[go: up one dir, main page]

WO2025045194A1 - 靶向凝血因子xi的双链核糖核酸 - Google Patents

靶向凝血因子xi的双链核糖核酸 Download PDF

Info

Publication number
WO2025045194A1
WO2025045194A1 PCT/CN2024/115820 CN2024115820W WO2025045194A1 WO 2025045194 A1 WO2025045194 A1 WO 2025045194A1 CN 2024115820 W CN2024115820 W CN 2024115820W WO 2025045194 A1 WO2025045194 A1 WO 2025045194A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleotides
antisense strand
sense strand
sense
Prior art date
Application number
PCT/CN2024/115820
Other languages
English (en)
French (fr)
Inventor
葛兴枫
郑佳佳
陈硕
卢丹丹
徐宏江
Original Assignee
正大天晴药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正大天晴药业集团股份有限公司 filed Critical 正大天晴药业集团股份有限公司
Publication of WO2025045194A1 publication Critical patent/WO2025045194A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present application belongs to the field of biomedicine and relates to a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, a ligand conjugate thereof, or a pharmaceutical composition, which can be used to inhibit coagulation factor XI.
  • dsRNA double-stranded ribonucleic acid
  • Coagulation factor XI is a serine protease that is mainly synthesized in the liver and megakaryocytes. Coagulation factor XI participates in the intrinsic coagulation pathway. In the coagulation cascade, thrombin can feedback activate coagulation factor XI, and the activated coagulation factor XI promotes the massive production of thrombin, thereby amplifying the coagulation cascade. Therefore, drugs targeting coagulation factor XI can block the intrinsic pathway and inhibit the amplification of the coagulation cascade, thereby having an anti-thrombotic effect without causing excessive bleeding.
  • factor XI inhibitors mainly including monoclonal antibodies, antisense oligonucleotides, small molecule inhibitors, peptide mimetics and peptide inhibitors, etc. No factor XI inhibitor has been approved for marketing.
  • Small interfering RNA can inhibit the expression of target genes by inhibiting or blocking the translation or transcription of target genes in a sequence-specific manner based on the RNA interference (RNAi) mechanism, exerting an inhibitory effect at the mRNA level and reducing the level of coagulation factor XI, thereby achieving the purpose of treating the disease.
  • RNAi RNA interference
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, wherein the dsRNA comprises a sense strand and an antisense strand, wherein the sense strand contains a nucleotide sequence of no more than 23 nucleotides in length, and the antisense strand contains a nucleotide sequence of no more than 25 nucleotides in length, and the sense strand or the antisense strand is optionally modified, and the double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof targets coagulation factor XI mRNA.
  • dsRNA double-stranded ribonucleic acid
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof or a ligand conjugate thereof, wherein the dsRNA comprises a sense chain and an antisense chain, and the sense chain contains a nucleotide sequence as shown in SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7, SEQ ID NO.9, SEQ ID NO.11, SEQ ID NO.13, SEQ ID NO.15, SEQ ID NO.17, SEQ ID NO.19, SEQ ID NO.21, SEQ ID NO.23, SEQ ID NO.25 or SEQ ID NO.27.
  • dsRNA double-stranded ribonucleic acid
  • the sense chain contains a nucleotide sequence as shown in SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7, SEQ ID NO.9, SEQ ID NO.11, SEQ ID NO.13, SEQ ID
  • the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence as shown in SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6, SEQ ID NO.8, SEQ ID NO.10, SEQ ID NO.12, SEQ ID NO.14, SEQ ID NO.16, SEQ ID NO.18, SEQ ID NO.20, SEQ ID NO.22, SEQ ID NO.24, SEQ ID NO.26 or SEQ ID NO.28 and the length of the antisense strand does not exceed 23 nucleotides:
  • Antisense strand 5’-AGUAUUUUAGUUGGAGAUCCG-3’ (SEQ ID NO.2);
  • Antisense strand 5’-UGAUAUAAGAAAAUCAUCCUG-3’ (SEQ ID NO. 4);
  • Antisense strand 5’-AAAUCAUCCUGAAAAGACCUU-3’ (SEQ ID NO.6);
  • Antisense strand 5’-AAAAUCAUCCUGAAAAGACCU-3’ (SEQ ID NO.8);
  • Antisense strand 5’-AGAAAAUCAUCCUGAAAAGAC-3’ (SEQ ID NO.10);
  • Antisense strand 5’-AAGAAAAUCAUCCUGAAAAGA-3’ (SEQ ID NO.12);
  • Antisense strand 5’-UAUAAGAAAAUCAUCCUGAAA-3’ (SEQ ID NO.14);
  • Antisense strand 5’-AUAUAAGAAAAUCAUCCUGAA-3’ (SEQ ID NO.16);
  • Antisense strand 5’-GAUAUAAGAAAAUCAUCCUGA-3’ (SEQ ID NO.18);
  • Antisense strand 5’-UUGAUAUAAGAAAAUCAUCCU-3’ (SEQ ID NO.20);
  • Antisense strand 5’-CUUGAUAUAAGAAAAUCAUCC-3’ (SEQ ID NO.22);
  • Antisense strand 5’-ACUUGAUAUAAGAAAAUCAUC-3’ (SEQ ID NO.24);
  • Antisense strand 5’-AUGUACCACUUGAUAUAAGAA-3’ (SEQ ID NO.26);
  • Antisense strand 5’-UUUAGUUGGAGAUCCGUUUGA-3’ (SEQ ID NO.28);
  • the sense strand or antisense strand is optionally modified.
  • the present application provides a pharmaceutical composition, which includes the dsRNA of the present application, its pharmaceutically acceptable salt or its ligand conjugate.
  • the present application provides a pharmaceutical composition, which includes the dsRNA of the present application, its pharmaceutically acceptable salt or its ligand conjugate and a pharmaceutically acceptable carrier or excipient.
  • the present application provides a kit for treating and/or preventing thromboembolism and its complications, which includes the dsRNA of the present application, its pharmaceutically acceptable salt or its ligand conjugate, or pharmaceutical composition; and optional instructions for use.
  • the present application provides a method for treating and/or preventing thromboembolism and its complications, which comprises administering the dsRNA, its pharmaceutically acceptable salt or its ligand conjugate, or pharmaceutical composition of the present application to a subject for treatment and/or prevention (hereinafter also referred to as a subject).
  • the present application provides a method for treating and/or preventing thromboembolism and its complications, which comprises administering a therapeutically/preventively effective amount of the dsRNA of the present application, a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, or a pharmaceutical composition to a subject for treatment and/or prevention (hereinafter also referred to as a subject).
  • the present application provides use of the dsRNA, a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, or a pharmaceutical composition of the present application in the preparation of a medicament for treating and/or preventing thromboembolism and its complications.
  • the present application provides use of the dsRNA, a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, or a pharmaceutical composition of the present application in treating and/or preventing thromboembolism and its complications.
  • the present application provides the dsRNA, a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, or a pharmaceutical composition of the present application for treating and/or preventing thromboembolism and its complications.
  • the thromboembolism and its complications may include various types of thrombosis, embolism and thromboembolism, such as arterial embolism and venous embolism, including deep vein thrombosis, pulmonary embolism, myocardial infarction and stroke.
  • embolism and thromboembolism such as arterial embolism and venous embolism, including deep vein thrombosis, pulmonary embolism, myocardial infarction and stroke.
  • the thromboembolism and its complications specifically include thromboembolism in patients with end-stage renal disease undergoing hemodialysis, venous thromboembolism in patients undergoing knee replacement surgery, stroke or systemic embolism in patients with atrial fibrillation, cancer-related venous thromboembolism, etc.
  • the dsRNA, its pharmaceutically acceptable salt or ligand conjugate, or pharmaceutical composition of the present application is used as a single therapeutic agent for treating and/or preventing thromboembolism and its complications.
  • the dsRNA, its pharmaceutically acceptable salt or its ligand conjugate, or pharmaceutical composition of the present application is used in combination with other therapeutic agents for treating and/or preventing thromboembolism and its complications.
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, wherein the dsRNA comprises a sense strand and an antisense strand, wherein the sense strand comprises a nucleic acid sequence that differs by 0, 1, 2 or 3 nucleotides from at least 15 (e.g., 15, 16, 17, 18 or 19) consecutive nucleotides in the nucleotide sequence shown in Table 1, and the length of the sense strand does not exceed 21 nucleotides; the antisense strand comprises a nucleic acid sequence that differs by 0, 1, 2 or 3 nucleotides from at least 15 (e.g., 15, 16, 17, 18 or 19) consecutive nucleotides in the nucleotide sequence shown in Table 2, and the length of the antisense strand does not exceed 23 nucleotides.
  • dsRNA double-stranded ribonucleic acid
  • the antisense strand comprises
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof or a ligand conjugate thereof, wherein the dsRNA comprises a sense strand and an antisense strand, wherein the sense strand contains SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7, SEQ ID NO.9, At least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.11, SEQ ID NO.13, SEQ ID NO.15, SEQ ID NO.17, SEQ ID NO.19, SEQ ID NO.21, SEQ ID NO.23, SEQ ID NO.25 or SEQ ID NO.27, and the length of the sense strand does not exceed 21 nucleotides, and the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6, SEQ ID NO.8, SEQ ID
  • Antisense strand 5’-AGUAUUUUAGUUGGAGAUCCG-3’ (SEQ ID NO.2);
  • Antisense strand 5’-UGAUAUAAGAAAAUCAUCCUG-3’ (SEQ ID NO. 4);
  • Antisense strand 5’-AAAUCAUCCUGAAAAGACCUU-3’ (SEQ ID NO.6);
  • Antisense strand 5’-AAAAUCAUCCUGAAAAGACCU-3’ (SEQ ID NO.8);
  • Antisense strand 5’-AGAAAAUCAUCCUGAAAAGAC-3’ (SEQ ID NO.10);
  • Antisense strand 5’-AAGAAAAUCAUCCUGAAAAGA-3’ (SEQ ID NO.12);
  • Antisense strand 5’-UAUAAGAAAAUCAUCCUGAAA-3’ (SEQ ID NO.14);
  • Antisense strand 5’-AUAUAAGAAAAUCAUCCUGAA-3’ (SEQ ID NO.16);
  • Antisense strand 5’-GAUAUAAGAAAAUCAUCCUGA-3’ (SEQ ID NO.18);
  • Antisense strand 5’-UUGAUAUAAGAAAAUCAUCCU-3’ (SEQ ID NO.20);
  • Antisense strand 5’-CUUGAUAUAAGAAAAUCAUCC-3’ (SEQ ID NO.22);
  • Antisense strand 5’-ACUUGAUAUAAGAAAAUCAUC-3’ (SEQ ID NO.24);
  • Antisense strand 5’-AUGUACCACUUGAUAUAAGAA-3’ (SEQ ID NO.26);
  • Antisense strand 5’-UUUAGUUGGAGAUCCGUUUGA-3’ (SEQ ID NO.28);
  • the sense strand or antisense strand is optionally modified.
  • the positive chain contains at least 15 consecutive nucleotides in a nucleotide sequence as shown in SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7, SEQ ID NO.9, SEQ ID NO.11, SEQ ID NO.13, SEQ ID NO.15, SEQ ID NO.17, SEQ ID NO.19, SEQ ID NO.21, SEQ ID NO.23, SEQ ID NO.25 or SEQ ID NO.27, and the length of the positive chain does not exceed 21 nucleotides, wherein the at least 15 consecutive nucleotides can be selected from 15, 16, 17, 18 or 19 consecutive nucleotides.
  • the antisense strand contains at least 15 consecutive nucleotides in a nucleotide sequence as shown in SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6, SEQ ID NO.8, SEQ ID NO.10, SEQ ID NO.12, SEQ ID NO.14, SEQ ID NO.16, SEQ ID NO.18, SEQ ID NO.20, SEQ ID NO.22, SEQ ID NO.24, SEQ ID NO.26 or SEQ ID NO.28, and the length of the antisense strand does not exceed 23 nucleotides, wherein the at least 15 consecutive nucleotides can be selected from 15, 16, 17, 18, 19, 20 or 21 consecutive nucleotides.
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof
  • dsRNA double-stranded ribonucleic acid
  • the dsRNA comprises a sense strand and an antisense strand, wherein the sense strand comprises a nucleotide sequence as shown in SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7, SEQ ID NO.9, SEQ ID NO.11, SEQ ID NO.13, SEQ ID NO.15, SEQ ID NO.17, SEQ ID NO.19, SEQ ID NO.21, SEQ ID NO.23, SEQ ID NO.25 or SEQ ID NO.27, and the length of the sense strand does not exceed 21 nucleotides
  • the antisense strand comprises a nucleotide sequence as shown in SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6, SEQ ID NO.8, S
  • Antisense strand 5’-AGUAUUUUAGUUGGAGAUCCG-3’ (SEQ ID NO.2);
  • Antisense strand 5’-UGAUAUAAGAAAAUCAUCCUG-3’ (SEQ ID NO. 4);
  • Antisense strand 5’-AAAUCAUCCUGAAAAGACCUU-3’ (SEQ ID NO.6);
  • Antisense strand 5’-AAAAUCAUCCUGAAAAGACCU-3’ (SEQ ID NO.8);
  • Antisense strand 5’-AGAAAAUCAUCCUGAAAAGAC-3’ (SEQ ID NO.10);
  • Antisense strand 5’-AAGAAAAUCAUCCUGAAAAGA-3’ (SEQ ID NO.12);
  • Antisense strand 5’-UAUAAGAAAAUCAUCCUGAAA-3’ (SEQ ID NO.14);
  • Antisense strand 5’-AUAUAAGAAAAUCAUCCUGAA-3’ (SEQ ID NO.16);
  • Antisense strand 5’-GAUAUAAGAAAAUCAUCCUGA-3’ (SEQ ID NO.18);
  • Antisense strand 5’-UUGAUAUAAGAAAAUCAUCCU-3’ (SEQ ID NO.20);
  • Antisense strand 5’-CUUGAUAUAAGAAAAUCAUCC-3’ (SEQ ID NO.22);
  • Antisense strand 5’-ACUUGAUAUAAGAAAAUCAUC-3’ (SEQ ID NO.24);
  • Antisense strand 5’-UUUAGUUGGAGAUCCGUUUGA-3’ (SEQ ID NO.28);
  • the sense strand or antisense strand is optionally modified.
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, wherein the dsRNA comprises a sense strand and an antisense strand, and the sense strand is SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7, SEQ ID NO.9, SEQ ID NO.11, SEQ ID NO.13, SEQ ID NO.15, SEQ ID NO.17, SEQ ID NO.19, SEQ ID NO.21, SEQ ID NO.23, SEQ ID NO.24, SEQ ID NO.25, SEQ ID NO.26, SEQ ID NO.27, SEQ ID NO.28, SEQ ID NO.29, SEQ ID NO.30, SEQ ID NO.31, SEQ ID NO.32, SEQ ID NO.33, SEQ ID NO.34, SEQ ID NO.35, SEQ ID NO.36, SEQ ID NO.37, SEQ ID NO.1, S
  • Antisense strand 5’-AGUAUUUUAGUUGGAGAUCCG-3’ (SEQ ID NO.2);
  • Antisense strand 5'-UGAUAUAAGAAAAUCAUCCUG-3' (SEQ ID NO. 4);
  • Antisense strand 5’-AAAUCAUCCUGAAAAGACCUU-3’ (SEQ ID NO.6);
  • Antisense strand 5’-AAAAUCAUCCUGAAAAGACCU-3’ (SEQ ID NO.8);
  • Antisense strand 5’-AGAAAAUCAUCCUGAAAAGAC-3’ (SEQ ID NO.10);
  • Antisense strand 5’-AAGAAAAUCAUCCUGAAAAGA-3’ (SEQ ID NO.12);
  • Antisense strand 5’-UAUAAGAAAAUCAUCCUGAAA-3’ (SEQ ID NO.14);
  • Antisense strand 5’-AUAUAAGAAAAUCAUCCUGAA-3’ (SEQ ID NO.16);
  • Antisense strand 5’-GAUAUAAGAAAAUCAUCCUGA-3’ (SEQ ID NO.18);
  • Antisense strand 5’-UUGAUAUAAGAAAAUCAUCCU-3’ (SEQ ID NO.20);
  • Antisense strand 5’-CUUGAUAUAAGAAAAUCAUCC-3’ (SEQ ID NO.22);
  • Antisense strand 5’-ACUUGAUAUAAGAAAAUCAUC-3’ (SEQ ID NO.24);
  • Antisense strand 5’-AUGUACCACUUGAUAUAAGAA-3’ (SEQ ID NO.26);
  • Antisense strand 5’-UUUAGUUGGAGAUCCGUUUGA-3’ (SEQ ID NO.28);
  • the sense strand or antisense strand is optionally modified.
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, wherein the dsRNA comprises a sense strand and an antisense strand, wherein the sense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.1 and the length of the sense strand does not exceed 21 nucleotides, and the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.2 and the length of the antisense strand does not exceed 23 nucleotides; the sense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.3 and the length of the sense strand does not exceed 21 nucleotides, and the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.4 and the length of
  • nucleotide sequence shown in SEQ ID NO.7 contains at least 15 consecutive nucleotides and the length of the sense strand does not exceed 21 nucleotides
  • the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.8 and the length of the antisense strand does not exceed 23 nucleotides
  • the sense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.9 and the length of the sense strand does not exceed 21 nucleotides
  • the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.10 and the length of the antisense strand does not exceed 23 nucleotides
  • the sense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.11 and the length of the sense strand does not exceed 21 nucleotides
  • the antisense strand contains
  • nucleotide sequence shown in SEQ ID NO.14 contains at least 15 consecutive nucleotides and the length of the antisense strand does not exceed 23 nucleotides; the sense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.15 and the length of the sense strand does not exceed 21 nucleotides, and the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.16 and the length of the antisense strand does not exceed 23 nucleotides; the sense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.17 and the length of the sense strand does not exceed 21 nucleotides, and the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.18 and the length of the antisense strand does not exceed 23 nucleotides; the sense strand contains at least 15
  • the sense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.27 and the length of the sense strand does not exceed 21 nucleotides
  • the antisense strand contains at least 15 consecutive nucleotides in the nucleotide sequence shown in SEQ ID NO.28 and the length of the antisense strand does not exceed 23 nucleotides
  • the sense strand or antisense strand is optionally modified.
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, wherein the dsRNA comprises a sense strand and an antisense strand, wherein the sense strand contains a nucleotide sequence as shown in SEQ ID NO.1 and the length of the sense strand does not exceed 21 nucleotides, and the antisense strand contains a nucleotide sequence as shown in SEQ ID NO.2 and the length of the antisense strand does not exceed 23 nucleotides; the sense strand contains a nucleotide sequence as shown in SEQ ID NO.3 and the length of the sense strand does not exceed 21 nucleotides, and the antisense strand contains a nucleotide sequence as shown in SEQ ID NO.4 and the length of the antisense strand does not exceed 23 nucleotides; the sense strand contains a nucleotide sequence as shown in SEQ ID NO
  • the present application provides a double-stranded ribonucleic acid (dsRNA), a pharmaceutically acceptable salt thereof, or a ligand conjugate thereof, wherein the dsRNA comprises a sense strand and an antisense strand, wherein the sense strand is a nucleotide sequence as shown in SEQ ID NO.1, and the antisense strand is a nucleotide sequence as shown in SEQ ID NO.2; the sense strand is a nucleotide sequence as shown in SEQ ID NO.3, and the antisense strand is a nucleotide sequence as shown in SEQ ID NO.4; the sense strand is a nucleotide sequence as shown in SEQ ID NO.5, and the antisense strand is a nucleotide sequence as shown in SEQ ID NO.6.
  • dsRNA double-stranded ribonucleic acid
  • the antisense strand is the nucleotide sequence shown in SEQ ID NO.22; the sense strand is the nucleotide sequence shown in SEQ ID NO.23, and the antisense strand is the nucleotide sequence shown in SEQ ID NO.24; the sense strand is the nucleotide sequence shown in SEQ ID NO.25, and the antisense strand is the nucleotide sequence shown in SEQ ID NO.26; or, the sense strand is the nucleotide sequence shown in SEQ ID NO.27, and the antisense strand is the nucleotide sequence shown in SEQ ID NO.28, and the sense strand or antisense strand is optionally modified.
  • the dsRNA, its pharmaceutically acceptable salt or its ligand conjugate has a double-stranded region consisting of the sense strand and the antisense strand complementarily, and optionally an overhang located at the 5' and/or 3' end of the sense strand and/or the antisense strand.
  • the dsRNA, its pharmaceutically acceptable salt or its ligand conjugate has a double-stranded region consisting of the sense strand and the antisense strand complementarily, and an overhang located at the 5' and/or 3' end of the sense strand and/or the antisense strand.
  • the overhang contains 1, 2, 3, 4 or 5 nucleotides. In some embodiments, the overhang contains 1 or 2 nucleotides.
  • the sense strand optionally includes an overhang at the 5' end and/or the 3' end. In some embodiments, the sense strand optionally includes an overhang of 1, 2, 3, 4 or 5 nucleotides at the 5' end and/or the 3' end. In some embodiments, the sense strand optionally includes an overhang of 1 or 2 nucleotides at the 5' end and/or the 3' end.
  • the antisense strand optionally includes an overhang at the 5' end and/or the 3' end. In some embodiments, the antisense strand optionally includes an overhang of 1, 2, 3, 4 or 5 nucleotides at the 5' end and/or the 3' end. In some embodiments, the antisense strand optionally includes an overhang of 1 or 2 nucleotides at the 5' end and/or the 3' end.
  • the overhang is selected from unmodified or modified A, G, C, U or T.
  • the overhang may be 1, 2, 3, 4 or 5 nucleotides, preferably 1 or 2 nucleotides, at the 5' end and/or 3' end of the sense strand or antisense strand.
  • the dsRNA, its pharmaceutically acceptable salt or its ligand conjugate comprises an additional sequence as an overhang, and the additional sequence may comprise 1, 2, 3, 4 or 5 nucleotides, preferably 1 or 2 nucleotides, linked to the 5' end and/or 3' end of the sense strand or antisense strand.
  • the ribonucleotides at the 5' end and/or 3' end of the sense strand or the antisense strand serve as overhangs
  • the sense strand is 21 nucleotides and the antisense strand is 23 nucleotides
  • the 1st to 21st positions of the sense strand are complementary to the 1st to 21st positions of the antisense strand (in the direction from the 5' end to the 3' end)
  • the 22nd to 23rd nucleotides of the antisense strand constitute an overhang located at the 3' end of the antisense strand, that is, the 3' end of the sense strand is a blunt end or a blunt end
  • the sense strand is 21 nucleotides and the antisense strand is 21 nucleotides
  • the 1st to 21st positions of the sense strand are complementary to the 1st to 21st positions of the antisense strand (in the direction from the 5' end to the
  • the antisense strand when the nucleotides at the 5' and/or 3' ends of the sense strand or antisense strand serve as overhangs, the antisense strand optionally includes overhangs at the 5' and/or 3' ends, wherein the overhangs are selected from unmodified or modified ribonucleotide sequences CG, AA, GA, CC, CA, AC, GC, AA, UG, GG, CU, UU or UC.
  • the antisense strand optionally includes an overhang at the 3' end, and the overhang is selected from an unmodified or modified ribonucleotide sequence CG, AA, GA, CC, CA, AC, GC, AA, UG, GG, CU, UU or UC.
  • the dsRNA, its pharmaceutically acceptable salt or its ligand conjugate comprises an additional sequence as an overhang or part of an overhang at the 5' end and/or 3' end of the antisense strand or sense strand
  • the additional sequence may comprise 1, 2, 3, 4 or 5 nucleosides, preferably 1 or 2 nucleotides at the 5' end and/or 3' end.
  • the overhang consists of the nucleotides at the 5' end and/or 3' end of the antisense strand or sense strand and the additional sequence, or the overhang may consist only of the additional sequence.
  • the overhang is an additional sequence optionally located at the 5' end and/or 3' end of the antisense strand, and the overhang is selected from unmodified or modified CG, AA, GA, CC, CA, AC, GC, AA, UG, GG, CU, UU or UC.
  • the overhang is an additional sequence located at the 3' end of the antisense strand, and the overhang is selected from unmodified or modified CG, AA, GA, CC, CA, AC, GC, AA, UG, GG, CU, UU or UC.
  • the additional sequence in the overhang is selected from unmodified or modified U or T, for example, can be selected from uu or dTdT.
  • the additional sequence as the overhang can be selected from unmodified or modified UU or TT. In some embodiments, when the overhang is 2 nucleotides, the additional sequence as the overhang can be selected from uu or dTdT.
  • the sense strand optionally includes an overhang at the 5' end and/or the 3' end, and the overhang is selected from uu or dTdT.
  • the antisense strand optionally includes an overhang at the 5' end and/or the 3' end, and the overhang is selected from uu or dTdT.
  • the overhang is linked to the adjacent nucleotide via a phosphate group or a phosphorothioate group.
  • the sense strand or the antisense strand is optionally modified.
  • one or more nucleotides of the sense strand or the antisense strand are modified.
  • each nucleotide can be modified with the same or different modifications, which can include, but are not limited to, one or more changes in one or both of the non-linked phosphate oxygens and/or one or more of the linked phosphate oxygens; changes in the composition of the ribose (e.g., the 2' hydroxyl group on the ribose); complete replacement of the phosphate moiety with a "dephosphorylated” linker; modification of the bases; and modification of the ribose-phosphate backbone.
  • modifications can include, but are not limited to, one or more changes in one or both of the non-linked phosphate oxygens and/or one or more of the linked phosphate oxygens; changes in the composition of the ribose (e.g., the 2' hydroxyl group on the ribose); complete replacement of the phosphate moiety with a "dephosphorylated" linker; modification of the bases; and modification of the ribose-phosphate backbone.
  • the base is selected from naturally occurring bases, such as A, U, C, G and T.
  • the modification occurs on the nucleotide base, it means that chemical modification is performed on the backbone of A, U, C, G and T.
  • nucleotides of the sense strand are modified; or a range of nucleotides formed by any of the foregoing values are modified, for example, 1-21, 1-20, 1-19, 1-18, 1-17, 1-16, 1-15, 1-14, 1-13, 1-12, 1-11, or 1-10 nucleotides are modified.
  • all nucleotides of the sense strand are modified.
  • nucleotides of the antisense strand are modified; or a range of nucleotides formed by any of the foregoing values is modified, for example, 1-23, 1-22, 1-21, 1-20, 1-19, 1-18, 1-17, 1-16, 1-15, 1-14, 1-13, 1-12, 1-11, or 1-10 nucleotides are modified.
  • more than 1, more than 2, more than 3, more than 4, more than 5, more than 6, more than 7, more than 8, more than 9, more than 10, more than 11, more than 12, more than 13, more than 14, more than 15, more than 16, more than 17, more than 18, more than 19, more than 20, more than 21, more than 22, or more than 23 nucleotides of the antisense strand are modified; typically, more than 10, more than 11, more than 12, more than 13, more than 14, more than 15, more than 16, more than 17, more than 18, more than 19, more than 20, more than 21, more than 22, or more than 23 nucleotides of the antisense strand are modified.
  • all nucleotides of the sense strand and all nucleotides of the antisense strand are modified.
  • the sugar modification of the nucleotide is selected from dehydroxylation, fluorination, amination, alkylation, hydroxyalkylation or hydroxyalkenylation.
  • the sugar modification of the nucleotide occurs at the 2' position of the sugar.
  • the glycosyl modification is selected from 2'-dehydroxylation, 2'-fluoro, 2'-amino, 2'-alkyl, 2'-O-alkyl, 2'-O-ether, 2'-O-alkenyl. In some embodiments, the glycosyl modification is selected from 2'-dehydroxylation, 2'-fluoro, 2'-amino, 2'-methyl, 2'-ethyl, 2'-methyl-O-methyl, 2'-ethyl-O-methyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-ethyl-O-methyl or 2'-O-allyl.
  • the terminal modification is selected from a modification on a phosphate group or a hydroxyl group at the terminal. In some embodiments, the terminal modification is selected from a 5'-terminal modification or a 3'-terminal modification. In some embodiments, the terminal modification is selected from a 5'-phosphate, a 5'-methylphosphonate (5'-MP), a 5'-thiophosphate (5'-PS) or a 5'-(E)-vinylphosphonate (5'-(E)-VP) on the ribose group of the terminal nucleotide. In some embodiments, the terminal modification is selected from a 5'-phosphate or a 5'-(E)-vinyl phosphate on the ribose group of the terminal nucleotide.
  • the modification is selected from 2'-dehydroxylation, 2'-fluoro, 2'-O-methyl, 2'-O-ethyl, 2'-O-ethyl-O-methyl, 2'-O-allyl, thiophosphate, or 5'-(E)-vinyl phosphate.
  • the modification is selected from 2'-fluoro, 2'-O-methyl, phosphorothioate, or 5'-(E)-vinyl phosphate.
  • counting starts from the 5' end unless otherwise specified that counting starts from the 3' end.
  • the first two nucleotides and/or the first three nucleotides of one or both ends of the two nucleic acid chains of the dsRNA, its pharmaceutically acceptable salt or its ligand conjugate are modified with a thiophosphate group.
  • the first and second nucleotides of the sense strand and/or the second and third nucleotides of the sense strand are modified with a thiophosphate group.
  • the first and second nucleotides of the sense strand and/or the second and third nucleotides of the sense strand are modified with a phosphorothioate group.
  • the antisense strand is modified between the 1st and 2nd nucleotides, between the 2nd and 3rd nucleotides, between the 1st and 2nd nucleotides at the 3' end of the antisense strand, and/or between the 2nd and 3rd nucleotides at the 3' end of the antisense strand using a thiophosphate group.
  • the sense strand has 2, 3, 4, or 5 nucleotides modified with 2'-fluoro. In some embodiments, the sense strand has 14, 15, 16, or 17 nucleotides modified with 2'-O-methyl. In some embodiments, the sense strand has 3 or 4 nucleotides modified with 2'-fluoro and 15, 16, 17, or 18 nucleotides modified with 2'-O-methyl.
  • 4, 5 or 6 nucleotides from position 1 to 6 of the sense strand are modified with 2'-O-methyl.
  • nucleotide among nucleotides 10 to 19 of the sense strand is 2'-fluoro-modified.
  • the 7th, 8th and 9th nucleotides of the sense strand are 2'-fluoro-modified, and 0, 1 or 2 nucleotides in the 1st to 6th and/or 10th to 19th nucleotides of the sense strand are also 2'-fluoro-modified. In some embodiments, the 7th, 8th and 9th nucleotides of the sense strand are 2'-fluoro-modified, and 0, 1 or 2 nucleotides in the 1st to 6th and 10th to 19th nucleotides of the sense strand are also 2'-fluoro-modified.
  • the 7th, 8th and 9th nucleotides of the sense strand are 2'-fluoro-modified, and 0 or 1 nucleotide in the 1st to 6th and 10th to 19th nucleotides of the sense strand are also 2'-fluoro-modified.
  • the antisense strand has 2, 3, 4, 5, 6 or 7 nucleotides modified with 2'-fluoro.
  • the antisense strand has 14, 15, 16, 17, 18, 19, 20 or 21 nucleotides modified with 2'-O-methyl.
  • 3, 4, 5 or 6 nucleotides in the 2nd, 6th, 8th, 9th, 14th and 16th nucleotides of the antisense strand are 2'-fluorinated. In some embodiments, 4 nucleotides in the 2nd, 6th, 14th and 16th nucleotides of the antisense strand are 2'-fluorinated. 6 nucleotides in the 2nd, 6th, 8th, 9th, 14th and 16th nucleotides of the antisense strand are 2'-fluorinated.
  • 14, 15, 16, 17, 18 or 19 nucleotides among nucleotides 1, 3 to 5, 7 to 13, 15 and/or 17 to 21 of the antisense strand are modified with 2'-O-methyl.
  • the 7th, 8th and 9th nucleotides of the sense strand are modified with 2'-fluoro
  • the other ribonucleotides of the sense strand are modified with 2'-O-methyl
  • the 2nd, 6th, 14th and 16th nucleotides of the antisense strand are modified with 2'-fluoro
  • the other ribonucleotides of the antisense strand are modified with 2'-O-methyl.
  • the 7th, 8th and 9th nucleotides of the sense strand are modified with 2'-fluoro
  • the other ribonucleotides of the sense strand are modified with 2'-O-methyl
  • the antisense strand includes 2'-fluoro (e.g., 14th, etc.) and 2'-O-methyl modifications, optionally further including one or more other types of modifications.
  • the 5th, 7th, 8th and 9th nucleotides of the sense strand are 2'-fluoro modified
  • the other ribonucleotides of the sense strand are 2'-O-methyl modified
  • the 2nd, 6th, 8th, 9th, 14th and 16th nucleotides of the antisense strand are 2'-fluoro modified
  • the other ribonucleotides of the antisense strand are 2'-O-methyl modified
  • the 1st and 2nd nucleotides of the sense strand, the 2nd and 3rd nucleotides of the sense strand, the 1st and 2nd nucleotides of the antisense strand, the 2nd and 3rd nucleotides of the antisense strand, the 19th and 20th nucleotides of the antisense strand, and/or the 20th and 21st nucleotides of the antisense strand are modified with thiophosphate groups.
  • the 5'-end of the antisense strand is modified with 5'-(E)-vinyl phosphate, for example, the 5'-end ribonucleotide of the antisense strand has a 5'-(E)-vinyl phosphate modification.
  • the 7th, 8th and 9th nucleotides of the sense strand are modified with 2'-fluoro
  • the other ribonucleotides of the sense strand are modified with 2'-O-methyl
  • the 2nd, 6th, 14th and 16th nucleotides of the antisense strand are modified with 2'-fluoro
  • the other ribonucleotides of the antisense strand are modified with 2'-O-methyl
  • between the 1st and 2nd nucleotides of the sense strand and between the 2nd and 3rd nucleotides of the sense strand thiophosphate modification is used between the first and second nucleotides of the antisense strand, between the second and third nucleotides of the antisense strand, between the 19th and 20th nucleotides of the antisense strand, and/or between the 20th and 21st nucleotides of the antisense strand.
  • the 5'-end of the antisense strand is modified with 5'-(E)-vinyl phosphate, for example, the ribonucleotide at the 5'-end of the antisense strand has a 5'-(E)-vinyl phosphate modification.
  • the 7th, 8th and 9th nucleotides of the sense strand are 2'-fluoro modified
  • the other ribonucleotides of the sense strand are 2'-O-methyl modified
  • the 2nd, 6th, 8th, 9th, 14th and 16th nucleotides of the antisense strand are 2'-fluoro modified
  • the other ribonucleotides of the antisense strand are 2'-O-methyl modified
  • the 1st and 2nd nucleotides of the sense strand, the 2nd and 3rd nucleotides of the sense strand, the 1st and 2nd nucleotides of the antisense strand, the 2nd and 3rd nucleotides of the antisense strand, the 19th and 20th nucleotides of the antisense strand, and/or the 20th and 21st nucleotides of the antisense strand are phosphorothioate modified.
  • the ligand includes a branching group and a connecting group.
  • the branching group may include a targeting group.
  • the ligand is linked to the dsRNA via a linker.
  • the dsRNA linked to the ligand is referred to as a dsRNA ligand conjugate.
  • the ligand is connected to one or more targeting groups via a branching group.
  • the branching group comprises a targeting group.
  • the ligand contains at least one targeting group. In some embodiments, the ligand contains one, two, three, four or five targeting groups. In some embodiments, the ligand contains two, three or four targeting groups. In some embodiments, the ligand contains three targeting groups.
  • the targeting group is selected from a GalNAc group.
  • the ligand contains one, two, three, four or five GalNAc groups. In some embodiments, the ligand contains two, three or four GalNAc groups. In some embodiments, the ligand contains three GalNAc groups.
  • the branching group is selected from:
  • the linking group is selected from:
  • the ligand is selected from:
  • the ligand is attached to the sense strand or the antisense strand. In some embodiments, the ligand is attached to the 5' or 3' end of the sense strand or the antisense strand. In some embodiments, the ligand is attached to the 5' or 3' end of the sense strand. In some embodiments, the ligand is attached to the 3' end of the sense strand.
  • the part is connected to the sense strand or antisense strand of dsRNA through a phosphate group or a thiophosphate group. In some embodiments, the part is connected to the sense strand through a phosphate group or a thiophosphate group. In some embodiments, the part is connected to the 3 ' end of the sense strand through a phosphate group or a thiophosphate group.
  • the dsRNA ligand conjugate is as follows:
  • the dsRNA ligand conjugate is selected from:
  • the dsRNA ligand conjugate is selected from:
  • X is OH or O ⁇ .
  • the unmodified sense strand of the dsRNA is selected from:
  • the unmodified antisense strand of the dsRNA is selected from:
  • the modified sense strand of the dsRNA is selected from:
  • the modified antisense strand of the dsRNA is selected from:
  • the dsRNA of the present application can be formed by including any one of the above-mentioned sense strands and any one of the above-mentioned antisense strands.
  • the dsRNA comprises any one of the following sense strands: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67
  • the dsRNA comprises any of the following antisense strands: SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45 D NO:42 ⁇ SEQ ID NO:44 ⁇ SEQ ID NO:46 ⁇ SEQ ID NO:48 ⁇ SEQ ID NO:50 ⁇ SEQ ID NO:52 ⁇ SEQ ID NO:54 ⁇ SEQ ID NO:56 ⁇ SEQ ID NO:58 ⁇ SEQ ID NO:60
  • the dsRNA (unmodified) is selected from:
  • the dsRNA (modified) is selected from:
  • the dsRNA ligand conjugate (siRNA ligand conjugate) is selected from:
  • the L represents a ligand
  • the ligand is as described above.
  • the ligand is selected from L01 ligand or L02 ligand.
  • the sequence ID number of the sense strand refers to the sequence ID number of the nucleic acid sequence in the sense strand.
  • the L at the 3' end of the sense strand sequence of the dsRNA ligand conjugate sequence number indicates that in the dsRNA ligand conjugate, a ligand is connected at the 3' end of the sense strand sequence.
  • the salt as described above is selected from a base addition salt, an acid addition salt, and a combination thereof.
  • the base addition salt is selected from sodium, potassium, calcium, ammonium, organic amine, magnesium salts and combinations thereof
  • the acid addition salt is selected from inorganic acid salts, organic acid salts and combinations thereof.
  • the inorganic acid is selected from hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, hydrogen sulfate, hydroiodic acid, phosphorous acid and combinations thereof
  • the organic acid is selected from acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, methanesulfonic acid and combinations thereof.
  • the pharmaceutically acceptable salt is selected from sodium salt.
  • the double-stranded RNA, its pharmaceutically acceptable salt or its ligand conjugate of the present application has good coagulation factor XI inhibitory activity.
  • the double-stranded RNA, its pharmaceutically acceptable salt or its ligand conjugate of the present application has good stability and can continue to play a role in the body for a long time.
  • the double-stranded RNA, its pharmaceutically acceptable salt or its ligand conjugate of the present application has low off-target effect, small toxic and side effects, and high safety. Therefore, it has good prospects for drug development.
  • interfering RNA or “RNAi” or “interfering RNA sequence” refers to a single-stranded RNA (e.g., a mature miRNA) or double-stranded RNA (e.g., a duplex RNA such as siRNA, aiRNA or pre-miRNA) that can reduce or inhibit the expression of a target gene or sequence when the interfering RNA and the target gene or sequence are in the same cell (e.g., by mediating the degradation of an mRNA complementary to the interfering RNA sequence or inhibiting the translation or transcription of an mRNA complementary to the interfering RNA sequence).
  • the interfering RNA may have substantial or complete identity to the target gene or sequence, or may include a mismatch region (i.e., a mismatch sequence).
  • interfering RNA includes "small interfering RNA (siRNA)", which has a length of, for example, about 15-60, 15-50, 15-40, 15-30, 15-25, 19-25, 19-23 or 19-21 nucleotides.
  • siRNA small interfering RNA
  • the double-stranded RNA of the present application can function as such siRNA and can have a corresponding length.
  • the sense strand has several nucleotides added to the end based on SEQ ID NO: 1
  • the antisense strand has several nucleotides added to the end based on SEQ ID NO: 2
  • the counting method of the nucleotide positions of the sense strand or the antisense strand will not change, that is, the first position of the sense strand is still the first position of SEQ ID NO: 1, and the first position of the antisense strand is still the first position of SEQ ID NO: 2.
  • a nucleotide containing uracil, guanine or adenine can be replaced by a nucleotide containing, for example, inosine in the nucleotide sequence of the dsRNA characterized in the present application.
  • adenine and cytosine anywhere in the oligonucleotide can be replaced by guanine and uracil, respectively, to form a G-U wobble base pairing with the target mRNA. Sequences containing such replacement parts are suitable for the compositions and methods characterized in the present disclosure.
  • the double-stranded RNA of the present application contains a sense strand and an antisense strand.
  • sense strand refers to a single strand in a dsRNA double strand that is substantially complementary to a region of the antisense strand.
  • antisense strand refers to a single strand in a dsRNA double strand that is substantially complementary to a region of a target sequence. If the sense strand is not fully complementary to the antisense strand, mismatches may occur in the molecule or in the terminal region. Usually, the most tolerable mismatch is in the terminal region. If the antisense strand is not fully complementary to the target sequence, mismatches may occur in the molecule or in the terminal region. Usually, the most tolerable mismatch is in the terminal region.
  • the dsRNA may include one or more nucleotide overhangs, which refer to at least one unpaired nucleotide/nucleoside analog.
  • nucleotide overhangs refer to at least one unpaired nucleotide/nucleoside analog.
  • the nucleotides at the "overhang” may include 0-5 nucleotides, wherein “0” means that there is no “overhang”, and "5" means that there are 5 additional (i.e., not paired with another single strand) nucleotides on the single strand of the dsRNA double strand.
  • the "overhangs” may be located at the 5' and/or 3' end of any single strand in the two strands of the dsRNA.
  • the "overhang” includes 0-5 nucleotides.
  • the "overhang” includes 0-2 nucleotides.
  • the "overhang” at the 3' and/or 5' end of the sense strand of the dsRNA has 0-2 nucleotides.
  • the "overhang” at the 3' and/or 5' end of the antisense strand of the dsRNA has 0-2 nucleotides.
  • the nucleotides forming the "overhang” may be A, G, C, U or T or their modified structures.
  • the nucleotides forming the "overhang” may be U, T or dT or their modified structures.
  • the "overhang” includes but is not limited to "TT", “dTdT", “UU” or their corresponding modified structures, such as UU modified with 2' methoxy, i.e., uu.
  • the "overhang” at the 3' and/or 5' end of the antisense strand of the dsRNA is substantially complementary to the target RNA.
  • the "overhang” at the 3' and/or 5' end of the antisense strand of the dsRNA is completely complementary to the target RNA.
  • the "overhang" at the 3' end of the antisense strand of the dsRNA is completely complementary to the target RNA.
  • the term “blunt end” or “blunt end” refers to the absence of unpaired nucleotides at the end of the dsRNA, i.e., there is no nucleotide overhang.
  • a dsRNA with “blunt ends” or “blunt ends” at both ends is a dsRNA with a double-stranded region over the entire length, i.e., there is no nucleotide overhang at either end of the molecule.
  • the dsRNA or any of its strands is optionally modified, and both unmodified and modified ribonucleic acids are within the scope of protection of the present application.
  • the modification does not significantly weaken or lose the function of the dsRNA in inhibiting the expression of the coagulation factor XI gene.
  • the modification of the dsRNA or any of its strands may be located at the 5' end and/or 3' end, nucleotides or the connecting bonds between nucleotides. The synthesis or modification may be carried out by methods known in the art.
  • the modification of the nucleotide includes but is not limited to occurring on the sugar group of the nucleotide, including one or more substituted or removed sugar moieties, such as removing the hydroxyl group on the carbonyl, or fluorination, amination, alkylation, hydroxyalkylation or hydroxyalkenylation.
  • the modification on the sugar group may occur at various positions on the sugar ring.
  • the modification on the sugar group of the nucleotide includes but is not limited to 2'-dehydroxylation, 2'-fluoro, 2'-amino, 2'-methyl, 2'-ethyl, 2'-methyl-O-methyl, 2'-ethyl-O-methyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-ethyl-O-methyl or 2'-O-allyl, and the modification and modified nucleoside structure may be as follows:
  • Base represents base.
  • the modification of the linking bond between nucleotides includes substitution or replacement of the atom or functional group of the phosphate group, such as phosphorothioate (PS), phosphorodithioate (PS2), methylphosphonate (MP), methoxypropylphosphonate (MOP) or aminophosphonate.
  • PS phosphorothioate
  • PS2 phosphorodithioate
  • MP methylphosphonate
  • MOP methoxypropylphosphonate
  • aminophosphonate aminophosphonate
  • the capital letters G, C, A, U or T respectively represent nucleotides containing guanine, cytosine, adenine, uracil, thymine as bases, wherein the letter combination dT represents a deoxyribonucleotide whose base is thymine.
  • the lowercase letters g, c, a, and u respectively represent that the ribose group of the nucleotide represented by the corresponding capital letter is modified by 2'-methoxy, i.e. g, c, a, and u respectively represent 2'-O-methyl G, 2'-O-methyl C, 2'-O-methyl A, and 2'-O-methyl U.
  • the capital letter plus the lowercase letter f on the right side represents that the ribose group of the nucleotide represented by the corresponding capital letter is modified by 2'-fluorine, i.e. Gf, Cf, Af, and Uf respectively represent 2'-fluorine G, 2'-fluorine C, 2'-fluorine A, and 2'-fluorine U.
  • the lowercase letter s indicates that the two nucleotide residues adjacent to s are linked by a phosphorothioate group, for example, "csu" indicates that the c and u residues are linked by a phosphorothioate group.
  • VP- indicates that the nucleotide to the right of the hyphen is a (E)-vinyl phosphate-modified nucleotide, for example, "VP-u” indicates a (E)-vinyl phosphate-modified 2'-O-methyl U.
  • the 5' and/or 3' modification refers to the modification occurring at the 5' and/or 3' end of the dsRNA or any single strand thereof, such as phosphorylation, conjugation or reverse linkage, etc.
  • the modification and the structure of the modified nucleotide can be shown as follows:
  • Base represents a base
  • X is selected from hydrogen, hydroxyl or 2' modification on the sugar group.
  • the ligand is a group connected to the dsRNA, and the ligand includes a branched group and a linker, and the dsRNA, the linker and the branched group are connected in sequence (for example, as shown in Formula 104).
  • the branched group contains at least one (for example, one, two, three, four or five) pharmaceutically acceptable targeting group, which targets the dsRNA to a specific tissue or enhances cell absorption.
  • the targeting group is, for example, but not limited to, a GalNAc (N-acetylgalactosamine, N-Acetylgalactosamine, for example, as shown in Formula 105) group.
  • a plurality of the targeting groups are connected in series or in parallel through branched groups.
  • the GalNAc group can be monovalent, divalent, trivalent, or tetravalent.
  • the monovalent, divalent, trivalent, and tetravalent herein refer to the molar ratio of dsRNA molecules to GalNAc molecules in the dsRNA ligand conjugates formed by the dsRNA molecules and the ligands containing GalNAc as the targeting group, which are 1:1, 1:2, 1:3, and 1:4, respectively.
  • the GalNAc molecule when the dsRNA of the present application is conjugated with the ligand containing GalNAc, the GalNAc molecule is trivalent or tetravalent.
  • the GalNAc molecule is trivalent.
  • the ligand can be connected to the phosphate group, 2'-hydroxyl group, 3'-hydroxyl group or base of the nucleotide.
  • the ligand can be connected to any nucleotide of the dsRNA, including but not limited to the 5' or 3' terminal nucleotide of the sense strand or the antisense strand or the non-terminal middle position nucleotide.
  • the ligand can be connected to the phosphate group of the nucleotide; when the ligand is connected to the middle position nucleotide of the dsRNA, the ligand can be connected to the sugar ring or base of the nucleotide.
  • the types or preparation methods of the ligands can refer to methods known in the art, including but not limited to the ligands and preparation methods described in WO2009082607, WO2014025805, WO2015006740, and WO2021249484, all of which are incorporated into the present application by reference.
  • Exemplary ligands include but are not limited to L01 or L02 described above.
  • the L01 ligand described in the present application is the same as the L96 ligand in the prior art.
  • conjugation refers to the connection between two or more chemical moieties, each having a specific function, in a non-covalent or covalent manner.
  • conjugate refers to a compound formed by non-covalent or covalent connection between the chemical moieties. In this application, it is preferred to use conjugates that are connected to each other in a covalent manner.
  • the ligand is connected to the 5' or 3' end of the sense strand or the antisense strand.
  • the ligand is connected to the 5' or 3' end of the sense strand. More preferably, the ligand is connected to the 3' end of the sense strand.
  • the dsRNA ligand conjugate formed by connecting the dsRNA and the ligand is shown in Formula 102 or Formula 103 below:
  • the compounds of the present application may exist in specific geometric or stereoisomeric forms, all of which are within the scope of the present application.
  • the present application contemplates all such compounds, including (R)- and (S)-enantiomers, diastereomers, and racemic mixtures and other mixtures thereof, such as mixtures enriched in enantiomers or diastereomers, all of which are within the scope of the present application.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All of these isomers and their mixtures are included within the scope of the present application.
  • the amount of the compound of the present application constituting the "therapeutically effective amount” varies depending on the compound, the disease state and its severity, the mode of administration, and the age of the subject to be treated, but can be routinely determined by a person skilled in the art based on their own knowledge and the content of the present application.
  • salts with organic bases for example, metal salts, ammonium salts, salts with organic bases, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids and the like can be mentioned.
  • the kit of the present application includes the double-stranded ribonucleic acid, its pharmaceutically acceptable salt, its ligand conjugate, or pharmaceutical composition of the present application; and optionally instructions for using the double-stranded ribonucleic acid, its pharmaceutically acceptable salt, its ligand conjugate, or pharmaceutical composition of the present application to treat and/or prevent thromboembolism and its complications.
  • nucleotide groups modified can be introduced into the dsRNA described in the present application by using nucleoside monomers with corresponding modifications. Those skilled in the art can obtain the preparation method of the nucleoside monomers of corresponding modifications and the method for introducing the nucleotide groups modified into dsRNA from the prior art.
  • the nucleoside monomers of all modifications can be obtained from commercial sources or prepared by known methods.
  • connection of each nucleotide monomer includes a four-step reaction of deprotection, coupling, capping, oxidation or sulfurization.
  • Those skilled in the art can adopt conventional reaction conditions, types and dosages of reagents, or adjust according to the experimental situation to achieve the deprotection, coupling, capping, oxidation or sulfurization reaction.
  • the ligand for the synthesis of ribonucleic acid containing a ligand, can be connected to the ribonucleic acid through a coupling reaction during the synthesis of the oligoribonucleotide or after the synthesis is completed, or the ligand can be first connected to a solid phase support, and then the nucleoside monomer and the ligand-solid phase support can be connected in sequence in the 3' to 5' direction.
  • RNA purification and desalting are well known to those skilled in the art.
  • the purification of RNA can be accomplished by preparative ion chromatography.
  • the desalting of RNA can be accomplished by reverse phase chromatography purification or ultrafiltration centrifugation.
  • the annealing method is well known to those skilled in the art.
  • the sense strand and the antisense strand can be mixed in a 1:1 molar ratio, heated to 70-95° C., and then cooled to room temperature to form a double-stranded structure.
  • the RNA concentration can be detected by, for example, ion exchange chromatography, or the molecular weight can be determined by liquid chromatography-mass spectrometry, or the concentration can be determined by a micro-spectrophotometer to control the synthesis quality.
  • detection methods are well known to those skilled in the art.
  • the prepared double-stranded RNA, its pharmaceutically acceptable salt or its ligand conjugate can be confirmed to be the target by mass spectrometry or other detection methods. product.
  • DCM dichloromethane
  • ACN stands for acetonitrile
  • DIC diisopropylcarbodiimide
  • DMAP stands for dimethylaminopyridine
  • DMT stands for di-p-methoxytrityl
  • MEM 2-methoxyethoxymethyl
  • the GalNAc ligand uses L01 (or L02) ligand.
  • the GalNAc ligand-solid phase carrier is placed in a synthesis column and ssRNA is synthesized according to the standard phosphoramidite technique.
  • the specific steps include:
  • DMT removal first wash the resin twice with acetonitrile, remove DMT on the resin with 3% trichloroacetic acid/DCM, and wash with acetonitrile 4 to 5 times.
  • Oxidation Add oxidizing reagent for 2 minutes, then wash with acetonitrile 4 to 5 times.
  • Formation of phosphorothioate bonds Replace the oxidizing reagent with a thioating reagent and set the thioating time to 10 minutes to complete the formation of phosphorothioate bonds.
  • a universal CPG solid phase carrier is placed in a synthesis column and ssRNA is synthesized according to the standard phosphoramidite technology.
  • the specific steps include:
  • Condensation (coupling): Add monomers to the synthesis column, add condensation reagents, condense at room temperature for 10 minutes, and wash with acetonitrile 4 to 5 times.
  • Oxidation Add oxidizing reagent for 2 minutes, then wash with acetonitrile 4 to 5 times.
  • Formation of phosphorothioate bonds Replace the oxidizing reagent with a thioating reagent and set the thioating time to 10 minutes to complete the formation of phosphorothioate bonds.
  • Mobile phase A 20 mM ammonium formate, pH 6.2
  • siRNA dsRNA
  • Concentration determination After concentration, the sample was measured using a micro-spectrophotometer.
  • the double-stranded RNA or its ligand conjugate is as follows:
  • capital letters G, C, A, or U respectively represent nucleotides containing guanine, cytosine, adenine, and uracil as bases; lowercase letters g, c, a, and u represent that the ribose group of the nucleotide represented by the corresponding capital letter is modified by 2'-methoxy, that is, g, c, a, and u represent 2'-O-methyl G, 2'-O-methyl C, 2'-O-methyl A, and 2'-O-methyl U, respectively; capital letters plus lowercase letters f on the right side represent that the ribose group of the nucleotide represented by the corresponding capital letter is modified by 2'-fluorine, that is, Gf, Cf, Af, and Uf represent 2'-fluorine G, 2'-fluorine C, 2'-fluorine A, and 2'-fluorine U, respectively; lowercase letter s indicates that the two nucleotide
  • RNA double-stranded RNA, its pharmaceutically acceptable salt or its ligand conjugate (the ligand L is selected from L01 ligand or L02 ligand) can be prepared according to the method described in the present application or a method known in the art.
  • the mass spectrometry detection data of the double-stranded RNA, its pharmaceutically acceptable salt or its ligand conjugate of the present application are consistent with expectations, and it can be confirmed that the target product is obtained.
  • Cos7 cells (purchased from Nanjing Kebai Biotechnology Co., Ltd.) were cultured in DMEM complete medium (Hyclone, catalog number SH30243.01) containing 10% fetal bovine serum (Gibco, catalog number 10099-141) at 37°C in an incubator containing 5% CO2 . When the cells grew to near confluence, they were treated with trypsin to release the cells from the culture flask. Cos7 cells were seeded in a 96-well plate at 2 ⁇ 104 cells/well and cultured overnight.
  • the pmirGLO-FXI plasmid containing the FXI gene sequence (GenBank accession#NM_000128.4) was transfected into Cos7 cells. As described by the manufacturer, 0.3 ⁇ L Lipofectamine 3000 transfection reagent (Invitrogen, No. L3000015) for transfection. After 6-8 hours of plasmid transfection, the culture medium was removed. Then siRNA was transfected into Cos7 cells that had been transfected with pmirGLO-FXI plasmid.
  • the siRNA transfection method was to take 0.5 ⁇ L siRNA and add it to 5 ⁇ L OPTI-MEM culture medium, take 0.3 ⁇ L Lipofectamine RNAiMAX transfection reagent (Invitrogen, Cat. No. 13778150) and add it to 5 ⁇ L OPTI-MEM culture medium; mix the two by pipetting and let stand at room temperature for 5 minutes; add the complex to the culture well, add 90 ⁇ L DMEM complete culture medium to each well, and continue to culture for 48 hours; set 3 concentrations for each siRNA, 2 replicates, and perform single-dose experiments with final dsRNA concentrations of 10nM, 1nM and 0.1nM.
  • test results show that the double-stranded RNA of the present application has good in vitro silencing efficiency.
  • Cos7 cells (purchased from Nanjing Kebai Biotechnology Co., Ltd.) were cultured in a DMEM complete medium (Hyclone, Catalog No. SH30243.01) containing 10% fetal bovine serum (Gibco, Catalog No. 10099-141) at 37°C in an incubator containing 5% CO2 . When the cells grew to near confluence, they were treated with trypsin and released from the culture flask. Cos7 cells were seeded in 96-well plates at 2 ⁇ 104 cells/well and cultured overnight.
  • the pmirGLO-FXI plasmid containing the FXI gene sequence (GenBank accession # NM_000128.4) was transfected into Cos7 cells. As described by the manufacturer, 0.3 ⁇ L Lipofectamine 3000 transfection reagent (Invitrogen, Catalog No. L3000015) was used for transfection at a concentration of 50 ng plasmid/well. 6-8 hours after plasmid transfection, the culture medium was removed. Then siRNA was transfected into Cos7 cells that had been transfected with pmirGLO-FXI plasmid.
  • the siRNA transfection method was to dilute the siRNA 5-fold with enzyme-free water to a concentration range of 2-0.0000256 ⁇ M; add 0.5 ⁇ L siRNA to 5 ⁇ L OPTI-MEM culture medium, and add 0.3 ⁇ L Lipofectamine RNAiMAX transfection reagent (Invitrogen, catalog number 13778150) to 5 ⁇ L OPTI-MEM culture medium; mix the two by pipetting and let stand at room temperature for 5 minutes; add the complex to the culture well, add 90 ⁇ L DMEM complete culture medium to each well, and continue to culture for 48 hours; set 8 concentrations for each siRNA.
  • the luminescence ratio Ratio (test) or Ratio (control) of each test group or control group is the average value of Ratio of each group; take the luminescence ratio of the control group as the benchmark, normalize the luminescence ratio of each test group, and obtain the ratio R of Ratio (test) / Ratio (control), which is used to express the expression level of the firefly reporter gene.
  • the inhibition rate (%) of siRNA (1-R) ⁇ 100%.
  • the concentration-inhibition rate (%) data was processed with EXCEL software, and the EC 50 of siRNA was calculated by a four-parameter nonlinear regression model. The results are shown in Table 10.
  • the in vitro screening results show that the double-stranded RNA of the present application has good in vitro silencing activity.
  • the humanized mice used in this test example were purchased from Saiye Biotechnology Co., Ltd.
  • the day of the first administration was set as day 0 of the experiment.
  • a single subcutaneous injection of the corresponding compound solution was given at a dose of 1 and 5 mg/kg.
  • Each PBS control mouse was given PBS, and the administration volume was 10 mL/kg body weight.
  • the factor XI protein inhibition rate was calculated according to the following equation:
  • Coagulation factor XI protein inhibition rate (1-test group protein content/control group protein content) ⁇ 100%.
  • mice 4-6 week old C5BL/6 male mice were injected with 1 ⁇ 10 11 vg AAV8-FXI (Weizhen Biotechnology) through the tail vein.
  • mice with hFXI protein content greater than 100 ng/mL were selected, and the mice were randomly divided into groups according to body weight.
  • 3 mg/kg of the dsRNA ligand conjugate of the present application was injected.
  • blood was collected from the eye sockets, and the serum was separated.
  • the coagulation factor XI protein content in the serum at each time point was tested using the Human Coagulation Factor XI ELISA kit (Thermo Company, catalog number EH118RB).
  • the factor XI protein inhibition rate was calculated according to the following equation:
  • Coagulation factor XI protein inhibition rate (1-test group protein content/control group protein content) ⁇ 100%.
  • AAV-FXI mice were subcutaneously administered a single dose of 3 mg/kg of the dsRNA ligand conjugate of the present application, and the dsRNA ligand conjugate was administered before and after administration on the 7th and 8th day.
  • the content of blood coagulation factor XI protein in the animal serum was measured on days 14, 35 and 56 (see Table 15). As shown in Table 16, the results confirmed that after administration of a single dose of the dsRNA ligand conjugate of the present application, an excellent effect of inhibiting the expression of human blood coagulation factor XI protein was shown.
  • FXI protein Human Coagulation Factor XI ELISA kit, Thermo Company, catalog number EH118RB
  • FXI activity Coagulation Factor XI Assay Kit, Stago Company, catalog number 00723
  • APTT Activated Partial Thromboplastin Time Assay Kit, Stago Company, catalog number 00595
  • the animals were grouped uniformly according to their indicators, and the dsRNA ligand conjugate of the present application (TD02M02L01, etc.) was injected on day 0.
  • Plasma was collected on days 0, 3, 7, 14, 21, 28, 37, 54, and 68 to measure plasma FXI protein, FXI activity, and activated partial thromboplastin time APTT.
  • the factor XI protein inhibition rate was calculated according to the following equation:
  • Coagulation factor XI protein inhibition rate (protein content after administration/protein content before administration-1) ⁇ 100%.
  • the inhibition rate of coagulation factor XI activity was calculated according to the following equation:
  • Coagulation factor XI activity inhibition rate (activity level after administration/activity level before administration - 1) x 100%.
  • the activation partial thromboplastin time extension rate was calculated according to the following equation:
  • Prolongation rate of activated partial thromboplastin time (APTT value after administration/APTT value before administration-1) ⁇ 100%.
  • the dsRNA ligand conjugate of the present application was subcutaneously administered to cynomolgus monkeys at 4.2 and 14 mg/kg, and the coagulation factor XI protein content, FXI activity, and activated partial thromboplastin time in the animal plasma were measured before administration and on days 0, 3, 7, 14, 21, 28, 37, 54, and 68 after administration (Table 17). As shown in Tables 18 to 20, the results confirmed that after administration of the dsRNA ligand conjugate of the present application, excellent effects of inhibiting the expression and activity of human coagulation factor XI protein were shown, and the activated partial thromboplastin time (APTT) was significantly prolonged.
  • APTT activated partial thromboplastin time
  • tissue lysis buffer 100 mM Tris-HCl, 1 mM MgCl 2 , pH 6.0
  • grind with a tissue grinder at -30°C collect the grinding liquid, i.e., blank liver homogenate, and store at -80°C for later use.
  • the dsRNA ligand conjugate of the present application has good stability, the remaining amount of the sense chain after incubation for 24 hours is more than 50%, and the remaining amount of the antisense chain after incubation for 24 hours is more than 80%.
  • Cos7 cells (purchased from Nanjing Kebai Biotechnology Co., Ltd.) were cultured in DMEM complete medium (Hyclone, Catalog No. SH30243.01) containing 10% fetal bovine serum (Gibco, Catalog No. 10099-141) at 37°C in an incubator containing 5% CO2 . Cos7 cells were seeded in a 96-well plate at 2 ⁇ 104 cells/well and cultured overnight. The reporter gene plasmid (on-target/off-target plasmid) was transferred into Cos7 cells using 0.3 ⁇ L Lipofectamine 3000 transfection reagent (Invitrogen, Catalog No. L3000015).
  • the culture medium was removed and different concentrations of siRNA were transfected into Cos7 cells containing reporter gene plasmid using Lipofectamine RNAiMAX transfection reagent (Invitrogen, cat. no. 13778150).
  • the dosing concentration of the target plasmid was 10 nM-0.00457 nM, and the dosing concentration of the off-target plasmid was 40 nM-0.0183 nM.
  • the cells were cultured at 37°C, 5% CO2 for 48 h.
  • the dual luciferase assay kit (Promega, catalog number E2940) was used for detection.
  • the luminescence ratio of the control group was used as the benchmark, and the luminescence ratio of each test group was normalized to obtain the ratio R of Ratio (test)/Ratio (control), which represents the expression level of the firefly reporter gene.
  • the inhibition rate (%) of siRNA (1-R) ⁇ 100%.
  • the principle of constructing the on-target plasmid GSCM is to insert a sequence that is complementary to the antisense strand into the 3’ untranslated region of the firefly luciferase of the pmirGLO plasmid.
  • the principle of constructing the off-target plasmid GSSM is to insert a sequence that is completely matched with the 1-8 positions at the 5’ end of the antisense strand into the 3’ untranslated region of the firefly luciferase of the pmirGLO plasmid, and completely mismatched with other positions; in order to improve the sensitivity, GSSM-X5 was constructed, which is composed of 5 identical GSSM connections.
  • the principle of constructing the off-target plasmid PSCM is to insert a sequence that is complementary to the sense strand into the 3’ untranslated region of the firefly luciferase of the pmirGLO plasmid.
  • the principle of constructing the off-target plasmid PSSM is to insert a sequence that is completely matched with the 1-8 positions at the 5’ end of the sense strand into the 3’ untranslated region of the firefly luciferase of the pmirGLO plasmid, and completely mismatched with other positions.
  • test results show that the double-stranded ribonucleic acid (dsRNA) of the present application has no obvious off-target effect.
  • dsRNA double-stranded ribonucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供一种靶向凝血因子XI的双链核糖核酸、其药学上可接受的盐或其配体缀合物,还提供了包含所述双链核糖核酸、其药学上可接受的盐或其配体缀合物的药物组合物,以及所述双链核糖核酸、其药学上可接受的盐或其配体缀合物的治疗用途。

Description

靶向凝血因子XI的双链核糖核酸
相关申请的引用
本申请要求于2023年08月31日向中华人民共和国国家知识产权局提交的第202311121470.9号中国专利申请的优先权和权益,在此将其全部内容以援引的方式整体并入文本中。
技术领域
本申请属于生物医药领域,涉及一种双链核糖核酸(dsRNA)、其药学上可接受的盐、其配体缀合物、或药物组合物,其可用于抑制凝血因子XI。
背景技术
凝血因子XI是一种丝氨酸蛋白酶原,主要在肝脏和巨核细胞中合成。凝血因子XI参与内源性凝血途径,在凝血级联反应中,凝血酶可反馈激活凝血因子XI,活化的凝血因子XI又促使凝血酶的大量产生,从而使凝血级联反应放大。因此,针对凝血因子XI的药物可阻断内源性途径并抑制凝血级联反应的放大,从而具有抗血栓形成作用,且不会引起过度出血。
目前已发现的凝血因子XI抑制剂还较少,主要包括单克隆抗体、反义寡核苷酸、小分子抑制剂、肽模拟物及肽类抑制剂等,尚无已经批准上市的凝血因子XI抑制剂。
小干扰RNA(small interfering RNA,siRNA)可以基于RNA干扰(RNA interference,RNAi)机制,以序列特异性的方式抑制或阻断目标基因的翻译或转录来抑制目标基因表达,从mRNA水平发挥抑制作用,同时降低凝血因子XI的水平,从而达到治疗疾病的目的。
发明概述
一方面,本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,所述正义链含有长度不超过23个核苷酸的核苷酸序列,所述反义链含有长度不超过25个核苷酸的核苷酸序列,所述正义链或反义链任选地是经修饰的,所述双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物靶向凝血因子XI mRNA。
另一方面,本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,所述正义链含有如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸:
正义链:5’-GAUCUCCAACUAAAAUACU-3’(SEQ ID NO.1),
反义链:5’-AGUAUUUUAGUUGGAGAUCCG-3’(SEQ ID NO.2);
正义链:5’-GGAUGAUUUUCUUAUAUCA-3’(SEQ ID NO.3),
反义链:5’-UGAUAUAAGAAAAUCAUCCUG-3’(SEQ ID NO.4);
正义链:5’-GGUCUUUUCAGGAUGAUUU-3’(SEQ ID NO.5),
反义链:5’-AAAUCAUCCUGAAAAGACCUU-3’(SEQ ID NO.6);
正义链:5’-GUCUUUUCAGGAUGAUUUU-3’(SEQ ID NO.7),
反义链:5’-AAAAUCAUCCUGAAAAGACCU-3’(SEQ ID NO.8);
正义链:5’-CUUUUCAGGAUGAUUUUCU-3’(SEQ ID NO.9),
反义链:5’-AGAAAAUCAUCCUGAAAAGAC-3’(SEQ ID NO.10);
正义链:5’-UUUUCAGGAUGAUUUUCUU-3’(SEQ ID NO.11),
反义链:5’-AAGAAAAUCAUCCUGAAAAGA-3’(SEQ ID NO.12);
正义链:5’-UCAGGAUGAUUUUCUUAUA-3’(SEQ ID NO.13),
反义链:5’-UAUAAGAAAAUCAUCCUGAAA-3’(SEQ ID NO.14);
正义链:5’-CAGGAUGAUUUUCUUAUAU-3’(SEQ ID NO.15),
反义链:5’-AUAUAAGAAAAUCAUCCUGAA-3’(SEQ ID NO.16);
正义链:5’-AGGAUGAUUUUCUUAUAUC-3’(SEQ ID NO.17),
反义链:5’-GAUAUAAGAAAAUCAUCCUGA-3’(SEQ ID NO.18);
正义链:5’-GAUGAUUUUCUUAUAUCAA-3’(SEQ ID NO.19),
反义链:5’-UUGAUAUAAGAAAAUCAUCCU-3’(SEQ ID NO.20);
正义链:5’-AUGAUUUUCUUAUAUCAAG-3’(SEQ ID NO.21),
反义链:5’-CUUGAUAUAAGAAAAUCAUCC-3’(SEQ ID NO.22);
正义链:5’-UGAUUUUCUUAUAUCAAGU-3’(SEQ ID NO.23),
反义链:5’-ACUUGAUAUAAGAAAAUCAUC-3’(SEQ ID NO.24);
正义链:5’-CUUAUAUCAAGUGGUACAU-3’(SEQ ID NO.25),
反义链:5’-AUGUACCACUUGAUAUAAGAA-3’(SEQ ID NO.26);
正义链:5’-AAACGGAUCUCCAACUAAA-3’(SEQ ID NO.27),
反义链:5’-UUUAGUUGGAGAUCCGUUUGA-3’(SEQ ID NO.28);
所述正义链或反义链任选地是经修饰的。
另一方面,本申请提供一种药物组合物,其包括本申请的dsRNA、其药学上可接受的盐或其配体缀合物。另一方面,本申请提供一种药物组合物,其包括本申请的dsRNA、其药学上可接受的盐或其配体缀合物和药学上可接受的载体或赋形剂。
另一方面,本申请提供一种治疗和/或预防血栓栓塞及其并发症的试剂盒,其包括本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物;以及任选的使用说明书。
另一方面,本申请提供一种治疗和/或预防血栓栓塞及其并发症的方法,其包括给予治疗和/或预防对象(下文也称为受试者)本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物。
在部分实施方式中,本申请提供一种治疗和/或预防血栓栓塞及其并发症的方法,其包括向治疗和/或预防对象(下文也称为受试者)给予治疗/预防有效量的本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物。
另一方面,本申请提供本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物在制备治疗和/或预防血栓栓塞及其并发症的药物中的用途。
另一方面,本申请提供本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物在治疗和/或预防血栓栓塞及其并发症中的用途。
另一方面,本申请提供用于治疗和/或预防血栓栓塞及其并发症的本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物。
在部分实施方式中,所述血栓栓塞及其并发症可以包括各类血栓形成、栓塞和血栓栓塞,例如动脉栓塞和静脉栓塞,包括深静脉血栓形成、肺栓塞、心肌梗塞和中风等。
在部分实施方式中,所述血栓栓塞及其并发症具体包括血液透析终末期肾病患者血栓栓塞症、膝关节置换手术患者的静脉血栓栓塞症、心房颤动患者的卒中或全身性栓塞症、癌症相关性静脉血栓栓塞症等。
在部分实施方式中,本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物作为用于治疗和/或预防血栓栓塞及其并发症的单一治疗剂使用。
在部分实施方式中,本申请的dsRNA、其药学上可接受的盐或其配体缀合物、或药物组合物与用于治疗和/或预防血栓栓塞及其并发症的其他治疗剂共同使用。
发明详述
以下将对本申请的示例性实施方式进行描述,但是本领域技术人员将理解的是,本申请的保护范围并不限于此,而是可基于本申请的精神和构思进行各种修饰、修改或改变,这些修饰、修改或改变后的内容仍然落在本申请的范围内。
本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,所述正义链含有与如表1中所示核苷酸序列中的至少15个(例如15个、16个、17个、18个或19个)连续的核苷酸相差0、1、2或3个核苷酸的核酸序列,且正义链的长度不超过21个核苷酸;所述反义链含有与如表2中所示核苷酸序列中的至少15个(例如15个、16个、17个、18个或19个)连续的核苷酸相差0、1、2或3个核苷酸的核酸序列,且反义链的长度不超过23个核苷酸。
本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,所述正义链含有如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、 SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸:
正义链:5’-GAUCUCCAACUAAAAUACU-3’(SEQ ID NO.1),
反义链:5’-AGUAUUUUAGUUGGAGAUCCG-3’(SEQ ID NO.2);
正义链:5’-GGAUGAUUUUCUUAUAUCA-3’(SEQ ID NO.3),
反义链:5’-UGAUAUAAGAAAAUCAUCCUG-3’(SEQ ID NO.4);
正义链:5’-GGUCUUUUCAGGAUGAUUU-3’(SEQ ID NO.5),
反义链:5’-AAAUCAUCCUGAAAAGACCUU-3’(SEQ ID NO.6);
正义链:5’-GUCUUUUCAGGAUGAUUUU-3’(SEQ ID NO.7),
反义链:5’-AAAAUCAUCCUGAAAAGACCU-3’(SEQ ID NO.8);
正义链:5’-CUUUUCAGGAUGAUUUUCU-3’(SEQ ID NO.9),
反义链:5’-AGAAAAUCAUCCUGAAAAGAC-3’(SEQ ID NO.10);
正义链:5’-UUUUCAGGAUGAUUUUCUU-3’(SEQ ID NO.11),
反义链:5’-AAGAAAAUCAUCCUGAAAAGA-3’(SEQ ID NO.12);
正义链:5’-UCAGGAUGAUUUUCUUAUA-3’(SEQ ID NO.13),
反义链:5’-UAUAAGAAAAUCAUCCUGAAA-3’(SEQ ID NO.14);
正义链:5’-CAGGAUGAUUUUCUUAUAU-3’(SEQ ID NO.15),
反义链:5’-AUAUAAGAAAAUCAUCCUGAA-3’(SEQ ID NO.16);
正义链:5’-AGGAUGAUUUUCUUAUAUC-3’(SEQ ID NO.17),
反义链:5’-GAUAUAAGAAAAUCAUCCUGA-3’(SEQ ID NO.18);
正义链:5’-GAUGAUUUUCUUAUAUCAA-3’(SEQ ID NO.19),
反义链:5’-UUGAUAUAAGAAAAUCAUCCU-3’(SEQ ID NO.20);
正义链:5’-AUGAUUUUCUUAUAUCAAG-3’(SEQ ID NO.21),
反义链:5’-CUUGAUAUAAGAAAAUCAUCC-3’(SEQ ID NO.22);
正义链:5’-UGAUUUUCUUAUAUCAAGU-3’(SEQ ID NO.23),
反义链:5’-ACUUGAUAUAAGAAAAUCAUC-3’(SEQ ID NO.24);
正义链:5’-CUUAUAUCAAGUGGUACAU-3’(SEQ ID NO.25),
反义链:5’-AUGUACCACUUGAUAUAAGAA-3’(SEQ ID NO.26);
正义链:5’-AAACGGAUCUCCAACUAAA-3’(SEQ ID NO.27),
反义链:5’-UUUAGUUGGAGAUCCGUUUGA-3’(SEQ ID NO.28);
所述正义链或反义链任选地是经修饰的。
在部分实施方式中,所述正义链含有如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,其中所述至少15个连续的核苷酸可以选自15、16、17、18或19个连续的核苷酸。
在部分实施方式中,所述反义链含有如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸,其中所述至少15个连续的核苷酸可以选自15、16、17、18、19、20或21个连续的核苷酸。
在部分实施方式中,本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物, 所述dsRNA包含正义链和反义链,所述正义链含有如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列且反义链的长度不超过23个核苷酸:
正义链:5’-GAUCUCCAACUAAAAUACU-3’(SEQ ID NO.1),
反义链:5’-AGUAUUUUAGUUGGAGAUCCG-3’(SEQ ID NO.2);
正义链:5’-GGAUGAUUUUCUUAUAUCA-3’(SEQ ID NO.3),
反义链:5’-UGAUAUAAGAAAAUCAUCCUG-3’(SEQ ID NO.4);
正义链:5’-GGUCUUUUCAGGAUGAUUU-3’(SEQ ID NO.5),
反义链:5’-AAAUCAUCCUGAAAAGACCUU-3’(SEQ ID NO.6);
正义链:5’-GUCUUUUCAGGAUGAUUUU-3’(SEQ ID NO.7),
反义链:5’-AAAAUCAUCCUGAAAAGACCU-3’(SEQ ID NO.8);
正义链:5’-CUUUUCAGGAUGAUUUUCU-3’(SEQ ID NO.9),
反义链:5’-AGAAAAUCAUCCUGAAAAGAC-3’(SEQ ID NO.10);
正义链:5’-UUUUCAGGAUGAUUUUCUU-3’(SEQ ID NO.11),
反义链:5’-AAGAAAAUCAUCCUGAAAAGA-3’(SEQ ID NO.12);
正义链:5’-UCAGGAUGAUUUUCUUAUA-3’(SEQ ID NO.13),
反义链:5’-UAUAAGAAAAUCAUCCUGAAA-3’(SEQ ID NO.14);
正义链:5’-CAGGAUGAUUUUCUUAUAU-3’(SEQ ID NO.15),
反义链:5’-AUAUAAGAAAAUCAUCCUGAA-3’(SEQ ID NO.16);
正义链:5’-AGGAUGAUUUUCUUAUAUC-3’(SEQ ID NO.17),
反义链:5’-GAUAUAAGAAAAUCAUCCUGA-3’(SEQ ID NO.18);
正义链:5’-GAUGAUUUUCUUAUAUCAA-3’(SEQ ID NO.19),
反义链:5’-UUGAUAUAAGAAAAUCAUCCU-3’(SEQ ID NO.20);
正义链:5’-AUGAUUUUCUUAUAUCAAG-3’(SEQ ID NO.21),
反义链:5’-CUUGAUAUAAGAAAAUCAUCC-3’(SEQ ID NO.22);
正义链:5’-UGAUUUUCUUAUAUCAAGU-3’(SEQ ID NO.23),
反义链:5’-ACUUGAUAUAAGAAAAUCAUC-3’(SEQ ID NO.24);
正义链:5’-CUUAUAUCAAGUGGUACAU-3’(SEQ ID NO.25),
反义链:5’-AUGUACCACUUGAUAUAAGAA-3’(SEQ ID NO.26);
正义链:5’-AAACGGAUCUCCAACUAAA-3’(SEQ ID NO.27),
反义链:5’-UUUAGUUGGAGAUCCGUUUGA-3’(SEQ ID NO.28);
所述正义链或反义链任选地是经修饰的。
在部分实施方式中,本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,所述正义链是如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列,所述反义链是如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列:
正义链:5’-GAUCUCCAACUAAAAUACU-3’(SEQ ID NO.1),
反义链:5’-AGUAUUUUAGUUGGAGAUCCG-3’(SEQ ID NO.2);
正义链:5’-GGAUGAUUUUCUUAUAUCA-3’(SEQ ID NO.3),
反义链:5’-UGAUAUAAGAAAAUCAUCCUG-3’(SEQ ID NO.4);
正义链:5’-GGUCUUUUCAGGAUGAUUU-3’(SEQ ID NO.5),
反义链:5’-AAAUCAUCCUGAAAAGACCUU-3’(SEQ ID NO.6);
正义链:5’-GUCUUUUCAGGAUGAUUUU-3’(SEQ ID NO.7),
反义链:5’-AAAAUCAUCCUGAAAAGACCU-3’(SEQ ID NO.8);
正义链:5’-CUUUUCAGGAUGAUUUUCU-3’(SEQ ID NO.9),
反义链:5’-AGAAAAUCAUCCUGAAAAGAC-3’(SEQ ID NO.10);
正义链:5’-UUUUCAGGAUGAUUUUCUU-3’(SEQ ID NO.11),
反义链:5’-AAGAAAAUCAUCCUGAAAAGA-3’(SEQ ID NO.12);
正义链:5’-UCAGGAUGAUUUUCUUAUA-3’(SEQ ID NO.13),
反义链:5’-UAUAAGAAAAUCAUCCUGAAA-3’(SEQ ID NO.14);
正义链:5’-CAGGAUGAUUUUCUUAUAU-3’(SEQ ID NO.15),
反义链:5’-AUAUAAGAAAAUCAUCCUGAA-3’(SEQ ID NO.16);
正义链:5’-AGGAUGAUUUUCUUAUAUC-3’(SEQ ID NO.17),
反义链:5’-GAUAUAAGAAAAUCAUCCUGA-3’(SEQ ID NO.18);
正义链:5’-GAUGAUUUUCUUAUAUCAA-3’(SEQ ID NO.19),
反义链:5’-UUGAUAUAAGAAAAUCAUCCU-3’(SEQ ID NO.20);
正义链:5’-AUGAUUUUCUUAUAUCAAG-3’(SEQ ID NO.21),
反义链:5’-CUUGAUAUAAGAAAAUCAUCC-3’(SEQ ID NO.22);
正义链:5’-UGAUUUUCUUAUAUCAAGU-3’(SEQ ID NO.23),
反义链:5’-ACUUGAUAUAAGAAAAUCAUC-3’(SEQ ID NO.24);
正义链:5’-CUUAUAUCAAGUGGUACAU-3’(SEQ ID NO.25),
反义链:5’-AUGUACCACUUGAUAUAAGAA-3’(SEQ ID NO.26);
正义链:5’-AAACGGAUCUCCAACUAAA-3’(SEQ ID NO.27),
反义链:5’-UUUAGUUGGAGAUCCGUUUGA-3’(SEQ ID NO.28);
所述正义链或反义链任选地是经修饰的。
在部分实施方式中,本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,其中,所述正义链含有如SEQ ID NO.1所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.2所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.3所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.4所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.5所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.6所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.7所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.8所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.9所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.10所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.11所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.12所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.13所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.14所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.15所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.16所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.17所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.18所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.19所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.20所示的核苷酸序列中至少15个连续的核苷 酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.21所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.22所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.23所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.24所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.25所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.26所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸;或者,所述正义链含有如SEQ ID NO.27所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.28所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸,所述正义链或反义链任选地是经修饰的。
在部分实施方式中,本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,其中,所述正义链含有如SEQ ID NO.1所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.2所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.3所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.4所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.5所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.6所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.7所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.8所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.9所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.10所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.11所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.12所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.13所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.14所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.15所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.16所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.17所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.18所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.19所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.20所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.21所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.22所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.23所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.24所示的核苷酸序列且反义链的长度不超过23个核苷酸;所述正义链含有如SEQ ID NO.25所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.26所示的核苷酸序列且反义链的长度不超过23个核苷酸;或者,所述正义链含有如SEQ ID NO.27所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.28所示的核苷酸序列且反义链的长度不超过23个核苷酸,所述正义链或反义链任选地是经修饰的。
在部分实施方式中,本申请提供一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,其中,所述正义链是如SEQ ID NO.1所示的核苷酸序列,所述反义链是如SEQ ID NO.2所示的核苷酸序列;所述正义链是如SEQ ID NO.3所示的核苷酸序列,所述反义链是如SEQ ID NO.4所示的核苷酸序列;所述正义链是如SEQ ID NO.5所示的核苷酸序列,所述反义链是如SEQ ID NO.6所示的核苷酸序列;所述正义链是如SEQ ID NO.7所示的核苷酸序列,所述反义链是如SEQ ID NO.8所示的核苷酸序列;所述正义链是如SEQ ID NO.9所示的核苷酸序列,所述反义链是如SEQ ID NO.10所示的核苷酸序列;所述正义链是如SEQ ID NO.11所示的核苷酸序列,所述反义链是如SEQ ID NO.12所示的核苷酸序列;所述正义链是如SEQ ID NO.13所示的核苷酸序列,所述反义链是如SEQ ID NO.14所示的核苷酸序列;所述正义链是如SEQ ID NO.15所示的核苷酸序列,所述反义链是如SEQ ID NO.16所示的核苷酸序列;所述正义链是如SEQ ID NO.17所示的核苷酸序列,所述反义链是如SEQ ID NO.18所示的核苷酸序列;所述正义链是如SEQ ID NO.19所示的核苷酸序列,所述反义链是如SEQ ID NO.20所示的核苷酸序列;所述正义链是如SEQ ID NO.21所示的核苷酸序列,所述反义链是如SEQ ID NO.22所示的核苷酸序列;所述正义链是如SEQ ID NO.23所示的核苷酸序列,所述反义链是如SEQ ID NO.24所示的核苷酸序列;所述正义链是如SEQ ID NO.25所示的核苷酸序列,所述反义链是如SEQ ID NO.26所示的核苷酸序列;或者,所述正义链是如SEQ ID NO.27所示的核苷酸序列,所述反义链是如SEQ ID NO.28所示的核苷酸序列,所述正义链或反义链任选地是经修饰的。
本申请还提供一种dsRNA、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链, 所述正义链和反义链与上述正义链和反义链的核苷酸序列的全长分别具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%的序列同一性。
在部分实施方式中,本申请的dsRNA、其药学上可接受的盐或其配体缀合物是一种RNAi药物。
在部分实施方式中,本申请的dsRNA、其药学上可接受的盐或其配体缀合物是siRNA或其配体缀合物,或其药学上可接受的盐。
在具体的实施方式中,所述dsRNA、其药学上可接受的盐或其配体缀合物具有由正义链和反义链互补构成的双链区,以及任选的位于正义链和/或反义链的5’和/或3’端的突出端。在优选的实施方式中,所述dsRNA、其药学上可接受的盐或其配体缀合物具有由正义链和反义链互补构成的双链区,以及位于正义链和/或反义链的5’和/或3’端的突出端。在优选的实施方式中,所述dsRNA、其药学上可接受的盐或其配体缀合物具有由正义链和反义链互补构成的双链区,以及位于反义链的3’端的突出端。在优选的实施方式中,所述dsRNA、其药学上可接受的盐或其配体缀合物具有由正义链和反义链互补构成的双链区,以及位于正义链的3’端的突出端。
在部分实施方式中,所述正义链含有与如表1中所示核苷酸序列中的核苷酸序列相差0、1、2或3个核苷酸的核酸序列,且正义链的长度不超过21个核苷酸;所述反义链含有与如表2中所示核苷酸序列中的核苷酸序列相差0、1、2或3个核苷酸的核酸序列,且反义链的长度不超过23个核苷酸。
在部分实施方式中,所述正义链选自与如表1中所示核苷酸序列中的核苷酸序列相差0、1、2或3个核苷酸的核酸序列;所述反义链选自与如表2中所示核苷酸序列中的核苷酸序列相差0、1、2或3个核苷酸的核苷酸序列。
在部分实施方式中,本申请提供一种双链核糖核酸(dsRNA)的配体缀合物,其包含本申请所述的双链核糖核酸(dsRNA)其药学上可接受的盐,以及配体。
双链区
在部分实施方式中,所述dsRNA的双链区具有15-23对核苷酸的长度,例如所述dsRNA的双链区具有15、16、17、18、19、20、21、22或23对核苷酸的长度。
在部分实施方式中,所述dsRNA的双链区具有19-23对核苷酸的长度,例如所述dsRNA的双链区具有19、20、21、22或23对核苷酸的长度。
突出端
在部分实施方式中,所述正义链或反义链任选地包括位于5’端和/或3’端的突出端。
在部分实施方式中,所述突出端含有1、2、3、4或5个核苷酸。在部分实施方式中,所述突出端含有1或2个核苷酸。
在部分实施方式中,所述正义链任选地包括位于5’端和/或3’端的突出端。在一些实施方式中,所述正义链任选地包括位于5’端和/或3’端的1、2、3、4或5个核苷酸的突出端。在一些实施方式中,所述正义链任选地包括位于5’端和/或3’端的1或2个核苷酸的突出端。
在部分实施方式中,所述反义链任选地包括位于5’端和/或3’端的突出端。在一些实施方式中,所述反义链任选地包括位于5’端和/或3’端的1、2、3、4或5个核苷酸的突出端。在一些实施方式中,所述反义链任选地包括位于5’端和/或3’端的1或2个核苷酸的突出端。
在部分实施方式中,所述突出端选自未修饰或经修饰的A、G、C、U或T。
在具体的实施方式中,所述突出端可为正义链或反义链5’端和/或3’端的1、2、3、4或5个核苷酸,优选1或2个核苷酸。在具体的实施方式中,所述dsRNA、其药学上可接受的盐或其配体缀合物包含额外序列作为突出端,所述额外序列可包含连接至正义链或反义链5’端和/或3’端的1、2、3、4或5个核苷酸、优选1或2个核苷酸。
作为示例,在正义链或反义链5’端和/或3’端的核糖核苷酸作为突出端的情况,当正义链为21个核苷酸且反义链为23个核苷酸,当正义链第1-21位与反义链第1-21位互补(按照5’末端到3’末端的方向),则反义链第22-23位核苷酸构成位于反义链3’端的突出端,即,正义链的3’端为平端或钝端;当正义链为21个核苷酸且反义链为21个核苷酸,当正义链第1-20位与反义链第1-20位互补(按照5’末端到3’末端的方向),则正义链和反义链第21位核苷酸分别构成位于正义链和反义链3’端的突出端;当正义链为21个核苷酸且反义链为23个核苷酸,当正义链第1-21位与反义链第3-23位互补(按照5’末端到3’末端的方向),则反义链第1-2位核苷酸构成位于反义链5’端的突出端,即,正义链的5’端为平端或钝端。
在部分实施方式中,在正义链或反义链5’端和/或3’端的核苷酸作为突出端的情况,所述反义链任选地包括位于5’端和/或3’端的突出端,所述突出端选自未修饰或经修饰的核糖核苷酸序列CG、AA、GA、 CC、CA、AC、GC、AA、UG、GG、CU、UU或UC。在部分实施方式中,所述反义链任选地包括位于3’端的突出端,所述突出端选自未修饰或经修饰的核糖核苷酸序列CG、AA、GA、CC、CA、AC、GC、AA、UG、GG、CU、UU或UC。
在具体的实施方式中,所述dsRNA、其药学上可接受的盐或其配体缀合物在反义链或正义链的5’端和/或3’端包含额外序列作为突出端或者突出端的一部分,所述额外序列可包含5’端和/或3’端的1、2、3、4或5个核苷、优选1或2个核苷酸。在一些实施方式中,所述突出端由反义链或正义链的5’端和/或3’端的核苷酸以及额外序列的组成,或者所述突出端可仅由额外序列组成。
在部分实施方式中,所述突出端为任选位于所述反义链的5’端和/或3’端的额外序列,所述突出端选自未修饰或经修饰的CG、AA、GA、CC、CA、AC、GC、AA、UG、GG、CU、UU或UC。在部分实施方式中,所述突出端为位于所述反义链的3’端的额外序列,所述突出端选自未修饰或经修饰的CG、AA、GA、CC、CA、AC、GC、AA、UG、GG、CU、UU或UC。
在部分实施方式中,所述突出端中的额外序列选自未修饰或经修饰的U或T,例如,可选自uu或dTdT。
在部分实施方式中,当所述突出端为1个核苷酸时,作为突出端的额外序列可选自未修饰或经修饰的U或T。在部分实施方式中,当所述突出端为1个核苷酸时,作为突出端的额外序列可选自经2’-O-甲基修饰的U(下文也称为u)或脱氧胸腺嘧啶核苷酸(下文也称为dT)。
在部分实施方式中,当所述突出端为2个核苷酸时,作为突出端的额外序列可选自未修饰或经修饰的UU或TT。在部分实施方式中,当所述突出端为2个核苷酸时,作为突出端的额外序列可选自uu或dTdT。
在部分实施方式中,所述正义链任选地包括位于5’端和/或3’端的突出端,所述突出端选自uu或dTdT。
在部分实施方式中,所述反义链任选地包括位于5’端和/或3’端的突出端,所述突出端选自uu或dTdT。
在部分实施方式中,所述突出端与其相邻的核苷酸通过磷酸酯基或硫代磷酸酯基连接。
在部分实施方式中,所述突出端中的一个或多个核苷酸之间通过磷酸酯基或硫代磷酸酯基连接。
修饰
在部分实施方式中,所述正义链或反义链任选地是经修饰的。
在部分实施方式中,所述正义链或反义链的一个或多个核苷酸是经修饰的。
在部分实施方式中,每个核苷酸可以被相同或不同的修饰来修饰,该修饰可以包括,但不限于,非连接的磷酸酯氧中的一个或两个和/或连接的磷酸酯氧中的一个或多个的一种或多种改变;核糖的组分(例如,核糖上的2'羟基)的改变;用“脱磷”连接子全部置换磷酸酯部分;碱基的修饰;以及修饰核糖-磷酸酯骨架。
在部分实施方式中,每个核苷酸修饰前,其中的碱基选自天然存在的碱基,例如A、U、C、G及T,当修饰发生在核苷酸碱基上是指在A、U、C、G及T的骨架基础上进行化学修饰。
在部分实施方式中,所述正义链的1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个或21个核苷酸是经修饰的;或者前述任意值形成的范围内的核苷酸是经修饰的,例如1-21个、1-20个、1-19个、1-18个、1-17个、1-16个、1-15个、1-14个、1-13个、1-12个、1-11个或1-10个核苷酸是经修饰的。
在部分实施方式中,所述正义链的1个以上、2个以上、3个以上、4个以上、5个以上、6个以上、7个以上、8个以上、9个以上、10个以上、11个以上、12个以上、13个以上、14个以上、15个以上、16个以上、17个以上、18个以上、19个以上、20个以上或21个以上核苷酸是经修饰的;典型地,所述正义链的10个以上、11个以上、12个以上、13个以上、14个以上、15个以上、16个以上、17个以上、18个以上、19个以上、20个以上或21个以上核苷酸是经修饰的。
在部分实施方式中,所述正义链的所有核苷酸是经修饰的。
在部分实施方式中,所述反义链的1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个或23个核苷酸是经修饰的;或者前述任意值形成的范围内的核苷酸是经修饰的,例如1-23个、1-22个、1-21个、1-20个、1-19个、1-18个、1-17个、1-16个、1-15个、1-14个、1-13个、1-12个、1-11个或1-10个核苷酸是经修饰的。
在部分实施方式中,所述反义链的1个以上、2个以上、3个以上、4个以上、5个以上、6个以上、7个以上、8个以上、9个以上、10个以上、11个以上、12个以上、13个以上、14个以上、15个以上、16个以上、17个以上、18个以上、19个以上、20个以上、21个以上、22个以上或23个以上核苷酸是经修饰的;典型地,所述反义链的10个以上、11个以上、12个以上、13个以上、14个以上、15个以上、16个以上、17个以上、18个以上、19个以上、20个以上、21个以上、22个以上或23个以上核苷酸是经修饰的。
在部分实施方式中,所述反义链的所有核苷酸是经修饰的。
在部分实施方式中,所述正义链的所有核苷酸和所述反义链的所有核苷酸是经修饰的。
在部分实施方式中,所述修饰选自核苷酸的糖基修饰、碱基的修饰、核苷酸间的连接键修饰或末端修饰。在部分实施方式中,所述修饰选自核苷酸的糖基修饰、核苷酸间的连接键修饰或末端修饰。
在部分实施方式中,所述核苷酸的糖基修饰选自脱羟基化、氟代、氨基化、烷基化、羟基烷基化或羟基烯基化。
在部分实施方式中,所述核苷酸的糖基修饰发生在糖基的2’位。
在部分实施方式中,所述糖基修饰选自2’-脱羟基化、2’-氟代、2’-氨基、2’-烷基、2’-O-烷基、2’-O-醚基、2’-O-烯基。在部分实施方式中,所述糖基修饰选自2’-脱羟基化、2’-氟代、2’-氨基、2’-甲基、2’-乙基、2’-甲基-O-甲基、2’-乙基-O-甲基、2’-O-甲基、2’-O-乙基、2’-O-乙基-O-甲基或2’-O-烯丙基。
在部分实施方式中,所述核苷酸间的连接键修饰选自硫代磷酸酯(PS)、二硫代磷酸酯(PS2)、甲基膦酸酯(MP)、甲氧基丙基膦酸酯(MOP)或氨基膦酸酯。在部分实施方式中,所述核苷酸间的连接键修饰选自硫代磷酸酯(PS)。在部分实施方式中,所述核苷酸间以硫代磷酸二酯键连接。
在部分实施方式中,所述末端修饰选自末端的磷酸基或羟基上的修饰。在部分实施方式中,所述末端修饰选自5’-末端修饰或3’-末端修饰。在部分实施方式中,所述末端修饰选自在末端的核苷酸的核糖基团上的5’-磷酸酯、5’-甲基膦酸酯(5’-MP)、5’-硫代磷酸酯(5’-PS)或5’-(E)-乙烯基膦酸酯(5’-(E)-VP)。在部分实施方式中,所述末端修饰选自在末端的核苷酸的核糖基团上的5’-磷酸酯基或5’-(E)-乙烯基磷酸酯。
在部分实施方式中,所述修饰选自2’-脱羟基化、2’-氟代、2’-氨基、2’-甲基、2’-乙基、2’-甲基-O-甲基、2’-乙基-O-甲基、2’-O-甲基、2’-O-乙基、2’-O-烯丙基、硫代磷酸酯基、甲基膦酸酯基、氨基膦酸酯基、5’-磷酸酯基、3’-磷酸酯基、5’-(E)-乙烯基磷酸酯或3’-(E)-乙烯基磷酸酯。
在部分实施方式中,所述修饰选自2’-脱羟基化、2’-氟代、2’-O-甲基、2’-O-乙基、2’-O-乙基-O-甲基、2’-O-烯丙基、硫代磷酸酯基或5’-(E)-乙烯基磷酸酯。
在部分实施方式中,所述修饰选自2’-氟代、2’-O-甲基、硫代磷酸酯基或5’-(E)-乙烯基磷酸酯。
如下文中将详述的,当提及正义链和反义链的第n位核苷酸时,除无特别指明是3’端开始计数以外,均从5’端开始计数。
在部分实施方式中,在所述dsRNA、其药学上可接受的盐或其配体缀合物的两条核酸链的两端之一或二者的前两位核苷酸之间和/或前三位核苷酸之间采用硫代磷酸酯基修饰。例如,以正义链为例,所述正义链的第1、2位核苷酸之间和/或正义链的第2、3位核苷酸之间采用硫代磷酸酯基修饰。
在部分实施方式中,对于无额外序列作为突出端的情况,所述正义链的第1、2位核苷酸之间和/或正义链的第2、3位核苷酸之间采用硫代磷酸酯基修饰。
在部分实施方式中,对于无额外序列作为突出端的情况,所述反义链的第1、2位核苷酸之间、反义链的第2、3位核苷酸之间、反义链的3’端的第1、2位核苷酸之间和/或反义链的3’端的第2、3位核苷酸之间采用硫代磷酸酯基修饰。在部分实施方式中,对于无额外序列作为突出端的情况,所述反义链的第1、2位核苷酸之间、反义链的第2、3位核苷酸之间、反义链的第19、20位核苷酸之间和/或反义链的第20、21位核苷酸之间采用硫代磷酸酯基修饰。
在部分实施方式中,在具有额外序列作为突出端时,硫代磷酸酯基修饰可位于额外序列中的核苷酸之间。
在部分实施方式中,所述反义链的5’-末端的核苷酸具有5’-(E)-乙烯基磷酸酯修饰。在部分实施方式中,在具有额外序列作为突出端时,所述5’-末端修饰可存在于额外序列的核苷酸上。
在部分实施方式中,所述正义链有2、3、4或5个核苷酸采用2’-氟代修饰。在部分实施方式中,所述正义链有14、15、16或17个核苷酸采用2’-O-甲基修饰。在部分实施方式中,所述正义链有3或4个核苷酸采用2’-氟代修饰,并且有15、16、17或18个核苷酸采用2’-O-甲基修饰。
在部分实施方式中,所述正义链的第1至6位核苷酸中有0个、1个或2个核苷酸采用2’-氟代修饰。
在部分实施方式中,所述正义链的第1至6位核苷酸中有4个、5个或6个核苷酸采用2’-O-甲基修饰。
在部分实施方式中,所述正义链的第7至9位核苷酸中有2个或3个核苷酸采用2’-氟代修饰。
在部分实施方式中,所述正义链的第7至9位核苷酸中有0个或1个核苷酸采用2’-O-甲基修饰。
在部分实施方式中,所述正义链的第10至19位核苷酸中有0个或1个核苷酸采用2’-氟代修饰。
在部分实施方式中,所述正义链的第10至19位核苷酸中有8个、9个或10个核苷酸采用2’-O-甲基修饰。
在部分实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,并且所述正义链的第1至6和/或10至19位核苷酸中有0个、1个或2个核苷酸也采用2’-氟代修饰。在部分实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,并且所述正义链的第1至6和10至19位核苷酸中有0个、1个或2个核苷酸也采用2’-氟代修饰。在一些实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,并且所述正义链的第1至6和10至19位核苷酸中有0个或1个核苷酸采用2’-氟代修饰。
在部分实施方式中,所述反义链有2、3、4、5、6或7个核苷酸采用2’-氟代修饰。
在部分实施方式中,所述反义链有14、15、16、17、18、19、20或21个核苷酸采用2’-O-甲基修饰。
在部分实施方式中,所述反义链的第2、6、8、9、14、16位核苷酸中有3个、4个、5个或6个核苷酸采用2’-氟代修饰。在一些实施方式中,所述反义链的第2、6、14、16位核苷酸中有4个核苷酸采用2’-氟代修饰。所述反义链的第2、6、8、9、14、16位核苷酸中有6个核苷酸采用2’-氟代修饰。
在一些实施方案中,所述反义链的第2、6、14和16位核苷酸采用2’-氟代修饰,并且所述反义链的第1、3至5、7至13、15和/或17至21位核苷酸中任意一个或两个也采用2’-氟代修饰。在一些实施方案中,所述反义链的第2、6、14和16位核苷酸采用2’-氟代修饰,并且所述反义链的第1、3至5、7至13、15和17至21位核苷酸中任意一个或两个也采用2’-氟代修饰。
在部分实施方式中,所述反义链的第1、3至5、7至13、15和/或17至21位核苷酸中有14、15、16、17、18或19个核苷酸采用2’-O-甲基修饰。
在一个具体的实施方式中,所述正义链的第5、7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链的第2、6、8、9、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰。
在一个具体的实施方式中,所述正义链的第5、7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链的第2、6、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰。
在一个具体的实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链的第2、6、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰。
在一个具体的实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链的第2、6、8、9、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰。在一个具体的实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链的第2、6、14和16位核苷酸采用2’-氟代,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰。在一个具体的实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链包括2’-氟代(例如14位等)和2’-O-甲基修饰,任选地进一步包括一种或多种其它类型的修饰。
在一个具体的实施方式中,所述正义链的第5、7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链的第2、6、8、9、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰,并且正义链的第1、2位核苷酸之间、正义链的第2、3位核苷酸之间、反义链的第1、2位核苷酸之间、反义链的第2、3位核苷酸之间、反义链的第19、20位核苷酸之间和/或反义链的第20、21位核苷酸之间采用硫代磷酸酯基修饰。任选地,所述反义链的5’-末端采用5’-(E)-乙烯基磷酸酯修饰,例如,反义链的5’-末端的核糖核苷酸具有5’-(E)-乙烯基磷酸酯修饰。
在一个具体的实施方式中,所述正义链的第5、7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,并且所述反义链的第2、6、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰,并且正义链的第1、2位核苷酸之间、正义链的第2、3位核苷酸之间、反义链的第1、2位核苷酸之间、反义链的第2、3位核苷酸之间、反义链的第19、20位核苷酸之间和/或反义链的第20、21位核苷酸之间采用硫代磷酸酯基修饰。任选地,所述反义链的5’-末端采用5’-(E)-乙烯基磷酸酯修饰,例如,反义链的5’-末端的核糖核苷酸具有5’-(E)-乙烯基磷酸酯修饰。
在一个具体的实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,所述反义链的第2、6、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰,并且正义链的第1、2位核苷酸之间、正义链的第2、3位核苷酸 之间、反义链的第1、2位核苷酸之间、反义链的第2、3位核苷酸之间、反义链的第19、20位核苷酸之间和/或反义链的第20、21位核苷酸之间采用硫代磷酸酯基修饰。任选地,所述反义链的5’-末端采用5’-(E)-乙烯基磷酸酯修饰,例如,反义链的5’-末端的核糖核苷酸具有5’-(E)-乙烯基磷酸酯修饰。
在一个具体的实施方式中,所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,所述正义链的其他核糖核苷酸采用2’-O-甲基修饰,所述反义链的第2、6、8、9、14和16位核苷酸采用2’-氟代修饰,所述反义链的其他核糖核苷酸采用2’-O-甲基修饰,并且正义链的第1、2位核苷酸之间、正义链的第2、3位核苷酸之间、反义链的第1、2位核苷酸之间、反义链的第2、3位核苷酸之间、反义链的第19、20位核苷酸之间和/或反义链的第20、21位核苷酸之间采用硫代磷酸酯基修饰。任选地,所述反义链的5’-末端采用5’-(E)-乙烯基磷酸酯修饰,例如,反义链的5’-末端的核糖核苷酸具有5’-(E)-乙烯基磷酸酯修饰。
配体
在部分实施方式中,所述配体包括分支基团和连接基团。在部分实施方式中,所述分支基团可包含靶向基团。
在部分实施方式中,所述配体通过连接基团与dsRNA连接。本文中,将连接有配体的dsRNA称为dsRNA配体缀合物。
在部分实施方式中,所述配体通过分支基团连接一个或多个靶向基团。在部分实施方式中,所述分支基团包含靶向基团。
在部分实施方式中,所述配体含有至少一个靶向基团。在部分实施方式中,所述配体含有一个、二个、三个、四个或五个靶向基团。在部分实施方式中,所述配体含有二个、三个或四个靶向基团。在部分实施方式中,所述配体含有三个靶向基团。
在部分实施方式中,所述靶向基团选自GalNAc基团。
在部分实施方式中,所述配体含有一个、二个、三个、四个或五个GalNAc基团。在部分实施方式中,所述配体含有二个、三个或四个GalNAc基团。在部分实施方式中,所述配体含有三个GalNAc基团。
在部分实施方式中,所述分支基团选自:
在部分实施方式中,所述连接基团选自:
在部分实施方式中,所述配体选自:
在部分实施方式中,所述配体与正义链或反义链连接。在部分实施方式中,所述配体与正义链或反义链的5’或3’末端连接。在部分实施方式中,所述配体与正义链的5’或3’末端连接。在部分实施方式中,所述配体与正义链的3’末端连接。
在部分实施方式中,所述配体通过磷酸酯基或硫代磷酸酯基与dsRNA的正义链或反义链连接。在部分实施方式中,所述配体通过磷酸酯基或硫代磷酸酯基与正义链连接。在部分实施方式中,所述配体通过磷酸酯基或硫代磷酸酯基与正义链的3’末端连接。
在部分实施方式中,所述dsRNA配体缀合物如下所示:
在部分实施方式中,所述dsRNA配体缀合物选自:
在部分实施方式中,所述dsRNA配体缀合物选自:
在部分实施方式中,所述X为OH或O-
在部分实施方式中,所述dsRNA的未修饰的正义链选自:
表1.未修饰的正义链

在部分实施方式中,所述dsRNA的未修饰的反义链选自:
表2.未修饰的反义链
在部分实施方式中,所述dsRNA的经修饰的正义链选自:
表3.经修饰的正义链

在部分实施方式中,所述dsRNA的经修饰的反义链选自:
表4.经修饰的反义链
本申请的dsRNA可以通过包含上述正义链中的任一者以及上述反义链中的任一者而形成。
例如,所述dsRNA包含如下正义链中的任一者:SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID  NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57、SEQ ID NO:59、SEQ ID NO:61、SEQ ID NO:63、SEQ ID NO:65、SEQ ID NO:67、SEQ ID NO:69、SEQ ID NO:71、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:77、SEQ ID NO:79、SEQ ID NO:81、SEQ ID NO:83;并且
所述dsRNA包含如下反义链中的任一者:SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20、SEQ ID NO:22、SEQ ID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32、SEQ ID NO:34、SEQ ID NO:36、SEQ ID NO:38、SEQ ID NO:40、SEQ ID NO:42、SEQ ID NO:44、SEQ ID NO:46、SEQ ID NO:48、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56、SEQ ID NO:58、SEQ ID NO:60、SEQ ID NO:62、SEQ ID NO:64、SEQ ID NO:66、SEQ ID NO:68、SEQ ID NO:70、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:78、SEQ ID NO:80、SEQ ID NO:82、SEQ ID NO:84。
在部分实施方式中,所述dsRNA(未经修饰)选自:
表5.dsRNA(未经修饰)
在部分实施方式中,所述dsRNA(经修饰)选自:
表6.dsRNA(经修饰)

在部分实施方式中,所述dsRNA配体缀合物(siRNA配体缀合物)选自:
表7.dsRNA配体缀合物

其中,所述L代表配体,所述配体如前所述。在部分实施方式中,所述配体选自L01配体或L02配体。其中,正义链的序列ID编号是指正义链中核酸序列的序列ID编号。dsRNA配体缀合物序号的正义链序列3’端处的L表示在该dsRNA配体缀合物中,在正义链序列3’端处连接有配体。
药学上可接受的盐
在部分实施方式中,如上所述的盐选自碱加成盐、酸加成盐及其组合。
在部分实施方式中,碱加成盐选自钠、钾、钙、铵、有机胺、镁盐及其组合,酸加成盐选自无机酸盐、有机酸盐及其组合。
在部分实施方式中,无机酸选自盐酸、氢溴酸、硝酸、碳酸、碳酸氢根、磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸及其组合,有机酸选自乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸、甲磺酸及其组合。
在部分实施方式中,所述药学上可接受的盐选自钠盐。
有益效果
本申请的双链核糖核酸、其药学上可接受的盐或其配体缀合物具有良好的凝血因子XI抑制活性。本申请的双链核糖核酸、其药学上可接受的盐或其配体缀合物具有良好的稳定性,在体内可长期持续发挥作用。本申请的双链核糖核酸、其药学上可接受的盐或其配体缀合物脱靶效应低,毒副作用小,安全性高。因此,其具有良好的成药前景。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照本领域普通技术人员所理解的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
本申请中,除非另有说明,否则术语“包含、包括和含有”或等同物为开放式表述,意味着除所列出的要素、组分或步骤外,还可涵盖其他未指明的要素、组分或步骤。
当任何变量在化合物、核苷酸、单链或双链结构中出现一次以上时,其在每一种情况下的定义都是独立的。例如,本申请所述的修饰是独立的发生,即除非另有所指,正义链的修饰不会影响反义链的修饰,某一核苷酸的修饰不会影响另一核苷酸的修饰,某一核苷酸的糖基上的修饰不会影响同一核苷酸的糖基的另一处的修饰。所述影响包括是否经修饰,也包括采用何种修饰类型。
本申请的凝血因子XI基因序列可以通过已公开的数据库取得,以人类凝血因子XI基因的转录本NM_000128.4以及食蟹猴凝血因子XI基因的转录本XM_005556483.2作为靶基因来进行siRNA设计。所有的siRNA序列与人类转录本存在100%的一致性或1-3个错配,与食蟹猴转录本存在100%一致性或者存在1个错配。
如本领域所知,术语“干扰RNA”或“RNAi”或“干扰RNA序列”指这样的单链RNA(例如,成熟的miRNA)或双链RNA(例如,双链体RNA诸如siRNA、aiRNA或前-miRNA),当干扰RNA与靶基因或序列处于相同细胞中时,其能够降低或抑制该靶基因或序列的表达(例如,通过介导与干扰RNA序列互补的mRNA的降解或抑制与干扰RNA序列互补的mRNA的翻译或转录)。干扰RNA可以与靶基因或序列具有基本或完全的同一性,或可以包括错配区(即,错配序列)。
本申请的双链核糖核酸作为干扰RNA发挥作用。下文中,有时也将本申请的双链核糖核酸称为siRNA。
如本领域所知,术语“错配区”或“错配序列”指干扰RNA(例如,siRNA、aiRNA、miRNA)序列的一部分,该部分与其靶序列不具有100%的互补性。干扰RNA(例如,siRNA、aiRNA、miRNA)可以具有至少1、2、3、4、5、6或更多个错配区。错配区可以是连续的或可以被1、2、3、4、5、6、7、8、9、10、11、12或更多个核苷酸分开。错配区可以包括单个核苷酸或可以包括2、3、4、5、6或更多个核苷酸。
术语“同一性”是指两个核苷酸序列之间或两个氨基酸序列之间的相似性。序列的同一性优选地涉及序列中的、在具有相同长度的两个或更多个序列中具有相同的位置的核苷酸或氨基酸的百分比。具体地,两个氨基酸序列或两个核苷酸序列的“%同一性”可以通过如下确定:以最优比较为目的比对序列(例如,可以在任一序列中引入空位以与另一序列最优比对)和比较相应位置的氨基酸或核苷酸。空位通常被视为不相同的位置,而无论其在比对中的实际位置。“最优比对”一般是导致最高同一性百分比的两个序列的比对。同一性百分比通过所比较的序列中相同核苷酸的数量来确定(即,%同一性=相同位置数/总位置数×100)。本申请的序列同一性至少为80%、85%、90%或95%,优选为至少90%,非限制性实例包括:80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、100%。可以利用本领域技术人员已知的数学算法完成两个序列之间同一性百分比的确定。
如本领域所知,干扰RNA包括“小干扰RNA(small interfering RNA,siRNA)”,其长度例如为约15-60个、15-50个、15-40个、15-30个、15-25个、19-25个、19-23个或19-21个核苷酸。本申请的双链核糖核酸可作为此类siRNA发挥作用,并可具有相应的长度。
如本申请所用,所述正义链或反义链的核苷酸的位次均从5’端开始计数。对于正义链为19个核苷酸,反义链为21个核苷酸的dsRNA,例如,5’-GAUCUCCAACUAAAAUACU-3’(SEQ ID NO:1)的第1位 是G,第19位是U;5’-AGUAUUUUAGUUGGAGAUCCG-3’(SEQ ID NO:2)的第1位是A,第21位是G。对于正义链为19个以上核苷酸,反义链为21个以上核苷酸的dsRNA,例如,正义链在SEQ ID NO:1基础上于末端增加若干个核苷酸,反义链在SEQ ID NO:2基础上于末端增加若干个核苷酸,其正义链或反义链的核苷酸位次的计数方法不会因此而改变,即正义链的第1位仍是SEQ ID NO:1的第1位,反义链的第1位仍是SEQ ID NO:2的第1位。
如本领域所知,并且除非另外说明,使用术语“互补”描述第一核酸序列和第二核酸序列的关系时,是指在特定条件下含有第一核酸序列的寡核苷酸或多核苷酸与含有第二核酸序列的寡核苷酸或多核苷酸杂交并形成双链结构的能力。如本申请所述,“互补”序列也可以包括由非Watson-Crick碱基配对和/或非天然或修饰的核苷酸形成的碱基配对形成的双链结构,或可以为完全由非Watson-Crick碱基配对和/或非天然或修饰的核苷酸形成的碱基配对形成的双链结构,只要满足相对于它们杂交的能力的上述要求。
如本领域所知,“完全互补”的序列包括含有第一核酸序列的寡核苷酸或多核苷酸与含有第二核酸序列的寡核苷酸或多核苷酸的在第一核酸序列和第二核酸序列的全长上的碱基配对。
如本领域所知,“基本互补”表示两条核酸序列之间完全互补或至少85%(例如85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%)的重叠核苷酸是互补的。
本申请的术语“互补”、“完全互补”和“基本互补”可以根据dsRNA的正义链和反义链之间,或dsRNA的反义链和目标序列之间的碱基配对使用,如从它们使用的内容中可以理解。
在本技术领域中,“G”、“C”、“A”、“T”和“U”通常分别代表鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶、尿嘧啶的碱基,但本领域中也通常知晓,“G”、“C”、“A”、“T”和“U”每个通常也代表分别含有鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶和尿嘧啶作为碱基的核苷酸,这在表示脱氧核糖核酸序列和/或核糖核酸序列中是常见的方式,因此在本公开的上下文中,“G”、“C”、“A”、“T”、“U”表示的含义包括上述各种可能的情形。然而,应理解术语“核糖核苷酸”或“核苷酸”还可以指一种经修饰的核苷酸(如本文其他部分进一步详述)或具有一种替代性的置换部分,本领域人员可以意识到,鸟嘌呤、胞嘧啶、腺嘌呤以及尿嘧啶可以被其他部分置换而基本上不改变一种寡核苷酸(包括一种具有这种置换部分的核苷酸)的碱基配对特性。例如非限制性地,包括肌苷作为其碱基的核苷酸可以与包括腺嘌呤、胞嘧啶或尿嘧啶的核苷酸进行碱基配对。因此,含有尿嘧啶、鸟嘌呤或腺嘌呤的核苷酸可以在本申请表征的dsRNA的核苷酸序列中由含有例如肌苷的核苷酸替换。在另一个实例中,寡核苷酸中任何地方的腺嘌呤和胞嘧啶可以分别地替换为鸟嘌呤和尿嘧啶,以形成与靶mRNA的G-U摇摆碱基配对。含有这类替换部分的序列适用于本公开表征的组合物和方法。
如本领域所知,所述“双链核糖核酸”、“双链RNA”或“dsRNA”可相互替换使用。术语“dsRNA”包含两条反向平行且互补的核酸链,相对于靶标RNA(例如凝血因子XI基因)具有“正义”或“反义”的取向。在本申请的实施例中,dsRNA可通过RNA干扰(RNAi)机制降解靶标RNA(例如mRNA)。
本申请的双链核糖核酸含有正义链和反义链。术语“正义链”是指dsRNA双链中,与反义链的一个区域基本互补的单链。术语“反义链”是指dsRNA双链中,与目标序列的一个区域基本互补的单链。若当正义链未与反义链完全互补时,可能在分子内部或末端区发生错配。通常,最能忍受的错配是在末端区内。若当反义链未与目标序列完全互补时,可能在分子内部或末端区发生错配。通常最能忍受的错配是在末端区内。
如本领域所知,dsRNA的双链可以具有相同或不同的核苷酸的数量。通过互补形成的双链区的长度可为容许降解靶标RNA的任何长度,且可能的长度在约9至36对核苷酸的范围内,例如15至30对、16至28对、19至21对等等。
如本领域所知,在双链区以外,dsRNA可以包括一个或多个核苷酸突出端,所述突出端是指至少一个未配对的核苷酸/核苷类似物。例如,当dsRNA的一条链的3’端超出另一链5’端(或反之亦然),即存在突出端。在所述“突出端”的核苷酸可以包括0-5个核苷酸,其中“0”表示没有“突出端”,而“5”表示在dsRNA双链的单链上有5个额外的(即未与另一单链形成配对的)核苷酸。这些任选的“突出端”可以位于dsRNA两条链中的任意单链的5’和/或3’末端。在部分实施方式中,“突出端”包括0-5个核苷酸。在部分实施方式中,“突出端”包括0-2个核苷酸。在部分实施方式中,dsRNA的正义链3’和/或5’端的“突出端”具有0-2个核苷酸。在部分实施方式中,dsRNA的反义链3’和/或5’端的“突出端”具有0-2个核苷酸。形成“突出端”的核苷酸可以是A、G、C、U或T或其修饰结构。形成“突出端”的核苷酸可以是U、T或dT或其修饰结构。在部分实施方式中,“突出端”包括但不限于“TT”、“dTdT”、“UU”或其相应的经修饰结构,例如经2’甲氧基修饰的UU,即uu。在部分实施方式中,dsRNA的反义链3’和/或5’端的“突出端”与靶标RNA基本互补。在部分实施方式中,dsRNA的反义链3’和/或5’端的“突出端”与靶标RNA完全互补。在部分实施方式中,dsRNA的反义链3’端的“突出端”与靶标RNA完全互补。术语“平端”或“钝端”是指在dsRNA的末端没有未配对的核苷酸,即没有核苷酸突出端。两端都是“平端”或“钝端”的dsRNA是全长都是双链区的dsRNA,即在分子的任意一端都没有核苷酸突出端。
本申请中,术语“硫代磷酸酯键连接”、“硫代磷酸二酯键连接”与“硫代磷酸酯基”可以互换使用。
本申请中,所述dsRNA或其中任一单链任选地是被修饰的,无论是未修饰或经修饰的核糖核酸都在本申请的保护范围内。所述修饰不会导致所述dsRNA抑制凝血因子XI基因表达的功能明显削弱或丧失。所述dsRNA或其中任一单链的修饰可位于5’端和/或3’端末端、核苷酸或核苷酸间的连接键。可采用本领域中公知的方法进行合成或修饰。
本申请中,“所述正义链或反义链任选地是经修饰”是指正义链或反义链的任一核苷酸任选地是经修饰。
本申请中,所述核苷酸的修饰包括但不限于发生在核苷酸的糖基上,包括一个或多个经取代或脱除的糖基部分基团,如脱除羰基上的羟基,或发生氟代、氨基化、烷基化、羟基烷基化或羟基烯基化。糖基上的修饰可发生在糖环上的各个位置。示例性地,所述核苷酸的糖基上的修饰包括但不限于2’-脱羟基化、2’-氟代、2’-氨基、2’-甲基、2’-乙基、2’-甲基-O-甲基、2’-乙基-O-甲基、2’-O-甲基、2’-O-乙基、2’-O-乙基-O-甲基或2’-O-烯丙基,修饰以及经修饰的核苷结构可如下所示:
其中Base表示碱基。
本申请中,所述核苷酸间的连接键的修饰包括对磷酸酯基的原子或官能团的取代或替换,例如硫代磷酸酯(PS)、二硫代磷酸酯(PS2)、甲基膦酸酯(MP)、甲氧基丙基膦酸酯(MOP)或氨基膦酸酯。
本申请中,大写字母G、C、A、U或T分别各自通常代表含有鸟嘌呤、胞嘧啶、腺嘌呤、尿嘧啶、胸腺嘧啶作为碱基的核苷酸,其中,字母组合dT表示碱基为胸腺嘧啶的脱氧核糖核苷酸。小写字母g、c、a、u分别代表其相应大写字母所代表的核苷酸的核糖基团被2’-甲氧基修饰,即g、c、a、u分别代表2’-O-甲基G、2’-O-甲基C、2’-O-甲基A、2’-O-甲基U。大写字母加上其右侧的小写字母f代表其相应的大写字母所代表的核苷酸的核糖基团被2’-氟修饰,即Gf、Cf、Af、Uf分别代表2’-氟G、2’-氟C、2’-氟A、2’-氟U。小写字母s表示与s左右相邻的两个核苷酸残基之间为硫代磷酸酯基连接,例如“csu”表示c和u残基之间通过硫代磷酸酯基连接。VP-表示该连字符右侧的一个核苷酸为(E)-乙烯基磷酸酯修饰的核苷酸,例如“VP-u”表示(E)-乙烯基磷酸酯修饰的2’-O-甲基U。
本申请中,所述5’端和/或3’端修饰指发生在dsRNA或其中任一单链5’端和/或3’端的修饰,例如磷酸化、接合或反向键联等。以5’端为例,包括但不限于5’-磷酸酯、5’-甲基膦酸酯(5’-MP)、5’-硫代磷酸酯(5’-PS)或5’-(E)-乙烯基膦酸酯(5’-(E)-VP),修饰以及经修饰的核苷酸的结构可如下所示:
其中Base表示碱基,X选自氢、羟基或糖基上的2’修饰。
本申请中,所述配体是一种与dsRNA连接的基团,该配体包括分支基团(branched group)和连接基团(linker),并且所述dsRNA、连接基团和分支基团依次连接(例如式104所示)。所述分支基团含有药学上可接受的至少一个(例如一个、二个、三个、四个或五个)靶向基团(targeting group),其将dsRNA靶向特定组织或增强细胞吸收作用。所述靶向基团例如但不限于GalNAc(N-乙酰半乳糖胺,N-Acetylgalactosamine,例如式105所示)基团。多个所述靶向基团之间通过分支基团以串联或并联的方式连接。其中,GalNAc基团可以是一价、二价、三价、四价。这里所述的一价、二价、三价、四价分别指dsRNA分子与含有作为靶向基团的GalNAc的配体形成dsRNA配体缀合物后,该dsRNA配体缀合物中dsRNA分子与GalNAc分子的摩尔比为1:1、1:2、1:3和1:4。在部分实施方式中,当本申请的dsRNA与含有GalNAc的配体缀合时,GalNAc分子是三价或四价。在部分实施方式中,当本申请的dsRNA与含有GalNAc的配体缀合时,GalNAc分子是三价。
本申请中,所述配体可以连接在核苷酸的磷酸酯基、2’-位羟基、3’-位羟基或者碱基上。所述配体可以连接在dsRNA的任一核苷酸上,包括但不限于正义链或反义链的5’或3’末端核苷酸或非末端的中间位置核苷酸。当配体连接在dsRNA链的末端时,所述配体可以连接在核苷酸的磷酸酯基上;当配体连接在dsRNA的中间位置核苷酸时,所述配体可以连接在核苷酸的糖环或者碱基上。
本申请中,所述配体的种类或制备方法可参考本领域已知的方法,包括但不限于记载于WO2009082607、WO2014025805、WO2015006740、WO2021249484中的配体及其制备方法,以引用的方式将其全部公开内容并入本申请中。示例性的配体包括但不限于上文所述的L01或L02。本申请所述的L01配体同现有技术中的L96配体。
本申请中,除非另有说明,“缀合”是指两个或多个各自具有特定功能的化学部分之间以非共价连接的方式或共价连接的方式彼此连接。相应地,“缀合物”是指该各个化学部分之间通过非共价连接或共价连接而形成的化合物。本申请中,优选使用以共价连接的方式彼此连接的缀合物。
本申请中,所述配体与正义链或反义链的5’或3’末端连接。优选地,所述配体与正义链的5’或3’末端连接。更优选地,所述配体与正义链的3’末端连接。示例性地,所述dsRNA与配体连接形成的dsRNA配体缀合物如下式102或式103所示:
本申请的化合物(例如本申请的双链核糖核酸、其药学上可接受的盐、其配体缀合物)可以存在特定的几何或立体异构体形式,所有这些几何或立体异构体形式都属于本申请的范围之内。本申请设想所有的这类化合物,包括(R)-和(S)-对映体、非对映异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本申请的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本申请的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,用楔形实线键和楔形虚线键表示一个立体中心的绝对构型,用直形实线键和直形虚线键表示立体中心的相对构型,用波浪线表示楔形实线键或楔形虚线键或用波浪线表示直形实线键和/或直形虚线键
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本申请某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本申请的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚(3H)、碘-125(125I)或C-14(14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本申请的化合物的所有同位素组成的变换,无论是否具备放射性,都包括在本申请的范围之内。
术语“治疗”意为将本申请所述化合物或制剂(例如本申请的双链核糖核酸、其药学上可接受的盐、其配体缀合物、或药物组合物)进行给药以改善或消除疾病或与所述疾病相关的一个或多个症状,且包括:(i)抑制疾病或疾病状态,即遏制其发展;(ii)缓解疾病或疾病状态,即使该疾病或疾病状态消退。
术语“预防”意为将本申请所述化合物或制剂(例如本申请的双链核糖核酸、其药学上可接受的盐、其配体缀合物、或药物组合物)进行给药以预防疾病或与所述疾病相关的一个或多个症状,且包括:预防疾病或疾病状态在受试者中出现,特别是当这类受试者易患有该疾病状态,但尚未被诊断为已患有该疾病状态时。
术语“受试者”、“患者”或“对象”在本文中可互换使用,是指已成为治疗、观察或实验对象的动物。在部分实施方式中,所述受试者为哺乳动物,优选为灵长类动物,更优选为人。
术语“治疗有效量”意指(i)治疗或预防特定疾病、病况或障碍,(ii)减轻、改善或消除特定疾病、病况或障碍的一种或多种症状,或(iii)预防或延迟本文中所述的特定疾病、病况或障碍的一种或多种症状发作的本申请化合物(例如本申请的双链核糖核酸、其药学上可接受的盐或其配体缀合物)的用量。构成“治疗有效量”的本申请化合物的量取决于该化合物、疾病状态及其严重性、给药方式以及待被治疗的受试者的年龄而改变,但可例行性地由本领域技术人员根据其自身的知识及本申请内容而确定。
本申请的化合物的治疗剂量可根据例如以下而定:治疗的具体用途、给予化合物的方式、患者的健康和状态,以及签处方医师的判断。本申请的化合物在药物组合物中的比例或浓度可不固定,取决于多种因素,它们包括剂量、化学特性(例如疏水性)和给药途径。例如可通过含约0.1~10%w/v该化合物的生理缓冲盐水溶液提供本申请化合物,用于肠胃外给药。某些典型剂量范围为约1μg/kg~约1g/kg体重/日。在某些实施方式中,剂量范围为约0.01mg/kg~约100mg/kg体重/日。剂量很可能取决于此类变量,如疾病或病症的种类和发展程度、具体患者的一般健康状态、所选择的化合物的相对生物学效力、赋形剂制剂及其给药途径。可通过由体外或动物模型试验系统导出的剂量-反应曲线外推,得到有效剂量。
术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和其他动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
作为药学上可接受的盐,例如,可以提及金属盐、铵盐、与有机碱形成的盐、与无机酸形成的盐、与有机酸形成的盐、与碱性或者酸性氨基酸形成的盐等。
如本申请所用,所述药学上可接受的盐包括双链核糖核酸的药学上可接受的盐和双链核糖核酸配体缀合物的药学上可接受的盐。
术语“药物组合物”是指一种或多种本申请的化合物(例如本申请的双链核糖核酸、其药学上可接受的盐或其配体缀合物)与药学上可接受的载体、辅料或赋形剂组成的混合物。药物组合物的目的是有利于对有机体给予本申请的化合物。在本文中,术语“药物组合物”和“制剂”具有相同的含义,并可互换使用。本文所用的载体、辅料或赋形剂包括适合于期望的特定剂型的任意的和所有的溶剂,稀释剂或其它液体赋形 剂,分散剂或助悬剂,表面活性剂,等渗剂,增稠剂或乳化剂,防腐剂,固体粘合剂,润滑剂等。用于配制药学上可接受的组合物的各种载体、辅料或赋形剂和用于其制备的方法可采用已知技术。除了与本申请的化合物不相容(例如产生任何不良的生物学效应或者其它以有害方式与药学上可接受的组合物的任何其它组分相互作用)的任何常规载体介质,其使用都涵盖在本申请的范围内。在一些具体的实施方式中,本文所用的载体、辅料或赋形剂是dsRNA给药领域常规使用的载体、辅料或赋形剂。
本申请的药物组合物可通过将本申请的化合物与适宜的药学上可接受的载体、辅料或赋形剂组合而制备,例如可配制成固态、半固态、液态或气态制剂,如片剂、丸剂、胶囊剂、粉剂、颗粒剂、膏剂、乳剂、悬浮剂、栓剂、注射剂、吸入剂、凝胶剂、微球及气溶胶等。
给予本申请化合物或其药物组合物的典型途径包括但不限于口服、直肠、局部、吸入、肠胃外、舌下、阴道内、鼻内、眼内、腹膜内、肌内、皮下、静脉内给药。
本申请的药物组合物可以采用本领域众所周知的方法制造,如常规的混合法、溶解法、制粒法、制糖衣药丸法、磨细法、乳化法、冷冻干燥法等。
在本申请的试剂盒中,其包括本申请的双链核糖核酸、其药学上可接受的盐、其配体缀合物、或药物组合物;以及任选的使用本申请的双链核糖核酸、其药学上可接受的盐、其配体缀合物、或药物组合物治疗和/或预防血栓栓塞及其并发症的说明书。
本申请所使用的溶剂可经市售获得。
如无特殊说明,本申请柱层析、制备薄层硅胶色谱所用溶剂配比均为体积比。
本领域知晓,可以通过使用具有相应修饰的核苷单体将修饰的核苷酸基团引入本申请所述的dsRNA。本领域技术人员可以从现有技术中获知相应修饰的核苷单体的制备方法和将修饰的核苷酸基团引入dsRNA的方法。所有修饰的核苷单体可以从商业途径获取或采用已知的方法制备。
本领域知晓,可以通过本领域常规的核糖核酸制备方法(例如固相合成和液相合成)得到所需的核糖核酸,例如可以通过亚磷酰胺固相合成技术合成所需的核糖核酸。本申请的双链核糖核酸、其药学上可接受的盐或其配体缀合物的制备方法包含以下步骤:按照双链核糖核酸的正义链或反义链的核苷酸种类或顺序,以3’到5’的方向将核苷酸单体依次连接以合成正义链和反义链。每个核苷酸单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应。本领域技术人员可以采用常规的反应条件、试剂的种类和用量,或根据试验情况进行调整以实现所述脱保护、偶联、盖帽、氧化或硫化反应。
在一些实施方式中,对于含有配体的核糖核酸的合成,可以在寡核糖核苷酸的合成过程中或合成完成后通过偶联反应将配体与核糖核酸连接,也可以先将配体连接到固相载体,然后按照3’到5’的方向将核苷单体与配体-固相载体依次连接。
纯化和脱盐的方法是本领域技术人员所公知的。例如,可以通过制备型离子色谱方法完成核糖核酸的纯化。又例如,可以通过反相色谱纯化方法或超滤离心方法完成核糖核酸的脱盐。
退火的方法是本领域技术人员所公知的。例如可以将正义链和反义链以1:1摩尔量混合,加热至70-95℃,随后降至室温以形成双链结构。
在合成过程中,可以通过例如离子交换色谱检测核糖核酸浓度,或通过液质联用色谱测定分子量,或通过微量分光光度计测定浓度以控制合成质量,此类检测方法是本领域技术人员所公知的。
除非另外特别说明,否则单数术语涵盖复数术语,并且复数术语涵盖单数术语。除非另外特别说明,否则词语“一个”或“一种”意指“至少一个”或“至少一种”。除非另外说明,否则“或”的使用意指“和/或”。
为了描述和公开的目的,以引用的方式将所有的专利、专利申请和其它已确定的出版物在此明确地并入本文。这些出版物仅因为它们的公开早于本申请的申请日而提供。所有关于这些文件的日期的声明或这些文件的内容的表述是基于申请人可得的信息,并且不构成任何关于这些文件的日期或这些文件的内容的正确性的承认。而且,在任何国家,在本文中对这些出版物的任何引用并不构成关于该出版物成为本领域的公知常识的一部分的认可。
具体实施方式
下面通过实施例对本申请进行详细描述,但并不意味着对本申请构成任何不利限制。本申请的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术人员所熟知的等同替换方式,优选的实施方式包括但不限于本申请的实施例。对本领域的技术人员而言,在不脱离本申请精神和范围的情况下针对本申请具体实施方式进行各种变化和改进将是显而易见的。
可以通过质谱等检测方法确认制备得到的双链核糖核酸、其药学上可接受的盐或其配体缀合物是目标 产物。
试剂与材料
合成所用的市售保护单体
合成所用的试剂
本申请采用以下缩略词:
DCM代表二氯甲烷;ACN代表乙腈;DIC代表二异丙基碳二亚胺;DMAP代表二甲氨基吡啶;DMT代表二对甲氧三苯甲基;MEM代表2-甲氧基乙氧基甲基。
siRNA序列设计及特异性分析
以人类凝血因子XI基因的转录本NM_000128.4以及食蟹猴凝血因子XI基因的转录本XM_005556483.2作为靶基因来进行siRNA设计。所有的siRNA序列与人类转录本存在100%的一致性,与食蟹猴转录本存在100%一致性或者存在1个错配。
制备实施例1将GalNAc配体(含有GalNAc基团作为靶向基团的配体)连接到固相载体上
称取氨基-CPG 1.0g(氨基载量:30-40μmol/g),加入5mL脱帽剂DBK,反应1min,排干试剂,上述操作循环重复4次。按载量为35μmol计算,加入2eq GalNAc配体/乙腈溶液,再加入2.5eq DIC、2.5eq DMAP组成的缩合试剂。25-30℃反应24h。结束后,滤除溶剂,无水乙腈清洗,再按上述用量加入GalNAc配体和缩合试剂,再反应24h。反应结束后,无水乙腈清洗固相载体,加入4mL Capping A和Capping B的1:1混合试剂,反应2min,排干后,再加入4mL混合试剂,反应2min,排干,无水乙腈洗涤,30℃真空干燥1h,备用。此实施例GalNAc配体采用L01(或L02)配体。
制备实施例2双链核糖核酸的制备
2.1.1GalNAc配体-ssRNA(正义链)的合成
在K&A核酸合成仪上,将上述GalNAc配体-固相载体放入合成柱中,按照标准的亚磷酰胺技术合成ssRNA。具体步骤包括:
1)DMT脱除(脱保护):先用乙腈洗涤树脂两次,用3%三氯乙酸/DCM脱除树脂上的DMT,乙腈洗涤4~5次。
2)缩合(偶联):合成柱中加入单体,加入缩合试剂(2.5eq DIC、2.5eq DMAP),室温缩合10分钟。用乙腈洗涤4~5次。
3)封闭(盖帽):先用Capping A,再用Capping B封闭未反应的羟基。用乙腈洗涤4~5次。
4)氧化:加入氧化试剂,氧化时间2分钟,后用乙腈洗涤4~5次。
重复1)~4)的步骤,至所有序列合成完成,最后用脱帽剂DBK脱除DMT,乙腈洗涤4~5次。
硫代磷酸酯键的形成:用硫代试剂替换氧化试剂,硫代时间设置为10分钟,完成硫代磷酸酯键的形成。
2.1.2ssRNA(无配体正义链)的合成
在K&A核酸合成仪上,将通用性CPG固相载体放入合成柱中,按照标准的亚磷酰胺技术合成ssRNA。具体步骤包括:
1)DMT脱除(脱保护):树脂先用乙腈洗涤两次,用3%三氯乙酸/DCM脱除树脂上的DMT,乙腈洗涤4~5次。
2)缩合(偶联):合成柱中加入单体,加入缩合试剂,室温缩合10分钟。用乙腈洗涤4~5次。
3)封闭(盖帽):先用Capping A,再用Capping B封闭未反应的羟基。用乙腈洗涤4~5次。
4)氧化:加入氧化试剂,氧化时间2分钟,后用乙腈洗涤4~5次。
重复1)~4)的步骤,至所有序列合成完成,最后用脱帽剂DBK脱除DMT,乙腈洗涤4~5次。
硫代磷酸酯键的形成:用硫代试剂替换氧化试剂,硫代时间设置为10分钟,完成硫代磷酸酯键的形成。
2.2asRNA(无配体反义链)的合成
在K&A核酸合成仪上,将上述CPG固相载体放入合成柱中,参考2.1.1或2.1.2所述方法进行合成。
2.3ssRNA或asRNA与固相载体的分离
裂解试剂为氨水:乙醇=3:1(v:v,其中氨水浓度在25~28%),每100mg固相载体加入5mL裂解试剂,65-70℃搅拌反应3h。反应结束,放至室温,用冰正丁醇沉淀,置于-20℃冰箱30min。离心得到沉淀,再加入正丁醇洗涤,重复2次。最后沉淀用丙酮洗涤,离心得到沉淀,真空干燥,得到粗品,进行质谱检测。
LC-MS(负离子模式)条件如下:
色谱柱:HILIC色谱柱
流动相A:20mm甲酸铵,pH6.2
流动相B:20mm甲酸铵+95%ACN
柱温:45℃
流速:1mL/min。
2.4退火形成siRNA(dsRNA)
加水溶解2.3步骤得到的单链RNA粗品,膜过滤除去载体。用微量分光光度计测定正义链和反义链的浓度,加入正义链和反义链(使二者摩尔含量比=1:1),混合,变性温度:94℃,维持4min;退火温度:自然降温至室温。
2.5siRNA(dsRNA)的纯化
通过施用DNAPac RP 10*150mm 4μm色谱柱纯化,流动相A是0.1mol/L三乙胺,pH8.0,流动相B是0.1mol/L三乙胺,pH8.0+50% ACN;检测波长215nm,260nm。收集主峰,旋蒸以除去大部分溶剂得到目标产物。
2.6脱盐以及含量标定
使用3K的超滤离心管,12000×g,离心时间12min,进行超滤浓缩并脱盐;旋蒸液浓缩完毕后,再加入水进行置换,重复5次以上。
浓度测定:浓缩后的样品,使用微量分光光度计进行浓度测定。
双链核糖核酸或其配体缀合物如下所示:
表8.双链核糖核酸或其配体缀合物



其中,大写字母G、C、A、或U分别各自通常代表含有鸟嘌呤、胞嘧啶、腺嘌呤、尿嘧啶作为碱基的核苷酸;小写字母g、c、a、u分别代表其相应大写字母所代表的核苷酸的核糖基团被2’-甲氧基修饰,即g、c、a、u分别代表2’-O-甲基G、2’-O-甲基C、2’-O-甲基A、2’-O-甲基U;大写字母加上其右侧的小写字母f代表其相应的大写字母所代表的核苷酸的核糖基团被2’-氟修饰,即Gf、Cf、Af、Uf分别代表2’-氟G、2’-氟C、2’-氟A、2’-氟U;小写字母s表示与s左右相邻的两个核苷酸残基之间为硫代磷酸酯基连接,例如“csu”表示c和u残基之间通过硫代磷酸酯基连接,L表示配体,例如L01配体和L02配体的结构如下所示:
上述双链核糖核酸、其药学上可接受的盐或其配体缀合物(所述配体L选自L01配体或L02配体)可以根据本申请所述方法或本领域已知方法制备得到。
本申请的双链核糖核酸、其药学上可接受的盐或其配体缀合物的质谱检测数据符合预期,可以确认得到了目标产物。
试验例1体外筛选
细胞培养与质粒/转染
用含有10%的胎牛血清(Gibco,货号为10099-141)的DMEM完全培养基(Hyclone,货号SH30243.01)于37℃,含有5% CO2的培养箱中培养Cos7细胞(购自南京科佰生物科技有限公司)。待细胞生长至接近汇合,使用胰蛋白酶处理,从培养瓶中释出细胞。将Cos7细胞以2×104细胞/孔接种于96孔板内,培养过夜,待细胞密度达到70-80%时,转染包含FXI基因序列(GenBank accession#NM_000128.4)的pmirGLO-FXI质粒至Cos7细胞。如厂商所述,在50ng质粒/孔的浓度下用0.3μL Lipofectamine 3000转染试剂(Invitrogen, 货号L3000015)进行转染。在质粒转染6-8小时之后,去除培养基。再将siRNA转染至已经过pmirGLO-FXI质粒转染的Cos7细胞中。siRNA的转染方法是取0.5μL siRNA加入到5μL的OPTI-MEM培养基中,取0.3μLLipofectamine RNAiMAX转染试剂(Invitrogen,货号13778150)加入到5μL的OPTI-MEM培养基;将两者吹打混匀,室温静置5分钟;将复合物加入到培养孔内,每孔再加入90μL的DMEM完全培养基,继续培养48小时;每个siRNA设置3个浓度,2个复孔,以10nM、1nM及0.1nM最终dsRNA浓度进行单剂量实验。
检测
去除培养孔中培养基,每孔加入150μL的Luciferase试剂(Promega)与DMEM完全培养基的混合溶液(二者体积比=1:1),充分混匀,室温孵育10分钟后,使用Spark多功能酶标仪(Tecan)读取化学发光值(Fir);再向每孔加入75μL的试剂(Promega),充分混匀,室温孵育10min后,使用Spark多功能酶标仪读取化学发光值(Ren)。
计算每孔发光比值Ratio=Fir/Ren,各测试组或对照组的发光比值Ratio(测试)或Ratio(对照)为各组Ratio的平均值;以对照组的发光比值为基准,对各测试组的发光比值进行归一化,获得Ratio(测试)/Ratio(对照)的比值R,以此表达firefly报告基因的表达水平。siRNA的抑制率(%)=(1-R)×100%。结果如表9所示。
表9沉默效率
试验结果显示,本申请的双链核糖核酸具有良好的体外沉默效率。
试验例2双荧光素酶实验
细胞培养与转染
用含有10%的胎牛血清(Gibco,货号10099-141)的DMEM完全培养基(Hyclone,货号SH30243.01)于37℃,含有5% CO2的培养箱中培养Cos7细胞(购自南京科佰生物科技有限公司)。待细胞生长至接近汇合,使用胰蛋白酶处理,从培养瓶中释出细胞。将Cos7细胞以2×104细胞/孔接种于96孔板内,培养过夜,待细胞密度达到70-80%时,转染包含FXI基因序列(GenBank accession#NM_000128.4)的pmirGLO-FXI质粒至Cos7细胞。如厂商所述,在50ng质粒/孔的浓度下用0.3μL Lipofectamine 3000转染试剂(Invitrogen,货号L3000015)进行转染。在质粒转染6-8小时之后,去除培养基。再将siRNA转染至已经过pmirGLO-FXI质粒转染的Cos7细胞中。siRNA的转染方法是用无酶水将siRNA5倍稀释至浓度范围为2-0.0000256μM;取0.5μL siRNA加入到5μL的OPTI-MEM培养基中,取0.3μL Lipofectamine RNAiMAX转染试剂(Invitrogen,货号为13778150)加入到5μL的OPTI-MEM培养基中;将两者吹打混匀,室温静置5分钟;将复合物加入到培养孔内,每孔再加入90μL的DMEM完全培养基,继续培养48小时;每个siRNA设置8个浓度。
检测
去除培养孔中培养基,每孔加入150μL的Luciferase试剂(Promega)与DMEM完全培养基的混合溶液(二者体积比=1:1),充分混匀,室温孵育10分钟后,使用Spark多功能酶标仪(Tecan)读取化学发光值(Fir);再向每孔加入75μL的试剂(Promega),充分混匀,室温孵育10min后,使用Spark多功能酶标仪读取化学发光值(Ren)。
计算每孔发光比值Ratio=Fir/Ren,各测试组或对照组的发光比值Ratio(测试)或Ratio(对照)为各组Ratio的平均值;以对照组的发光比值为基准,对各测试组的发光比值进行归一化,获得Ratio(测试)/Ratio(对照)的比值R,以此表达firefly报告基因的表达水平。siRNA的抑制率(%)=(1-R)×100%。用EXCEL软件处理浓度-抑制率(%)数据,通过四参数非线性回归模型计算siRNA的EC50,结果表10所示。
表10双荧光素酶法的EC50

体外筛选结果显示,本申请的双链核糖核酸具有良好的体外沉默活性。
试验例3人源凝血因子XI模型小鼠体内活性的评价
本试验例中使用的人源化小鼠购自赛业生物科技有限公司,将人源化小鼠随机分组,每组4只,分别向每组小鼠给予化合物和PBS对照(pH=7.2)。首次给药当天设为实验第0天。根据动物体重单次皮下注射相应化合物溶液,给药剂量为1、5mg/kg,PBS对照小鼠每只给予PBS,给药体积为10mL/kg体重。在给药前和给药后第7、14、28、42、63天,分别眼眶采血,分离血浆,在各时间点检测血浆中凝血因子XI蛋白含量。
眼眶静脉采血约165μL用于收集血浆。全血以抗凝剂与血浆的体积比1:9(v/v)的比例加入3.8%柠檬酸三钠抗凝剂,3000rpm,20℃离心15分钟收集血浆。使用Human Coagulation Factor XI ELISA试剂盒(Sigma公司,货号RAB1385-1KT)测试自上述各组小鼠(分别给予化合物的测试组和PBS对照组)获取的血浆中的凝血因子XI蛋白含量。
凝血因子XI蛋白抑制率按如下等式计算:
凝血因子XI蛋白抑制率=(1-测试组蛋白含量/对照组蛋白含量)×100%。
表11对人源化纯合子小鼠经皮下给予单剂量1、5mg/kg的siRNA配体缀合物(TD01M01L01、TD02M01L01),并在给予前及给予后第7、14、28、42、63天测定动物血浆中FXI蛋白含量。如表12所示,结果证实在给予单剂量本申请dsRNA配体缀合物后均显示出优异的抑制人凝血因子XI蛋白的表达的效果。
表11体内实验设计表
表12对小鼠血浆中凝血因子XI蛋白表达效果的抑制
试验例4人源凝血因子XI模型小鼠体内活性的评价
本试验例中使用的人源化小鼠购自赛业生物科技有限公司,将雌性人源化纯合子小鼠随机分组,每组4只,分别向每组小鼠给予化合物和PBS对照(pH=7.2)。首次给药当天设为实验第0天。根据动物体重单次皮下注射相应化合物溶液,给药剂量为3mg/kg,PBS对照小鼠每只给予PBS,给药体积为10mL/kg体重。在给药前和给药后第3、7、14、21、28、42、56、70天,分别眼眶采血,分离血清,使用Human Coagulation Factor XI ELISA试剂盒(Thermo公司,批号2350072722,货号EH118RB)测试各时间点血清中凝血因子XI蛋白含量。
凝血因子XI蛋白抑制率按如下等式计算:
凝血因子XI蛋白抑制率=(1-测试组蛋白含量/对照组蛋白含量)×100%。
表13对人源化纯合子小鼠经皮下给予单剂量3mg/kg的siRNA配体缀合物,并在给予前及给予后第3、7、14、21、28、42、56、70天测定动物血浆中凝血因子XI蛋白含量。如表14所示,结果证实在给予单剂量本申请siRNA配体缀合物后均显示出优异的抑制人凝血因子XI蛋白的表达的效果。
表13体内实验设计表
表14对小鼠血浆中凝血因子XI蛋白表达效果的抑制
试验例5AAV-FXI模型小鼠体内活性的评价
4-6周龄C5BL/6雄性小鼠,尾静脉注射1×1011vg AAV8-FXI(维真生物),建模后第28天选取hFXI蛋白含量大于100ng/mL的小鼠,小鼠按照体重随机分组,在第0天注射3mg/kg本申请dsRNA配体缀合物(用量仅以siRNA计),在第7、14、35和56天,分别眼眶采血,分离血清,使用Human Coagulation Factor XI ELISA试剂盒(Thermo公司,货号EH118RB)测试各时间点血清中凝血因子XI蛋白含量。
凝血因子XI蛋白抑制率按如下等式计算:
凝血因子XI蛋白抑制率=(1-测试组蛋白含量/对照组蛋白含量)×100%。
对AAV-FXI小鼠经皮下给予单剂量3mg/kg的本申请dsRNA配体缀合物,并在给予前及给予后第7、 14、35、56天测定动物血清中凝血因子XI蛋白含量(见表15)。如表16所示,结果证实在给予单剂量本申请dsRNA配体缀合物后均显示出优异的抑制人凝血因子XI蛋白的表达的效果。
表15体内实验设计表
表16对小鼠血清中凝血因子XI蛋白表达效果的抑制
试验例6食蟹猴体内活性的评价
给药前第7天,取2-4kg雌性食蟹猴禁食过夜,股静脉采集血液~1mL离心收集血浆。测定FXI蛋白(Human Coagulation Factor XI ELISA试剂盒,Thermo公司,货号EH118RB)、FXI活性(凝血XI因子测定试剂盒,思塔高公司,货号00723)、APTT(活化部分凝血活酶时间测定试剂盒,思塔高公司,货号00595)。依据其指标均一分组,在第0天注射本申请dsRNA配体缀合物(TD02M02L01等),在第0、3、7、14、21、28、37、54、68天取血浆,测血浆FXⅠ蛋白、FXⅠ活性、活化部分凝血溶酶时间APTT。
凝血因子XI蛋白抑制率按如下等式计算:
凝血因子XI蛋白抑制率=(给药后蛋白含量/给药前蛋白含量-1)×100%。
凝血因子XI活性抑制率按如下等式计算:
凝血因子XI活性抑制率=(给药后活性水平/给药前活性水平-1)×100%。
活化部分凝血溶酶时间延长率按如下等式计算:
活化部分凝血溶酶时间延长率=(给药后APTT值/给药前APTT值-1)×100%。
对食蟹猴经皮下给予4.2和14mg/kg的本申请dsRNA配体缀合物,并在给予前及给予后第0、3、7、14、21、28、37、54、68天测定动物血浆中凝血因子XI蛋白含量、FXI活性、活化部分凝血溶酶时间(表17)。如表18-表20所示,结果证实在给予本申请dsRNA配体缀合物后均显示出优异的抑制人凝血因子XI蛋白的表达、以及活性的效果,且明显延长活化部分凝血溶酶时间(APTT)。
表17体内实验设计表
表18对食蟹猴血浆中凝血因子XI蛋白表达效果的抑制

表19对食蟹猴血浆中凝血因子XI活性效果的抑制
表20对食蟹猴血浆中的活化部分凝血溶酶时间的延长
试验例7体外肝匀浆稳定性的评价
1)按照每200mg肝脏组织(C57BL/6小鼠),加入1mL组织裂解液(100mM Tris-HCl,1mM MgCl2,pH 6.0),在-30℃条件下组织研磨器研磨,收集研磨液,即空白肝匀浆液,-80℃放置备用。
2)吸取17μL的待测dsRNA配体缀合物的储备液(浓度为4.1mg/mL)加680μL无酶水将储备液稀释至100μg/mL备用,体系中待测化合物终浓度为10μg/mL(1:10)。
3)取小鼠空白肝匀浆液,于37℃温孵5min、18h、21h、24h。
4)吸取540μL温孵24h后空白肝匀浆液至1.5mL Eppendorf管中,加入60μL待测化合物储备液(100μg/mL),涡旋混匀,即为0h样品。
5)吸取540μL温孵21h后空白肝匀浆液至1.5mL Eppendorf管中,加入60μL待测化合物储备液(100μg/mL),涡旋混匀,在摇床(37℃,300rpm)条件下继续放置3h,即为3h样品。
6)吸取540μL温孵18h后空白肝匀浆液至1.5mL Eppendorf管中,加入60μL待测化合物储备液(100μg/mL),涡旋混匀,在摇床(37℃,300rpm)条件下继续放置6h,即为6h样品。
7)吸取540μL温孵5min后空白肝匀浆液至1.5mL Eppendorf管中,加入60μL待测化合物储备液(100μg/mL),涡旋混匀,在摇床(37℃,300rpm)条件下放置24h,即为24h样品。
8)样品前处理:
(1)将上述所有样品涡旋混匀。移取50μL待测样品,再加入150μL Clarity裂解液(phenomenex,货号:AL0-8579),涡旋5min,15000rpm离心10min。
(2)在Clarity OTX SPE板(phenomenex,货号:8E-S103-EGA)中依次加入1mL甲醇和1mL平衡缓冲液(50mM乙酸铵(pH=5.5)+0.5%Triton_X100)。
(3)吸取步骤1)中离心后的185μL上清液装载在SPE试剂盒上。
(4)用1mL平衡缓冲液(50mM乙酸铵(pH=5.5))冲洗3次,然后再用1mL缓冲液(50mM乙酸铵(pH=5.5)+50%乙腈)冲洗3次。
(5)用1mL洗脱液(100mM碳酸氢铵(pH=9.5)+40%乙腈+10%四氢呋喃)洗脱2次。
(6)最后在65℃氮气吹干,加入100μL TE buffer(10mM Tris-HCL+1mM EDTA(pH=8.0))复溶,涡旋5min,15000rpm离心10min,取上清后进样分析。
9)采用LC-MS/MS进行样品浓度检测,以零点作为对照,采用分析物峰面积来计算剩余百分比,分析数据。
根据试验结果发现,本申请的dsRNA配体缀合物具有良好的稳定性,正义链在孵育24h后的剩余量超过50%,反义链在在孵育24h后的剩余量超过80%。
试验例8体外在靶及脱靶评价
细胞培养与转染
用含有10%的胎牛血清(Gibco,货号10099-141)的DMEM完全培养基(Hyclone,货号SH30243.01)于37℃,含有5% CO2的培养箱中培养Cos7细胞(购自南京科佰生物科技有限公司)。将Cos7细胞以2×104细胞/孔接种于96孔板内,培养过夜。利用0.3μL Lipofectamine 3000转染试剂(Invitrogen,货号L3000015)将报告基因质粒(在靶/脱靶质粒)转入Cos7细胞。在质粒转染6-8小时之后,去除培养基,利用Lipofectamine RNAiMAX转染试剂(Invitrogen,货号13778150)将不同浓度的siRNA转染至含有报告基因质粒的Cos7细胞中,在靶质粒的给药浓度为10nM-0.00457nM,脱靶质粒的给药浓度范围为40nM-0.0183nM,37℃,5%CO2培养48h。
检测
利用双荧光素酶检测试剂盒(Promega,货号为E2940)进行检测。计算每孔发光比值Ratio=Fir/Ren,以对照组的发光比值为基准,对各测试组的发光比值进行归一化,获得Ratio(测试)/Ratio(对照)的比值R,以此表示firefly报告基因的表达水平。siRNA的抑制率(%)=(1-R)×100%。
在靶质粒GSCM构建原则为在pmirGLO质粒的萤火虫荧光素酶的3’非翻译区插入与反义链互补配对的序列。脱靶质粒GSSM构建原则为在pmirGLO质粒的萤火虫荧光素酶的3’非翻译区插入与反义链5’端1-8位完全匹配,其他部位完全不匹配的序列;为了提高灵敏性,构建了GSSM-X5,即5条相同的GSSM连接组成。脱靶质粒PSCM构建原则为在pmirGLO质粒的萤火虫荧光素酶的3’非翻译区分别插入与正义链互补配对的序列。脱靶质粒PSSM构建原则为在pmirGLO质粒的萤火虫荧光素酶的3’非翻译区插入与正义链5’端1-8位完全匹配,其他部位完全不匹配的序列。
试验结果显示,本申请的双链核糖核酸(dsRNA)无明显的脱靶效应。

Claims (25)

  1. 一种双链核糖核酸(dsRNA)、其药学上可接受的盐或其配体缀合物,所述dsRNA包含正义链和反义链,所述正义链含有如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列中至少15个连续的核苷酸且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列中至少15个连续的核苷酸且反义链的长度不超过23个核苷酸:
    正义链:5’-GAUCUCCAACUAAAAUACU-3’(SEQ ID NO.1),
    反义链:5’-AGUAUUUUAGUUGGAGAUCCG-3’(SEQ ID NO.2);
    正义链:5’-GGAUGAUUUUCUUAUAUCA-3’(SEQ ID NO.3),
    反义链:5’-UGAUAUAAGAAAAUCAUCCUG-3’(SEQ ID NO.4);
    正义链:5’-GGUCUUUUCAGGAUGAUUU-3’(SEQ ID NO.5),
    反义链:5’-AAAUCAUCCUGAAAAGACCUU-3’(SEQ ID NO.6);
    正义链:5’-GUCUUUUCAGGAUGAUUUU-3’(SEQ ID NO.7),
    反义链:5’-AAAAUCAUCCUGAAAAGACCU-3’(SEQ ID NO.8);
    正义链:5’-CUUUUCAGGAUGAUUUUCU-3’(SEQ ID NO.9),
    反义链:5’-AGAAAAUCAUCCUGAAAAGAC-3’(SEQ ID NO.10);
    正义链:5’-UUUUCAGGAUGAUUUUCUU-3’(SEQ ID NO.11),
    反义链:5’-AAGAAAAUCAUCCUGAAAAGA-3’(SEQ ID NO.12);
    正义链:5’-UCAGGAUGAUUUUCUUAUA-3’(SEQ ID NO.13),
    反义链:5’-UAUAAGAAAAUCAUCCUGAAA-3’(SEQ ID NO.14);
    正义链:5’-CAGGAUGAUUUUCUUAUAU-3’(SEQ ID NO.15),
    反义链:5’-AUAUAAGAAAAUCAUCCUGAA-3’(SEQ ID NO.16);
    正义链:5’-AGGAUGAUUUUCUUAUAUC-3’(SEQ ID NO.17),
    反义链:5’-GAUAUAAGAAAAUCAUCCUGA-3’(SEQ ID NO.18);
    正义链:5’-GAUGAUUUUCUUAUAUCAA-3’(SEQ ID NO.19),
    反义链:5’-UUGAUAUAAGAAAAUCAUCCU-3’(SEQ ID NO.20);
    正义链:5’-AUGAUUUUCUUAUAUCAAG-3’(SEQ ID NO.21),
    反义链:5’-CUUGAUAUAAGAAAAUCAUCC-3’(SEQ ID NO.22);
    正义链:5’-UGAUUUUCUUAUAUCAAGU-3’(SEQ ID NO.23),
    反义链:5’-ACUUGAUAUAAGAAAAUCAUC-3’(SEQ ID NO.24);
    正义链:5’-CUUAUAUCAAGUGGUACAU-3’(SEQ ID NO.25),
    反义链:5’-AUGUACCACUUGAUAUAAGAA-3’(SEQ ID NO.26);
    正义链:5’-AAACGGAUCUCCAACUAAA-3’(SEQ ID NO.27),
    反义链:5’-UUUAGUUGGAGAUCCGUUUGA-3’(SEQ ID NO.28);
    所述正义链或反义链任选地是经修饰的。
  2. 根据权利要求1所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述正义链含有如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列且正义链的长度不超过21个核苷酸,所述反义链含有如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列且反义链的长度不超过23个核苷酸。
  3. 根据权利要求1所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述正义链是如SEQ ID NO.1、SEQ ID NO.3、SEQ ID NO.5、SEQ ID NO.7、SEQ ID NO.9、SEQ ID NO.11、SEQ ID NO.13、SEQ ID NO.15、SEQ ID NO.17、SEQ ID NO.19、SEQ ID NO.21、SEQ ID NO.23、SEQ ID NO.25或SEQ ID NO.27所示的核苷酸序列,所述反义链是如SEQ ID NO.2、SEQ ID NO.4、SEQ ID NO.6、SEQ ID NO.8、SEQ ID NO.10、SEQ ID NO.12、SEQ ID NO.14、SEQ ID NO.16、SEQ ID NO.18、SEQ ID NO.20、SEQ ID NO.22、SEQ ID NO.24、SEQ ID NO.26或SEQ ID NO.28所示的核苷酸序列。
  4. 根据权利要求1-3任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述正义链或反义链包括位于5’端和/或3’端的突出端。
  5. 根据权利要求4所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述突出端含有1、2、3、4或5个核苷酸;或者,所述突出端含有1或2个核苷酸;或者,所述突出端为所述正义链或所述反义链5’端和/或3’端的1、2、3、4或5个核苷酸;或者,所述dsRNA、其药学上可接受的盐或其配体缀合物包含额外序列作为突出端。
  6. 根据权利要求4或5所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述突出端中的额外序列选自未修饰或经修饰的A、G、C、U或T;或者选自未修饰或经修饰的U或T;或者当所述突出端为1个核苷酸时,所述突出端选自u或dT;或者当所述突出端为2个核苷酸时,所述突出端选自uu或dTdT。
  7. 根据权利要求4至6任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述作为突出端的额外序列与其相邻的核苷酸通过磷酸酯基或硫代磷酸酯基连接;或者,所述作为突出端的额外序列中的一个或多个核苷酸之间通过磷酸酯基或硫代磷酸酯基连接。
  8. 根据权利要求1至7任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述正义链的1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个或21个核苷酸是经修饰的,或者前述任意值形成的范围内的核苷酸是经修饰的;或者,所述正义链的1-21个、1-20个、1-19个、1-18个、1-17个、1-16个、1-15个、1-14个、1-13个、1-12个、1-11个或1-10个核苷酸是经修饰的;或者所述正义链的1个以上、2个以上、3个以上、4个以上、5个以上、6个以上、7个以上、8个以上、9个以上、10个以上、11个以上、12个以上、13个以上、14个以上、15个以上、16个以上、17个以上、18个以上、19个以上、20个以上或21个以上核苷酸是经修饰的;或者,所述正义链的所有核苷酸是经修饰的;和/或
    所述反义链的1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个或23个核苷酸是经修饰的,或者前述任意值形成的范围内的核苷酸是经修饰的;或者,所述反义链的1-23个、1-22个、1-21个、1-20个、1-19个、1-18个、1-17个、1-16个、1-15个、1-14个、1-13个、1-12个、1-11个或1-10个核苷酸是经修饰的;或者所述反义链的1个以上、2个以上、3个以上、4个以上、5个以上、6个以上、7个以上、8个以上、9个以上、10个以上、11个以上、12个以上、13个以上、14个以上、15个以上、16个以上、17个以上、18个以上、19个以上、20个以上、21个以上、22个以上或23个以上核苷酸是经修饰的;或者,所述反义链的所有核苷酸是经修饰的。
  9. 根据权利要求1至8任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述修饰选自核苷酸的糖基修饰、碱基的修饰、核苷酸间的连接键修饰或末端修饰。
  10. 根据权利要求9所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述核苷酸的糖基修饰选自2’-脱羟基化、2’-氟代、2’-氨基、2’-烷基、2’-O-烷基、2’-O-醚基、2’-O-烯基;或者,所述核苷酸的糖基修饰选自2’-脱羟基化、2’-氟代、2’-氨基、2’-甲基、2’-乙基、2’-甲基-O-甲基、2’-乙基-O-甲基、2’-O-甲基、2’-O-乙基、2’-O-乙基-O-甲基或2’-O-烯丙基;
    所述核苷酸间的连接键修饰选自硫代磷酸酯(PS)、二硫代磷酸酯(PS2)、甲基膦酸酯(MP)、甲氧基丙基膦酸酯(MOP)或氨基膦酸酯;或者,所述核苷酸间的连接键修饰选自硫代磷酸酯(PS);和/或
    所述末端修饰选自5’-末端修饰或3’-末端修饰;或者,所述末端修饰选自5’-磷酸酯、5’-甲基膦酸酯(5’-MP)、5’-硫代磷酸酯(5’-PS)或5’-(E)-乙烯基膦酸酯(5’-(E)-VP)。
  11. 根据权利要求1至10任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述正义链的第1、2位核苷酸之间和/或正义链的第2、3位核苷酸之间采用硫代磷酸酯基修饰,所述反义链的第1、2位核苷酸之间、反义链的第2、3位核苷酸之间、反义链的第19、20位核苷酸之间和/或反义链的第20、21位核苷酸之间采用硫代磷酸酯基修饰。
  12. 根据权利要求1至11任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述正义链有2、3、4或5个核苷酸采用2’-氟代修饰,所述正义链有14、15、16或17个核苷酸采用2’-O-甲基修饰;和/或
    所述反义链有2、3、4、5、6或7个核苷酸采用2’-氟代修饰,所述反义链有14、15、16、17、18、19、20或21个核苷酸采用2’-O-甲基修饰。
  13. 根据权利要求1至12任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述正义链的第1至6位核苷酸中有0个、1个或2个核苷酸采用2’-氟代修饰,所述正义链的第1至6位核苷酸中有4个、5个或6个核苷酸采用2’-O-甲基修饰,所述正义链的第7至9位核苷酸中有2个或3个核苷酸采用2’-氟代修饰,所述正义链的第7至9位核苷酸中有0个或1个核苷酸采用2’-O-甲基修饰,所述正义链的第10至19位核苷酸中有0个或1个核苷酸采用2’-氟代修饰,所述正义链的第10至19位核苷酸中有8个、9个或10个核苷酸采用2’-O-甲基修饰;或者所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,并且所述正义链的第1至6和/或10至19位核苷酸中有0个、1个或2个核苷酸也采用2’-氟 代修饰;或者所述正义链的第7、8和9位核苷酸采用2’-氟代修饰,并且所述正义链的第1至6和/或10至19位核苷酸中有0个、1个或2个核苷酸也采用2’-氟代修饰。
  14. 根据权利要求1至13任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述反义链的第2、6、14、16位核苷酸中有3个或4个核苷酸采用2’-氟代修饰;或者所述反义链的第2、6、8、9、14、16位核苷酸中有3个、4个、5个或6个核苷酸采用2’-氟代修饰;或者所述反义链的第2、6、14和16位核苷酸采用2’-氟代修饰,并且所述反义链的第1、3至5、7至13、15、17至21和/或17至23位核苷酸中任意一个或两个也采用2’-氟代修饰;或者所述反义链的第1、3至5、7至13、15、17至21位、和/或17至23核苷酸中有14、15、16、17、18或19个核苷酸采用2’-O-甲基修饰。
  15. 根据权利要求1至14任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,配体含有至少一个靶向基团;或者配体含有一个、二个、三个、四个或五个靶向基团。
  16. 根据权利要求15所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述靶向基团为GalNAc基团。
  17. 根据权利要求1至16任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述配体包括如下分支基团:
  18. 根据权利要求1至17任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述配体选自:

  19. 根据权利要求1至18任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述配体与正义链或反义链的5’或3’末端连接;或者,所述配体与正义链的5’或3’末端连接;或者,所述配体与正义链的3’末端连接。
  20. 根据权利要求1至19任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述双链核糖核酸包含如下正义链中的任一者:SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:57、SEQ ID NO:59、SEQ ID NO:61、SEQ ID NO:63、SEQ ID NO:65、SEQ ID NO:67、SEQ ID NO:69、SEQ ID NO:71、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:77、SEQ ID NO:79、SEQ ID NO:81、SEQ ID NO:83;并且
    所述双链核糖核酸包含如下反义链中的任一者:SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20、SEQ ID NO:22、SEQ ID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32、SEQ ID NO:34、SEQ ID NO:36、SEQ ID NO:38、SEQ ID NO:40、SEQ ID NO:42、SEQ ID NO:44、SEQ ID NO:46、SEQ ID NO:48、SEQ ID NO:50、SEQ ID NO:52、SEQ ID NO:54、SEQ ID NO:56、SEQ ID NO:58、SEQ ID NO:60、SEQ ID NO:62、SEQ ID NO:64、SEQ ID NO:66、SEQ ID NO:68、SEQ ID NO:70、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:78、SEQ ID NO:80、SEQ ID NO:82、SEQ ID NO:84。
  21. 根据权利要求1至20任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中,所述双链核糖核酸包含如下正义链和反义链的序列对:SEQ ID NO:1/SEQ ID NO:2、SEQ ID NO:3/SEQ ID NO:4、SEQ ID NO:5/SEQ ID NO:6、SEQ ID NO:7/SEQ ID NO:8、SEQ ID NO:9/SEQ ID NO:10、SEQ ID NO:11/SEQ ID NO:12、SEQ ID NO:13/SEQ ID NO:14、SEQ ID NO:15/SEQ ID NO:16、SEQ ID NO:17/SEQ ID NO:18、SEQ ID NO:19/SEQ ID NO:20、SEQ ID NO:21/SEQ ID NO:22、SEQ ID NO:23/SEQ ID NO:24、SEQ ID NO:25/SEQ ID NO:26、SEQ ID NO:27/SEQ ID NO:28、SEQ ID NO:29/SEQ ID NO:30、SEQ ID NO:31/SEQ ID NO:32、SEQ ID NO:33/SEQ ID NO:34、SEQ ID NO:35/SEQ ID NO:36、SEQ ID NO:37/SEQ ID NO:38、SEQ ID NO:39/SEQ ID NO:40、SEQ ID NO:41/SEQ ID NO:42、SEQ ID NO:43/SEQ ID NO:44、SEQ ID NO:45/SEQ ID NO:46、SEQ ID NO:47/SEQ ID NO:48、SEQ ID NO:49/SEQ ID NO:50、SEQ ID NO:51/SEQ ID NO:52、SEQ ID NO:53/SEQ ID NO:54、SEQ ID NO:55/SEQ ID NO:56、SEQ ID NO:57/SEQ ID NO:58、SEQ ID NO:59/SEQ ID NO:60、SEQ ID NO:61/SEQ ID NO:62、SEQ ID NO:63/SEQ ID NO:64、SEQ ID NO:65/SEQ ID NO:66、SEQ ID NO:67/SEQ ID NO:68、SEQ ID NO:69/SEQ ID NO:70、SEQ ID NO:71/SEQ ID NO:72、SEQ ID NO:73/SEQ ID NO:74、SEQ ID NO:75/ SEQ ID NO:76、SEQ ID NO:77/SEQ ID NO:78、SEQ ID NO:79/SEQ ID NO:80、SEQ ID NO:81/SEQ ID NO:82、SEQ ID NO:83/SEQ ID NO:84。
  22. 根据权利要求1至21任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,其中:
    所述正义链包括5’-gsasucUfcCfAfAfcuaaaauacuL-3’(SEQ ID NO:29),所述反义链包括5’-asGfsuauUfuUfAfguugGfaGfaucscsg-3’(SEQ ID NO:30);
    所述正义链包括5’-gsasucucCfAfAfcuaaaauacuL-3’(SEQ ID NO:31),所述反义链包括5’-asGfsuauUfuuaguugGfaGfaucscsg-3’(SEQ ID NO:32);
    所述正义链包括5’-gsgsauGfaUfUfUfucuuauaucaL-3’(SEQ ID NO:33),所述反义链包括5’-usGfsauaUfaAfGfaaaaUfcAfuccsusg-3’(SEQ ID NO:34);
    所述正义链包括5’-gsgsaugaUfUfUfucuuauaucaL-3’(SEQ ID NO:35),所述反义链包括5’-usGfsauaUfaagaaaaUfcAfuccsusg-3’(SEQ ID NO:36);
    所述正义链包括5’-gsgsucUfuUfUfCfaggaugauuuL-3’(SEQ ID NO:37),所述反义链包括5’-asAfsaucAfuCfCfugaaAfaGfaccsusu-3’(SEQ ID NO:38);
    所述正义链包括5’-gsgsucuuUfUfCfaggaugauuuL-3’(SEQ ID NO:39),所述反义链包括5’-asAfsaucAfuccugaaAfaGfaccsusu-3’(SEQ ID NO:40);
    所述正义链包括5’-gsuscuUfuUfCfAfggaugauuuuL-3’(SEQ ID NO:41),所述反义链包括5’-asAfsaauCfaUfCfcugaAfaAfgacscsu-3’(SEQ ID NO:42);
    所述正义链包括5’-gsuscuuuUfCfAfggaugauuuuL-3’(SEQ ID NO:43),所述反义链包括5’-asAfsaauCfauccugaAfaAfgacscsu-3’(SEQ ID NO:44);
    所述正义链包括5’-csusuuUfcAfGfGfaugauuuucuL-3’(SEQ ID NO:45),所述反义链包括5’-asGfsaaaAfuCfAfuccuGfaAfaagsasc-3’(SEQ ID NO:46);
    所述正义链包括5’-csusuuucAfGfGfaugauuuucuL-3’(SEQ ID NO:47),所述反义链包括5’-asGfsaaaAfucauccuGfaAfaagsasc-3’(SEQ ID NO:48);
    所述正义链包括5’-ususuuCfaGfGfAfugauuuucuuL-3’(SEQ ID NO:49),所述反义链包括5’-asAfsgaaAfaUfCfauccUfgAfaaasgsa-3’(SEQ ID NO:50);
    所述正义链包括5’-ususuucaGfGfAfugauuuucuuL-3’(SEQ ID NO:51),所述反义链包括5’-asAfsgaaAfaucauccUfgAfaaasgsa-3’(SEQ ID NO:52);
    所述正义链包括5’-uscsagGfaUfGfAfuuuucuuauaL-3’(SEQ ID NO:53),所述反义链包括5’-usAfsuaaGfaAfAfaucaUfcCfugasasa-3’(SEQ ID NO:54);
    所述正义链包括5’-uscsaggaUfGfAfuuuucuuauaL-3’(SEQ ID NO:55),所述反义链包括5’-usAfsuaaGfaaaaucaUfcCfugasasa-3’(SEQ ID NO:56);
    所述正义链包括5’-csasggAfuGfAfUfuuucuuauauL-3’(SEQ ID NO:57),所述反义链包括5’-asUfsauaAfgAfAfaaucAfuCfcugsasa-3’(SEQ ID NO:58);
    所述正义链包括5’-csasggauGfAfUfuuucuuauauL-3’(SEQ ID NO:59),所述反义链包括5’-asUfsauaAfgaaaaucAfuCfcugsasa-3’(SEQ ID NO:60);
    所述正义链包括5’-asgsgaUfgAfUfUfuucuuauaucL-3’(SEQ ID NO:61),所述反义链包括5’-gsAfsuauAfaGfAfaaauCfaUfccusgsa-3’(SEQ ID NO:62);
    所述正义链包括5’-asgsgaugAfUfUfuucuuauaucL-3’(SEQ ID NO:63),所述反义链包括5’-gsAfsuauAfagaaaauCfaUfccusgsa-3’(SEQ ID NO:64);
    所述正义链包括5’-gsasugAfuUfUfUfcuuauaucaaL-3’(SEQ ID NO:65),所述反义链包括5’-usUfsgauAfuAfAfgaaaAfuCfaucscsu-3’(SEQ ID NO:66);
    所述正义链包括5’-gsasugauUfUfUfcuuauaucaaL-3’(SEQ ID NO:67),所述反义链包括5’-usUfsgauAfuaagaaaAfuCfaucscsu-3’(SEQ ID NO:68);
    所述正义链包括5’-asusgaUfuUfUfCfuuauaucaagL-3’(SEQ ID NO:69),所述反义链包括5’-csUfsugaUfaUfAfagaaAfaUfcauscsc-3’(SEQ ID NO:70);
    所述正义链包括5’-asusgauuUfUfCfuuauaucaagL-3’(SEQ ID NO:71),所述反义链包括5’-csUfsugaUfauaagaaAfaUfcauscsc-3’(SEQ ID NO:72);
    所述正义链包括5’-usgsauUfuUfCfUfuauaucaaguL-3’(SEQ ID NO:73),所述反义链包括5’-asCfsuugAfuAfUfaagaAfaAfucasusc-3’(SEQ ID NO:74);
    所述正义链包括5’-usgsauuuUfCfUfuauaucaaguL-3’(SEQ ID NO:75),所述反义链包括5’-asCfsuugAfuauaagaAfaAfucasusc-3’(SEQ ID NO:76);
    所述正义链包括5’-csusuaUfaUfCfAfagugguacauL-3’(SEQ ID NO:77),所述反义链包括5’-asUfsguaCfcAfCfuugaUfaUfaagsasa-3’(SEQ ID NO:78);
    所述正义链包括5’-csusuauaUfCfAfagugguacauL-3’(SEQ ID NO:79),所述反义链包括5’-asUfsguaCfcacuugaUfaUfaagsasa-3’(SEQ ID NO:80);
    所述正义链包括5’-asasacGfgAfUfCfuccaacuaaaL-3’(SEQ ID NO:81),所述反义链包括5’-usUfsuagUfuGfGfagauCfcGfuuusgsa-3’(SEQ ID NO:82);
    所述正义链包括5’-asasacggAfUfCfuccaacuaaaL-3’(SEQ ID NO:83),所述反义链包括5’-usUfsuagUfuggagauCfcGfuuusgsa-3’(SEQ ID NO:84);
    所述L为L01或L02。
  23. 一种药物组合物,其包含根据权利要求1-22任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物,任选地包括药学上可接受的载体或赋形剂。
  24. 权利要求1-22任一项所述的双链核糖核酸、其药学上可接受的盐或其配体缀合物或权利要求23所述的药物组合物在制备用于治疗和/或预防血栓栓塞及其并发症的药物中的用途。
  25. 根据权利要求24所述的用途,其中,所述双链核糖核酸、其药学上可接受的盐或其配体缀合物、或药物组合物与其他治疗剂共同使用。
PCT/CN2024/115820 2023-08-31 2024-08-30 靶向凝血因子xi的双链核糖核酸 WO2025045194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311121470 2023-08-31
CN202311121470.9 2023-08-31

Publications (1)

Publication Number Publication Date
WO2025045194A1 true WO2025045194A1 (zh) 2025-03-06

Family

ID=94818173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/115820 WO2025045194A1 (zh) 2023-08-31 2024-08-30 靶向凝血因子xi的双链核糖核酸

Country Status (1)

Country Link
WO (1) WO2025045194A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245186A (zh) * 2008-10-15 2011-11-16 Isis制药公司 因子11表达的调节
CN108064162A (zh) * 2013-05-01 2018-05-22 Ionis制药公司 缀合反义化合物及其用途
CN113227376A (zh) * 2019-05-22 2021-08-06 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
WO2022028457A1 (zh) * 2020-08-04 2022-02-10 上海拓界生物医药科技有限公司 抑制凝血因子XI表达的siRNA、组合物及其医药用途
US20220364087A1 (en) * 2021-04-13 2022-11-17 Sirnaomics, Inc. Products and compositions
WO2023109945A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245186A (zh) * 2008-10-15 2011-11-16 Isis制药公司 因子11表达的调节
CN108064162A (zh) * 2013-05-01 2018-05-22 Ionis制药公司 缀合反义化合物及其用途
CN113227376A (zh) * 2019-05-22 2021-08-06 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
WO2022028457A1 (zh) * 2020-08-04 2022-02-10 上海拓界生物医药科技有限公司 抑制凝血因子XI表达的siRNA、组合物及其医药用途
US20220364087A1 (en) * 2021-04-13 2022-11-17 Sirnaomics, Inc. Products and compositions
WO2023109945A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用

Similar Documents

Publication Publication Date Title
CN110234326B (zh) 用于抑制因子xii基因表达的组合物和方法
TWI823866B (zh) 用於抑制類血管生成素蛋白-3(ANGPTL3)表現的RNAi藥劑及組合物及使用方法
KR102769565B1 (ko) 17베타-HSD 유형 13- (HSD17B13)의 발현을 억제하기 위한 RNAi 작용제, 그의 조성물, 및 사용 방법
EP3356529B1 (en) Compositions and methods for inhibiting gene expression of lpa
JP5242918B2 (ja) 補体関連障害の治療に有用なアプタマー治療法
CN108064313B (zh) 用于抑制因子xii的基因表达的组合物和方法
US7531524B2 (en) Modulators of coagulation factors with enhanced stability
CN111107853A (zh) 用于抑制载脂蛋白C-III (APOC3)的表达的RNAi试剂和组合物
KR20190098748A (ko) 알파-1 항트립신 (AAT) RNAi 작용제, AAT RNAi 작용제를 포함하는 조성물, 및 사용 방법
JP7348922B2 (ja) B型肝炎感染の治療用のPAPD5及びPAPD7 mRNAを低減させるための核酸分子
JP2024534508A (ja) Lpa阻害剤及びその使用
WO2021249352A1 (zh) 双链siRNA类似物的缀合物
TW202137987A (zh) 用於治療hbv之靶向hbv的治療性寡核苷酸及tlr7促效劑之醫藥組合
CN117625610A (zh) 用于增强STING表达的saRNA、缀合物及药物组合物
WO2025045194A1 (zh) 靶向凝血因子xi的双链核糖核酸
CN116949044A (zh) 一种双链寡链核苷酸、包含该双链寡核苷酸的缀合物以及它们的用途
EP4398939A1 (en) Fatty acid conjugates of nucleic acids
WO2025031302A1 (zh) 靶向pd-l1的双链核糖核酸
WO2023246750A1 (zh) 用于抑制乙型肝炎病毒的双链核糖核酸
WO2024230836A1 (zh) 调控MASP2基因活性的dsRNA分子
WO2024169907A1 (zh) 一种调节补体C3表达的siRNA、其缀合物和药物组合物及用途
TWI870358B (zh) 用於抑制17β-HSD第13型(HSD17B13)表現之RNAi藥劑、其組合物及使用方法
WO2025026228A1 (zh) Cfb抑制剂组合物及其应用
CN119563025A (zh) 一种抑制LP(a)基因表达的dsRNA分子及其应用
WO2024175062A1 (zh) 调控KHK基因活性的dsRNA分子