[go: up one dir, main page]

WO2025040441A1 - Procédé de post-réticulation de surface thermique de superabsorbeurs - Google Patents

Procédé de post-réticulation de surface thermique de superabsorbeurs Download PDF

Info

Publication number
WO2025040441A1
WO2025040441A1 PCT/EP2024/072322 EP2024072322W WO2025040441A1 WO 2025040441 A1 WO2025040441 A1 WO 2025040441A1 EP 2024072322 W EP2024072322 W EP 2024072322W WO 2025040441 A1 WO2025040441 A1 WO 2025040441A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact dryer
process according
superabsorbent particles
surface post
dryer
Prior art date
Application number
PCT/EP2024/072322
Other languages
German (de)
English (en)
Inventor
Ronny De Kaey
Karl Possemiers
Dominicus Van Esbroeck
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2025040441A1 publication Critical patent/WO2025040441A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a process for the continuous thermal surface post-crosslinking of superabsorbents, wherein superabsorbent particles are coated by spraying on a surface post-crosslinking solution, the coated superabsorbent particles are thermally surface post-crosslinked in a contact dryer 1, a gas is passed into the contact dryer 1 and the total gas quantity is from 5 to 60 Nm 3 /h per m 3 internal volume of the contact dryer 1.
  • Superabsorbents are used to make diapers, tampons, sanitary napkins and other hygiene products, but also as water-retaining agents in agricultural horticulture. Superabsorbents are also known as water-absorbing polymers.
  • superabsorbent particles are generally surface-crosslinked. This increases the degree of crosslinking of the particle surface, whereby the absorption under a pressure of 49.2 g/cm 2 (AUHL) and the centrifuge retention capacity (CRC - Centrifuge Retention Capacity) can be at least partially decoupled.
  • This surface-crosslinking can be carried out in an aqueous gel phase.
  • dried, ground and sieved polymer particles are coated on the surface with a surface-crosslinker and thermally surface-crosslinked.
  • Suitable crosslinkers for this are compounds that can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • the object of the present invention was to provide an improved process for the thermal surface post-crosslinking of superabsorbent particles, in particular a lower TOC load of the exhaust gas and fewer agglomerates.
  • the problem was solved by a process for the continuous thermal surface post-crosslinking of superabsorbents, whereby superabsorbent particles are coated by spraying on a surface post-crosslinking solution, the coated superabsorbent particles are thermally post-treated in a contact dryer 1 and the thermally post-treated superabsorbent particles are cooled in a contact dryer 2, characterized in that a gas is passed into the contact dryer 1 and the total gas quantity is from 5 to 60 Nm 3 /h per m 3 internal volume of the contact dryer 1.
  • Contact dryers suitable for the continuous process according to the invention are, for example, paddle dryers and disk dryers.
  • contact dryers the goods to be dried are guided along a heated surface using a dynamic tool and are then rearranged. Contact dryers can also be used for cooling.
  • the gas flow is preferably from 10 to 50 Nm 3 /h, particularly preferably from 15 to 40 Nm 3 /h, very particularly preferably from 20 to 30 Nm 3 /h, in each case per m 3 internal volume of the contact dryer 1.
  • One Nm 3 corresponds to a gas volume of 1 m 3 at 273.15 K and 1,013.25 hPa.
  • the present invention is based on the knowledge that too high a gas flow leads to increased entrainment of organic material.
  • the TOC value in the exhaust gas is then increased. Too low a gas flow, on the other hand, leads to increased formation of agglomerates.
  • the average droplet diameter when spraying the surface postcrosslinker solution is, for example, 200 to 4,500 pm, preferably 300 to 3,500 pm, particularly preferably 400 to 2,500 pm, very particularly preferably 500 to 1,500 pm.
  • the average droplet diameter can be determined by light scattering.
  • droplet size and flow rate are directly related, i.e. as the flow rate increases, the droplet size decreases.
  • the droplet size also decreases when the nozzle pressure is increased or the spray angle is increased.
  • the temperature of the superabsorbent particles when spraying on the surface postcrosslinker solution is preferably from 30 to 80°C, particularly preferably from 35 to 75°C, most preferably from 40 to 70°C.
  • the surface post-crosslinker solution preferably contains from 0.001 to 2 wt.%, particularly preferably from 0.01 to 1 wt.%, most preferably from 0.03 to 0.7 wt.%, of a surface postcrosslinker, based in each case on the superabsorbent particles.
  • the surface postcrosslinker solution further preferably contains from 0.5 to 5% by weight, particularly preferably from 1.0 to 4% by weight, very particularly preferably from 1.5 to 3% by weight, of water, based in each case on the superabsorbent particles.
  • the superabsorbent particles are heated in the contact dryer 1 to a temperature of preferably 110 to 220°C, particularly preferably 120 to 210°C, very particularly preferably 130 to 200°C.
  • the residence time of the superabsorbent particles in the contact dryer 1 is preferably from 10 to 60 minutes, particularly preferably from 15 to 50 minutes, very particularly preferably from 20 to 40 minutes.
  • the contact dryer 1 and the connection to the contact dryer 2 can be trace heated and/or thermally insulated.
  • the superabsorbent particles are cooled in the contact dryer 2 to a temperature of preferably 30 to 80°C, particularly preferably 35 to 70°C, very particularly preferably 40 to 60°C.
  • the residence time of the superabsorbent particles in the contact dryer 2 is preferably from 10 to 60 minutes, particularly preferably from 15 to 50 minutes, very particularly preferably from 20 to 40 minutes.
  • the gas stream fed into the contact dryer 1 has an oxygen content of less than 10 vol.%.
  • An exhaust gas stream is led out of the contact dryer 1.
  • the exhaust gas stream is deflected upwards in the contact dryer 1 by at least 75° from the horizontal product flow direction.
  • the gas velocity of the exhaust gas stream directly after the deflection is preferably less than 5 m/s, particularly preferably less than 2 m/s, most preferably less than 1 m/s.
  • the superabsorbents are produced by polymerization of a monomer solution and are usually water-insoluble.
  • the ethylenically unsaturated, acid group-bearing monomers are preferably water-soluble, ie the solubility in water at 23°C is typically at least 1 g/100 g water, preferably at least 5 g/100 g water, particularly preferably at least 25 g/100 g water, very particularly preferably at least 35 g/100 g water.
  • Suitable monomers are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Acrylic acid is particularly preferred.
  • the ethylenically unsaturated monomers carrying acid groups are usually partially neutralized.
  • the neutralization is carried out at the monomer stage. This is usually done by mixing in the neutralizing agent as an aqueous solution or preferably also as a solid.
  • the degree of neutralization is preferably from 40 to 85 mol%, particularly preferably from 50 to 80 mol%, very particularly preferably from 60 to 75 mol%, it being possible to use the usual neutralizing agents, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates and mixtures thereof.
  • Ammonium salts can also be used instead of alkali metal salts.
  • Sodium and potassium are particularly preferred as alkali metals, but very particularly preferred are sodium hydroxide, sodium carbonate or sodium hydrogen carbonate and mixtures thereof, in particular sodium hydroxide.
  • the monomers usually contain polymerization inhibitors, preferably hydroquinone hemiether, as storage stabilizers.
  • Suitable crosslinkers are compounds with at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups that can be radically polymerized into the polymer chain and functional groups that can form covalent bonds with the acid groups of the monomer. Furthermore, polyvalent metal salts that can form coordinate bonds with at least two acid groups of the monomer are also suitable as crosslinkers.
  • Suitable crosslinkers are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as described in EP 0 547 847 A1, EP 0 559 476 A1, EP 0 632 068 A1, WO 93/21237 A1, WO 03/104299 A1, WO 03/104300 A1, WO 03/104301 A1 and DE 103 31 450 A1, mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated groups, as described in DE 103 31 456 A1 and DE 103 55 401 A1, or crosslinker mixtures as described, for example, in DE 195 43 368 A1, DE 196 46 484 A1, WO 90
  • the water content of the monomer solution is preferably from 40 to 75% by weight, particularly preferably from 45 to 70% by weight, very particularly preferably from 50 to 65% by weight. As the water content increases, the energy required for the subsequent drying increases, and as the water content decreases, the heat of polymerization can only be dissipated insufficiently.
  • the temperature of the monomer solution is preferably from 10 to 90°C, particularly preferably from 20 to 70°C, most preferably from 30 to 50°C.
  • the monomer solution can be freed of dissolved oxygen before polymerization by inerting, i.e. by flowing through an inert gas, preferably nitrogen or carbon dioxide.
  • an inert gas preferably nitrogen or carbon dioxide.
  • the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, most preferably to less than 0.1 ppm by weight.
  • Suitable reactors for polymerization are, for example, kneader reactors or belt reactors.
  • the polymer gel produced during the polymerization of an aqueous monomer solution or suspension is continuously comminuted, as described in WO 2001/038402 A1.
  • Polymerization on the belt is described, for example, in DE 38 25 366 A1 and US 6,241,928.
  • Polymerization in a belt reactor produces a polymer gel that must be comminuted, for example in an extruder or kneader.
  • the polymer particles are thermally surface-crosslinked to further improve their properties.
  • Suitable surface-crosslinkers are compounds that contain groups that can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols as described in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ß-hydroxyalkylamides as described in DE 102 04 938 A1 and US 6,239,230.
  • the polyvalent cations that can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of titanium and zirconium.
  • Chloride, bromide, hydroxide, sulfate, hydrogen sulfate, carbonate, hydrogen carbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate, such as acetate and lactate, are possible as counterions.
  • Aluminum hydroxide, aluminum sulfate and aluminum lactate are preferred.
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight, in each case based on the polymer.
  • the surface post-crosslinking is carried out by spraying a solution of the surface post-crosslinker onto the dried polymer particles. Following spraying, the polymer particles coated with the surface post-crosslinker are thermally treated.
  • the spraying of a solution of the surface post-crosslinker is preferably carried out in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers.
  • Moving mixing tools such as screw mixers, disk mixers and paddle mixers.
  • Horizontal mixers such as paddle mixers, are particularly preferred, and vertical mixers are very particularly preferred.
  • the distinction between horizontal mixers and vertical mixers is made by the bearing of the mixing shaft, i.e. horizontal mixers have a horizontally mounted mixing shaft and vertical mixers have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, Horizontal Pflugschar® mixers (Gebr.
  • the thermal surface post-crosslinking is carried out in contact dryers, particularly preferably paddle dryers, most preferably disc dryers.
  • Suitable dryers are, for example, Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingart; Germany), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; USA) and Nara Paddle Dryer (NARA Machinery Europe; Frechen; Germany).
  • the surface-crosslinked polymer particles can then be classified again, with polymer particles that are too small and/or too large being separated and returned to the process.
  • the surface-crosslinked polymer particles can be coated or moistened to further improve their properties.
  • the remoistening is preferably carried out at 30 to 80°C, particularly preferably at 35 to 70°C, very particularly preferably at 40 to 60°C. At temperatures that are too low, the polymer particles tend to clump together, and at higher temperatures, water evaporates noticeably.
  • the amount of water used for remoistening is preferably from 1 to 10% by weight, particularly preferably from 2 to 8% by weight, very particularly preferably from 3 to 5% by weight.
  • the remoistening increases the mechanical stability of the polymer particles and reduces their tendency to become statically charged.
  • the remoistening is advantageously carried out in the cooler after the thermal surface post-crosslinking.
  • Suitable coatings for improving the swelling rate and gel bed permeability include inorganic inert substances such as water-insoluble metal salts, organic polymers, cationic polymers and divalent or multivalent metal cations.
  • Suitable coatings for binding dust include polyols.
  • Suitable coatings to prevent the polymer particles from caking include pyrogenic silica such as Aerosil® 200, precipitated silica such as Sipernat® D17 and surfactants such as Span® 20.
  • the liquid conductance (SFC) is determined according to the test method “Urine Permeability Measurement (UPM) Test method” described in EP 2 535 698 A1 on pages 19 to 22.
  • a monomer solution was prepared by continuously mixing deionized water, 50 wt.% sodium hydroxide solution and acrylic acid so that the degree of neutralization corresponded to 71.0 mol%.
  • the water content of the monomer solution was 58.25 wt.%.
  • Triple ethoxylated glycerol triacrylate (approx. 85% by weight) was used as crosslinker. The amount used was 1.04 kg per t of monomer solution.
  • Citric acid was used as a complexing agent.
  • the amount used was 0.07 kg per ton of monomer solution.
  • the monomer solution was dosed into a List Contikneter reactor with a volume of 6.3m 3 (LIST AG, Arisdorf, Switzerland). The throughput of the monomer solution was approximately 22.5 t/h. The reaction solution had a temperature of 30°C at the inlet.
  • the monomer solution was inerted with nitrogen. Ascorbic acid was dosed directly into the reactor. After about 50% of the residence time, an additional 1,000 kg/h of polymer particles with a particle size of less than 150 pm that were generated during the production process through comminution and classification were metered into the reactor. The residence time of the reaction mixture in the reactor was about 15 minutes.
  • the polymer gel obtained was fed onto the conveyor belt of a circulating air belt dryer using an oscillating conveyor belt.
  • the circulating air belt dryer was 48 m long.
  • the conveyor belt of the circulating air belt dryer had an effective width of 4.4 m.
  • the aqueous polymer gel was continuously surrounded by an air/gas mixture (approx. 175°C) and dried.
  • the residence time in the circulating air belt dryer was approx. 37 minutes.
  • the dried polymer gel was crushed using a three-stage roller mill and sieved to a particle size of 150 to 850 pm. Polymer particles with a particle size of less than 150 pm were separated. Polymer particles with a particle size of greater than 850 pm were returned to the crushing process. Polymer particles with a particle size in the range of 150 to 850 pm were thermally surface-crosslinked.
  • the polymer particles were coated with a surface post-crosslinker solution in a Schugi Flexomix® (Hosokawa Micron B.V., Doetinchem, Netherlands) and then dried in a NARA Paddle Dryer (GMF Gouda, Waddinxveen, Netherlands) for 45 minutes at 186.5°C.
  • Schugi Flexomix® Hosokawa Micron B.V., Doetinchem, Netherlands
  • NARA Paddle Dryer GMF Gouda, Waddinxveen, Netherlands
  • the surface post-crosslinker solution was sprayed in the Schugi Flexomix®.
  • the droplets had an average diameter of approx. 1,000 pm.
  • the surface postcrosslinker solution contained 1.55 wt% 2-hydroxyethyl-2 oxazolidone, 1.55 wt% 1,3-propanediol, 12.95 wt% 1,2-propanediol, 10.88 wt% aluminum lactate, 50.70 wt% water, 22.28 wt% isopropanol and 0.08 wt% sorbitan monolaurate (Span®20).
  • the NARA Paddle Dryer had an internal volume of 18.8 m 3 .
  • Via the Schugi Flexomix® approximately 370 Nm 3 /h of a nitrogen/oxygen mixture with approximately 8 vol.% oxygen were fed into the NARA Paddle Dryer.
  • a further approx. 80 Nm 3 /h of nitrogen were introduced.
  • the exhaust gas which was mainly loaded with water and isopropanol, was discharged vertically upwards through the dome of the NARA Paddle Dryer.
  • the dome had a diameter of approx. 1.6 m.
  • the total exhaust gas volume at 186.5°C was approx. 2,100 m 3 /h.
  • the surface-crosslinked superabsorbent particles fell over a weir into a funnel. At the lower end of the funnel was a rotary valve.
  • the surface-crosslinked polymer particles were transferred to a NARA paddle cooler (GMF Gouda, Waddinxveen, Netherlands) using a rotary valve and cooled to approximately 60°C.
  • the surface-crosslinked polymer particles were coated with 118.75 kg/h of water.
  • the superabsorbent particles obtained were filled into flexible intermediate bulk containers (FIBC) and analyzed.
  • the liquid flow conductance (SFC) was approximately 50 x 10 -7 cm 3 s/g.
  • the TOC value in the exhaust gas stream increases.
  • the proportion of polymer particles with a particle diameter of greater than 850 pm (agglomerates) increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention concerne un procédé de post-réticulation de surface thermique continue de superabsorbeurs, des particules superabsorbantes étant revêtues par pulvérisation d'une solution de post-réticulation de surface, les particules superabsorbantes revêtues étant thermiquement post-réticulées dans un séchoir à contact (1), un gaz étant introduit dans le séchoir à contact (1) et la quantité totale de gaz étant de 5 à 60 Nm³/h par m³ de volume interne du séchoir à contact (1).
PCT/EP2024/072322 2023-08-18 2024-08-07 Procédé de post-réticulation de surface thermique de superabsorbeurs WO2025040441A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP23192051 2023-08-18
EP23192051.3 2023-08-18

Publications (1)

Publication Number Publication Date
WO2025040441A1 true WO2025040441A1 (fr) 2025-02-27

Family

ID=87801319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2024/072322 WO2025040441A1 (fr) 2023-08-18 2024-08-07 Procédé de post-réticulation de surface thermique de superabsorbeurs

Country Status (1)

Country Link
WO (1) WO2025040441A1 (fr)

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (fr) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Résine absorbant l'eau ayant une capacité d'absorption et un effet de dispersion dans l'eau améliorés et procédé de préparation
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE3825366A1 (de) 1987-07-28 1989-02-09 Dai Ichi Kogyo Seiyaku Co Ltd Verfahren zur kontinuierlichen herstellung eines acrylpolymergels
WO1990015830A1 (fr) 1989-06-12 1990-12-27 Weyerhaeuser Company Polymere hydrocolloidal
EP0450922A2 (fr) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Procédé de préparation d'un agrégat stable à la fluidité
EP0530438A1 (fr) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné
EP0543303A1 (fr) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrogels hydrophiles à forte capacité de gonflement
EP0547847A1 (fr) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbant l'eau
EP0559476A1 (fr) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Méthode de préparation d'une résine absorbante
WO1993021237A1 (fr) 1992-04-16 1993-10-28 The Dow Chemical Company Resines hydrophiles reticulees et procede de preparation
EP0632068A1 (fr) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbante
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
EP0937736A2 (fr) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Réticulation d'un agent absorbant l'eau
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
WO2001038402A1 (fr) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Procede de preparation continue de polymerisats geliformes reticules a fines particules
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
WO2002032962A2 (fr) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Procedes et compositions des proteines humaines 80090, 52874, 52880, 63497, et 33425 et leurs utilisations
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
WO2003104299A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Procede de production d'esters de polyalcools
WO2003104301A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylesters de glycerine polyalcoxy
WO2003104300A1 (fr) 2002-06-01 2003-12-18 Basf Aktiengesellschaft Esters (meth)acryliques de trimethylolpropane polyalcoxyle
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
EP2471843A1 (fr) * 2009-08-27 2012-07-04 Nippon Shokubai Co., Ltd. Résine d'acide polyacrylique (sel) absorbant l'eau et procédé de fabrication de celle-ci
EP2535698A1 (fr) 2011-06-17 2012-12-19 The Procter & Gamble Company Article absorbant avec propriétés d'absorption améliorées
EP2951212B1 (fr) * 2013-01-29 2017-03-15 Basf Se Procédé de production de particules polymeres absorbant l'eau présentant une grande rapidite de gonflement et une capacite de retention apres centrifugation elevee, le lit de gel gonfle presentant simultanement une grande permeabilite
US20180126030A1 (en) * 2015-04-07 2018-05-10 Basf Se Method for producing super absorber particles
WO2019154652A1 (fr) * 2018-02-06 2019-08-15 Basf Se Procédé pour assurer le transport pneumatique de particules de superabsorbants
US20210362126A1 (en) * 2018-01-09 2021-11-25 Basf Se Superabsorber mixtures

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (fr) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Résine absorbant l'eau ayant une capacité d'absorption et un effet de dispersion dans l'eau améliorés et procédé de préparation
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE3825366A1 (de) 1987-07-28 1989-02-09 Dai Ichi Kogyo Seiyaku Co Ltd Verfahren zur kontinuierlichen herstellung eines acrylpolymergels
WO1990015830A1 (fr) 1989-06-12 1990-12-27 Weyerhaeuser Company Polymere hydrocolloidal
EP0450922A2 (fr) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Procédé de préparation d'un agrégat stable à la fluidité
EP0530438A1 (fr) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné
EP0543303A1 (fr) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrogels hydrophiles à forte capacité de gonflement
EP0547847A1 (fr) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbant l'eau
EP0559476A1 (fr) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Méthode de préparation d'une résine absorbante
WO1993021237A1 (fr) 1992-04-16 1993-10-28 The Dow Chemical Company Resines hydrophiles reticulees et procede de preparation
EP0632068A1 (fr) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbante
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
EP0937736A2 (fr) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Réticulation d'un agent absorbant l'eau
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
WO2001038402A1 (fr) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Procede de preparation continue de polymerisats geliformes reticules a fines particules
WO2002032962A2 (fr) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Procedes et compositions des proteines humaines 80090, 52874, 52880, 63497, et 33425 et leurs utilisations
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
WO2003104300A1 (fr) 2002-06-01 2003-12-18 Basf Aktiengesellschaft Esters (meth)acryliques de trimethylolpropane polyalcoxyle
WO2003104299A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Procede de production d'esters de polyalcools
WO2003104301A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylesters de glycerine polyalcoxy
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
EP2471843A1 (fr) * 2009-08-27 2012-07-04 Nippon Shokubai Co., Ltd. Résine d'acide polyacrylique (sel) absorbant l'eau et procédé de fabrication de celle-ci
EP2535698A1 (fr) 2011-06-17 2012-12-19 The Procter & Gamble Company Article absorbant avec propriétés d'absorption améliorées
EP2951212B1 (fr) * 2013-01-29 2017-03-15 Basf Se Procédé de production de particules polymeres absorbant l'eau présentant une grande rapidite de gonflement et une capacite de retention apres centrifugation elevee, le lit de gel gonfle presentant simultanement une grande permeabilite
US20180126030A1 (en) * 2015-04-07 2018-05-10 Basf Se Method for producing super absorber particles
US20210362126A1 (en) * 2018-01-09 2021-11-25 Basf Se Superabsorber mixtures
WO2019154652A1 (fr) * 2018-02-06 2019-08-15 Basf Se Procédé pour assurer le transport pneumatique de particules de superabsorbants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.L. BUCHHOLZA.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103

Similar Documents

Publication Publication Date Title
EP2922580B1 (fr) Procédé de préparation de super-absorbants à base de matières premières renouvelables
EP2411422B1 (fr) Procédé de production de particules polymères hydrophiles à post-réticulation superficielle
EP2069409B1 (fr) Procédé pour la préparation en continu de particules polymères absorbant l'eau
EP2432836B1 (fr) Procédé de revêtement pour particules polymères hydrophiles
EP2438096B1 (fr) Procédé de production de particules de polymère hydroabsorbantes
WO2018029045A1 (fr) Procédé de fabrication de superabsorbants
EP2870183B2 (fr) Procédé de production de particules polymères absorbant l'eau, à propriétés améliorées
EP2550316B2 (fr) Procédé de production de particules polymères absorbant l'eau
EP3827031B1 (fr) Procédé de fabrication de superabsorbants
WO2025040441A1 (fr) Procédé de post-réticulation de surface thermique de superabsorbeurs
WO2025040440A1 (fr) Procédé de post-réticulation de surface thermique de superabsorbants
EP2714755B1 (fr) Procédé de préparation continue de particules polymères hydroabsorbantes
EP3914400A1 (fr) Procédé de production de particules superabsorbantes
WO2025040438A1 (fr) Procédé de post-réticulation de surface thermique de polymères superabsorbants
WO2025040439A1 (fr) Procédé de postréticulation de surface thermique de superabsorbants
WO2024132671A1 (fr) Procédé de production de superabsorbants
WO2025061557A1 (fr) Procédé de post-réticulation de surface thermique de superabsorbants
WO2024126174A1 (fr) Procédé de production de superabsorbants
WO2024132670A1 (fr) Procédé de production de superabsorbants
WO2020151972A1 (fr) Procédé de production de particules superabsorbantes
EP4263630A1 (fr) Procédé de production de particules superabsorbantes
WO2024146792A1 (fr) Procede de production de superabsorbants
EP2714104B1 (fr) Procédé de production de particules polymères absorbant l'eau
WO2024146794A1 (fr) Procédé de production de superabsorbants
EP2485773B1 (fr) Utilisation de condensat de vapeur de chauffage pour la production de particules polymères qui absorbent l'eau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24754319

Country of ref document: EP

Kind code of ref document: A1