements Q5 to Q8 that form the four sides of the full-bridge circuit.
  • the switching elements Q5 to Q8 are each composed of an N-channel MOSFET, IGBT, or the like, made of SiC for large currents. In the following explanation, they will be referred to as MOSFETs.
  • One end of the current path of switching elements Q5 and Q7 is connected to the positive terminal T3 of the rectifying smoothing circuit 164.
  • One end of the current path of switching elements Q6 and Q8 is connected to the negative terminal T4 of the rectifying smoothing circuit 164.
  • a connection node N3 between the other end of the current path of switching element Q5 and the other end of the current path of switching element Q6 is connected to electrode 30A via cable 40A.
  • a connection node N4 between the other end of the current path of switching element Q7 and the other end of the current path of switching element Q8 is connected to electrode 30B via cable 40B.
  • the first driver 162 is a drive circuit that controls the on and off of the switching elements Q1 to Q4 of the full-bridge inverter circuit 161.
  • the first driver 162 controls the period ⁇ and pulse widths PW1, PW2 of the switching control signals S1 and S2 shown in Figs. 6(A) and (B) according to the PWM control signal supplied from the control unit 14. In other words, it controls the duty ratio of the switching operation of the full-bridge inverter circuit 161.
  • the first driver 162 includes an oscillator circuit 1621 and a frequency divider circuit 1622 including a plurality of counters.
  • the oscillator circuit 1621 includes, for example, an oscillator, and outputs a clock signal of about 1 MHz.
  • the frequency divider circuit 1622 counts the number of clocks of the clock signal output from the oscillator circuit 1621 according to the PWM control signal, and measures the period ⁇ shown in FIG. 6.
  • the frequency divider circuit 1622 measures the initial timing at which the switching control signals S1 and S2 are set to a high level within each period ⁇ , and further measures the pulse widths PW1 and PW2 to output the switching control signals S1 and S2.
  • the period ⁇ and pulse widths PW1 and PW2 of the switching control signals S1 and S2 are controlled in units of one clock (1 ⁇ S).
  • the period ⁇ and pulse widths PW1 and PW2 are updated and set in the frequency divider circuit 1622 as needed by the PWM control signal.
  • the full-bridge inverter circuit 161 is PWM-controlled, and the amount of electric energy supplied from the full-bridge inverter circuit 161 to the transformer 163 is controlled.
  • the second driver 166 is a drive circuit that controls the on and off of the switching elements Q5 to Q8 of the polarity reversal circuit 165. More specifically, the second driver 166 responds to a polarity control signal from the control unit 14, and for example, when applying a positive voltage to the electrode 30A and a negative voltage to the electrode 30B as in the applied voltage of FIG. 4(A) and the first half of the applied voltage of FIG. 4(B) and (C), the second driver 166 sets the switching control signal S3 to a high level so as to turn on the switching elements Q5 and Q8. On the other hand, when applying a negative voltage to the electrode 30A and a positive voltage to the electrode 30B as in the second half of the applied voltage of FIG. 4(B) and (C), the second driver 166 sets the switching control signal S4 to a high level so as to turn on the switching elements Q6 and Q7.
  • the memory unit 13 shown in FIG. 3 includes a non-volatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory).
  • the non-volatile memory stores the control program executed by the control unit 14 and fixed data.
  • the volatile memory is used by the control unit 14 as a work area when executing the control program. Additionally, the volatile memory temporarily stores electrocardiogram signals and the like.
  • a waveform memory area 131 is secured in the storage unit 13 as shown in FIG.
  • the waveform memory area 131 stores a basic waveform table 132, a PWM control table 133, and a polarity control table 134.
  • the basic waveform table 132 is arranged in a non-volatile storage area of the storage unit 13, and stores waveform data of basic waveforms of high voltage pulses selectable by the AED 1, for example, the voltage waveforms shown in Figures 4 (A) to (C).
  • the waveform data of each basic waveform is designed so that when the impedance (biological impedance) between the electrodes 30A and 30B is the reference value Rr, the total energy applied to the rescuee is the reference value Er.
  • the basic waveform table 132 is stored in a non-volatile storage area.
  • the bioimpedance Rb varies depending on the shape of the electrodes, the position of the electrodes, etc., and is about 1000 ⁇ when the electrodes 30A and 30B are needle-shaped as shown in Figure 1, and about 20 ⁇ to 200 ⁇ when the electrodes are of the conventional pad type (see Figure 14).
  • the reference value Rr of the bioimpedance is set to, for example, 1000 ⁇ , and the reference waveform is set.
  • PWM control table 133 and polarity control table 134 are tables that are generated by customizing the basic waveforms stored in basic waveform table 132 for the rescuee.
  • PWM control table 133 and polarity control table 134 are sometimes collectively referred to as waveform table 135, meaning that they are tables that define the waveform of the high-voltage pulse to be applied.
  • the polarity control table 134 stores the elapsed time ti and the polarity of the voltage to be applied at that time in association with each other to control the switching control signals S3 and S4 supplied to the polarity reversal circuit 165 for the high voltage pulse to be applied to the rescued person.
  • the waveform table 135 will now be described in more detail.
  • the bioimpedance Rb between the electrodes 30A and 30B varies depending on the shape of the electrodes, the attachment position of the electrodes, etc. Therefore, when the bioimpedance Rb of the recipient is high, applying the voltage Vi determined by the fundamental waveform may result in a shortage of applied energy, while when the bioimpedance Rb is low, applying the voltage Vi determined by the fundamental waveform may result in an excessive amount of applied energy.
  • the bioimpedance Rb between the electrodes 30A and 30B is measured by the state detection unit 18, and the waveform of the fundamental waveform is adjusted according to the magnitude of the bioimpedance Rb of the recipient to generate an applied waveform, so that the total energy E applied to the recipient is made to match the reference value Er.
  • the voltage Vi of the basic waveform at the timing ti is corrected to ⁇ (Rb/Rr) ⁇ Vi to form an applied waveform and apply it to the person being rescued.
  • the PWM control table 133 stores the period ⁇ and pulse widths PW1 and PW2 required to generate the voltage ⁇ (Rb/Rr) ⁇ V at the timing of the elapsed time ti. In other words, it stores the PWM control signal that indicates the duty ratio of the switching operation of the full-bridge inverter circuit 161 at the timing ti.
  • the polarity control table 134 stores data indicating the polarity of the voltage to be applied at the timing of the elapsed time ti. Note that data indicating positive polarity instructs the switching control signal S3 to be set to a high level, and data indicating negative polarity instructs the switching control signal S4 to be set to a high level.
  • the data stored in the PWM control table 133 and the polarity control table 134 will be described below based on a specific example.
  • the pulse voltage waveform to be applied is the BTE voltage exemplified in Fig. 4B.
  • the period ⁇ of the switching control signals S1 and S2 is constant.
  • FIG. 9B An example of a fundamental voltage waveform Vr of the BTE voltage waveform is shown by a thin dashed line in FIG.
  • the bioimpedance Rb/bioimpedance reference value Rr detected by the state detection unit 18 is 1.3.
  • the voltage waveform Va obtained by correcting the voltage by 1.14 times is shown by a thick solid line in Figure 9(A) (the figure has been deformed for ease of viewing).
  • the output voltage V2
  • of the rectifying and smoothing circuit 164 becomes a positive voltage waveform as shown in FIG. 9B.
  • the period ⁇ of the switching control signals S1 and S2 is kept constant, and the pulse widths PW1 and PW2 of the switching operation of the full-bridge inverter circuit 161 are appropriately set at timing T1, and thereafter, the pulse widths PW1 and PW2 are gradually decreased. Note that FIG.
  • FIG. 9(C) and (D) are schematic diagrams illustrating the change in the duty ratio over time, and are different from the actual waveforms.
  • the switching control signals S1 and S2 are out of phase with each other by ⁇ , as shown in FIG. 6(A) and (B).
  • the PWM control table 133 stores data in table format indicating the period ⁇ and pulse widths PW1, PW2, i.e., the duty ratio, at each elapsed time ti from the start timing T0 obtained in this manner.
  • the data format can be any format, such as a set of elapsed time ti, period ⁇ , and pulse widths PW1, PW2, a set of elapsed time ti and pulse widths PW1, PW2 assuming that period ⁇ is fixed, or the elapsed time ti and the duty ratio of switching control signals S1 and S2.
  • switching control signal S3 is set to high level between timings T0 and T3
  • switching control signal S4 is set to high level between timings T3 and T6.
  • Polarity control table 134 stores data thus obtained indicating the polarity of the applied voltage at each elapsed time ti from start timing T0.
  • the control unit 14 shown in FIG. 3 includes a processor, such as a CPU (Central Processing Unit), i.e., a computer.
  • the control unit 14 may include a single computer or multiple computers.
  • part of the control unit 14 may include hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the control unit 14 operates according to a control program stored in the memory unit 13 to control the display unit 11, operation unit 12, memory unit 13, communication unit 15, high voltage generation unit 16, ECG signal acquisition unit 17, status detection unit 18, and audio output unit 20, thereby performing ECG analysis, electric shock output control, etc.
  • the control unit 14 includes a waveform control unit 141 as a functional configuration.
  • the waveform control unit 141 includes a DSP (Digital Signal Processor).
  • DSP Digital Signal Processor
  • the DSP obtains data for controlling the duty ratio of the switching operation of the full-bridge inverter circuit 161 and data for controlling the polarity reversal circuit 165, and stores the data in the PWM control table 133 and the polarity control table 134.
  • the waveform control unit 141 generates a PWM control signal by referring to the stored data in the PWM control table 133, and supplies the generated PWM control signal to the first driver 162.
  • the first driver 162 alternately turns on and off the pair of switching elements Q1 and Q4 and the pair of switching elements Q2 and Q3 at the indicated duty ratio by the switching control signals S1 and S2 illustrated in Figs. 6(A), (B), 9(C), and (D) in accordance with the PWM control signal.
  • Fig. 6(C) an AC voltage having an effective value corresponding to the duty ratio is applied to the primary winding 163a of the transformer 163, and as illustrated in Fig.
  • the waveform control unit 141 also references the stored data in the polarity control table 134 and supplies the generated polarity control signal to the second driver 166.
  • the second driver 166 sets the switching control signal S3 to a high level during the period when a positive voltage should be applied to the recipient, and sets the switching control signal S4 to a high level during the period when a negative voltage should be applied to the recipient, as shown in Figs. 9(E) and (F).
  • switching elements Q5 and Q8 are turned on to apply a positive voltage to the recipient
  • switching elements Q6 and Q7 are turned on to apply a negative voltage to the recipient.
  • an electric shock with a bipolar voltage waveform is applied to the recipient.
  • the communication unit 15 shown in FIG. 3 is a communication interface that performs wireless or wired communication with an external device (not shown) such as a server device under the control of the control unit 14.
  • the audio output unit 20 includes a sound output device such as a speaker. Under the control of the control unit 14, the audio output unit 20 outputs voice, warning sounds, etc. that guide the operation of the AED 1.
  • Electrodes 30A and 30B are needle-shaped electrodes that are attached to a recipient in a state of cardiac arrest. Electrode 30A is connected to high voltage generator 16, ECG signal acquirer 17, and status detector 18 via cable 40A. Electrode 30B is connected to high voltage generator 16, ECG signal acquirer 17, and status detector 18 via cable 40B.
  • needle-shaped electrodes 30A and 30B it is possible to ensure connection between the recipient and electrodes 30A and 30B, unlike normal pad-type electrodes, even if the recipient's body surface is wet.
  • the electrocardiogram signal acquisition unit 17 performs filtering of noise contained in the electrocardiogram signal from the electrodes 30A and 30B, and amplifies the electrocardiogram signal from which the noise has been filtered.
  • the electrocardiogram signal amplified by the electrocardiogram signal acquisition unit 17 is sent to the control unit 14 and used for electrocardiogram analysis, etc.
  • the control unit 14 also appropriately displays the electrocardiogram signal on the display unit 11.
  • the condition detection unit 18 measures, for example, the impedance between the electrodes 30A and 30B, i.e., the impedance (biological impedance) of the current passing portion of the rescue recipient.
  • the condition detection unit 18 outputs the measured impedance to the control unit 14.
  • the AED 1 is small and lightweight, so rescuers can easily carry it around, and it does not require space even when it is installed.
  • the rescuer When using the AED 1, the rescuer operates the operation unit 12 to turn on the power and insert the electrodes 30A and 30B into the positions that sandwich the rescuee's heart, for example, the positions shown in FIG. 2.
  • the rescuer presses the status detection button in the button group 12b of the operation unit 12 to determine whether the electrodes 30A and 30B are attached correctly.
  • the control unit 14 In response to this operation, the control unit 14 generates a preset voltage in the high voltage generation unit 16 and applies it between the electrodes 30A and 30B.
  • the status detection unit 18 measures the voltage between the electrodes 30A and 30B and the current flowing through the electrode 30A or 30B, measures the bioimpedance Rb, and notifies the control unit 14.
  • the control unit 14 determines whether the electrodes 30A, 30B are attached correctly (whether the bioimpedance is within a predetermined range) based on the measured bioimpedance.
  • the control unit 14 notifies the result of the determination via the display unit 11 and the audio output unit 20.
  • the rescuer follows the notification and reattaches the electrodes 30A, 30B as necessary.
  • the rescuer checks the electrocardiogram of the person being rescued, if necessary.
  • the rescuer presses the electrocardiogram detection button in button group 12b.
  • control unit 14 starts up electrocardiogram signal acquisition unit 17.
  • Electrocardiogram signal acquisition unit 17 measures the voltage between electrodes 30A and 30B and supplies it to control unit 14.
  • Control unit 14 displays the waveform of the detected biovoltage on display unit 11.
  • the rescuer checks the electrocardiogram of the person being rescued according to the display.
  • the rescuer When applying a high-voltage pulse to a rescuee, the rescuer operates the operation unit 12 to display a list of preregistered high-voltage pulse waveforms (step S11). The rescuer selects one of the displayed waveforms (step S12: Yes). The selected waveform is the set waveform. Note that steps S11 and S12 may be skipped by selecting a high-voltage pulse waveform to be applied in advance and storing it in the storage unit 13. Next, the control unit 14 waits for the application button of the button group 12b to be pressed (step S13).
  • step S13 When the apply button is pressed (step S13: Yes), the waveform control unit 141 of the control unit 14 executes a waveform table generation process to generate the waveform table 135 (PWM control table 133 and polarity control table 134) (step S14).
  • the control unit 14 controls the high voltage generating unit 16 and the state detecting unit 18 to measure the bioimpedance (step S21). Specifically, the control unit 14 causes the high voltage generating unit 16 to generate a predetermined voltage and measures the current flowing through the electrode 30A or 30B, thereby measuring the bioimpedance Rb (step S21). Next, the control unit 14 obtains the ratio Rb/Rr of the measured bioimpedance value Rb to the reference value Rr of the bioimpedance expected by the basic waveform stored in the basic waveform table 132 (step S22).
  • the waveform control unit 141 of the control unit 14 multiplies the square root of the bioimpedance ratio, ⁇ (Rb/Rr), by the peak value of the set waveform selected in step S14 to obtain a corrected voltage waveform Va so that the energy of the high-voltage pulse applied to the recipient becomes the reference value E (step S23).
  • the waveform control section 141 determines the period ⁇ and pulse widths PW1, PW2 of the switching control signals S1 and S2 based on the peak value of the correction voltage waveform Va at the timing t (step S25).
  • step S27 If t has reached the end timing (step S27: Yes), the PWM control signals at the series of timings t obtained by multiple processing of step S25 are stored in the PWM control table 133, and the polarity control signals at the series of timings t obtained by multiple processing of step S26 are stored in the polarity control table 134 (step S29). In this manner, the PWM control table 133 and the polarity control table 134 are formed by high speed calculation processing by the DSP of the waveform control section 141 . Next, the process proceeds to step S15 in FIG. 10, where the control unit 14 starts an internal timer.
  • the control unit 14 supplies a PWM control signal to the first driver 162 based on the data for the measurement time t of the internal timer among the PWM control signals stored in the PWM control table 133 (step S16).
  • the PWM control signal indicates the period ⁇ and pulse widths PW1 and PW2 of the switching elements Q1 to Q4, or the duty ratio.
  • the control unit 14 also supplies a polarity control signal to the second driver 166 based on the data for the measurement time t among the polarity control signals stored in the polarity control table 134 (step S17).
  • control unit 14 determines whether or not the application of the high voltage pulse has been completed based on the time t measured by the internal timer (step S18). If not completed (step S18: No), the process returns to step S16, and the application of the high voltage pulse continues. On the other hand, if the high voltage pulse application process has ended (step S18: Yes), the process of measuring and displaying an electrocardiogram may be started automatically.
  • the first driver 162 In response to the PWM control signal output in step S16, the first driver 162 alternately turns on and off the pair of switching elements Q1 and Q4 and the pair of switching elements Q2 and Q3 at the specified duty ratio.
  • an AC primary current Iin with a magnitude corresponding to the duty ratio flows through the primary winding 163a of the transformer 163, and a high-voltage AC voltage corresponding to the turns ratio is generated in the secondary winding 163b.
  • This high-voltage AC voltage is full-wave rectified by the full-wave rectifier circuit 164a and converted into a high-voltage DC voltage, which is further smoothed by the smoothing capacitor C1 and output as voltage V2.
  • Voltage V2 has a waveform equal to the absolute value waveform of the correction voltage waveform Va, as shown in FIG. 9(B).
  • the second driver 166 sets the switching control signal S3 to a high level during the period when a positive high voltage pulse should be applied, turns on the pair of switching elements Q5 and Q8, applies a forward voltage V2 between electrodes 30A and 30B, and applies a positive high voltage pulse Vout to the rescuee. Also, during the period when a negative high voltage pulse should be applied, the second driver 166 sets the switching control signal S4 to a high level, turns on the pair of switching elements Q6 and Q7, applies a forward voltage V2 between electrodes 30A and 30B, and applies a negative high voltage pulse Vout to the rescuee.
  • a high-voltage pulse having the corrected voltage waveform Va shown in FIG. 9(A) is applied to the recipient.
  • the high-voltage pulse of the corrected voltage waveform Va applies a substantially constant energy E regardless of variations in bioimpedance caused by individual differences in the recipient or variations in the attachment state of the electrodes 30A and 30B.
  • the AED1 of the embodiment of the present invention since a high voltage is generated using DC/AC conversion by an inverter circuit and a transformer, there is no need to use a high-voltage capacitor to hold the high voltage, and the device can be made smaller.
  • the voltage of the high-voltage pulse is adjusted in a time series by the full-bridge inverter circuit 161, which is controlled in units of one pulse by a PWM signal. Therefore, it is possible to easily generate a high-voltage pulse with a complex waveform suitable for defibrillation.
  • the polarity of the voltage V2 output by the rectifying and smoothing circuit 164 is inverted by the polarity inversion circuit 165, which is controlled by a polarity inversion signal, at an appropriate timing according to the set waveform.
  • the AED 1 is equipped with a smoothing circuit that smoothes the voltage boosted by the transformer 163, making it possible to suppress pulsation and generate a high-voltage pulse with a more ideal waveform.
  • FIG. 12 shows an example of a high-voltage pulse generated by the high-voltage generation unit 16 in dual shock mode.
  • two high-voltage pulses with an RLB waveform are generated consecutively with a time interval of 2 s.
  • the first and second high-voltage pulses may have different waveforms.
  • more than two high-voltage pulses may be generated consecutively and applied to the recipient.
  • the AED 1 applies two successive high-voltage pulses to the recipient at a preset time interval.
  • the operator can switch the operation mode of the AED 1 to the dual shock mode by operating the operation unit 12.
  • the operator can also set the time interval between the two successive high-voltage pulses to be applied within the range of 0.25 s to 3.00 s by operating the operation unit 12.
  • the entire waveform data for a plurality of times may be stored in the waveform memory area 131 and applied by the high-voltage pulse application process shown in FIG.
  • a high voltage pulse of a set waveform is applied (step S31), and then it is determined whether or not the high voltage pulse has been applied a preset number of times (step S32). If not, a certain interval time is measured (step S33), and the process returns to step S31 to apply the next high voltage pulse.
  • the waveform of the next high voltage pulse to be applied may be the same as or different from the waveform of the high voltage pulse applied previously. Furthermore, when applying three or more times, the length of the interval may be different or the same each time. Furthermore, it may be possible to edit the waveforms to be applied and the order in which they are applied.
  • step S32 If it is determined in step S32 that the process has ended, the process ends.
  • the waveform of the high voltage pulse can be set from among three types, namely, monophasic waveform, BTE waveform, and RLB waveform, but the types of waveforms that can be set are not limited to these.
  • the waveform of the high voltage pulse that the AED1 can output may be fixed to only one. For example, when the waveform of the high voltage pulse that the AED1 can output is fixed to only the monophasic waveform, the polarity inversion circuit 165 does not need to be provided in the high voltage generating unit 16.
  • any high-voltage pulse waveform can be generated and edited by reading out the waveform data stored in the basic waveform table 132, processing and editing it in accordance with the operation of the operation unit 12 while displaying the waveform on the display unit 11, and overwriting or saving it under a different name.
  • waveform data generated or edited by an external computer or the like may be stored in the memory unit 13 via the communication unit 15.
  • the electrodes 30A, 30B of the AED 1 are not limited to the needle-shaped electrodes shown in FIG. 1, and electrodes of various shapes can be used.
  • the AED 1 may have pad-shaped electrodes 50A, 50B instead of the needle-shaped electrodes 30A, 30B.
  • the surfaces of the pad-shaped electrodes 50A, 50B may also have structures such as fine needles, blades, teeth, or irregularities to reduce contact resistance with the body surface of the person being rescued.
  • the electrodes 30A, 30B to which the present invention is applied may each have a clothespin-type configuration, as exemplified in FIG. 15.
  • the electrode 30 shown in FIG. 15 has a gripping portion 301 and a holding portion 302. The rescuer grasps the gripping portion 301 of the electrode 30 to open the holding portion 302, inserts and pinches the skin K between the holding portions 302, and releases the grip of the gripping portion 301 to allow the holding portion 302 to hold the skin K, thereby attaching the electrode 30 to the skin K.
  • multiple needle-shaped parts 303 may be arranged on the gripping part 302. At least some of the needle-shaped parts 303 will be present inside the skin K.
  • Needle-shaped electrodes, clothespin-shaped electrodes, pad-shaped electrodes with fine needles, etc. are effective in ensuring a stable electrical connection between the electrode and the person being rescued, even in rainy weather or other environments where the anterior chest area is continually wet.
  • circuits and operations can be modified as appropriate.
  • the explanation has been given mainly in terms of positive logic, the circuits may be designed in terms of negative logic.
  • the materials and values given as examples in the embodiments are merely examples and are not limiting.
  • the peak value and pulse length of the basic voltage waveform Vr may be corrected based on the measured output current and output voltage so that the energy of the applied high-voltage pulse matches the target value.
  • a correction table that associates the total amount of loss with the correction content may be prepared, the total loss may be calculated, the correction content may be calculated using the calculated total loss as a key, and the basic voltage waveform Vr may be corrected according to the calculated correction content.
  • the voltage to be applied at each timing t was obtained by correcting the basic voltage waveform Vr.
  • This disclosure is not limited to this.
  • the basic waveform table 132 is removed, and the envelope of the high-voltage pulse voltage and the total amount of electrical energy to be applied are stored in the waveform memory area 131.
  • the waveform control unit 141 obtains the voltage to be applied at each timing based on the measured bioimpedance value Rb so that the total energy of the high-voltage pulse to be applied matches the target value E and the envelope matches the basic envelope stored in advance.
  • the full-bridge inverter circuit 161 is an example of an inverter circuit that converts a DC voltage into an AC voltage by performing a switching operation with a duty ratio according to a switching control signal.
  • the transformer 163 is an example of a transformer that boosts the AC voltage converted by the inverter circuit.
  • the full-wave rectifier circuit 164a is an example of a rectifier circuit that rectifies the boosted voltage.
  • the smoothing capacitor C1 is an example of a smoothing circuit that smoothes the voltage output by the rectifier circuit.
  • the electrodes 30A and 30B are examples of electrodes that apply an electric shock to the recipient based on the output voltage of the rectifier circuit.
  • the polarity reversing circuit 165 is an example of a polarity reversing circuit that applies the output voltage of the rectifier circuit to the electrodes in a forward or inverted manner in accordance with a polarity control signal. Therefore, the switching control signals S3 and S4 are examples of polarity control signals.
  • the waveform control unit 141 and the first driver 162 are an example of a duty ratio control unit that supplies a switching control signal to the inverter circuit and controls the electric energy supplied from the inverter circuit to the transformer.
  • the PWM control table 133 is an example of a storage unit that stores data representing changes in duty ratio over time in accordance with the voltage waveform of the electric shock to be applied to the recipient.
  • the polarity control table 134 is also an example of a storage unit that stores data representing the polarity of the voltage of the electric shock to be applied to the recipient.
  • the operation unit 12 and the control unit 14 are an example of a selection unit that selects one of a plurality of voltage waveforms to be applied.
  • the control unit 14 and the state detection unit 18 are an example of a measuring means for measuring the impedance between the electrodes attached to the rescue recipient.
  • the operation unit 12, the control unit 14, and the communication unit 15 are an example of a means for updating the data indicating the change in the duty ratio with respect to time stored in the storage unit.
  • the waveform control section 141 and the second driver 166 are an example of a polarity control means that transmits a polarity control signal to a polarity inversion circuit to apply a voltage of a polarity corresponding to the set waveform to the electrodes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

The present invention provides an automatic external defibrillator (AED) comprising: a power supply unit (19); a high-voltage generation unit (16) that boosts a voltage applied from the power supply unit (19) to generate a high-voltage pulse; and a pair of electrodes (30A, 30B) that impart an electric shock based on the high-voltage pulse to a person in need of aid. The high-voltage generation unit (16) comprises: a full bridge inverter circuit (161) that converts the DC voltage applied from the power supply unit (19) into an AC voltage; a transformer (163) that boosts the converted AC voltage; and a first driver (162). The control unit (14) transmits a PWM signal to the first driver (162), performs PWM control of the full bridge inverter circuit (161), and varies the output voltage of the full bridge inverter circuit (161) with time according to a set waveform.

Description

自動体外式除細動器Automated External Defibrillator

 本発明は、自動体外式除細動器に関する。 The present invention relates to an automated external defibrillator.

 被救護者のけいれんした心臓に高電圧パルスによる電気ショックを与えることで除細動を行い正常な拍動を促す除細動器として、自動体外式除細動器(AED;Automated External Defibrillator)が普及している。従来のAEDは、比較的大型の機器であり、駅、公共施設、商業施設等に設置されている場合が多く、携帯は困難である。 Automated External Defibrillators (AEDs) are widely used as defibrillators that deliver a high-voltage pulse of electric shock to the recipient's spasming heart, defibrillating it and encouraging a normal heartbeat. Conventional AEDs are relatively large devices and are often installed in places such as train stations, public facilities, and commercial buildings, making them difficult to carry around.

 AEDの小型化に関する技術として特許文献1に記載のものが知られている。特許文献1に記載のAEDは、電源部の出力電圧をトランスで昇圧して高電圧パルスを発生する。特許文献1に記載のAEDは、高耐圧で大容量のコンデンサを備える必要がないため、小型化できる。 A known technology for miniaturizing AEDs is described in Patent Document 1. The AED described in Patent Document 1 generates a high-voltage pulse by boosting the output voltage of the power supply unit using a transformer. The AED described in Patent Document 1 can be miniaturized because it does not need to be equipped with a high-voltage, large-capacity capacitor.

特開2022-182010号公報JP 2022-182010 A

 特許文献1に記載のAEDは、電源部とトランスとの間に設けられた1個のスイッチをオン・オフする単純な仕組みトランスに電力を供給する。そのため、特許文献1に記載のAEDは、従来のAEDで生成することが可能な除細動に適した複雑な波形の高電圧パルスを生成するのは困難である。 The AED described in Patent Document 1 uses a simple mechanism to supply power to a transformer by turning on and off a single switch installed between the power supply unit and the transformer. Therefore, it is difficult for the AED described in Patent Document 1 to generate high-voltage pulses with complex waveforms suitable for defibrillation, which can be generated by conventional AEDs.

 本発明は上記実情に鑑みてなされたものであり、小型で、除細動に適した高電圧パルスを生成することができる自動体外式除細動器を提供することを目的とする。 The present invention has been made in consideration of the above-mentioned circumstances, and aims to provide an automated external defibrillator that is small and capable of generating high-voltage pulses suitable for defibrillation.

 上記目的を達成するため、記の目的を達成するため、本開示に係る自動体外式除細動器は、
 スイッチング制御信号に従ったデューティ比でスイッチング動作を行うことにより、直流電圧を交流電圧に変換するインバータ回路と、
 前記インバータ回路が変換した交流電圧を昇圧するトランスと、
 前記トランスにより昇圧された電圧を整流する整流回路と、
 前記整流回路の出力電圧に基づいた電気ショックを被救護者に印加する電極と、
 前記インバータ回路に前記スイッチング制御信号を供給して、前記インバータ回路から前記トランスに供給される電気エネルギーの量を制御するデューティ比制御手段と、
 を備える。
In order to achieve the above object, the present disclosure provides an automated external defibrillator comprising:
an inverter circuit that converts a DC voltage into an AC voltage by performing a switching operation with a duty ratio according to a switching control signal;
a transformer that boosts the AC voltage converted by the inverter circuit;
a rectifier circuit that rectifies the voltage boosted by the transformer;
an electrode for applying an electric shock to a rescuee based on an output voltage of the rectifier circuit;
a duty ratio control means for supplying the switching control signal to the inverter circuit to control the amount of electric energy supplied from the inverter circuit to the transformer;
Equipped with.

 さらに、被救護者に印加する電気ショックの電圧波形に対応して、時間の経過に対するデューティ比の変化を表すデータを記憶する記憶部を備えてもよい。この場合前記デューティ比制御手段は、例えば、前記記憶部に記憶されているデータに従って、前記インバータ回路のスイッチング動作のデューティ比を制御する。 Furthermore, a memory unit may be provided that stores data representing changes in the duty ratio over time corresponding to the voltage waveform of the electric shock to be applied to the recipient. In this case, the duty ratio control means controls the duty ratio of the switching operation of the inverter circuit, for example, according to the data stored in the memory unit.

 前記記憶部は、例えば、被救護者に印加する電気ショックの複数の電圧波形のそれぞれに対応して、時間に対するデューティ比の変化を表すデータを記憶する。この場合、複数の電圧波形のうちの1つを選択する選択手段をさらに備えてもよい。前記デューティ比制御手段は、前記選択手段により選択された電圧波形に対応するデータに従って、前記インバータ回路のデューティ比を制御する。 The storage unit stores data representing the change in duty ratio over time, for example, corresponding to each of a plurality of voltage waveforms of the electric shock to be applied to the recipient. In this case, a selection means for selecting one of the plurality of voltage waveforms may be further provided. The duty ratio control means controls the duty ratio of the inverter circuit according to the data corresponding to the voltage waveform selected by the selection means.

 被救護者に装着された前記電極間のインピーダンスを測定する手段と、印加電圧の基本波形を記憶する手段と、前記測定手段により測定されたインピーダンスに基づいて、前記基本波形を補正して、補正された波形に基づいて、前記時間に対するデューティ比の変化を示すデータを生成する手段を備えてもよい。 The device may also include a means for measuring the impedance between the electrodes attached to the recipient, a means for storing the basic waveform of the applied voltage, and a means for correcting the basic waveform based on the impedance measured by the measuring means, and for generating data showing the change in duty ratio with respect to time based on the corrected waveform.

 前記記憶部に記憶された時間に対するデューティ比の変化を示すデータを更新する手段をさらに備えてもよい。 The device may further include a means for updating data indicating changes in the duty ratio over time stored in the memory unit.

 前記整流回路の出力電圧を、極性制御信号に従って、順方向あるいは反転して前記電極に印加する極性反転回路と、前記極性反転回路に前記極性制御信号を送信して、前記設定波形に応じた極性の電圧を前記電極に印加させる極性制御手段とをさらに備えてもよい。 The device may further include a polarity reversal circuit that applies the output voltage of the rectifier circuit to the electrodes in a forward or reversed state in accordance with a polarity control signal, and a polarity control means that transmits the polarity control signal to the polarity reversal circuit to apply a voltage of a polarity corresponding to the set waveform to the electrodes.

 被救護者に印加する電気ショックの電圧波形に対応する印加電圧の極性を示すデータを記憶する記憶部を備えてもよい。この場合、前記極性制御手段は、前記記憶手段に記憶されているデータに従って、前記極性反転回路を制御する。 A memory unit may be provided that stores data indicating the polarity of the applied voltage corresponding to the voltage waveform of the electric shock to be applied to the recipient. In this case, the polarity control means controls the polarity reversal circuit according to the data stored in the memory means.

 前記整流回路の出力する電圧を平滑化する平滑回路をさらに備えてもよい。 The device may further include a smoothing circuit that smoothes the voltage output by the rectifier circuit.

 前記デューティ比制御手段は、予め定めた時間間隔で複数回の前記インバータ回路を駆動することにより、複数の電圧パルスを生成してもよい。 The duty ratio control means may generate multiple voltage pulses by driving the inverter circuit multiple times at predetermined time intervals.

 前記電極は、針状又はパッド状の外形形状を有し、被救護者に装着されるものでよい。 The electrodes may have a needle-like or pad-like outer shape and may be attached to the person being rescued.

 本発明によれば、小型化を実現し、且つ、複雑な波形の高電圧パルスを容易に生成することが可能となる。 The present invention makes it possible to achieve compact size and easily generate high-voltage pulses with complex waveforms.

本開示の実施形態に係るAEDの外観の一例を示す図である。FIG. 1 is a diagram showing an example of the appearance of an AED according to an embodiment of the present disclosure. 本開示の実施形態に係るAEDの電極の装着位置の例を示す図である。1A and 1B are diagrams illustrating examples of electrode attachment positions of an AED according to an embodiment of the present disclosure. 本開示の実施形態に係るAEDの回路ブロック図である。FIG. 2 is a circuit block diagram of an AED according to an embodiment of the present disclosure. (A)~(C)は、本開示の実施形態に係るAEDが印加可能な高電圧パルスの波形の例を示す図である。1A to 1C are diagrams showing examples of waveforms of high-voltage pulses that can be applied by an AED according to an embodiment of the present disclosure. 図3に示す高電圧生成部の回路構成の一例を示す図である。4 is a diagram showing an example of a circuit configuration of a high voltage generating unit shown in FIG. 3 . (A)~(D)は、図5に示すフルブリッジインバータ回路の動作を説明するためのタイミングチャートである。6A to 6D are timing charts illustrating the operation of the full-bridge inverter circuit shown in FIG. 5 . 図5に示す第1ドライバの回路構成の一例を示す図である。6 is a diagram illustrating an example of a circuit configuration of a first driver illustrated in FIG. 5 . 図3に示す記憶部の機能的構成の一例を示す図である。FIG. 4 illustrates an example of a functional configuration of a storage unit illustrated in FIG. 3 . (A)~(F)は、図5に示す高電圧生成部の動作を説明するためのタイミングチャートである。6A to 6F are timing charts illustrating the operation of the high voltage generating unit shown in FIG. 5 . 実施形態に係るAEDが実行する高電圧パルス印加処理のフローチャートである。4 is a flowchart of a high-voltage pulse application process executed by the AED according to the embodiment. 図10に示す波形テーブル生成処理の詳細を示すフローチャートである。11 is a flowchart showing details of the waveform table generation process shown in FIG. 10 . 本開示の実施形態に係るAEDのデュアルショックモードでの高電圧パルスの波形の例を示す図である。FIG. 13 is a diagram showing an example of a waveform of a high-voltage pulse in a dual shock mode of an AED according to an embodiment of the present disclosure. 本開示の実施形態に係るAEDのデュアルショックモードでのAEDの動作例を説明するためのフローチャートである。11 is a flowchart for explaining an example of operation of the AED in a dual shock mode according to an embodiment of the present disclosure. 変形例に係るAEDの外観の一例を示す図である。FIG. 13 is a diagram showing an example of the appearance of an AED according to a modified example. 変形例に係るAEDの電極構造の一例を示す図である。13 is a diagram showing an example of an electrode structure of an AED according to a modified example. FIG.

 以下、本発明の実施形態に係る自動体外式除細動器について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付す。また、以下の説明では、自動体外式除細動器をAED(Automated External Defibrillator)とも表記する。 Below, an automated external defibrillator according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the same or equivalent parts in the drawings will be given the same reference numerals. In the following description, an automated external defibrillator will also be referred to as an AED (Automated External Defibrillator).

 図1は、本開示の実施形態に係るAED1の外観の一例を示す図である。AED1は、本体部10と、一対の電極30A、30Bと、本体部10と電極30A、30Bのそれぞれとを電気的に接続するケーブル40A、40Bと、を備える。 FIG. 1 is a diagram showing an example of the appearance of an AED 1 according to an embodiment of the present disclosure. The AED 1 includes a main body 10, a pair of electrodes 30A, 30B, and cables 40A, 40B that electrically connect the main body 10 to the electrodes 30A, 30B, respectively.

 AED1を使用する際には、図2に示すように、電極30A及び電極30Bを、被救護者の右胸付近及びわき腹付近に挿しそれぞれ装着する。なお、電極30A及び30Bの装着位置は、図2の例に特に限定されず、心臓に対して対になる位置、即ち、心臓に対して電気ショックを与えることが可能な位置であれば任意である。具体的には、高電圧パルスにより生じる電流の経路が、電極30A及び30Bのうち一方から心臓を通過して他方に到達する経路を生成可能な任意の位置に、電極30A及び30Bを装着する。例えば、左肩と右肩に電極30Aと30Bを挿すことにより、個人差を低減することができる。 When using the AED 1, as shown in FIG. 2, the electrodes 30A and 30B are inserted near the right chest and flank of the person being rescued, respectively. The positions at which the electrodes 30A and 30B are attached are not limited to the example in FIG. 2, and may be any positions that form a pair with respect to the heart, i.e., positions at which an electric shock can be administered to the heart. Specifically, the electrodes 30A and 30B are attached in any positions that allow a current generated by a high-voltage pulse to pass from one of the electrodes 30A and 30B through the heart and reach the other. For example, by inserting the electrodes 30A and 30B into the left and right shoulders, individual differences can be reduced.

 図1に戻り、AED1の本体部10は、例えば、携帯端末、タブレット等と同様の携帯容易な形状とサイズを有する。本体部10の表面には、表示部11と操作部12とが設けられている。表示部11は、例えば液晶ディスプレイとその駆動回路とを含む。表示部11は、AED1の操作状態、印加対象の高電圧パルスの波形、動作モード等を示す情報が表示される。 Returning to FIG. 1, the main body 10 of the AED 1 has an easily portable shape and size similar to, for example, a mobile terminal, tablet, etc. A display unit 11 and an operation unit 12 are provided on the surface of the main body 10. The display unit 11 includes, for example, a liquid crystal display and its drive circuit. The display unit 11 displays information indicating the operation state of the AED 1, the waveform of the high-voltage pulse to be applied, the operation mode, etc.

 操作部12は、操作つまみ12a及びボタン群12bを含む。ボタン群12bは、電源ボタン、被救護者に高電圧パルスを印加することを指示する電圧印加ボタン、印加対象の高電圧パルスの波形を選択する波形選択ボタン、動作モードを選定するためのモード選定ボタン等の各種操作ボタンを含む。 The operation unit 12 includes an operation knob 12a and a group of buttons 12b. The group of buttons 12b includes various operation buttons such as a power button, a voltage application button that instructs the rescuee to apply a high-voltage pulse, a waveform selection button that selects the waveform of the high-voltage pulse to be applied, and a mode selection button that selects the operating mode.

 AED1の本体部10の内部には、図3に示すように、上述した表示部11と操作部12の他に、記憶部13、制御部14、通信部15、高電圧生成部16、心電図信号取得部17、状態検出部18、電源部19,及び音声出力部20が設けられている。 As shown in FIG. 3, in addition to the display unit 11 and operation unit 12 described above, the main body 10 of the AED 1 is provided with a memory unit 13, a control unit 14, a communication unit 15, a high-voltage generation unit 16, an electrocardiogram signal acquisition unit 17, a status detection unit 18, a power supply unit 19, and an audio output unit 20.

 電源部19は、出力電圧V1が100~110Vボルト程度の直流電源を含む。この直流電源は、例えば、半固体リチウム蓄電池を複数個直列に接続して構成される。電源部19は、高電圧生成部16に直流電力を供給する。なお、図3では図示が省略されているが、電源部19は、高電圧生成部16以外の各部にも接続されており、これら各部に動作用の電力を供給する。 The power supply unit 19 includes a DC power supply with an output voltage V1 of approximately 100 to 110 V. This DC power supply is, for example, configured by connecting multiple semi-solid lithium batteries in series. The power supply unit 19 supplies DC power to the high voltage generation unit 16. Although not shown in FIG. 3, the power supply unit 19 is also connected to various parts other than the high voltage generation unit 16, and supplies operating power to these parts.

 高電圧生成部16は、制御部14の制御に従って、電源部19の出力電圧を昇圧すると共に昇圧電圧を調整して、電極30Aと電極30Bとの間に、被救護者に印加する高電圧パルス(より具体的には、電極30Aと電極30Bとの間の電位差)を発生させる。この高電圧パルスは、除細動に適した波形を有している。本実施形態では、操作者が操作部12を操作することにより、発生させる高電圧パルスの波形を、図4(A)に示す単相性(Monophasic)波形、二相性波形である図4(B)に示すBTE波形、および、図4(C)に示すRLB波形、の中から設定することができる。以下の説明では、印加対象として現在設定されている高電圧パルスの波形を「設定波形」とも表記する。 The high voltage generating unit 16, under the control of the control unit 14, boosts the output voltage of the power supply unit 19 and adjusts the boosted voltage to generate a high voltage pulse (more specifically, a potential difference between electrodes 30A and 30B) between electrodes 30A and 30B to be applied to the recipient. This high voltage pulse has a waveform suitable for defibrillation. In this embodiment, the operator operates the operation unit 12 to set the waveform of the high voltage pulse to be generated from among the monophasic waveform shown in FIG. 4(A), the biphasic BTE waveform shown in FIG. 4(B), and the RLB waveform shown in FIG. 4(C). In the following description, the waveform of the high voltage pulse currently set as the application target is also referred to as the "set waveform."

 ここで、高電圧生成部16の回路構成の一例を図5に示す。なお、図5は主要な回路構成のみを示しており、グランド接続部分等は適宜省略している。高電圧生成部16は、フルブリッジインバータ回路161と、第1ドライバ162と、トランス163と、整流平滑回路164と、極性反転回路165と、第2ドライバ166と、を備える。 Here, an example of the circuit configuration of the high voltage generating unit 16 is shown in FIG. 5. Note that FIG. 5 shows only the main circuit configuration, and the ground connection parts and the like are omitted as appropriate. The high voltage generating unit 16 includes a full bridge inverter circuit 161, a first driver 162, a transformer 163, a rectifying and smoothing circuit 164, a polarity reversing circuit 165, and a second driver 166.

 フルブリッジインバータ回路161は、ブリッジ回路の4辺を構成する4個のスイッチング素子Q1~Q4を備える。スイッチング素子Q1~Q4は、それぞれ、MOSFET、IGBT等から構成される。以下の説明では、スイッチング素子Q1~Q4が、NチャネルMOSFETから構成されているとする。スイッチング素子Q1とQ3の電流路の一端(ドレイン)は、電源部19の正極端子に接続されている。また、スイッチング素子Q2とQ4の電流路の一端(ソース)は、電源部19の負極端子に接続されている。スイッチング素子Q1の電流路の他端(ソース)とスイッチング素子Q2の電流路の他端(ドレイン)との接続ノードN1は、トランス163の一次巻線163aの一端に接続されている。スイッチング素子Q2の電流路の他端(ソース)とスイッチング素子Q4の電流路の他端(ドレイン)との接続ノードN2は、トランス163の一次巻線163aの他端に接続されている。 The full-bridge inverter circuit 161 includes four switching elements Q1 to Q4 that form the four sides of a bridge circuit. The switching elements Q1 to Q4 are each composed of a MOSFET, an IGBT, or the like. In the following description, it is assumed that the switching elements Q1 to Q4 are composed of an N-channel MOSFET. One end (drain) of the current path of the switching elements Q1 and Q3 is connected to the positive terminal of the power supply unit 19. One end (source) of the current path of the switching elements Q2 and Q4 is connected to the negative terminal of the power supply unit 19. A connection node N1 between the other end (source) of the current path of the switching element Q1 and the other end (drain) of the current path of the switching element Q2 is connected to one end of the primary winding 163a of the transformer 163. A connection node N2 between the other end (source) of the current path of the switching element Q2 and the other end (drain) of the current path of the switching element Q4 is connected to the other end of the primary winding 163a of the transformer 163.

 スイッチング素子Q1とQ4のゲートには、第1ドライバ162から、スイッチング制御信号S1が印加され、スイッチング素子Q2とQ3のゲートには、第1ドライバ162から、スイッチング制御信号S2が印加される。 A switching control signal S1 is applied to the gates of switching elements Q1 and Q4 from the first driver 162, and a switching control signal S2 is applied to the gates of switching elements Q2 and Q3 from the first driver 162.

 スイッチング素子Q1とQ4は、スイッチング制御信号S1がハイレベルのときにオンする。このとき、電流が、電源部19の正極端子→スイッチング素子Q1→接続ノードN1→トランス163の一次巻線163a→接続ノードN2→スイッチング素子Q4→電源部19の負極端子、と流れる。一方、スイッチング素子Q2とQ3は、スイッチング制御信号S2がハイレベルのときにオンする。このとき、電流が、電源部19の正極端子→スイッチング素子Q3→接続ノードN2→トランス163の一次巻線163a→接続ノードN1→スイッチング素子Q2→電源部19の負極端子、と流れる。 Switching elements Q1 and Q4 turn on when switching control signal S1 is at a high level. At this time, current flows from the positive terminal of power supply unit 19 → switching element Q1 → connection node N1 → primary winding 163a of transformer 163 → connection node N2 → switching element Q4 → negative terminal of power supply unit 19. On the other hand, switching elements Q2 and Q3 turn on when switching control signal S2 is at a high level. At this time, current flows from the positive terminal of power supply unit 19 → switching element Q3 → connection node N2 → primary winding 163a of transformer 163 → connection node N1 → switching element Q2 → negative terminal of power supply unit 19.

 図6(A),(B)に示すように、スイッチング制御信号S1とS2を交互にハイレベルにする処理を繰り返すことにより、スイッチング素子Q1とQ4の組とスイッチング素子Q2とQ3の組が交互に繰り返してオンする。これにより、図6(C)に示すように、トランス163の一次巻線163aに交流電圧が印加される。一次巻線163aに印加される電圧は、おおよそ-V1~+V1となる。これにより、図6(D)に示すように、一次巻線163aに交流の一次電流Iinが流れる。一次電流Iinの実効値は、スイッチング素子Q1~S4のオン・オフの周期λに対するオン期間PW1又はPW2の割合、即ち、デューティ比(PW1/λ)及び(PW2/λ)で定まる。従って、デューティ比(PW1/λ),(PW2/λ)を調整することにより、即ち、スイッチング素子Q1~Q4のスイッチング動作をPWM制御することにより、トランス163に供給される電気エネルギーの量を調整することができる。なお、スイッチング素子Q1とQ4の組のオン期間PW1とスイッチング素子Q2とQ3の組のオン期間PW2とは互いに同一でも異なっていてもよい。 As shown in Fig. 6(A) and (B), by repeating the process of alternately setting the switching control signals S1 and S2 to a high level, the set of switching elements Q1 and Q4 and the set of switching elements Q2 and Q3 are alternately and repeatedly turned on. As a result, as shown in Fig. 6(C), an AC voltage is applied to the primary winding 163a of the transformer 163. The voltage applied to the primary winding 163a is approximately -V1 to +V1. As a result, as shown in Fig. 6(D), an AC primary current Iin flows through the primary winding 163a. The effective value of the primary current Iin is determined by the ratio of the on-period PW1 or PW2 to the on-off cycle λ of the switching elements Q1 to S4, that is, the duty ratios (PW1/λ) and (PW2/λ). Therefore, by adjusting the duty ratios (PW1/λ), (PW2/λ), that is, by PWM controlling the switching operations of the switching elements Q1 to Q4, it is possible to adjust the amount of electrical energy supplied to the transformer 163. Note that the on-period PW1 of the pair of switching elements Q1 and Q4 and the on-period PW2 of the pair of switching elements Q2 and Q3 may be the same or different from each other.

 スイッチング素子Q1~Q4には、パルス状の瞬時大電流が流れる。このため、例えば、300A程度のパルス状の瞬時電流を許容し、且つ、高速スイッチングが可能な大型のSi-MOSFETを使用することが望ましい。 A large, instantaneous, pulsed current flows through the switching elements Q1 to Q4. For this reason, it is desirable to use a large Si-MOSFET that can tolerate a pulsed, instantaneous current of, for example, about 300 A and is capable of high-speed switching.

 図5に示すトランス163は、一次巻線163aと二次巻線163bを含む。一次巻線163a及び二次巻線163bは、フェライト等で形成されたコア(鉄心)に巻回されている。一次巻線163aの一端は、フルブリッジインバータ回路161の接続ノードN1に接続され、一次巻線163aの他端は、接続ノードN2に接続されている。二次巻線163bの一端は、トランス163の出力端子T1に接続されており、二次巻線163bの他端は、トランス163の出力端子T2に接続されている。 The transformer 163 shown in FIG. 5 includes a primary winding 163a and a secondary winding 163b. The primary winding 163a and the secondary winding 163b are wound around a core (iron core) made of ferrite or the like. One end of the primary winding 163a is connected to a connection node N1 of the full-bridge inverter circuit 161, and the other end of the primary winding 163a is connected to a connection node N2. One end of the secondary winding 163b is connected to an output terminal T1 of the transformer 163, and the other end of the secondary winding 163b is connected to an output terminal T2 of the transformer 163.

 一次巻線163aの巻き数は、比較的少なく、例えば、10回程度、二次巻線163bの巻き数は、例えば、100~200程度とすることが望ましい。この場合、一次巻線163aと二次巻線163bの巻き数比NRは、1:10~1:20である。この例では、一次巻線163aの巻き数を10、二次巻線163bの巻き数を138、巻き数比をNR13.8とする。また、二次巻線163bとしては、低損失のリッツ線を使用し、巻線も太くすることが望ましい。これにより、例えば、一次巻線163aの抵抗を0.025Ω程度、二次巻線163bの抵抗を、1.93Ω程度とすることができ、生体インピーダンス(50~1000Ω)に対して、トランス163のインピーダンスを1/10以下で十分に小さい3Ω以下に抑えることができる。 The number of turns of the primary winding 163a is relatively small, for example, about 10 turns, and the number of turns of the secondary winding 163b is preferably about 100 to 200 turns. In this case, the turn ratio NR of the primary winding 163a and the secondary winding 163b is 1:10 to 1:20. In this example, the number of turns of the primary winding 163a is 10, the number of turns of the secondary winding 163b is 138, and the turn ratio is NR 13.8. In addition, it is desirable to use low-loss Litz wire for the secondary winding 163b and to make the winding thick. This allows, for example, the resistance of the primary winding 163a to be about 0.025 Ω and the resistance of the secondary winding 163b to be about 1.93 Ω, and the impedance of the transformer 163 can be suppressed to 3 Ω or less, which is sufficiently small and less than 1/10 of the bioimpedance (50 to 1000 Ω).

 整流平滑回路164は、整流素子であるダイオードD1~D4から構成される全波整流回路164aと、平滑回路を構成する平滑コンデンサC1と、を備える。 The rectifying and smoothing circuit 164 includes a full-wave rectifying circuit 164a that is made up of diodes D1 to D4, which are rectifying elements, and a smoothing capacitor C1 that constitutes the smoothing circuit.

 全波整流回路164aの入力端はトランス163の出力端子T1,T2に接続されており、出力端子T1、T2間の電圧を全波整流し、脈流電圧を平滑コンデンサC1の正極端子T3と負極端子T4の間に印加する。ダイオードD1~D4は、大電流と高周波スイッチング動作を許容するSiCショットキー型とすることが望ましい。また、耐圧を確保するため、ダイオード素子を複数個直列接続してダイオードD1~D4として使用してもよい。 The input terminal of the full-wave rectifier circuit 164a is connected to the output terminals T1 and T2 of the transformer 163, and the voltage between the output terminals T1 and T2 is full-wave rectified, and the pulsating voltage is applied between the positive terminal T3 and the negative terminal T4 of the smoothing capacitor C1. It is preferable that the diodes D1 to D4 are SiC Schottky type diodes that can tolerate large currents and high-frequency switching operations. In order to ensure the withstand voltage, multiple diode elements may be connected in series and used as the diodes D1 to D4.

 平滑コンデンサC1は、正極端子T3と負極端子T4の間に印加される全波整流後の脈流電圧を平滑化する。平滑コンデンサC1は、高耐圧で比較的小容量ものものが望ましい。例えば、耐圧1,600V、容量12μF程度のものが望ましい。平滑コンデンサC1により、出力電圧の脈動を抑圧することができる。ただし、平滑コンデンサC1を設けないで、全波整流回路164aによる整流のみを行ってもよい。 Smoothing capacitor C1 smoothes the pulsating voltage after full wave rectification that is applied between positive terminal T3 and negative terminal T4. It is desirable for smoothing capacitor C1 to have a high withstand voltage and a relatively small capacity. For example, a withstand voltage of 1,600V and a capacity of about 12μF is desirable. Smoothing capacitor C1 can suppress pulsations in the output voltage. However, it is also possible to perform only rectification by full wave rectifier circuit 164a without providing smoothing capacitor C1.

 正極端子T3と負極端子T4の間の電圧V2は、例えば、電源部19の出力電圧を110V、トランス163の巻き数比NRを13.8とすると、デューティ比で変化するが、最大でおおよそ1500V程度となり、AED1の高電圧パルスとして十分使用可能な電圧が確保される。電源電圧V1及び巻き数比NRを調整することにより、より高電圧を得ることも可能である。 For example, if the output voltage of the power supply unit 19 is 110 V and the turns ratio NR of the transformer 163 is 13.8, the voltage V2 between the positive terminal T3 and the negative terminal T4 will vary with the duty ratio, but will be approximately 1500 V at maximum, ensuring a voltage sufficient for use as a high-voltage pulse for the AED 1. It is also possible to obtain a higher voltage by adjusting the power supply voltage V1 and the turns ratio NR.

 極性反転回路165は、整流平滑回路164の出力する電圧V2を、順方向にあるいは逆方向に電極30Aと30Bとの間に切り換えて印加する回路である。極性反転回路165は、フルブリッジインバータ回路161と同様の構成を有し、フルブリッジ回路の4辺を構成する4個のスイッチング素子Q5~Q8を備える。スイッチング素子Q5~Q8は、それぞれ、大電流用のSiCから形成されるNチャネルMOSFET、IGBT等から構成される。以下の説明では、MOSFETとする。 The polarity reversal circuit 165 is a circuit that switches the voltage V2 output by the rectifying and smoothing circuit 164 between the electrodes 30A and 30B in either the forward or reverse direction. The polarity reversal circuit 165 has a configuration similar to that of the full-bridge inverter circuit 161, and includes four switching elements Q5 to Q8 that form the four sides of the full-bridge circuit. The switching elements Q5 to Q8 are each composed of an N-channel MOSFET, IGBT, or the like, made of SiC for large currents. In the following explanation, they will be referred to as MOSFETs.

 スイッチング素子Q5とQ7の電流路の一端は、整流平滑回路164の正極端子T3に接続されている。また、スイッチング素子Q6とQ8の電流路の一端は、整流平滑回路164の負極端子T4に接続されている。スイッチング素子Q5の電流路の他端とスイッチング素子Q6の電流路の他端との接続ノードN3は、ケーブル40Aを介して電極30Aに接続されている。スイッチング素子Q7の電流路の他端とスイッチング素子Q8の電流路の他端との接続ノードN4は、ケーブル40Bを介して電極30Bに接続されている。これにより、電極30Aと30Bとの間に、電圧V2又は反対極性の電圧-V2が印加され、電気ショックを与える高電圧パルスVoutとなる。 One end of the current path of switching elements Q5 and Q7 is connected to the positive terminal T3 of the rectifying smoothing circuit 164. One end of the current path of switching elements Q6 and Q8 is connected to the negative terminal T4 of the rectifying smoothing circuit 164. A connection node N3 between the other end of the current path of switching element Q5 and the other end of the current path of switching element Q6 is connected to electrode 30A via cable 40A. A connection node N4 between the other end of the current path of switching element Q7 and the other end of the current path of switching element Q8 is connected to electrode 30B via cable 40B. As a result, a voltage V2 or a voltage of the opposite polarity -V2 is applied between electrodes 30A and 30B, resulting in a high-voltage pulse Vout that applies an electric shock.

 第1ドライバ162は、フルブリッジインバータ回路161のスイッチング素子Q1~Q4のオン及びオフを制御する駆動回路である。第1ドライバ162は、制御部14から供給されるPWM制御信号に従って、図6(A),(B)に例示するスイッチング制御信号S1とS2の周期λとパルス幅PW1,PW2、を制御する。換言すると、フルブリッジインバータ回路161のスイッチング動作のデューティ比を制御する。 The first driver 162 is a drive circuit that controls the on and off of the switching elements Q1 to Q4 of the full-bridge inverter circuit 161. The first driver 162 controls the period λ and pulse widths PW1, PW2 of the switching control signals S1 and S2 shown in Figs. 6(A) and (B) according to the PWM control signal supplied from the control unit 14. In other words, it controls the duty ratio of the switching operation of the full-bridge inverter circuit 161.

 第1ドライバ162の構成の一例を図7に示す。
 図示する例では、第1ドライバ162は、発振回路1621と複数のカウンタを含む分周回路1622備える。発振回路1621は、例えば、振動子を含み、1MHz程度のクロック信号を出力する。分周回路1622は、PWM制御信号に従って、発振回路1621から出力されるクロック信号のクロック数をカウントし、図6に示す周期λを計測する。分周回路1622は、各周期λ内で、スイッチング制御信号S1とS2をハイレベルにする初期タイミングをそれぞれ計測し、さらに、パルス幅PW1,PW2を計測することにより、スイッチング制御信号S1、S2を出力する。これにより、スイッチング制御信号S1、S2の周期λ及びパルス幅PW1,PW2が1クロック(1μS)単位で制御される。周期λ、パルス幅PW1,PW2は、PWM制御信号により分周回路1622に随時更新して設定される。これにより、フルブリッジインバータ回路161がPWM制御され、フルブリッジインバータ回路161からトランス163に供給される電気エネルギーの量が制御される。
An example of the configuration of the first driver 162 is shown in FIG.
In the illustrated example, the first driver 162 includes an oscillator circuit 1621 and a frequency divider circuit 1622 including a plurality of counters. The oscillator circuit 1621 includes, for example, an oscillator, and outputs a clock signal of about 1 MHz. The frequency divider circuit 1622 counts the number of clocks of the clock signal output from the oscillator circuit 1621 according to the PWM control signal, and measures the period λ shown in FIG. 6. The frequency divider circuit 1622 measures the initial timing at which the switching control signals S1 and S2 are set to a high level within each period λ, and further measures the pulse widths PW1 and PW2 to output the switching control signals S1 and S2. As a result, the period λ and pulse widths PW1 and PW2 of the switching control signals S1 and S2 are controlled in units of one clock (1 μS). The period λ and pulse widths PW1 and PW2 are updated and set in the frequency divider circuit 1622 as needed by the PWM control signal. As a result, the full-bridge inverter circuit 161 is PWM-controlled, and the amount of electric energy supplied from the full-bridge inverter circuit 161 to the transformer 163 is controlled.

 第2ドライバ166は、極性反転回路165のスイッチング素子Q5~Q8のオン及びオフを制御する駆動回路である。より、詳細には、第2ドライバ166は、制御部14からの極性制御信号に応答し、例えば、図4(A)の印加電圧及び図4(B)、(C)の印加電圧の前半のように電極30Aに正極性、電極30Bに負極性の電圧を印加する際には、スイッチング素子Q5とQ8をオンするように、スイッチング制御信号S3をハイレベルにする。一方、図4(B)、(C)の印加電圧の後半のように電極30Aに負極性、電極30Bに正極性の電圧を印加する際には、スイッチング素子Q6とQ7をオンするように、スイッチング制御信号S4をハイレベルにする。 The second driver 166 is a drive circuit that controls the on and off of the switching elements Q5 to Q8 of the polarity reversal circuit 165. More specifically, the second driver 166 responds to a polarity control signal from the control unit 14, and for example, when applying a positive voltage to the electrode 30A and a negative voltage to the electrode 30B as in the applied voltage of FIG. 4(A) and the first half of the applied voltage of FIG. 4(B) and (C), the second driver 166 sets the switching control signal S3 to a high level so as to turn on the switching elements Q5 and Q8. On the other hand, when applying a negative voltage to the electrode 30A and a positive voltage to the electrode 30B as in the second half of the applied voltage of FIG. 4(B) and (C), the second driver 166 sets the switching control signal S4 to a high level so as to turn on the switching elements Q6 and Q7.

 図3に示す記憶部13は、ROM(Read Only Memory)等の不揮発性メモリとRAM(Random Access Memory)等の揮発性メモリとを含む。不揮発性メモリには、制御部14が実行する制御プログラム及び固定データが記憶されている。揮発性メモリは、制御プログラムを実行する際のワークエリアとして制御部14によって利用される。また、揮発性メモリには、心電図信号等が一時的に記憶される。 The memory unit 13 shown in FIG. 3 includes a non-volatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory). The non-volatile memory stores the control program executed by the control unit 14 and fixed data. The volatile memory is used by the control unit 14 as a work area when executing the control program. Additionally, the volatile memory temporarily stores electrocardiogram signals and the like.

 また、記憶部13には、図8に示すように、波形メモリ領域131が確保されている。
 波形メモリ領域131には、基本波形テーブル132,PWM制御テーブル133,極性制御テーブル134が記憶されている。
In addition, a waveform memory area 131 is secured in the storage unit 13 as shown in FIG.
The waveform memory area 131 stores a basic waveform table 132, a PWM control table 133, and a polarity control table 134.

 基本波形テーブル132は、記憶部13の不揮発性の記憶領域に配置され、AED1で選択可能な高電圧パルスの基本波形、例えば、図4(A)~(C)に示す電圧波形の波形データを記憶する。各基本波形の波形データは、電極30Aと30Bの間のインピーダンス(生体インピーダンス)が基準値Rrのときに、被救護者に印加する総エネルギーが基準値Erとなるよう設計されている。基本波形テーブル132は、不揮発性の記憶領域に保存されている。生体インピーダンスRbは、電極の形状、電極の装着位置等に応じて変化し、電極30A,30Bが、図1に示すような針状の場合には、1000Ω程度、従来のパッド型(図14参照)の場合には、20Ω~200Ω程度である。このため、本実施の形態では、生体インピーダンスの基準値Rrを、例えば、1000Ωとして、基準波形が設定される。 The basic waveform table 132 is arranged in a non-volatile storage area of the storage unit 13, and stores waveform data of basic waveforms of high voltage pulses selectable by the AED 1, for example, the voltage waveforms shown in Figures 4 (A) to (C). The waveform data of each basic waveform is designed so that when the impedance (biological impedance) between the electrodes 30A and 30B is the reference value Rr, the total energy applied to the rescuee is the reference value Er. The basic waveform table 132 is stored in a non-volatile storage area. The bioimpedance Rb varies depending on the shape of the electrodes, the position of the electrodes, etc., and is about 1000 Ω when the electrodes 30A and 30B are needle-shaped as shown in Figure 1, and about 20 Ω to 200 Ω when the electrodes are of the conventional pad type (see Figure 14). For this reason, in this embodiment, the reference value Rr of the bioimpedance is set to, for example, 1000 Ω, and the reference waveform is set.

 PWM制御テーブル133と極性制御テーブル134とは、基本波形テーブル132に記憶されている基本波形を被救護者用にカスタマイズして生成されるテーブルである。PWM制御テーブル133と極性制御テーブル134とを、印加対象の高電圧パルスの波形を定義するテーブルの意味で、波形テーブル135と総称することがある。 PWM control table 133 and polarity control table 134 are tables that are generated by customizing the basic waveforms stored in basic waveform table 132 for the rescuee. PWM control table 133 and polarity control table 134 are sometimes collectively referred to as waveform table 135, meaning that they are tables that define the waveform of the high-voltage pulse to be applied.

 より詳細には、PWM制御テーブル133は、被救護者に印加する高電圧パルスについて、フルブリッジインバータ回路161に供給するスイッチング制御信号S1とS2を制御するために、経過時間ti(i=0,1,2...)とその時点での周期λとパルス幅PW1とPW2とを対応付けて格納する。換言すれば、経過時間tiにおける、フルブリッジインバータ回路161のスイッチング動作におけるデューティ比を示すデータを格納する。 More specifically, the PWM control table 133 stores the elapsed time ti (i=0, 1, 2...) in association with the period λ and pulse widths PW1 and PW2 at that time in order to control the switching control signals S1 and S2 supplied to the full-bridge inverter circuit 161 for the high-voltage pulse applied to the rescued person. In other words, it stores data indicating the duty ratio in the switching operation of the full-bridge inverter circuit 161 at the elapsed time ti.

 極性制御テーブル134は、被救護者に印加する高電圧パルスについて、極性反転回路165に供給するスイッチング制御信号S3とS4を制御するために、経過時間tiとその時点で印加する電圧の極性とを対応付けて格納する。 The polarity control table 134 stores the elapsed time ti and the polarity of the voltage to be applied at that time in association with each other to control the switching control signals S3 and S4 supplied to the polarity reversal circuit 165 for the high voltage pulse to be applied to the rescued person.

 波形テーブル135についてより詳細に説明する。
 電極30Aと30Bの間の生体インピーダンスRbは、電極の形状、電極の装着位置等に応じて変化する。このため、被救護者の生体インピーダンスRbが高いときに、基本波形で定まる電圧Viを印加すると、印加エネルギーが不足してしまい、一方、生体インピーダンスRbが低いときに、基本波形で定まる電圧Viを印加すると、印加エネルギーが過大になる恐れがある。このため、電極30Aと30Bの間の生体インピーダンスRbを状態検出部18で測定し、被救護者の生体インピーダンスRbの大きさに応じて、基本波形の波形を調整して印加波形を生成し、被救護者に印加される総エネルギーEを基準値Erに一致させる。
The waveform table 135 will now be described in more detail.
The bioimpedance Rb between the electrodes 30A and 30B varies depending on the shape of the electrodes, the attachment position of the electrodes, etc. Therefore, when the bioimpedance Rb of the recipient is high, applying the voltage Vi determined by the fundamental waveform may result in a shortage of applied energy, while when the bioimpedance Rb is low, applying the voltage Vi determined by the fundamental waveform may result in an excessive amount of applied energy. Therefore, the bioimpedance Rb between the electrodes 30A and 30B is measured by the state detection unit 18, and the waveform of the fundamental waveform is adjusted according to the magnitude of the bioimpedance Rb of the recipient to generate an applied waveform, so that the total energy E applied to the recipient is made to match the reference value Er.

 生体に印加されるエネルギーEは、印加電圧Vと流れる電流Iの積I・Vで表される。また、I=V/Rである。従って、印加エネルギーE=V/Rと表される。従って、インピーダンスRがk倍になった場合には、電圧を√k倍すれば、ほぼ同一のエネルギーEを印加することができる。或いは、高電圧パルスの印加時間(継続時間)をk倍にすれば、おおよそ同一のエネルギーEを印加することができる。 The energy E applied to a living body is expressed as the product I·V of the applied voltage V and the current I. Also, I=V/R. Therefore, the applied energy E is expressed as V2 /R. Therefore, when the impedance R is k times larger, approximately the same energy E can be applied by multiplying the voltage by √k. Alternatively, approximately the same energy E can be applied by multiplying the application time (duration) of the high voltage pulse by k times.

 本実施形態では、実測された生体インピーダンスがRb、生体インピーダンスの基準値がRrのときには、タイミングtiでの基本波形の電圧Viを√(Rb/Rr)・Viに補正して印加波形を形成し、被救護者に印加する。 In this embodiment, when the measured bioimpedance is Rb and the reference value of the bioimpedance is Rr, the voltage Vi of the basic waveform at the timing ti is corrected to √(Rb/Rr)·Vi to form an applied waveform and apply it to the person being rescued.

 PWM制御テーブル133は、経過時間tiのタイミングで、電圧√(Rb/Rr)・Viを生成するために必要な周期λとパルス幅PW1とPW2を格納する。換言すると、タイミングtiでのフルブリッジインバータ回路161のスイッチング動作のデューティ比を指示するPWM制御信号を格納する。 The PWM control table 133 stores the period λ and pulse widths PW1 and PW2 required to generate the voltage √(Rb/Rr)·V at the timing of the elapsed time ti. In other words, it stores the PWM control signal that indicates the duty ratio of the switching operation of the full-bridge inverter circuit 161 at the timing ti.

 一方、極性制御テーブル134は、経過時間tiのタイミングで、印加する電圧の極性を示すデータを記憶する。なお、正極性を示すデータは、スイッチング制御信号S3をハイレベルに設定することを指示し、負極性を示すデータは、スイッチング制御信号S4をハイレベルに設定することを指示する。 On the other hand, the polarity control table 134 stores data indicating the polarity of the voltage to be applied at the timing of the elapsed time ti. Note that data indicating positive polarity instructs the switching control signal S3 to be set to a high level, and data indicating negative polarity instructs the switching control signal S4 to be set to a high level.

 PWM制御テーブル133と極性制御テーブル134の記憶データを具体例に基づいて説明する。
 ここでは、印加対象のパルス電圧波形が、図4(B)に例示するBTE電圧であるとする。理解を容易にするため、スイッチング制御信号S1,S2の周期λを一定とする。
The data stored in the PWM control table 133 and the polarity control table 134 will be described below based on a specific example.
Here, it is assumed that the pulse voltage waveform to be applied is the BTE voltage exemplified in Fig. 4B. For ease of understanding, it is assumed that the period λ of the switching control signals S1 and S2 is constant.

 BTE電圧波形の基本電圧波形Vrの一例を図9(A)に細い破線で示す。
 ここで、状態検出部18により検出された生体インピーダンスRb/生体インピーダンスの基準値Rrが1.3であるとする。この場合、被救護者にエネルギーの基準値Erを印加するためには、基本電圧波形Vrの電圧を1.14≒√1.3=√(Rb/Rr)倍に補正した電圧波形Vaを被救護者に印加する。電圧を1.14倍に補正した電圧波形Vaを、図9(A)に太い実線で示す(図は見やすいようにデフォルメしている)。
 電圧波形Vaを得る際の、整流平滑回路164の出力電圧V2=|Va|は、図9(B)に示す正極性の電圧波形となる。
An example of a fundamental voltage waveform Vr of the BTE voltage waveform is shown by a thin dashed line in FIG.
Here, let us assume that the bioimpedance Rb/bioimpedance reference value Rr detected by the state detection unit 18 is 1.3. In this case, in order to apply the reference energy value Er to the rescuee, a voltage waveform Va obtained by correcting the voltage of the basic voltage waveform Vr by 1.14≒√1.3=√(Rb/Rr) times is applied to the rescuee. The voltage waveform Va obtained by correcting the voltage by 1.14 times is shown by a thick solid line in Figure 9(A) (the figure has been deformed for ease of viewing).
When the voltage waveform Va is obtained, the output voltage V2=|Va| of the rectifying and smoothing circuit 164 becomes a positive voltage waveform as shown in FIG. 9B.

 図9(B)に示す電圧波形|Va|を得るためには、図9(C)、(D)に模式的に示すように、タイミングT1で、フルブリッジインバータ回路161のスイッチング動作のデューティ比を、V2=1.14Vrが得られるように設定し、以後、タイミングT1~T2の間及びT4~T5の間、基本電圧波形Vrの電圧の低下に伴ってデューティ比を徐々に減少すればよい。換言すると、スイッチング制御信号S1,S2の周期λを一定とし、タイミングT1で、フルブリッジインバータ回路161のスイッチング動作のパルス幅PW1,PW2を適切に設定し、以後、パルス幅PW1,PW2を徐々に小さくすればよい。なお、図9(C)、(D)は、デューティ比の時間変化を例示するための模式図であり、実際の波形とは異なる。例えば、実際には、図6(A)、(B)に示したように、スイッチング制御信号S1とS2は、位相が互いにπずれている。 In order to obtain the voltage waveform |Va| shown in FIG. 9(B), as shown in FIG. 9(C) and (D), the duty ratio of the switching operation of the full-bridge inverter circuit 161 is set at timing T1 so that V2=1.14Vr is obtained, and thereafter, the duty ratio is gradually decreased between timings T1 and T2 and between timings T4 and T5 as the voltage of the basic voltage waveform Vr decreases. In other words, the period λ of the switching control signals S1 and S2 is kept constant, and the pulse widths PW1 and PW2 of the switching operation of the full-bridge inverter circuit 161 are appropriately set at timing T1, and thereafter, the pulse widths PW1 and PW2 are gradually decreased. Note that FIG. 9(C) and (D) are schematic diagrams illustrating the change in the duty ratio over time, and are different from the actual waveforms. For example, in reality, the switching control signals S1 and S2 are out of phase with each other by π, as shown in FIG. 6(A) and (B).

 PWM制御テーブル133は、このようにして求めた、開始タイミングT0からの各経過時間tiでの、周期λとパルス幅PW1,PW2、即ち、デューティ比を示すデータをテーブル形式で格納する。データの形式は、経過時間tiと周期λとパルス幅PW1,PW2の組、周期λが固定であることを前提として経過時間tiとパルス幅PW1,PW2の組、経過時間tiとスイッチング制御信号S1とS2のデューティ比など、任意の形態を取りうる。 The PWM control table 133 stores data in table format indicating the period λ and pulse widths PW1, PW2, i.e., the duty ratio, at each elapsed time ti from the start timing T0 obtained in this manner. The data format can be any format, such as a set of elapsed time ti, period λ, and pulse widths PW1, PW2, a set of elapsed time ti and pulse widths PW1, PW2 assuming that period λ is fixed, or the elapsed time ti and the duty ratio of switching control signals S1 and S2.

 さらに、図9(A)に示すように、タイミングT0~T3の間は正極性の電圧を出力するように、極性反転回路165のスイッチング素子Q5とQ8をオンし、タイミングT3~T6の間は負極性の電圧を出力するように、スイッチング素子Q6とQ7をオンする必要がある。このため、図9(E)、(F)に示すように、タイミングT0~T3の間はスイッチング制御信号S3をハイレベルとし、タイミングT3~T6の間は、スイッチング制御信号S4をハイレベルとする。極性制御テーブル134は、このようにして求めた、開始タイミングT0からの各経過時間tiでの、印加電圧の極性を示すデータを格納する。 Furthermore, as shown in FIG. 9(A), it is necessary to turn on switching elements Q5 and Q8 of polarity reversal circuit 165 so as to output a positive voltage between timings T0 and T3, and to turn on switching elements Q6 and Q7 so as to output a negative voltage between timings T3 and T6. For this reason, as shown in FIG. 9(E) and (F), switching control signal S3 is set to high level between timings T0 and T3, and switching control signal S4 is set to high level between timings T3 and T6. Polarity control table 134 stores data thus obtained indicating the polarity of the applied voltage at each elapsed time ti from start timing T0.

 図3に示す制御部14は、例えばCPU(Central Processing Unit)等のプロセッサ、即ちコンピュータを含む。制御部14には、単一のコンピュータが含まれてもよく、また、複数のコンピュータが含まれてもよい。また、制御部14の一部はASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等のハードウエアを含んでもよい。 The control unit 14 shown in FIG. 3 includes a processor, such as a CPU (Central Processing Unit), i.e., a computer. The control unit 14 may include a single computer or multiple computers. In addition, part of the control unit 14 may include hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).

 制御部14は、記憶部13に記憶されている制御プログラムに従って作動することにより、表示部11、操作部12、記憶部13、通信部15、高電圧生成部16、心電図信号取得部17、状態検出部18、及び音声出力部20の各々の制御を行うことによって、心電図解析及び電気ショックの出力制御等を実行する。 The control unit 14 operates according to a control program stored in the memory unit 13 to control the display unit 11, operation unit 12, memory unit 13, communication unit 15, high voltage generation unit 16, ECG signal acquisition unit 17, status detection unit 18, and audio output unit 20, thereby performing ECG analysis, electric shock output control, etc.

 制御部14は、機能的な構成として波形制御部141を備える。
 波形制御部141は、DSP(Digital Signal Processor)を備える。DSPは、印加対象波形(設定波形)が選定され、生体インピーダンスRbが測定されたときに、フルブリッジインバータ回路161のスイッチング動作のデューティ比を制御するためのデータと、極性反転回路165を制御するためのデータをそれぞれ求め、PWM制御テーブル133と極性制御テーブル134に格納する。
The control unit 14 includes a waveform control unit 141 as a functional configuration.
The waveform control unit 141 includes a DSP (Digital Signal Processor). When a waveform to be applied (a set waveform) is selected and the bioimpedance Rb is measured, the DSP obtains data for controlling the duty ratio of the switching operation of the full-bridge inverter circuit 161 and data for controlling the polarity reversal circuit 165, and stores the data in the PWM control table 133 and the polarity control table 134.

 また、波形制御部141は、PWM制御テーブル133の記憶データを参照して、PWM制御信号を生成し、生成したPWM制御信号を、第1ドライバ162に供給する。第1ドライバ162は、PWM制御信号に従って、図6(A)、(B)、図9(C)、(D)に例示したスイッチング制御信号S1とS2により、スイッチング素子Q1とQ4の組みと、Q2とQ3の組みを、指示されたデューティ比で交互にオン・オフする。これにより、図6(C)に例示するように、トランス163の一次巻線163aに、デューティ比に対応する実効値を有する交流電圧が印加され、図6(D)に例示するように、デューティ比に対応する実効値を有する交流の一次電流Iinが流れる。これにより、二次巻線163bに巻き数比NRに対応する高圧交流電圧が発生する。この高圧交流電圧は全波整流回路164aにより全波整流されて直流電圧に変換され、さらに、平滑コンデンサC1により平滑化されて、図9(B)に例示したように出力される。 Furthermore, the waveform control unit 141 generates a PWM control signal by referring to the stored data in the PWM control table 133, and supplies the generated PWM control signal to the first driver 162. The first driver 162 alternately turns on and off the pair of switching elements Q1 and Q4 and the pair of switching elements Q2 and Q3 at the indicated duty ratio by the switching control signals S1 and S2 illustrated in Figs. 6(A), (B), 9(C), and (D) in accordance with the PWM control signal. As a result, as illustrated in Fig. 6(C), an AC voltage having an effective value corresponding to the duty ratio is applied to the primary winding 163a of the transformer 163, and as illustrated in Fig. 6(D), an AC primary current Iin having an effective value corresponding to the duty ratio flows. As a result, a high-voltage AC voltage corresponding to the turns ratio NR is generated in the secondary winding 163b. This high-voltage AC voltage is full-wave rectified by the full-wave rectifier circuit 164a and converted to a DC voltage, which is then smoothed by the smoothing capacitor C1 and output as shown in FIG. 9(B).

 また、波形制御部141は、極性制御テーブル134の記憶データを参照して、生成した極性制御信号を、第2ドライバ166に供給する。第2ドライバ166は、極性制御信号に応答して、図9(E),(F)に例示したように、正極性の電圧を被救護者に印加すべき期間、スイッチング制御信号S3をハイレベルにし、負極性の電圧を被救護者に印加すべき期間、スイッチング制御信号S4をハイレベルにする。これにより、被救護者に正極性の電圧を印加すべき期間には、スイッチング素子Q5とQ8がオンして、被救護者に正極性の電圧を印加し、被救護者に負極性の電圧を印加すべき期間には、スイッチング素子Q6とQ7がオンして、被救護者に負極性の電圧を印加する。これにより双極性の電圧波形の電気ショックが被救護者に印加される。 The waveform control unit 141 also references the stored data in the polarity control table 134 and supplies the generated polarity control signal to the second driver 166. In response to the polarity control signal, the second driver 166 sets the switching control signal S3 to a high level during the period when a positive voltage should be applied to the recipient, and sets the switching control signal S4 to a high level during the period when a negative voltage should be applied to the recipient, as shown in Figs. 9(E) and (F). As a result, during the period when a positive voltage should be applied to the recipient, switching elements Q5 and Q8 are turned on to apply a positive voltage to the recipient, and during the period when a negative voltage should be applied to the recipient, switching elements Q6 and Q7 are turned on to apply a negative voltage to the recipient. As a result, an electric shock with a bipolar voltage waveform is applied to the recipient.

 図3に示す通信部15は、制御部14による制御の下、サーバ装置等の外部機器(図示せず)と無線又は有線の通信を行う通信インタフェースである。音声出力部20は、スピーカ等の放音装置を含む。音声出力部20は、制御部14による制御の下、AED1の操作をガイドする音声、警告音等を出力する。 The communication unit 15 shown in FIG. 3 is a communication interface that performs wireless or wired communication with an external device (not shown) such as a server device under the control of the control unit 14. The audio output unit 20 includes a sound output device such as a speaker. Under the control of the control unit 14, the audio output unit 20 outputs voice, warning sounds, etc. that guide the operation of the AED 1.

 電極30A、30Bは、心停止状態の被救護者に装着される針状の電極である。電極30Aはケーブル40Aを介して高電圧生成部16、心電図信号取得部17、及び状態検出部18に接続される。電極30Bはケーブル40Bを介して高電圧生成部16、心電図信号取得部17、及び状態検出部18に接続される。針状の電極30A,30Bを使用することにより、通常のパッド型の電極と異なり、被救護者の体表面が濡れているような場合でも、被救護者と電極30A,30Bとの接続を確保することができる。 Electrodes 30A and 30B are needle-shaped electrodes that are attached to a recipient in a state of cardiac arrest. Electrode 30A is connected to high voltage generator 16, ECG signal acquirer 17, and status detector 18 via cable 40A. Electrode 30B is connected to high voltage generator 16, ECG signal acquirer 17, and status detector 18 via cable 40B. By using needle-shaped electrodes 30A and 30B, it is possible to ensure connection between the recipient and electrodes 30A and 30B, unlike normal pad-type electrodes, even if the recipient's body surface is wet.

 心電図信号取得部17は、電極30A及び電極30Bからの心電図信号に含まれる雑音のフィルタリング、及び雑音をフィルタリング済の心電図信号の増幅等を行う。心電図信号取得部17により増幅された心電図信号は、制御部14に送られ、心電図解析等に用いられる。また、制御部14は、心電図信号を、表示部11に適宜表示する。 The electrocardiogram signal acquisition unit 17 performs filtering of noise contained in the electrocardiogram signal from the electrodes 30A and 30B, and amplifies the electrocardiogram signal from which the noise has been filtered. The electrocardiogram signal amplified by the electrocardiogram signal acquisition unit 17 is sent to the control unit 14 and used for electrocardiogram analysis, etc. The control unit 14 also appropriately displays the electrocardiogram signal on the display unit 11.

 状態検出部18は、例えば、電極30A及び電極30Bとの間のインピーダンス、即ち、被救護者の電流通過部分のインピーダンス(生体インピーダンス)を測定する。状態検出部18は、測定したインピーダンスを制御部14へ出力する。


The condition detection unit 18 measures, for example, the impedance between the electrodes 30A and 30B, i.e., the impedance (biological impedance) of the current passing portion of the rescue recipient. The condition detection unit 18 outputs the measured impedance to the control unit 14.



 次に上記構成を有するAED1の動作及び使用方法を説明する。
 救護者は、AED1が小形軽量であるため、これを容易に携帯できる。設置しておく場合でもスペースを必要としない。

Next, the operation and usage of the AED 1 having the above configuration will be described.
The AED 1 is small and lightweight, so rescuers can easily carry it around, and it does not require space even when it is installed.

 救護者は、AED1を使用する場合、操作部12を操作して、電源を投入すると共に、被救護者の心臓を挟む位置、例えば、図2に示す位置に電極30Aと30Bを挿す。この状態で、救護者は、電極30Aと30Bが正しく装着されているか否かを判断するため、操作部12のボタン群12b内の状態検出ボタンを押下する。この操作に応答して、制御部14は、高電圧生成部16に予め設定された電圧を発生させ、電極30Aと30Bの間に印加する。状態検出部18は、電極30Aと30Bの間の電圧と、電極30A又は30Bを流れる電流を測定し、生体インピーダンスRbを測定し、制御部14に通知する。 When using the AED 1, the rescuer operates the operation unit 12 to turn on the power and insert the electrodes 30A and 30B into the positions that sandwich the rescuee's heart, for example, the positions shown in FIG. 2. In this state, the rescuer presses the status detection button in the button group 12b of the operation unit 12 to determine whether the electrodes 30A and 30B are attached correctly. In response to this operation, the control unit 14 generates a preset voltage in the high voltage generation unit 16 and applies it between the electrodes 30A and 30B. The status detection unit 18 measures the voltage between the electrodes 30A and 30B and the current flowing through the electrode 30A or 30B, measures the bioimpedance Rb, and notifies the control unit 14.

 制御部14は、測定された生体インピーダンスから、電極30A,30Bの装着状態が正しいか否か(生体インピーダンスが所定範囲に納まっているか否か)を判別する。制御部14は、表示部11及び音声出力部20により判別結果を報知する。救護者は、報知内容に従って、必要に応じて、電極30A,30Bを再装着する。 The control unit 14 determines whether the electrodes 30A, 30B are attached correctly (whether the bioimpedance is within a predetermined range) based on the measured bioimpedance. The control unit 14 notifies the result of the determination via the display unit 11 and the audio output unit 20. The rescuer follows the notification and reattaches the electrodes 30A, 30B as necessary.

 救護者は、必要に応じて、被救護者の心電図を確認する。この場合、電極30Aと30Bを被救護者に装着した状態で、救護者は、ボタン群12b内の心電図検出ボタンを押下する。この操作に応答して、制御部14は、心電図信号取得部17を起動する。心電図信号取得部17は、電極30Aと30Bの間の電圧を測定し、制御部14に供給する。制御部14は、検出された生体電圧の波形を表示部11に表示する。救護者は、表示に従って、被救護者の心電図を確認する。 The rescuer checks the electrocardiogram of the person being rescued, if necessary. In this case, with electrodes 30A and 30B attached to the person being rescued, the rescuer presses the electrocardiogram detection button in button group 12b. In response to this operation, control unit 14 starts up electrocardiogram signal acquisition unit 17. Electrocardiogram signal acquisition unit 17 measures the voltage between electrodes 30A and 30B and supplies it to control unit 14. Control unit 14 displays the waveform of the detected biovoltage on display unit 11. The rescuer checks the electrocardiogram of the person being rescued according to the display.

 次に、被救護者に高電圧パルスを印加する処理を図10のフローチャートを参照しつつ説明する。
 被救護者に高電圧パルスを印加する場合、救護者は、操作部12を操作して、予め登録されている高電圧パルスの波形のリストを表示する(ステップS11)。救護者は、表示された波形のうちから1つを選択する(ステップS12:Yes)。選択された波形が設定波形である。なお、印加する高電圧パルス波形を予め選択して記憶部13に格納しておくことにより、ステップS11とS12をスキップしてもよい。
 続いて、制御部14は、ボタン群12bのなかの印加ボタンの押下を待機する(ステップS13)。
Next, the process of applying a high voltage pulse to a rescuee will be described with reference to the flow chart of FIG.
When applying a high-voltage pulse to a rescuee, the rescuer operates the operation unit 12 to display a list of preregistered high-voltage pulse waveforms (step S11). The rescuer selects one of the displayed waveforms (step S12: Yes). The selected waveform is the set waveform. Note that steps S11 and S12 may be skipped by selecting a high-voltage pulse waveform to be applied in advance and storing it in the storage unit 13.
Next, the control unit 14 waits for the application button of the button group 12b to be pressed (step S13).

 印加ボタンが押下されると(ステップS13:Yes)、制御部14の波形制御部141は、波形テーブル135(PWM制御御テーブル133と極性制御御テーブル134)を生成する波形テーブル生成処理を実行する(ステップS14)。 When the apply button is pressed (step S13: Yes), the waveform control unit 141 of the control unit 14 executes a waveform table generation process to generate the waveform table 135 (PWM control table 133 and polarity control table 134) (step S14).

 波形テーブル生成処理の詳細を図11のフローチャートを参照して説明する。



 まず、制御部14は、高電圧生成部16及び状態検出部18を制御して、生体インピーダンスを測定する(ステップS21)。具体的には、制御部14は、高電圧生成部16に所定電圧を発生させ、電極30A又は30Bに流れる電流を測定させることにより、生体インピーダンスRbを測定させる(ステップS21)。
 次に、制御部14は、基本波形テーブル132に格納されている基本波形が予定している生体インピーダンスの基準値Rrに対する測定した生体インピーダンスの値Rbの比Rb/Rrを求める(ステップS22)。
 次に、制御部14の波形制御部141は、被救護者に印加する高電圧パルスのエネルギーが基準値Eとなるように、生体インピーダンスの比の平方根√(Rb/Rr)を、ステップS14で選択された設定波形の波高値に乗算して、補正電圧波形Vaを求める(ステップS23)。
 次に、波形制御部141は、t=0に設定する(ステップS24)。
 次に、波形制御部141は、tのタイミングでの、補正電圧波形Vaの波高値に基づいて、スイッチング制御信号S1とS2の周期λとパルス幅PW1,PW2を求める(ステップS25)。
 次に、波形制御部141は、tのタイミングでの、基本電圧波形Vrの極性に基づいて、極性データを求める(ステップS26)。
 次に、波形制御部141は、tが電圧印加終了のタイミングに達したか否かを判別する(ステップS27)。
 tが終了タイミングに達していない場合(ステップS27:No)、t=t+1とtを更新して(ステップS28)、ステップS25に戻り、次のタイミングtについて同様の処理を行う。
 tが終了タイミングに達している場合(ステップS27:Yes)、複数回のステップS25の処理で求めた一連のタイミングtでのPWM制御御信号をPWM制御テーブル133に格納し、複数回のステップS26の処理で求めた一連のタイミングtでの極性制御信号を極性制御テーブル134に格納する(ステップS29)。
 こうして、波形制御部141のDSPによる高速演算処理により、PWM制御テーブル133と極性制御テーブル134が形成される。
 続いて、図10のステップS15に進み、制御部14は、内部タイマを起動する。
The waveform table generating process will be described in detail with reference to the flowchart of FIG.



First, the control unit 14 controls the high voltage generating unit 16 and the state detecting unit 18 to measure the bioimpedance (step S21). Specifically, the control unit 14 causes the high voltage generating unit 16 to generate a predetermined voltage and measures the current flowing through the electrode 30A or 30B, thereby measuring the bioimpedance Rb (step S21).
Next, the control unit 14 obtains the ratio Rb/Rr of the measured bioimpedance value Rb to the reference value Rr of the bioimpedance expected by the basic waveform stored in the basic waveform table 132 (step S22).
Next, the waveform control unit 141 of the control unit 14 multiplies the square root of the bioimpedance ratio, √(Rb/Rr), by the peak value of the set waveform selected in step S14 to obtain a corrected voltage waveform Va so that the energy of the high-voltage pulse applied to the recipient becomes the reference value E (step S23).
Next, the waveform control section 141 sets t=0 (step S24).
Next, the waveform control section 141 determines the period λ and pulse widths PW1, PW2 of the switching control signals S1 and S2 based on the peak value of the correction voltage waveform Va at the timing t (step S25).
Next, the waveform control section 141 obtains polarity data based on the polarity of the fundamental voltage waveform Vr at the timing t (step S26).
Next, the waveform control section 141 determines whether or not t reaches the timing of ending the voltage application (step S27).
If t has not reached the end timing (step S27: No), t is updated to t=t+1 (step S28), and the process returns to step S25 to perform the same process for the next timing t.
If t has reached the end timing (step S27: Yes), the PWM control signals at the series of timings t obtained by multiple processing of step S25 are stored in the PWM control table 133, and the polarity control signals at the series of timings t obtained by multiple processing of step S26 are stored in the polarity control table 134 (step S29).
In this manner, the PWM control table 133 and the polarity control table 134 are formed by high speed calculation processing by the DSP of the waveform control section 141 .
Next, the process proceeds to step S15 in FIG. 10, where the control unit 14 starts an internal timer.

 次に、制御部14は、PWM制御テーブル133に記憶されているPWM制御信号のうち内部タイマの計測時間t用のデータに基づいて、PWM制御信号を第1ドライバ162に供給する(ステップS16)。PWM制御信号は、スイッチング素子Q1~Q4の周期λとパルス幅PW1とPW2,又は、デューティ比を示す。 Then, the control unit 14 supplies a PWM control signal to the first driver 162 based on the data for the measurement time t of the internal timer among the PWM control signals stored in the PWM control table 133 (step S16). The PWM control signal indicates the period λ and pulse widths PW1 and PW2 of the switching elements Q1 to Q4, or the duty ratio.

 また、制御部14は、極性制御テーブル134に記憶されている極性制御信号のうち計測時間t用のデータに基づいて、極性制御信号を第2ドライバ166に供給する(ステップS17)。 The control unit 14 also supplies a polarity control signal to the second driver 166 based on the data for the measurement time t among the polarity control signals stored in the polarity control table 134 (step S17).

 続いて、制御部14は、内部タイマの計測時間tに基づいて、高電圧パルスの印加が終了したか否かを判別する(ステップS18)。
 終了していない場合(ステップS18:No)、処理は、ステップS16にリターンし、高電圧パルスの印加を継続する。
 一方、終了している場合(ステップS18:Yes)、高電圧パルス印加処理は終了する。なお、自動的に、心電図を測定して表示する処理を開始してもよい。
Next, the control unit 14 determines whether or not the application of the high voltage pulse has been completed based on the time t measured by the internal timer (step S18).
If not completed (step S18: No), the process returns to step S16, and the application of the high voltage pulse continues.
On the other hand, if the high voltage pulse application process has ended (step S18: Yes), the process of measuring and displaying an electrocardiogram may be started automatically.

 ステップS16で出力されるPWM制御信号に応答して、第1ドライバ162は、スイッチング素子Q1とQ4の組みと、Q2とQ3の組みを、指示されたデューティ比で交互にオン・オフする。これによりトランス163の一次巻線163aに、デューティ比に対応する大きさの交流の一次電流Iinが流れ、二次巻線163bに巻き数比に対応する高圧交流電圧が発生する。この高圧交流電圧は全波整流回路164aにより全波整流されて直流高電圧に変換され、さらに、平滑コンデンサC1により平滑化されて電圧V2として出力される。電圧V2は、図9(B)に例示したように、補正電圧波形Vaの絶対値波形に等しい波形を有する。 In response to the PWM control signal output in step S16, the first driver 162 alternately turns on and off the pair of switching elements Q1 and Q4 and the pair of switching elements Q2 and Q3 at the specified duty ratio. As a result, an AC primary current Iin with a magnitude corresponding to the duty ratio flows through the primary winding 163a of the transformer 163, and a high-voltage AC voltage corresponding to the turns ratio is generated in the secondary winding 163b. This high-voltage AC voltage is full-wave rectified by the full-wave rectifier circuit 164a and converted into a high-voltage DC voltage, which is further smoothed by the smoothing capacitor C1 and output as voltage V2. Voltage V2 has a waveform equal to the absolute value waveform of the correction voltage waveform Va, as shown in FIG. 9(B).

 ステップS17で出力される極性制御信号に応答して、第2ドライバ166は、正極性の高電圧パルスを印加すべき期間、スイッチング制御信号S3をハイレベルにして、スイッチング素子Q5とQ8の組みをオンし、電極30Aと30Bの間に順方向の電圧V2を印加し、被救護者に正極性の高電圧パルスVoutを印加する。また、第2ドライバ166は、負極性の高電圧パルスを印加すべき期間、スイッチング制御信号S4をハイレベルにして、スイッチング素子Q6とQ7の組みをオンして、電極30Aと30Bの間に順方向の電圧V2を印加し、被救護者に負極性の高電圧パルスVoutを印加する。 In response to the polarity control signal output in step S17, the second driver 166 sets the switching control signal S3 to a high level during the period when a positive high voltage pulse should be applied, turns on the pair of switching elements Q5 and Q8, applies a forward voltage V2 between electrodes 30A and 30B, and applies a positive high voltage pulse Vout to the rescuee. Also, during the period when a negative high voltage pulse should be applied, the second driver 166 sets the switching control signal S4 to a high level, turns on the pair of switching elements Q6 and Q7, applies a forward voltage V2 between electrodes 30A and 30B, and applies a negative high voltage pulse Vout to the rescuee.

 このようにして、被救護者には、図9(A)に例示する補正電圧波形Vaを有する高電圧パルスが印加される。補正電圧波形Vaの高電圧パルスは、被救護者の個人差、電極30A,30Bの装着状態の変動などに起因する生体インピーダンスの変動によらず、ほぼ一定エネルギーEが印加される。 In this way, a high-voltage pulse having the corrected voltage waveform Va shown in FIG. 9(A) is applied to the recipient. The high-voltage pulse of the corrected voltage waveform Va applies a substantially constant energy E regardless of variations in bioimpedance caused by individual differences in the recipient or variations in the attachment state of the electrodes 30A and 30B.

 以上説明したように、本発明の実施の形態のAED1によれば、インバータ回路による直流交流変換とトランスを用いて高電圧を生成するため、高電圧を保持するための高耐圧コンデンサを使用する必要がなく、小型化が可能となる。また、高電圧パルスの電圧は、PWM信号によって1パルス単位で制御されるフルブリッジインバータ回路161により時系列で調整される。従って、除細動に適した複雑な波形の高電圧パルスを容易に生成することが可能となる。さらに、極性反転信号によって制御される極性反転回路165によって、設定波形に応じた適切なタイミングで、整流平滑回路164の出力する電圧V2の極性が反転される。これにより、BTE波形やRLB波形のような二相性波形の高電圧パルスを容易に生成することが可能となる。 As described above, according to the AED1 of the embodiment of the present invention, since a high voltage is generated using DC/AC conversion by an inverter circuit and a transformer, there is no need to use a high-voltage capacitor to hold the high voltage, and the device can be made smaller. In addition, the voltage of the high-voltage pulse is adjusted in a time series by the full-bridge inverter circuit 161, which is controlled in units of one pulse by a PWM signal. Therefore, it is possible to easily generate a high-voltage pulse with a complex waveform suitable for defibrillation. Furthermore, the polarity of the voltage V2 output by the rectifying and smoothing circuit 164 is inverted by the polarity inversion circuit 165, which is controlled by a polarity inversion signal, at an appropriate timing according to the set waveform. This makes it possible to easily generate a high-voltage pulse with a biphasic waveform such as a BTE waveform or an RLB waveform.

 また、本実施形態に係るAED1によれば、トランス163で昇圧した電圧を平滑化する平滑回路を備えているため、脈流を抑えてより理想的な波形の高電圧パルスを生成することが可能となる。 In addition, the AED 1 according to this embodiment is equipped with a smoothing circuit that smoothes the voltage boosted by the transformer 163, making it possible to suppress pulsation and generate a high-voltage pulse with a more ideal waveform.

 上記実施の形態では、高電圧パルスを被救護者に1回印加する例を示したが、複数回印加してもよい。以下、高電圧パルスを一定の時間を空けて複数回印加するモードをデュアルショックモードとよぶ。図12に、デュアルショックモードで高電圧生成部16が生成する高電圧パルスの例を示す。この例では、2sの時間間隔で、RLB波形の高電圧パルスが2個連続的に生成されている。なお、デュアルショックモードでは、1回目と2回目で異なる波形の高電圧パルスを生成してもよい。また、2回より多くの高電圧パルスを連続的に生成して被救護者に印加してもよい。 In the above embodiment, an example is shown in which a high-voltage pulse is applied to the recipient once, but it may be applied multiple times. Hereinafter, the mode in which a high-voltage pulse is applied multiple times with a certain time interval between them is referred to as dual shock mode. Figure 12 shows an example of a high-voltage pulse generated by the high-voltage generation unit 16 in dual shock mode. In this example, two high-voltage pulses with an RLB waveform are generated consecutively with a time interval of 2 s. Note that in dual shock mode, the first and second high-voltage pulses may have different waveforms. Also, more than two high-voltage pulses may be generated consecutively and applied to the recipient.

 デュアルショックモードでは、AED1は、予め設定された時間間隔で、高電圧パルスを2連続で被救護者に印加する。例えば、操作者が、操作部12を操作することで、AED1の動作モードをデュアルショックモードに切り替えることができる。また、操作者は、操作部12を操作することで、2連続で照射する高電圧パルスの時間間隔を0.25s~3.00sの範囲で設定することができる。 In the dual shock mode, the AED 1 applies two successive high-voltage pulses to the recipient at a preset time interval. For example, the operator can switch the operation mode of the AED 1 to the dual shock mode by operating the operation unit 12. The operator can also set the time interval between the two successive high-voltage pulses to be applied within the range of 0.25 s to 3.00 s by operating the operation unit 12.

 この場合、例えば、複数回分の波形データ全体を波形メモリ領域131に格納し、図10に示す高電圧パルス印加処理で印加してもよい。
 また、図13のフローに示すように、設定波形の高電圧パルスを印加し(ステップS31)、続いて、予め設定されている繰り返し回数だけ高電圧パルスが印加されているか否かを判別し(ステップS32)、終了していない場合には、一定のインターバル時間を計測し(ステップS33)、ステップS31にリターンし、次の高電圧パルスを印加するようにしてもよい。なお、次に印加する高電圧パルスの波形はそれ以前に印加した高電圧パルスの波形と同一でも異なっていてもよい。また、3回以上印加する場合には、インターバルの長さも毎回異なっても同一でもよい。また、印加する波形とその順番を編集できるようにしてもよい。
In this case, for example, the entire waveform data for a plurality of times may be stored in the waveform memory area 131 and applied by the high-voltage pulse application process shown in FIG.
Also, as shown in the flow of FIG. 13, a high voltage pulse of a set waveform is applied (step S31), and then it is determined whether or not the high voltage pulse has been applied a preset number of times (step S32). If not, a certain interval time is measured (step S33), and the process returns to step S31 to apply the next high voltage pulse. The waveform of the next high voltage pulse to be applied may be the same as or different from the waveform of the high voltage pulse applied previously. Furthermore, when applying three or more times, the length of the interval may be different or the same each time. Furthermore, it may be possible to edit the waveforms to be applied and the order in which they are applied.

 ステップS32で、終了と判別された際には、処理を終了する。 If it is determined in step S32 that the process has ended, the process ends.

 図13の処理の場合には、繰り返し回数、印加する高電圧パルスの波形と順番、インターバル期間を記憶部13に予め記憶しておけば、複数パルス分の波形データ全体を波形メモリ領域131に記憶しておく必要はなく、記憶部13の容量を抑えることができる。 In the case of the process of FIG. 13, if the number of repetitions, the waveforms and order of the high voltage pulses to be applied, and the interval periods are stored in advance in the memory unit 13, there is no need to store the entire waveform data for multiple pulses in the waveform memory area 131, and the capacity of the memory unit 13 can be reduced.

(変形例)
 上記実施形態は、種々の変更が可能である。例えば、上記実施形態では、高電圧パルスの波形をMonophasic波形、BTE波形、および、RLB波形、の3つの中から設定することができると説明したが、設定できる波形の種類はこれらに限定されるものではない。また、AED1が出力できる高電圧パルスの波形を1つのみに固定してもよい。例えば、AED1が出力できる高電圧パルスの波形をMonophasic波形のみに固定した場合は、高電圧生成部16に極性反転回路165を設けなくてもよい。
(Modification)
The above embodiment can be modified in various ways. For example, in the above embodiment, the waveform of the high voltage pulse can be set from among three types, namely, monophasic waveform, BTE waveform, and RLB waveform, but the types of waveforms that can be set are not limited to these. In addition, the waveform of the high voltage pulse that the AED1 can output may be fixed to only one. For example, when the waveform of the high voltage pulse that the AED1 can output is fixed to only the monophasic waveform, the polarity inversion circuit 165 does not need to be provided in the high voltage generating unit 16.

 また、基本波形テーブル132に格納される波形データを読み出して、波形を表示部11に表示させながら操作部12の操作に従って、加工・編集して、上書きあるいは別名で保存することにより、任意の高電圧パルス波形を生成及び編集可能である。さらに、外部のコンピュータ等で生成あるいは編集した波形データを通信部15を介して記憶部13に格納するようにしてもよい。 Also, any high-voltage pulse waveform can be generated and edited by reading out the waveform data stored in the basic waveform table 132, processing and editing it in accordance with the operation of the operation unit 12 while displaying the waveform on the display unit 11, and overwriting or saving it under a different name. Furthermore, waveform data generated or edited by an external computer or the like may be stored in the memory unit 13 via the communication unit 15.

 AED1の電極30A、30Bは、図1に示すような針状の電極に限定されるものではなく、種々の形状の電極が採用可能である。例えば、図14に示すように、AED1は、針状の電極30A、30Bに代えて、パッド状の電極50A、50Bを備えていてもよい。また、パッド状の電極50A、50Bの表面に、微細な針、刃、歯、凹凸等の被救護者の体表面との接触抵抗を小さくするための構成を備えていてもよい。 The electrodes 30A, 30B of the AED 1 are not limited to the needle-shaped electrodes shown in FIG. 1, and electrodes of various shapes can be used. For example, as shown in FIG. 14, the AED 1 may have pad-shaped electrodes 50A, 50B instead of the needle-shaped electrodes 30A, 30B. The surfaces of the pad-shaped electrodes 50A, 50B may also have structures such as fine needles, blades, teeth, or irregularities to reduce contact resistance with the body surface of the person being rescued.

 また、本発明が適用される電極30A,30Bは、それぞれ、図15に例示するように、洗濯バサミ型の構成でもよい。図15に示す電極30は、握り部301と把持部302とを有している。救助者は、電極30の握り部301を握ることで把持部302を開き、把持部302の間に皮膚Kを挿入して挟み、握り部301の握りを解除して把持部302に皮膚Kを把持させることで、電極30を皮膚Kに装着させる。 Also, the electrodes 30A, 30B to which the present invention is applied may each have a clothespin-type configuration, as exemplified in FIG. 15. The electrode 30 shown in FIG. 15 has a gripping portion 301 and a holding portion 302. The rescuer grasps the gripping portion 301 of the electrode 30 to open the holding portion 302, inserts and pinches the skin K between the holding portions 302, and releases the grip of the gripping portion 301 to allow the holding portion 302 to hold the skin K, thereby attaching the electrode 30 to the skin K.

 さらに、把持部302に剣山のような複数の針状部位303を配置してもよい。針状部位303のうち少なくとも一部が、皮膚Kの内部に存在するようになる。 Furthermore, multiple needle-shaped parts 303, like a pin holder, may be arranged on the gripping part 302. At least some of the needle-shaped parts 303 will be present inside the skin K.

 針状の電極、洗濯バサミ状の電極、微細な針等を有するパッド状電極等は、雨天など、前胸部が継続的に濡れてしまう環境でも、電極と被救護者との電気的接続を安定して確保ために有効である。 Needle-shaped electrodes, clothespin-shaped electrodes, pad-shaped electrodes with fine needles, etc. are effective in ensuring a stable electrical connection between the electrode and the person being rescued, even in rainy weather or other environments where the anterior chest area is continually wet.

 その他、回路及び動作は適宜変更可能である。例えば、主に正論理で説明したが、不論理で回路を設計してもよい。また、実施の形態で例示した材料、数値は例示であり、限定されるものではない。 Otherwise, the circuits and operations can be modified as appropriate. For example, although the explanation has been given mainly in terms of positive logic, the circuits may be designed in terms of negative logic. In addition, the materials and values given as examples in the embodiments are merely examples and are not limiting.

 また、生体インピーダンス以外にも、電池の内部インピーダンス、インバータ・トランス・整流回路の損失がある。このため、実測した出力電流と出力電圧に基づき、印加する高電圧パルスのエネルギーが目標値に一致するように、基本電圧波形Vrの波高値とパルスの長さを補正してもよい。 In addition to bioimpedance, there are also losses in the internal impedance of the battery, and in the inverter, transformer, and rectifier circuits. For this reason, the peak value and pulse length of the basic voltage waveform Vr may be corrected based on the measured output current and output voltage so that the energy of the applied high-voltage pulse matches the target value.

 また、損失の総量と補正内容とを対応付けた補正テーブルを用意し、総損失を求め、求めた総損失をキーに補正内容を求め、求めた補正内容に従って基本電圧波形Vrを補正するようにしてもよい。 Also, a correction table that associates the total amount of loss with the correction content may be prepared, the total loss may be calculated, the correction content may be calculated using the calculated total loss as a key, and the basic voltage waveform Vr may be corrected according to the calculated correction content.

 上記説明では、基本電圧波形Vrを補正することにより、各タイミングtでの印加すべき電圧を求めた。この開示はこれに限定されない。例えば、基本電圧波形Vrを使用せずに、印加する高電圧波形を求めることも可能である。例えば、基本波形テーブル132を取り除き、波形メモリ領域131には、高電圧パルス電圧のエンベローブと印加する電気エネルギーの総量を記憶しておく。波形制御部141は、計測された生体インピーダンスの値Rbに基づいて、印加する高電圧パルスの総エネルギーが目標値Eに一致し、エンベローブが予め記憶している基本のエンベローブに一致するように各タイミングでの印加電圧を求める。 In the above explanation, the voltage to be applied at each timing t was obtained by correcting the basic voltage waveform Vr. This disclosure is not limited to this. For example, it is also possible to obtain the high-voltage waveform to be applied without using the basic voltage waveform Vr. For example, the basic waveform table 132 is removed, and the envelope of the high-voltage pulse voltage and the total amount of electrical energy to be applied are stored in the waveform memory area 131. The waveform control unit 141 obtains the voltage to be applied at each timing based on the measured bioimpedance value Rb so that the total energy of the high-voltage pulse to be applied matches the target value E and the envelope matches the basic envelope stored in advance.

 上記実施の形態において、
 フルブリッジインバータ回路161は、スイッチング制御信号に従ったデューティ比でスイッチング動作を行うことにより、直流電圧を交流電圧に変換するインバータ回路の一例である。
 トランス163は、インバータ回路が変換した交流電圧を昇圧するトランスの一例である。
 全波整流回路164aは、昇圧された電圧を整流する整流回路の一例である。
 平滑コンデンサC1は、整流回路の出力する電圧を平滑化する平滑回路の一例である。
 電極30A,30Bは、整流回路の出力電圧に基づいた電気ショックを被救護者に印加する電極の一例である。
 極性反転回路165は、整流回路の出力電圧を、極性制御信号に従って、順方向あるいは反転して電極に印加する極性反転回路の一例である。こので、スイッチング制御信号S3,S4は、極性制御信号の一例である。
In the above embodiment,
The full-bridge inverter circuit 161 is an example of an inverter circuit that converts a DC voltage into an AC voltage by performing a switching operation with a duty ratio according to a switching control signal.
The transformer 163 is an example of a transformer that boosts the AC voltage converted by the inverter circuit.
The full-wave rectifier circuit 164a is an example of a rectifier circuit that rectifies the boosted voltage.
The smoothing capacitor C1 is an example of a smoothing circuit that smoothes the voltage output by the rectifier circuit.
The electrodes 30A and 30B are examples of electrodes that apply an electric shock to the recipient based on the output voltage of the rectifier circuit.
The polarity reversing circuit 165 is an example of a polarity reversing circuit that applies the output voltage of the rectifier circuit to the electrodes in a forward or inverted manner in accordance with a polarity control signal. Therefore, the switching control signals S3 and S4 are examples of polarity control signals.

 波形制御部141と第1ドライバ162は、インバータ回路にスイッチング制御信号を供給して、インバータ回路からトランスに供給される電気エネルギーを制御するデューティ比制御手段の一例である。
 PWM制御テーブル133は、被救護者に印加する電気ショックの電圧波形に対応して、時間の経過に対するデューティ比の変化を表すデータを記憶する記憶部の一例である。また、極性制御テーブル134は、被救護者に印加する電気ショックの印加電圧の極性を示すデータを記憶する記憶部の一例でもある。
 操作部12と制御部14とは、複数の電圧波形から印加対象の1つを選択する選択手段の一例である。
 制御部14と状態検出部18とは、被救護者に装着された前記電極間のインピーダンスを測定する測定手段の一例である。
 操作部12、制御部14、通信部15は、記憶部に記憶された時間に対するデューティ比の変化を示すデータを更新する手段の一例である。
 波形制御部141と第2ドライバ166は、極性反転回路に極性制御信号を送信して、前記設定波形に応じた極性の電圧を前記電極に印加させる極性制御手段の一例である。
The waveform control unit 141 and the first driver 162 are an example of a duty ratio control unit that supplies a switching control signal to the inverter circuit and controls the electric energy supplied from the inverter circuit to the transformer.
The PWM control table 133 is an example of a storage unit that stores data representing changes in duty ratio over time in accordance with the voltage waveform of the electric shock to be applied to the recipient. The polarity control table 134 is also an example of a storage unit that stores data representing the polarity of the voltage of the electric shock to be applied to the recipient.
The operation unit 12 and the control unit 14 are an example of a selection unit that selects one of a plurality of voltage waveforms to be applied.
The control unit 14 and the state detection unit 18 are an example of a measuring means for measuring the impedance between the electrodes attached to the rescue recipient.
The operation unit 12, the control unit 14, and the communication unit 15 are an example of a means for updating the data indicating the change in the duty ratio with respect to time stored in the storage unit.
The waveform control section 141 and the second driver 166 are an example of a polarity control means that transmits a polarity control signal to a polarity inversion circuit to apply a voltage of a polarity corresponding to the set waveform to the electrodes.

 以上、本発明の好ましい実施形態について説明したが、本発明は係る特定の実施形態に限定されるものではなく、本発明には、特許請求の範囲に記載された発明とその均等の範囲とが含まれる。以下に、本願出願の当初の特許請求の範囲に記載された発明を付記す。 The above describes a preferred embodiment of the present invention, but the present invention is not limited to the specific embodiment, and includes the inventions described in the claims and their equivalents. The inventions described in the original claims of this application are listed below.

1…AED、10…本体部、30A、30B、50A、50B…電極、40A,40B…ケーブル、11…表示部、12…操作部、13…記憶部、131…波形テーブル、14…制御部、141…波形制御部、15…通信部、16…高電圧生成部、161…フルブリッジインバータ回路、162 第1ドライバ、163 トランス、163a…一次巻線、163b…二次巻線、164 整流平滑回路、165 極性反転回路、166 第2ドライバ、Q1~Q8…スイッチング素子、D1~D4…ダイオード、C1…コンデンサ、17…心電図信号取得部、18…状態検出部、19…電源部,20…音声出力部 1...AED, 10...main body, 30A, 30B, 50A, 50B...electrodes, 40A, 40B...cable, 11...display, 12...operation, 13...storage, 131...waveform table, 14...controller, 141...waveform control, 15...communication, 16...high voltage generator, 161...full bridge inverter circuit, 162 first driver, 163 transformer, 163a...primary winding, 163b...secondary winding, 164 rectifier smoothing circuit, 165 polarity inversion circuit, 166 second driver, Q1-Q8...switching elements, D1-D4...diodes, C1...capacitor, 17...electrocardiogram signal acquisition unit, 18...state detection unit, 19...power supply unit, 20...audio output unit

Claims (11)

 スイッチング制御信号に従ったデューティ比でスイッチング動作を行うことにより、直流電圧を交流電圧に変換するインバータ回路と、
 前記インバータ回路が変換した交流電圧を昇圧するトランスと、
 前記トランスにより昇圧された電圧を整流する整流回路と、
 前記整流回路の出力電圧に基づいた電気ショックを被救護者に印加する電極と、
 前記インバータ回路に前記スイッチング制御信号を供給して、前記インバータ回路から前記トランスに供給される電気エネルギーを制御するデューティ比制御手段と、
 を備える自動体外式除細動器。
an inverter circuit that converts a DC voltage into an AC voltage by performing a switching operation with a duty ratio according to a switching control signal;
a transformer that boosts the AC voltage converted by the inverter circuit;
a rectifier circuit that rectifies the voltage boosted by the transformer;
an electrode for applying an electric shock to a rescuee based on an output voltage of the rectifier circuit;
a duty ratio control means for supplying the switching control signal to the inverter circuit to control the electric energy supplied from the inverter circuit to the transformer;
An automated external defibrillator comprising:
 被救護者に印加する電気ショックの電圧波形に対応して、時間の経過に対するデューティ比の変化を表すデータを記憶する記憶部を備え、
 前記デューティ比制御手段は、前記記憶部に記憶されているデータに従って、前記インバータ回路のスイッチング動作のデューティ比を制御する、
 請求項1に記載の自動体外式除細動器。
a memory unit for storing data representing a change in duty ratio over time in accordance with a voltage waveform of an electric shock to be applied to a person to be rescued;
The duty ratio control means controls a duty ratio of a switching operation of the inverter circuit in accordance with the data stored in the storage unit.
2. The automated external defibrillator of claim 1.
 前記記憶部は、被救護者に印加する電気ショックの複数の電圧波形のそれぞれに対応して、時間に対するデューティ比の変化を表すデータを記憶し、
 複数の電圧波形のうちの1つを選択する選択手段をさらに備え、
 前記デューティ比制御手段は、前記選択手段により選択された電圧波形に対応するデータに従って、前記インバータ回路のデューティ比を制御する
 請求項2に記載の自動体外式除細動器。
The memory unit stores data representing a change in duty ratio with respect to time corresponding to each of a plurality of voltage waveforms of an electric shock to be applied to a rescuee,
A selection means for selecting one of the plurality of voltage waveforms is further provided,
3. The automatic external defibrillator according to claim 2, wherein the duty ratio control means controls the duty ratio of the inverter circuit in accordance with data corresponding to the voltage waveform selected by the selection means.
 被救護者に装着された前記電極間のインピーダンスを測定する測定手段と、
 印加電圧の基本波形を記憶する手段と、
 前記測定手段により測定されたインピーダンスに基づいて、前記基本波形を補正して、補正された波形に基づいて、前記時間に対するデューティ比の変化を示すデータを生成する手段を備える、
 請求項2又は3に記載の自動体外式除細動器。
A measuring means for measuring impedance between the electrodes attached to the rescuee;
A means for storing a fundamental waveform of an applied voltage;
means for correcting the fundamental waveform based on the impedance measured by the measuring means, and generating data indicating a change in the duty ratio with respect to time based on the corrected waveform.
4. An automatic external defibrillator according to claim 2 or 3.
 前記記憶部に記憶された時間に対するデューティ比の変化を示すデータを更新する手段をさらに備える、
 請求項2又は3に記載の自動体外式除細動器。
The device further includes a means for updating data indicating a change in the duty ratio with respect to time stored in the storage unit.
4. An automatic external defibrillator according to claim 2 or 3.
 被救護者に印加する電気ショックの電圧波形に対応して、時間の経過に対するデューティ比の変化を表すデータを記憶する記憶部を備え、
 前記デューティ比制御手段は、前記記憶部に記憶されているデータに従って、前記インバータ回路のスイッチング動作のデューティ比を制御する、
 請求項1に記載の自動体外式除細動器。
a memory unit for storing data representing a change in duty ratio over time in accordance with a voltage waveform of an electric shock to be applied to a person to be rescued;
The duty ratio control means controls a duty ratio of a switching operation of the inverter circuit in accordance with the data stored in the storage unit.
2. The automated external defibrillator of claim 1.
 前記整流回路の出力電圧を、極性制御信号に従って、順方向あるいは反転して前記電極に印加する極性反転回路と、
 前記極性反転回路に前記極性制御信号を送信して、印加対象の電気ショックの電圧波形に応じた極性の電圧を前記電極に印加させる極性制御手段と、
 をさらに備える請求項1又は2に記載の自動体外式除細動器。
a polarity inversion circuit that applies the output voltage of the rectifier circuit to the electrodes in a forward or reversed state in accordance with a polarity control signal;
a polarity control means for transmitting the polarity control signal to the polarity reversal circuit to apply a voltage of a polarity corresponding to a voltage waveform of an electric shock to be applied to the electrode;
3. The automatic external defibrillator of claim 1 or 2, further comprising:
 被救護者に印加する電気ショックの電圧波形に対応する印加電圧の極性を示すデータを記憶する記憶部を備え、
 前記極性制御手段は、前記記憶部に記憶されているデータに従って、前記極性反転回路を制御する
 請求項7に記載の自動体外式除細動器。
a memory unit for storing data indicating a polarity of an applied voltage corresponding to a voltage waveform of an electric shock to be applied to a rescuee;
8. The automatic external defibrillator according to claim 7, wherein the polarity control means controls the polarity reversal circuit in accordance with data stored in the memory unit.
 前記整流回路の出力する電圧を平滑化する平滑回路をさらに備える、
 請求項1又は2に記載の自動体外式除細動器。
Further comprising a smoothing circuit for smoothing the voltage output from the rectifier circuit.
3. An automatic external defibrillator according to claim 1 or 2.
 前記デューティ比制御手段は、予め定めた時間間隔で複数回の前記インバータ回路を駆動することにより、複数の電圧パルスを生成する、
 請求項1又は2に記載の自動体外式除細動器。
The duty ratio control means generates a plurality of voltage pulses by driving the inverter circuit a plurality of times at a predetermined time interval.
3. An automatic external defibrillator according to claim 1 or 2.
 前記電極は、針状、パッド状、又は、はさみ状の形状を有し、被救護者に装着される、
 請求項1又は2に記載の自動体外式除細動器。
The electrode has a needle-like, pad-like, or scissors-like shape and is attached to the person being rescued.
3. An automatic external defibrillator according to claim 1 or 2.
PCT/JP2023/030715 2023-08-25 2023-08-25 Automated external defibrillator WO2025046654A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2023/030715 WO2025046654A1 (en) 2023-08-25 2023-08-25 Automated external defibrillator
JP2023579652A JP7493865B1 (en) 2023-08-25 2023-08-25 Automated External Defibrillator
JP2024055504A JP2025031497A (en) 2023-08-25 2024-03-29 Automated External Defibrillator
PCT/JP2024/030101 WO2025047627A1 (en) 2023-08-25 2024-08-23 Automated external defibrillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/030715 WO2025046654A1 (en) 2023-08-25 2023-08-25 Automated external defibrillator

Publications (1)

Publication Number Publication Date
WO2025046654A1 true WO2025046654A1 (en) 2025-03-06

Family

ID=91321835

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/030715 WO2025046654A1 (en) 2023-08-25 2023-08-25 Automated external defibrillator
PCT/JP2024/030101 WO2025047627A1 (en) 2023-08-25 2024-08-23 Automated external defibrillator

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/030101 WO2025047627A1 (en) 2023-08-25 2024-08-23 Automated external defibrillator

Country Status (2)

Country Link
JP (2) JP7493865B1 (en)
WO (2) WO2025046654A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533310A (en) * 2001-07-03 2004-11-04 ハダシット メディカル リサーチ サービシーズ アンド ディベロップメント リミテッド Defibrillator system
JP2008534107A (en) * 2005-03-29 2008-08-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Impedance compensated defibrillator with energy supply function
JP2022182029A (en) * 2021-05-27 2022-12-08 Asklepios株式会社 Inductor, transformer, and electronic apparatus
JP2022182010A (en) * 2021-05-27 2022-12-08 敏雄 千葉 automated external defibrillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533310A (en) * 2001-07-03 2004-11-04 ハダシット メディカル リサーチ サービシーズ アンド ディベロップメント リミテッド Defibrillator system
JP2008534107A (en) * 2005-03-29 2008-08-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Impedance compensated defibrillator with energy supply function
JP2022182029A (en) * 2021-05-27 2022-12-08 Asklepios株式会社 Inductor, transformer, and electronic apparatus
JP2022182010A (en) * 2021-05-27 2022-12-08 敏雄 千葉 automated external defibrillator

Also Published As

Publication number Publication date
WO2025047627A1 (en) 2025-03-06
JP2025031497A (en) 2025-03-07
JP7493865B1 (en) 2024-06-03

Similar Documents

Publication Publication Date Title
US10576287B2 (en) Efficiently delivering acoustic stimulation energy to tissue
JP4364443B2 (en) Charge-based defibrillation method and apparatus
US7200434B2 (en) Control of arbitrary waveforms for constant delivered energy
US6484056B2 (en) System and method of generating a high efficiency biphasic defibrillation waveform for use in an implantable cardioverter/defibrillator (ICD)
EP2351525A2 (en) Battery-type x-ray imaging apparatus
CN101518667A (en) Intelligent intermediate-frequency bi-directional square wave defibrillation method
CN103816615A (en) Discharge dose accurate control method and device applied to cardiac defibrillator
CN106730352A (en) A kind of portable heart defibrillator and ecg signal acquiring method based on bluetooth
JP7493865B1 (en) Automated External Defibrillator
US7174208B2 (en) Slow rise defibrillation waveforms to minimize stored energy for a pulse modulated circuit and maximize charge transfer to myocardial membrane
CN102974038B (en) The extended pattern H-bridge circuit of two-phase sawtooth discharge waveform is produced in cardiac defibrillator
CN116407759A (en) Impedance monitoring method and non-implantable electrical stimulation device
CN218961597U (en) Defibrillator
JP3050778U (en) Battery-operated potential therapy device
US20160144171A1 (en) Systems and methods for generating biphasic waveforms
TWI824804B (en) Electrical stimulation method and non-implantable electrical stimulation device
CN118750780B (en) Implantable medical device and wireless energy transmission method
CN115006727B (en) External defibrillator
CN219783548U (en) Pulse therapeutic instrument circuit
JP7620356B1 (en) Automated External Defibrillator
Gopinath et al. Matlab/Simulink Model of High Frequency Converter For Electrosurgical Generators
RU168178U1 (en) Defibrillation pulse energy storage device
CN115006727A (en) External defibrillator
JP2025105867A (en) current stimulator
CN114931702A (en) Defibrillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23950609

Country of ref document: EP

Kind code of ref document: A1