[go: up one dir, main page]

WO2025037480A1 - Cell movement device and method - Google Patents

Cell movement device and method Download PDF

Info

Publication number
WO2025037480A1
WO2025037480A1 PCT/JP2024/022477 JP2024022477W WO2025037480A1 WO 2025037480 A1 WO2025037480 A1 WO 2025037480A1 JP 2024022477 W JP2024022477 W JP 2024022477W WO 2025037480 A1 WO2025037480 A1 WO 2025037480A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
tip
container
head
cell
Prior art date
Application number
PCT/JP2024/022477
Other languages
French (fr)
Japanese (ja)
Inventor
三郎 伊藤
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2025037480A1 publication Critical patent/WO2025037480A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor

Definitions

  • the present invention relates to a cell transfer device and a cell transfer method for transferring cells contained in a first container to a second container.
  • a cell moving device that uses a head equipped with a suction tip to pick and hold a target cell from the culture vessel, and then releases the held cell into the work vessel (for example, Patent Document 1).
  • the limiting dilution method is used to reduce the number of cells, i.e., the cell concentration is reduced, and then the target cells are picked.
  • the total number of cells in the culture vessel is large, there is a problem in that the limiting dilution process requires a great deal of effort.
  • the object of the present invention is to provide a cell migration device and method capable of efficiently picking a target cell from among a large number of cells.
  • a cell movement device is a cell movement device that moves a plurality of cells contained in a first container to a second container that stores liquid, and includes a head equipped with a tip having a tip that aspirates and ejects cells, and that performs the operations of aspirating a plurality of cells in the first container into the tip, moving the cells to the second container, and ejecting the plurality of cells in the tip into the second container, and a control unit that controls the operation of the head, and the control unit controls the head to eject cells from the tip while moving the head with the tip of the tip immersed in the liquid in the second container.
  • a cell transfer method is a method for transferring a plurality of cells contained in a first container to a second container that stores liquid, in which a tip having a tip for aspirating and discharging cells is used to aspirate a plurality of cells in the first container into the tip, the tip is moved to the second container, and the cells are discharged from the tip while the tip is moved with the tip immersed in the liquid in the second container.
  • FIG. 1 is a diagram illustrating an example of the configuration of a cell migration device according to an embodiment of the present invention.
  • FIG. 2A is a top view of a 6-well plate
  • FIG. 2B is a diagram showing a grid on the bottom surface of each well.
  • Figure 3(A) is a cross-sectional view of a chip attached to a head and a diagram showing the chip's moving mechanism and suction mechanism
  • Figure 3(B) is a cross-sectional view of the chip during suction operation
  • Figure 3(C) is an enlarged view of the main parts of Figure 3(B).
  • FIG. 4 is a block diagram showing the electrical configuration of the cell migration device.
  • FIG. 5 is a cross-sectional view showing the state of cell discharge from the chip to the well.
  • 6A to 6E are diagrams showing schematic examples of tip movement when discharging cells.
  • 7(A) to (D) are cross-sectional views showing the process from seeding cells in a first container to picking up target cells from a second container.
  • 8(A) to (D) are diagrams showing an example of seeding cells into a first container.
  • 9A to 9C are diagrams showing an example of cell discharge that prevents the formation of an undispersed cell region in the second container.
  • FIG. 10 is a flowchart showing an example of a cell picking process.
  • the cell migration device and method according to the present invention can pick and move cells derived from various living organisms.
  • Cells derived from living organisms include, for example, blood cells, singled cells, single cells such as fertilized eggs, circulating tumor cells in the blood, tissue fragments such as histocultures, cell aggregates such as spheroids and organoids, individuals such as zebrafish and nematodes, and 2D or 3D cell colonies.
  • tissue fragments such as histocultures
  • cell aggregates such as spheroids and organoids
  • individuals such as zebrafish and nematodes
  • 2D or 3D cell colonies the term "cell” includes these various types of cells.
  • the cell migration device of the present invention is suitable for picking and moving cells such as single cells, cell aggregates, and cell colonies, which generally require picking under a microscope.
  • FIG. 1 is a diagram showing a schematic overall configuration of a cell migration device S according to an embodiment of the present invention.
  • a cell migration device S that moves cells C between two containers, i.e., between a sorting plate 2 and a destination plate 4 (third container), is shown as an example.
  • the cell migration device S may be configured to move cells C between three or more containers.
  • the cell movement device S includes a light-transmitting base 1 having a horizontal mounting surface, a camera unit 5 (camera) arranged on the lower side of the base 1, and a head unit 6 arranged on the upper side of the base 1.
  • a sorting plate 2, which is the source of the movement of the cells C, is placed on the first mounting position P1 of the base 1, and a destination plate 4, which is the destination of the movement of the cells C, is placed on the second mounting position P2.
  • the head unit 6 has multiple heads 61 that can be raised and lowered in the Z direction (up and down direction). These heads 61 can operate simultaneously or individually.
  • a chip 10 that sucks and discharges the cells C is attached to the lower end of each head 61.
  • the camera unit 5 and the head unit 6 can move in the X direction (horizontal direction) and the direction perpendicular to the paper surface of FIG. 1 (Y direction).
  • the sorting plate 2 and the destination plate 4 are placed on the upper surface of the base 1 within the movable range of the head unit 6.
  • the cell movement device S picks specific target cells C by individually aspirating them into each of the multiple chips 10 from the sorting plate 2 on which a large number of cells C are cultured.
  • cell movement is also performed between the multiple wells 3 of the sorting plate 2 to isolate the target cells C.
  • the picked cells C are then moved to the destination plate 4, and the cells C are ejected from the multiple chips 10 into the destination plate 4 (wells 41).
  • the camera unit 5 captures an image of the cells C held on the sorting plate 2, and a sorting operation is performed to select good quality target cells C to be moved to the destination plate 4.
  • the base 1 is a flat plate having a certain rigidity and formed in part or in whole from a light-transmitting material.
  • a preferred base 1 is a glass plate.
  • the sorting plate 2 is a container from which the cells C are moved, and is provided with multiple wells 3 for culturing the cells C.
  • Each well 3 is a small container that is open at the top and has a flat bottom surface 31.
  • Liquid medium LCM is poured into the wells 3, and test cells are seeded therein.
  • the seeded cells C are arranged on the bottom surface 31 in an adherent or floating state.
  • the sorting plate 2 is made of a member made of a translucent resin material or glass, so that the cells C can be imaged by the camera unit 5 arranged below.
  • a commercially available 6-well plate for example, Corning model number 3516
  • Fig. 2(A) is a plan view showing an example of a sorting plate 2 consisting of the above-mentioned 6-well plate
  • Fig. 2(B) is a plan view showing the bottom surface 31 of each well 3.
  • the sorting plate 2 has six wells 3 arranged in 2 rows and 3 columns.
  • the wells 3 are cylindrical recesses with an open top. These six wells 3 are given identification codes A1, A2, A3, B1, B2, and B3 as addresses.
  • the bottom surface 31 of the wells 3 is provided with a large number of grids 3G (multiple recesses), which are minute recesses.
  • the grids 3G are rectangular parallelepipeds with sides of about 200 ⁇ m and a height of about 100 ⁇ m, and are arranged in a matrix across the entire bottom surface 31.
  • the grids 3G contain cells C.
  • cells C are seeded in the first well 3A1 (first container) of the sorting plate 2, and a cell group including target cells C is aspirated from the grid 3G of the first well 3A1 by the chip 10 and discharged into the second well 3B1 (second container) that stores liquid culture medium.
  • This discharge causes the target cells C to be accommodated alone in one of the grids 3G of the second well 3B1.
  • the target cells C isolated on the grid 3G are then identified.
  • the target cells C are aspirated from the grid 3G by the chip 10 and discharged into the destination plate 4. This operation will be described in detail later.
  • the cell group aspirated from the grid 3G of the first well 3A1 may be discharged into a separately prepared container with a grid, rather than into the second well 3B1.
  • the destination plate 4 has a number of wells 41 into which the cells C picked from the sorting plate 2 are discharged.
  • the wells 41 are bottomed holes that open onto the top surface of the destination plate 4.
  • Each well 41 contains the required number of cells C (usually one) together with liquid culture medium.
  • the cells C contained in the well 41 are subjected to various tests such as the addition of reagents or reactants, as well as observation and culture.
  • the destination plate 4 is also made of a member made of a translucent resin material or glass. For example, a commercially available 96-well plate (for example, Corning model number 3595) can be used as the destination plate 4.
  • the camera unit 5 is a device that captures images of the cells C held at the bottom of the sorting plate 2 or the destination plate 4 from the underside of these plates, and includes a lens unit 51 and a camera body 52.
  • the lens unit 51 is an objective lens used in optical microscopes, and includes a lens group that forms an optical image of a predetermined magnification, and a lens barrel that houses this lens group.
  • the camera body 52 includes an imaging element such as a CCD image sensor.
  • the lens unit 51 forms an optical image of the imaging object on the light receiving surface of the imaging element.
  • the camera unit 5 is movable in the X and Y directions below the base 1 along a guide rail 5G that extends in the left-right direction parallel to the base 1.
  • the lens unit 51 is also movable in the Z direction for focusing.
  • the camera unit 5 of this embodiment is capable of performing normal bright field imaging and fluorescent imaging to capture fluorescent target cells C.
  • the head unit 6 is a device provided for picking cells C from the sorting plate 2 and moving them to the destination plate 4.
  • the head unit 6 includes multiple heads 61 and a head body 62 to which these heads 61 are attached.
  • a tip 10 having a tip portion 10T for aspirating and discharging cells C is attached to the tip of each head 61.
  • the head body 62 holds the head 61 so that it can be raised and lowered in the +Z and -Z directions (up and down directions), and can move in the +X and -X directions (horizontal directions) along the guide rails 6G.
  • the head body 62 can also move in the Y direction. In other words, the head 61 can move in three dimensions of XYZ.
  • the operation of the head 61 is roughly as follows.
  • the head 61 to which the chip 10 is attached is moved in the XY direction to a coordinate position corresponding to the position of the target cell C in the well 3 (first container) to be moved, which is specified based on the image captured by the camera unit 5.
  • the head 61 is lowered to approach the target cell C.
  • a group of cells including the target cell C is sucked into the chip 10.
  • the head 61 is raised and moved in the XY direction to another well 3 (second container) of the sorting plate 2 or a separately prepared sorting container.
  • the group of cells held in the chip 10 is discharged into the other well 3 or sorting container.
  • FIG. 3A is a cross-sectional view of the tip 10 mounted on the head 61, and a diagram showing the movement mechanism and suction mechanism of the tip 10.
  • the tip 10 is a tool that sucks or discharges the cell C in order to move the cell C, and is equipped with a tip portion 10T having a tip opening t through which the cell C can enter and exit.
  • the tip 10 of this embodiment is composed of an assembly of a syringe 11 and a plunger 12.
  • the syringe 11 has a tubular passage 11P therein, which serves as a suction path for the cell C.
  • the plunger 12 moves back and forth within the tubular passage 11P while sliding against the inner peripheral wall of the syringe 11 that defines the tubular passage 11P.
  • the syringe 11 includes a syringe base end 111 consisting of a large-diameter cylinder, and a syringe body 112 consisting of a long, thin-diameter cylinder.
  • the tubular passage 11P is formed in the syringe body 112.
  • the tip opening t described above is provided in the syringe tip 113 (tip end), which is the lower end of the syringe body 112.
  • One end of the tubular passage 11P is connected to the tip opening t.
  • the syringe base end 111 is connected to the other end side of the syringe body 112 via a tapered portion.
  • the upper end portion of the syringe base end 111 is fitted and attached to the lower end of the head 61.
  • the plunger 12 includes a cylindrical plunger base end 121, a needle-shaped plunger body 122 connected to the bottom of the plunger base end 121, and a plunger tip end 123 which is the bottom end of the plunger body 122.
  • the plunger 12 is attached to the syringe 11 in such a manner that the plunger base end 121 is housed within the syringe base end 111 and the plunger body 122 is inserted into the tubular passage 11P of the syringe body 112. In the state shown in FIG. 3(A) where the plunger body 122 is inserted deepest into the syringe body 112, the plunger tip end 123 protrudes from the tip opening t.
  • a rod 61R which is movable up and down within the internal space of the head 61 is attached to the top end of the plunger base end 121.
  • the head body 62 is equipped with a head drive unit 64.
  • the head drive unit 64 functions as a mechanism for moving the tip 10 attached to the head 61 in the vertical direction, and as a mechanism for sucking and discharging the cells C into the tip 10 through the tip opening t of the tip 10.
  • the head drive unit 64 includes a head lift motor 641 and a plunger lift motor 642.
  • the head lift motor 641 is a motor that serves as a drive source for raising and lowering the head 61 relative to the head body 62.
  • the tip 10 attached to the lower end of the head 61 also rises and falls.
  • the height position of the tip opening t of the tip portion 10T can be set to a desired position by controlling the operation of the head lift motor 641.
  • the plunger lift motor 642 is a motor that serves as a drive source for raising and lowering the rod 61R within the internal space of the head 61.
  • the plunger 12 attached to this rod 61R also rises and falls.
  • a suction force is generated at the tip opening t.
  • a discharge force is generated at the tip opening t.
  • Figure 3(A) shows the state in which the plunger 12 is lowered to the lowest point. This state is the state before cells C are aspirated, or the state in which cells C aspirated into the tip 10 have been discharged. The plunger tip 123 protrudes slightly downward beyond the syringe tip 113.
  • Figure 3(B) shows the state in which the plunger 12 is raised a predetermined height. This state is the state of the tip 10 during the suction operation to aspirate cells C.
  • Figure 3(C) shows an enlarged view of the main parts of Figure 3(B).
  • the plunger tip 123 is submerged inside the tubular passage 11P. At this time, a suction force is generated at the tip opening t, and the fluid around the tip opening t is sucked into the suction space H formed inside the tubular passage 11P by the plunger tip 123 being submerged. In other words, the culture medium LCM containing the cells C is held in the suction space H.
  • the plunger 12 is moved downward, the fluid held in the suction space H is discharged from the tip opening t.
  • the amount of the fluid sucked in can be adjusted by the rising height of the plunger 12, and the suction speed of the fluid can be adjusted by the rising speed of the plunger 12.
  • FIG. 4 is a block diagram showing the electrical configuration of the cell movement device S.
  • the cell movement device S includes a control unit 7 that controls the movement of the head unit 6 (see FIG. 1) and the elevation of the head 61 (chip 10), that is, the movement operation of the head 61 in three-dimensional directions.
  • the control unit 7 controls the suction and discharge operations of the cells C to the chip 10, as well as the movement and image capture operations of the camera unit 5, etc.
  • the cell moving device S also includes a camera axis drive unit 53, a servo motor 54, a head unit axis drive unit 63, and a head drive unit 64.
  • the camera axis drive unit 53 includes a drive motor that moves the camera unit 5 horizontally along the guide rail 5G (FIG. 1).
  • the servo motor 54 rotates forward or backward to move the lens unit 51 vertically at a predetermined resolution via a power transmission mechanism (not shown). This allows the focal position of the lens unit 51 to be adjusted to the cell C contained in the well 3.
  • the base 1 side may be moved vertically instead of the lens unit 51.
  • the head unit axis drive unit 63 includes a drive motor that moves the head unit 6 (head body 62) horizontally in the X or Y direction along the guide rail 6G.
  • the head drive unit 64 is as described above based on FIG. 3.
  • the control unit 7 is made up of a processor and the like, and functions to include an axis control unit 71, a head control unit 72, an imaging control unit 73, an image processing unit 74, a memory unit 75, and a main control unit 78 by executing a predetermined program.
  • the control unit 7 is provided with an input unit 76 that inputs various information to the control unit 7, and a display unit 77 that displays various information.
  • the input unit 76 accepts input of various operational information from the operator.
  • the display unit 77 functions as a monitor that displays images captured by the camera unit 5, etc.
  • the axis control unit 71 controls the operation of the head unit axis drive unit 63. By controlling the head unit axis drive unit 63, the axis control unit 71 moves the head unit 6 to a predetermined target position in the horizontal direction. Movement of the head 61 (chip 10) between the sorting plate 2 and the destination plate 4 and between the wells 3, positioning vertically above the cells C contained in the wells 3, and positioning vertically above the wells 41 to be ejected are achieved by the control of the head unit axis drive unit 63 by the axis control unit 71. The axis control unit 71 also controls the camera axis drive unit 53 to control the operation of moving the camera unit 5 along the guide rail 5G.
  • the head control unit 72 raises and lowers the head 61 to be controlled toward a predetermined target position by controlling the head lift motor 641 of the head drive unit 64.
  • the head control unit 72 also controls the plunger lift motor 642 to generate a suction force or discharge force at the tip opening t of the tip 10 at a predetermined timing.
  • the imaging control unit 73 controls the imaging operation of the camera unit 5 of the sorting plate 2 or the destination plate 4, such as the exposure amount and shutter timing. In addition, for focusing operations, the imaging control unit 73 provides the servo motor 54 with a control pulse for moving the lens unit 51 vertically at a predetermined pitch (for example, a pitch of several tens of ⁇ m). The imaging control unit 73 can cause the camera unit 5 to perform normal bright field imaging and fluorescent imaging that causes the target cells C to fluoresce.
  • the image processing unit 74 performs image processing such as edge detection processing and pattern recognition processing involving feature extraction on the image data acquired by the camera body 52. Based on an image of the sorting plate 2 containing the cells C, the image processing unit 74 executes processing to recognize the presence of the cells C on the bottom surface 31 of the well 3 and the state of the cells C contained in the grid 3G (multiple recesses) on the image. Similarly, based on an image of the well 41 to which the cells C have been moved, the image processing unit 74 executes processing to recognize the number, amount, fluorescence intensity, etc. of the cells C contained in the well 41.
  • the memory unit 75 stores various setting values, data, programs, etc. for the cell movement device S.
  • the memory unit 75 stores information about the sorting plate 2 to be used, such as the plate size, the size of the well 3, and the size of the grid 3G.
  • setting information such as the suction volume and suction speed in the suction operation of the cells C is also stored in the memory unit 75.
  • the main control unit 78 comprehensively controls the operation of the camera unit 5 and the head unit 6.
  • the main control unit 78 captures images of the sorting plate 2, and controls a picking operation in which the target cell C in the well 3 selected as the moving target is sucked into the tip 10 attached to the head 61.
  • the main control unit 78 also controls a moving operation in which the sucked target cell C is moved to another well 3 of the sorting plate 2 or to the destination plate 4, and a discharging operation in which the sucked target cell C is discharged.
  • the main control unit 78 controls the camera unit 5 and the head unit 6 through the axis control unit 71, head control unit 72, and imaging control unit 73 to perform the above-mentioned picking operation, moving operation, and discharging operation.
  • the main control unit 78 functionally includes a movement and discharge control unit 781, a discharge pressure control unit 782, and a picking control unit 783 for the above control.
  • the movement and discharge control unit 781 controls the cell discharge operation from the chip 10 and the movement operation of the head 61 during discharge.
  • the discharge pressure control unit 782 controls the discharge pressure during cell discharge from the chip 10, that is, the positive pressure for discharge applied to the tip opening t.
  • the picking control unit 783 controls the picking operation of the cell C by the chip 10 through the axis control unit 71 and head control unit 72.
  • FIG. 5 is a cross-sectional view showing the state of cell discharge from the chip 10 to the well 3.
  • the movement and discharge control unit 781 controls the discharge of cells C from the chip 10 while moving the head 61.
  • liquid medium LCM is stored in advance in the well 3.
  • the grid 3G and the space above it are filled with liquid medium LCM.
  • a number of cells C aspirated in a separate container are held in the suction space H of the chip 10.
  • the movement and discharge control unit 781 controls the axis control unit 71 and head control unit 72 to move the head 61 in the XYZ directions, and immerses the tip 10T of the chip 10 in the liquid medium LCM in the well 3.
  • the movement and discharge control unit 781 discharges the cells C from the tip opening t of the tip 10 while moving the head 61. That is, while moving the tip 10 in the XY direction as shown by the arrow a1 or the arrow a2 with the XY movement of the head 61, the plunger main body 122 is lowered to discharge the cells C held in the suction space H from the tip opening t.
  • the discharged cells C settle under their own weight while diffusing with the movement of the head 61, and are eventually accommodated in the grid 3G on the bottom surface 31. In this way, the cells C are discharged from the tip 10 while moving the tip 10. This makes it possible to arrange the cells C in a scattered manner without being concentrated on a part of the bottom surface 31 of the well 3. This makes it easier to isolate the target cells C to be moved.
  • FIGS. 6(A) to (E) are diagrams showing various examples of movement of the chip 10 when discharging the cells.
  • Figure 6(A) shows a manner in which the head 61 moves straight in the X or Y direction.
  • the head 61 may be reciprocated in the X or Y direction, or may be moved straight in an oblique direction by simultaneously moving in the X and Y directions.
  • the head 61 may also be moved straight in the X or Y direction while slightly reciprocating in the Z direction, that is, raised and lowered.
  • Figure 6(B) shows an example of moving the head 61 in a zigzag manner.
  • the head 61 may be moved straight in the X direction while reciprocating (oscillating) in the Y direction, or moved straight in the X or Y direction while moving in the Z direction.
  • Figure 6(C) is an example of moving the head 61 in a circular spiral shape in a plan view
  • Figure 6(D) is an example of moving the head 61 in a rectangular spiral shape.
  • the starting point of the spiral movement may be either the center position or the outermost periphery position of the spiral. However, since using the outermost periphery as the starting point is likely to cause interference between the chip 10 and the sidewall of the well 3, it is preferable to use the center position as the starting point. Note that instead of a spiral movement, the head 61 may simply move in a circular or elliptical orbit, or a square or rectangular orbit.
  • Figure 6 (E) is an example of vibrating the head 61.
  • the vibration can be achieved by reciprocating the head 61 in the X or Y direction over a small distance.
  • the head 61 may be vibrated in the Y direction while moving straight in the X direction, or may be vibrated in the X direction while moving straight in the Y direction.
  • the head 61 may be positioned at a fixed point in the well 3 and vibrated for a predetermined time, and the fixed point may be moved to another position in the well 3 and vibrated for a predetermined time.
  • the head 61 may be vibrated in the Z direction.
  • Example of picking a target cell from a large number of cells When the number of target cells is very small relative to the total number of cells contained in one container, it is difficult to selectively pick the target cells. Conventionally, the cell suspension containing the target cells is diluted by applying the limiting dilution method, and then the target cells are picked. However, in the limiting dilution method, the work of dispensing the medium containing the cells into the well is required. Therefore, when the total number of cells is large, a large number of dispensing operations are required, which requires a lot of time and effort, and there is a problem that a large number of well plates are required. In view of this point, in this embodiment, an example is shown in which the target cells can be efficiently isolated from a large number of cells and can be easily picked.
  • the first well 3A1 includes a first bottom surface 31A having a plurality of first grids 3G1 (first recesses).
  • first grids 3G1 first recesses
  • second well 3B1 includes a second bottom surface 31B having a plurality of second grids 3G2 (second recesses).
  • fifth grids 3G21, 3G22, 3G23, 3G24, and 3G25 are shown as the second grid 3G2.
  • a predetermined amount of liquid medium LCM is stored in the first well 3A1 and the second well 3B1.
  • the picking method shown in FIGS. 7(A) to (D) roughly comprises the following steps (1) to (5).
  • FIG. 7(A) shows the implementation of step (1) above.
  • the chip 10 faces the first well 3A1 in order to seed a large number of cells C.
  • the chip 10 holds a large number of cells C that have been sucked up in advance from a dispensing tube.
  • cells are discharged while moving the chip 10 in order to increase the dispersibility of the cells C.
  • the movement and discharge control unit 781 (FIG. 4) discharges the cells C from the chip 10 while moving the head 61 with the tip 10T of the chip 10 immersed in the liquid medium LCM in the first well 3A1.
  • FIG. 7(A) shows the implementation of step (1) above.
  • the chip 10 faces the first well 3A1 in order to seed a large number of cells C.
  • the chip 10 holds a large number of cells C that have been sucked up in advance from a dispensing tube.
  • the movement and discharge control unit 781 (FIG. 4) discharges the cells C from the chip 10 while moving the head 61 with the tip 10T of
  • the cells C are seeded so that a predetermined number of cells C are accommodated in each of the first grids 3G1 of the first well 3A1.
  • a target cell Ct is identified from among the cells C seeded in the first well 3A1.
  • Examples of the means for identifying the target cell Ct include a means for exciting the target cell Ct with fluorescence or binding a fluorescent protein to the target cell Ct, and then capturing an image of the fluorescence with the camera unit 5.
  • FIG. 7(A) shows an example in which a cell C is contained in each of the grids 3G11 to 3G15, and only the grid 3G13 contains the target cell Ct.
  • the picking control unit 783 identifies the grid 3G13 containing the target cell Ct as the target grid (target recess) to be sucked in the above step (2).
  • FIG. 7(B) shows the implementation status of step (2).
  • the picking control unit 783 aligns the head 61 with a new tip 10 attached to the target grid 3G13, and causes the tip 10 to suck in all of the cells C present on the target grid 3G13. This suction causes the tip 10 to hold the target cells Ct and cells C that are not to be moved. In the above example, statistical calculations show that 150 cells C are sucked into the tip 10, one of which is the target cell Ct. Once suction is complete, the head 61 is moved so that the tip 10 faces the second well 3B1, as in step (3) above.
  • FIG. 7(C) shows the implementation of step (4) above.
  • the movement and ejection control unit 781 ejects cells C while moving the tip 10 with the tip 10's tip end 10T immersed in the liquid medium LCM in the second well 3B1.
  • the cells C are seeded into the second well 3B1 so that a desired number of cells C are contained in a dispersed manner in each of the second grids 3G2 that the second well 3B1 has.
  • the ideal dispersed state is one in which one cell C is contained in one second grid 3G2. Step (4) may be repeated as long as such a dispersed state can be ensured.
  • the second well 3B1 also has 16,000 first grids 3G1 each having a square shape with one side measuring 200 ⁇ m. In this case, even if about 4,000 to 8,000 cells C are seeded, the probability of a second grid 3G2 containing only one cell C can be maintained high. In the above example, 150 cells are picked by suction from one target grid 3G13, so steps (2) to (4) can be repeated about 25 to 55 times.
  • FIG. 7(C) shows an example in which one target cell Ct is contained in grid 3G23 among grids 3G21 to 3G25 of second well 3B1.
  • the containment position of target cell Ct is identified based on the results of fluorescent imaging by camera unit 5.
  • the picking control unit 783 identifies grid 3G23 containing target cell Ct as the target grid.
  • FIG. 7(D) shows the implementation status of step (5) above.
  • the picking control unit 783 aligns the head 61 with a new chip 10 attached to the target grid 3G23, and causes the chip 10 to aspirate the isolated target cells Ct. After aspirating, the head 61 is moved so that the chip 10 faces the destination plate 4. After movement, the target cells Ct are ejected from the chip 10 into one of the wells 41 of the destination plate 4. Step (5) is repeated the number of times equal to the number of isolated target cells Ct present in the second well 3B1.
  • the target grid 3G13 that contains the target cells Ct is identified from the group of first grids 3G1 in the first well 3A1, and all the cells C present in the target grid 3G13 are aspirated.
  • the group of cells C containing the aspirated target cells Ct is discharged into the second well 3B1.
  • the cells are discharged while the chip 10 is moving, so that the cells C are dispersed and can be evenly accommodated in a large number of grids 3G1 and 3G2.
  • the above two-step discharge naturally dilutes the cells that are not to be moved.
  • FIG. 7(A) A preferred mode of cell ejection in the above step (1) (FIG. 7(A)) and step (4) (FIG. 7(C) is shown below.
  • ⁇ Discharge pressure setting> For example, when discharging a target cell Ct from the chip 10 into a well 41 of the destination plate 4, the discharge pressure control unit 782 performs control so as to apply a predetermined reference positive pressure for discharge to the tip opening t of the chip 10. Specifically, the discharge pressure control unit 782 controls the descending speed of the plunger 12 (FIG. 3). The reference positive pressure is set to a pressure at which the cell C held in the suction space H of the chip 10 is quickly discharged from the tip opening t.
  • a positive pressure smaller than the reference positive pressure may be applied to the tip opening t.
  • a positive pressure of about 1/2 to 1/10 of the reference positive pressure may be applied to the tip opening t.
  • FIGS. 8(A) to (D) are diagrams showing an example of seeding cells C into a well 3, including a step of dispersing cells in the chip 10.
  • the first seeding in step (1) above is assumed.
  • the tip 10T of the chip 10 is inserted into a dispensing tube 21 that stores a cell suspension containing a large number of cells C in a liquid medium LCM.
  • a large number of cells C are aspirated into the chip 10 together with the liquid medium LCM.
  • the tip 10 is pulled up by the lifting operation of the head 61, and the head 61 is moved toward the well 3 where seeding will be performed. At this time, the cells C sucked into the tip 10 settle near the tip 10T. In this state, if the tip 10T is landed in the liquid medium LCM of the well 3, the cells C may unintentionally leak out all at once from the tip opening t. Therefore, as shown in FIG. 8(C), a slight suction force is generated in the tip 10, and the cells C that have formed a clump near the tip 10T are lifted upward and dispersed. In other words, the tip 10 is made to perform a suction operation so that the cells C sucked into the tip 10 move toward the depth of the tip 10.
  • step (D1) a slight suction force is generated in the chip 10, and a small amount of the liquid medium LCM is sucked into the chip 10, causing the cells C in the chip 10 to fly up.
  • the chip 10 is made to perform the suction operation so that the cells C sucked into the chip 10 move toward the depth of the chip 10, and this operation further disperses the cells C in the chip 10.
  • the cells C are discharged while the chip 10 is moved. Because the cells C are dispersed within the chip 10, a large amount of the cells C is not discharged all at once. The discharged cells C settle and are accommodated in the grid 3G on the bottom surface 31.
  • a step of re-aspirating a small amount of liquid medium LCM into the chip 10, similar to step (D1), may be inserted. This allows the cells C that are settling again within the chip 10 to be lifted up again and dispersed.
  • ⁇ Detection of cell undispersed areas> When the cells C are seeded into the well 3, it is desirable that the cells C are evenly dispersed over the entire area of the bottom surface 31. When there is an undispersed area on the bottom surface 31 where the cells C are not contained, it is desirable to eject the cells C from the chip 10 toward the undispersed area. As shown as an example in FIG. 7C and in step (4) above, when the cells C are seeded into the second well 3B1, the cells are ejected from the chip 10 multiple times. It is desirable to identify an undispersed area during the multiple cell ejections, and to eject the cells thereafter toward the undispersed area.
  • Figures 9 (A) to (C) are diagrams showing an example of cell ejection that ultimately prevents the formation of areas on the bottom surface 31 of the well 3 where cells are not dispersed.
  • Figure 9 (A) shows a state in which cell seeding has progressed to a certain extent and cells C are dispersed on the bottom surface 31.
  • the dispersed state of cells C on the bottom surface 31 is detected by the image processing unit 74 applying image processing such as object detection processing and filtering processing to the image captured by the camera unit 5.
  • FIG. 9(B) is a diagram showing an example of image processing.
  • an image is shown in which cells C that are contained in only one grid 3G and cells C that are contained in two or more grids 3G are color-coded.
  • White cells C are isolated cells C. If a target cell Ct is present among the white cells C, it will be the target for picking.
  • the image in FIG. 9(B) also clearly shows undispersed areas MA where cells C have not yet been dispersed.
  • Figure 9 (C) shows an example of setting the movement line 10L of the chip 10 when subsequent cell ejection is performed into the detected undispersed region MA.
  • the movement line 10L is set so that the chip 10 passes through the undispersed region MA.
  • the movement ejection control unit 781 ejects cells C from the chip 10 while moving the head 61 along the movement line 10L. This causes the cells to be ejected toward the undispersed region MA of the cells C on the bottom surface 31, allowing the cells C to be evenly distributed over the entire area of the bottom surface 31.
  • FIG. 10 is a flowchart showing the cell picking process executed by the main controller 78.
  • the "first container” and “second container” shown in Fig. 10 are containers independent of each other, or two wells in one plate.
  • the "first well 3A1" of the sorting plate 2 will be described as the “first container” and the “second well 3B1" as the “second container.”
  • the movement/ejection control unit 781 of the main control unit 78 controls the axis control unit 71 and the head control unit 72 to operate the head 61, and seed sample cells to be picked from the chip 10 attached to the head 61 into the first well 3A1 of the sorting plate 2 (step S1).
  • the seeding operation is an operation in which the head 61 is moved horizontally while cells C are ejected from the chip 10, as described in FIG. 7(A).
  • the imaging control unit 73 controls the camera unit 5 to image the first bottom surface 31A of the first well 3A1, and the state of containment of the seeded cells C in the grid 3G is confirmed on the image (step S2).
  • the imaging includes bright-field imaging and fluorescent imaging in which the target cells Ct fluoresce. Phase-contrast imaging may also be performed as the imaging.
  • the state of containment of all the cells in the grid 3G is confirmed based on the image acquired by bright-field imaging.
  • the presence of the target cells Ct is confirmed based on the image acquired by fluorescent imaging.
  • This confirmation operation can be an operation of recognizing points of high brightness in the image by image processing by the image processing unit 74.
  • the image may also be displayed on the display unit 77 for visual confirmation by the operator.
  • step S3 it is determined whether or not the fluorescent cell, i.e., the target cell Ct, has been recognized in the image captured in step S2 (step S3). If the target cell Ct has not been recognized (NO in step S3), it is determined that the target cell Ct does not exist (step S4), and a message to that effect is displayed on the display unit 77. In this case, the operator will either redo the seeding in the first well 3A1, or seed another well of the sorting plate 2.
  • step S5 the selection of the first grid 3G1 containing the target cell Ct is accepted (step S5).
  • the selection of the target cell Ct to be moved to the second well 3B1 is accepted as the selection of the first grid 3G1.
  • the fluorescent image is displayed on the display unit 77, and the operator's grid selection operation is accepted from the input unit 76.
  • grid 3G13 is selected. Note that the selection of the grid containing the target cell Ct may be performed automatically based on the image recognition results.
  • the picking control unit 783 controls the axis control unit 71 and head control unit 72 to operate the head 61, and causes all of the cells C contained in the first grid 3G1 selected in step S5 to be sucked into the chip 10 (step S6). This operation is as shown in FIG. 7(B).
  • the axis control unit 71 moves the head 61 above the second well 3B1 (step S7). In other words, the chip 10 holding the cell group including the target cells Ct is moved to the second well 3B1.
  • the movement and discharge control unit 781 operates the head 61 to immerse the tip 10T of the chip 10 into the liquid medium LCM stored in the second well 3B1 (step S8). Then, as illustrated in FIG. 7(C), the movement and discharge control unit 781 operates the head 61 to horizontally move the chip 10 while discharging a cell group including the target cells Ct from the chip 10 (step S9).
  • step S10 it is confirmed whether a predetermined amount of cells C has been discharged into the second well 3B1 (step S10).
  • a predetermined amount of cells C In the above example, about 4,000 to 8,000 cells C can be seeded into the second well 3B1.
  • step S10 it is confirmed whether seeding of this number of cells has been completed. If the discharge of the predetermined amount of cells C has not been completed (NO in step S10), it is confirmed whether the grid 3G1 selected in step S5, i.e., the grid containing the target cells Ct, remains (step S11).
  • step S11 If any selection grids containing target cells Ct remain (YES in step S11), the process returns to step S6 and is repeated. On the other hand, if no selection grids remain (NO in step S11), seeding is terminated even if there is room for additional seeding in the second well 3B1. Seeding is also terminated when the ejection of a predetermined amount of cells C into the second well 3B1 is completed (YES in step S10).
  • step S12 the second bottom surface 31B of the second well 3B1 is imaged by the camera unit 5, and the state of the seeded cells C contained in the second grid 3G2 is confirmed on the image (step S12).
  • step S2 bright field imaging and fluorescent imaging to make the target cells Ct fluoresce are performed.
  • the picking control unit 783 executes an operation to suck the target cells Ct into the chip 10 (step S13).
  • a cell movement device is a cell movement device that moves a plurality of cells contained in a first container to a second container that stores liquid, and includes a head equipped with a tip having a tip that aspirates and ejects cells, and that performs the operations of aspirating a plurality of cells in the first container into the tip, moving the cells to the second container, and ejecting the plurality of cells in the tip into the second container, and a control unit that controls the operation of the head, and the control unit controls the head to eject cells from the tip while moving the head with the tip of the tip immersed in the liquid in the second container.
  • the head is moved when discharging multiple cells sucked into the tip into the second container.
  • the cells are discharged from the tip while the tip is being moved. This makes it possible to dispose the cells in a scattered manner, rather than disposing them unevenly in one part of the second container. This makes it easier to isolate the target cells to be moved, and makes it easier to pick the target cells.
  • the first container may be a container for storing liquid
  • the control unit may eject cells from the tip while moving the head, with the tip of the tip having previously aspirated a large number of cells immersed in the liquid in the first container.
  • the cells when the cells are seeded in the first container, the cells are discharged from the tip while the tip is being moved. Therefore, the cells can be evenly dispersed in the first container.
  • the second container includes a bottom having a plurality of recesses, and the control unit controls the movement of the head and the ejection so that the desired number of cells are dispersedly contained in the plurality of recesses.
  • This embodiment makes it possible to prevent cells from being unevenly accommodated in specific wells. For example, by applying statistical methods and adjusting the number of cells seeded taking into account the bottom area and number of wells, it is possible to roughly adjust the number of cells accommodated in each well.
  • the first container includes a first bottom having a plurality of first recesses
  • the second container includes a second bottom having a plurality of second recesses
  • the control unit after discharging cells into the first container, identifies a target recess among the plurality of first recesses that contains a target cell to be moved, and causes all of the cells present in the target recess to be sucked into the tip, moves the head to the second container, and performs the movement of the head and the discharge so that a desired number of cells are contained in a dispersed manner in the plurality of second recesses.
  • a target recess is identified from among a plurality of first recesses, and all of the cells present in the target recess are aspirated.
  • the cell group including the aspirated target cells is discharged into the second container.
  • control unit can move the head so that it traces a spiral trajectory in a planar view.
  • the tip that ejects the cells can be easily passed through the entire cavity of the first or second container evenly. This makes it easier to distribute the cells over the entire bottom surface of the container.
  • control unit may further vibrate the head while moving the head. This makes it even easier to disperse the cells.
  • control unit may move the head without applying positive pressure for ejection to the tip of the tip while the tip of the tip is immersed in the liquid in the second container.
  • the cells sucked into the tip may be ejected with force.
  • the cells can be placed on the bottom of the container by free fall using gravity. This makes it easy to disperse the cells and place them on the bottom of the container.
  • placement includes attaching the cells to the bottom of the container and floating them on the bottom of the container.
  • the positive pressure applied to the tip when ejecting a cell from the tip holding the cell is determined in advance as a reference positive pressure, and the control unit applies a positive pressure smaller than the reference positive pressure to the tip of the tip while the tip of the tip is immersed in the liquid in the second container, thereby moving the head.
  • cells can be ejected more quickly than when cells are ejected from the tip by free fall.
  • the ejection pressure is a positive pressure that is smaller than the reference positive pressure, it is possible to prevent the cells from flying out of the tip with force.
  • control unit may, with the tip of the tip immersed in the liquid in the second container, cause the tip to perform a suction operation so that the multiple cells sucked into the tip move toward the depth of the tip, and then eject the cells from the tip while moving the head.
  • the suction operation is performed before the cells are discharged, dispersing the multiple cells that have been sucked into the tip. This makes it possible to prevent a large number of cells from being released from the tip all at once when the cells are discharged.
  • control unit may cause the tip to perform a suction operation so that the multiple cells sucked into the tip move toward the depth of the tip before immersing the tip tip in the liquid in the second container.
  • the suction operation is performed before the tip of the tip is immersed in the liquid in the second container. Therefore, even if cells sucked into the tip of the tip settle, these cells can be lifted upward. This prevents cells from falling from the tip of the tip into the liquid in the second container when the tip is first immersed. Another advantage is that the amount of cells discharged can be easily adjusted because the cells are dispersed within the tip before being discharged.
  • the control unit it is desirable to further include a camera capable of capturing an image of the bottom of the first container or the second container, and for the control unit to have an image processing unit that identifies the state of cells contained in the multiple recesses based on the image captured by the camera.
  • the dispersion state of cells at the bottom of the first or second container and the position of the target cells can be easily identified based on the camera image.
  • the image processing unit may identify an undispersed region at the bottom of the second container that does not contain cells based on the image, and the control unit may eject cells from the tip while moving the head so that the tip passes through the undispersed region.
  • the cells are discharged toward the undispersed cell area at the bottom of the second container. Therefore, the cells can be evenly distributed over the entire area of the bottom.
  • the above cell transfer device may further include a third container into which target cells are transferred from the second container, and the control unit may identify a second container that contains target cells from among the plurality of second containers, and suck the target cells from the second container into the tip, while moving the head to the third container and discharging the target cells from the tip into the third container.
  • the target cells can be picked and moved to the third container.
  • the ratio of target cells to all cells is increased by moving the cells from the first container to the second container. This also increases the probability of a second recess containing a single target cell. Therefore, it is easy to identify a second recess containing a target cell from among multiple second recesses and pick it.
  • the heads are provided in multiple units, and that the control unit is capable of controlling the operation of the multiple heads simultaneously or individually.
  • multiple heads and chips attached to each of these can be used.
  • multiple chips can be used simultaneously or individually, which increases the efficiency of cell picking and moving operations.
  • a cell transfer method is a method for transferring a plurality of cells contained in a first container to a second container that stores liquid, in which a tip having a tip for aspirating and discharging cells is used to aspirate a plurality of cells in the first container into the tip, the tip is moved to the second container, and the cells are discharged from the tip while the tip is moved with the tip immersed in the liquid in the second container.
  • this cell transfer method when multiple cells sucked into the tip are discharged into the second container, the cells are discharged from the tip while the tip is being moved. This makes it possible to dispose the cells in a scattered manner, without concentrating them in one part of the second container. This makes it easier to isolate the target cells to be transferred, and makes it easier to pick the target cells.
  • the first container includes a first bottom that stores liquid and has a plurality of first recesses
  • the second container includes a second bottom that has a plurality of second recesses
  • the tip is moved while discharging the cells from the tip
  • a target recess that contains a target cell to be transferred is identified among the plurality of first recesses, all of the cells present in the target recess are sucked into the tip, and the tip is moved to the second container, and after the discharging into the second container, the state of cells contained in the plurality of second recesses is confirmed, the second recess in which the target cell is contained is identified, and the target cell is sucked from the identified second recess by the tip.
  • a target recess is identified from among a plurality of first recesses, and all of the cells present in the target recess are aspirated.
  • a cell group including the aspirated target cells is discharged into a second container.
  • the present invention provides a cell migration device and method that can efficiently pick a target cell from among a large number of cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This cell movement device moves a plurality of cells accommodated in a first container to a second container that retains a liquid. The cell movement device comprises: a head to which a tip having a leading end for sucking and discharging the cells is mounted, and which performs an operation of sucking the plurality of cells by means of the tip in the first container, moving to the second container, and discharging the plurality of cells in the tip into the second container; and a control unit that controls the operations of the head. The control unit controls the head so as to discharge the cells from the tip while moving the head in a state in which the leading end of the tip is immersed in the liquid in the second container.

Description

細胞移動装置および方法Cell migration devices and methods

 本発明は、第1容器に収容されている細胞を第2容器へ移動させる細胞移動装置および細胞移動方法に関する。 The present invention relates to a cell transfer device and a cell transfer method for transferring cells contained in a first container to a second container.

 例えば医療や生物学的な研究の分野では、シングル細胞や細胞コロニー等の細胞を培養する培養容器から、検査や観察等を行う作業容器へ前記細胞を移動する作業が行われることがある。この作業のために、吸引チップが装着されたヘッドにて、前記培養容器からターゲット細胞をピッキングして保持し、保持した細胞を前記作業容器へリリースする動作を行う細胞移動装置が知られている(例えば特許文献1)。 For example, in the fields of medical and biological research, there is a need to move cells, such as single cells or cell colonies, from a culture vessel in which the cells are cultured to a work vessel in which the cells are examined or observed. For this purpose, a cell moving device is known that uses a head equipped with a suction tip to pick and hold a target cell from the culture vessel, and then releases the held cell into the work vessel (for example, Patent Document 1).

 培養容器中に含まれる全細胞数に対してターゲット細胞の数が非常に少ない場合、当該ターゲット細胞を選択的にピッキングすることは困難である。この場合、限界希釈法を適用して、細胞数を少なくする、つまり細胞濃度を薄くする工程を経て、ターゲット細胞のピッキングが行われている。培養容器中の全細胞数が多い場合、限界希釈の作業に非常に多くの手間を要するという問題があった。 When the number of target cells is very small compared to the total number of cells contained in the culture vessel, it is difficult to selectively pick the target cells. In this case, the limiting dilution method is used to reduce the number of cells, i.e., the cell concentration is reduced, and then the target cells are picked. When the total number of cells in the culture vessel is large, there is a problem in that the limiting dilution process requires a great deal of effort.

特許第6181871号公報Patent No. 6181871

 本発明の目的は、多数個の細胞の中からターゲット細胞を効率良くピッキングすることが可能な細胞移動装置および方法を提供することにある。 The object of the present invention is to provide a cell migration device and method capable of efficiently picking a target cell from among a large number of cells.

 本発明の一局面に係る細胞移動装置は、第1容器に収容されている複数の細胞を、液体を貯留する第2容器へ移動させる細胞移動装置であって、細胞の吸引および吐出を行う先端を有するチップが装着され、前記第1容器において複数の細胞を前記チップに吸引させ、前記第2容器へ移動し、前記チップ内の前記複数の細胞を前記第2容器へ吐出させる動作を行うヘッドと、前記ヘッドの動作を制御する制御部と、を備え、前記制御部は、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記ヘッドを移動させながら前記チップから細胞を吐出させるよう前記ヘッドを制御する。 A cell movement device according to one aspect of the present invention is a cell movement device that moves a plurality of cells contained in a first container to a second container that stores liquid, and includes a head equipped with a tip having a tip that aspirates and ejects cells, and that performs the operations of aspirating a plurality of cells in the first container into the tip, moving the cells to the second container, and ejecting the plurality of cells in the tip into the second container, and a control unit that controls the operation of the head, and the control unit controls the head to eject cells from the tip while moving the head with the tip of the tip immersed in the liquid in the second container.

 本発明の他の局面に係る細胞移動方法は、第1容器に収容されている複数の細胞を、液体を貯留する第2容器へ移動させる細胞移動方法であって、細胞の吸引および吐出を行う先端を有するチップを用いて、前記第1容器において複数の細胞を前記チップに吸引させ、前記第2容器へチップを移動させ、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記チップを移動させながら当該チップから細胞を吐出させる。 A cell transfer method according to another aspect of the present invention is a method for transferring a plurality of cells contained in a first container to a second container that stores liquid, in which a tip having a tip for aspirating and discharging cells is used to aspirate a plurality of cells in the first container into the tip, the tip is moved to the second container, and the cells are discharged from the tip while the tip is moved with the tip immersed in the liquid in the second container.

図1は、本発明の実施形態に係る細胞移動装置の構成例を概略的に示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a cell migration device according to an embodiment of the present invention. 図2(A)は、6ウェルプレートの上面図、図2(B)は、各ウェルが備えるウェル底面のグリッドを示す図である。FIG. 2A is a top view of a 6-well plate, and FIG. 2B is a diagram showing a grid on the bottom surface of each well. 図3(A)は、ヘッドに装着されるチップの断面図と、該チップの移動機構および吸引機構とを示す図、図3(B)は、吸引動作時のチップの断面図、図3(C)は、図3(B)の要部拡大図である。Figure 3(A) is a cross-sectional view of a chip attached to a head and a diagram showing the chip's moving mechanism and suction mechanism, Figure 3(B) is a cross-sectional view of the chip during suction operation, and Figure 3(C) is an enlarged view of the main parts of Figure 3(B). 図4は、細胞移動装置の電気的構成を示すブロック図である。FIG. 4 is a block diagram showing the electrical configuration of the cell migration device. 図5は、チップからウェルへの細胞吐出状況を示す断面図である。FIG. 5 is a cross-sectional view showing the state of cell discharge from the chip to the well. 図6(A)~(E)は、細胞吐出時における、チップの移動例を模式的に示す図である。6A to 6E are diagrams showing schematic examples of tip movement when discharging cells. 図7(A)~(D)は、第1容器への細胞の播種~第2容器からのターゲット細胞のピッキングまでの流れを示す断面図である。7(A) to (D) are cross-sectional views showing the process from seeding cells in a first container to picking up target cells from a second container. 図8(A)~(D)は、第1容器への細胞の播種の一例を示す図である。8(A) to (D) are diagrams showing an example of seeding cells into a first container. 図9(A)~(C)は、第2容器に細胞未分散領域を生じさせないようにする、細胞吐出の一例を示す図である。9A to 9C are diagrams showing an example of cell discharge that prevents the formation of an undispersed cell region in the second container. 図10は、細胞ピッキング処理の一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of a cell picking process.

 以下、本発明の実施形態を、図面に基づいて詳細に説明する。本発明に係る細胞移動装置および方法は、各種の生体由来の細胞をピッキングおよび移動対象とすることができる。生体由来の細胞は、例えば血球系細胞やシングル化細胞、受精卵などのシングル細胞、血中循環腫瘍細胞、Histocultureなどの組織小片、スフェロイドやオルガノイドなどの細胞凝集塊、ゼブラフィッシュ、線虫などの個体、2Dまたは3Dの細胞コロニー等である。本明細書において「細胞」と言うときは、これらの各種細胞を包含する。とりわけ、一般的に顕微鏡観察下でのピッキングが必要とされる、シングル細胞、細胞凝集塊、細胞コロニー等の細胞のピッキングおよび移動に、本発明の細胞移動装置は好適である。 Below, an embodiment of the present invention will be described in detail with reference to the drawings. The cell migration device and method according to the present invention can pick and move cells derived from various living organisms. Cells derived from living organisms include, for example, blood cells, singled cells, single cells such as fertilized eggs, circulating tumor cells in the blood, tissue fragments such as histocultures, cell aggregates such as spheroids and organoids, individuals such as zebrafish and nematodes, and 2D or 3D cell colonies. In this specification, the term "cell" includes these various types of cells. In particular, the cell migration device of the present invention is suitable for picking and moving cells such as single cells, cell aggregates, and cell colonies, which generally require picking under a microscope.

 [細胞移動装置の全体構成]
 図1は、本発明の実施形態に係る細胞移動装置Sの全体構成を概略的に示す図である。ここでは、細胞Cを2つの容器間、すなわち選別プレート2と移動先プレート4(第3容器)との間で移動させる細胞移動装置Sを例示している。もちろん、細胞移動装置Sは、細胞Cを3つ以上の容器間で細胞Cを移動させる構成としても良い。
[Overall configuration of the cell migration device]
1 is a diagram showing a schematic overall configuration of a cell migration device S according to an embodiment of the present invention. Here, a cell migration device S that moves cells C between two containers, i.e., between a sorting plate 2 and a destination plate 4 (third container), is shown as an example. Of course, the cell migration device S may be configured to move cells C between three or more containers.

 細胞移動装置Sは、水平な載置面を有する透光性の基台1と、基台1の下方側に配置されたカメラユニット5(カメラ)と、基台1の上方側に配置されたヘッドユニット6とを含む。基台1の第1載置位置P1には、細胞Cの移動元である選別プレート2が載置され、第2載置位置P2には細胞Cの移動先となる移動先プレート4が載置されている。ヘッドユニット6は、Z方向(上下方向)に昇降可能なヘッド61を複数本備えている。これらヘッド61は、同時または個別に動作可能である。各ヘッド61の下端には、細胞Cの吸引および吐出を行うチップ10が装着されている。カメラユニット5およびヘッドユニット6は、X方向(水平方向)と、図1の紙面に垂直な方向(Y方向)とに移動可能である。選別プレート2および移動先プレート4は、ヘッドユニット6の移動可能範囲内において、基台1の上面に載置される。 The cell movement device S includes a light-transmitting base 1 having a horizontal mounting surface, a camera unit 5 (camera) arranged on the lower side of the base 1, and a head unit 6 arranged on the upper side of the base 1. A sorting plate 2, which is the source of the movement of the cells C, is placed on the first mounting position P1 of the base 1, and a destination plate 4, which is the destination of the movement of the cells C, is placed on the second mounting position P2. The head unit 6 has multiple heads 61 that can be raised and lowered in the Z direction (up and down direction). These heads 61 can operate simultaneously or individually. A chip 10 that sucks and discharges the cells C is attached to the lower end of each head 61. The camera unit 5 and the head unit 6 can move in the X direction (horizontal direction) and the direction perpendicular to the paper surface of FIG. 1 (Y direction). The sorting plate 2 and the destination plate 4 are placed on the upper surface of the base 1 within the movable range of the head unit 6.

 大略的に細胞移動装置Sは、多数の細胞Cを培養している選別プレート2から複数のチップ10の各々で特定のターゲット細胞Cを個別に吸引するピッキングを行う。本実施形態では、選別プレート2が備える複数のウェル3間において、ターゲット細胞Cを単離させるための細胞移動も行われる。そして、ピッキングした細胞Cを移動先プレート4まで移動すると共に、当該移動先プレート4(ウェル41)に複数のチップ10から細胞Cを吐出する。細胞Cのピッキングの前に、カメラユニット5により選別プレート2に保持されている細胞Cが撮像され、移動先プレート4への移動対象とされる良質なターゲット細胞Cを選別する選別作業が行われる。 In general, the cell movement device S picks specific target cells C by individually aspirating them into each of the multiple chips 10 from the sorting plate 2 on which a large number of cells C are cultured. In this embodiment, cell movement is also performed between the multiple wells 3 of the sorting plate 2 to isolate the target cells C. The picked cells C are then moved to the destination plate 4, and the cells C are ejected from the multiple chips 10 into the destination plate 4 (wells 41). Before picking the cells C, the camera unit 5 captures an image of the cells C held on the sorting plate 2, and a sorting operation is performed to select good quality target cells C to be moved to the destination plate 4.

 以下、細胞移動装置Sの各部を説明する。基台1は、所定の剛性を有し、その一部または全部が透光性の材料で形成される平板である。好ましい基台1は、ガラスプレートである。基台1をガラスプレートのような透光性材料によって形成することで、基台1の下方に配置されたカメラユニット5にて、基台1の上面に配置された選別プレート2および移動先プレート4を、当該基台1を通して撮像させることが可能となる。 The individual components of the cell movement device S are described below. The base 1 is a flat plate having a certain rigidity and formed in part or in whole from a light-transmitting material. A preferred base 1 is a glass plate. By forming the base 1 from a light-transmitting material such as a glass plate, it becomes possible for the camera unit 5, which is disposed below the base 1, to capture images of the sorting plate 2 and destination plate 4, which are disposed on the upper surface of the base 1, through the base 1.

 選別プレート2は、細胞Cの移動元となる容器であって、細胞Cを培養するための複数のウェル3を備えている。各ウェル3は上面開口の小容器であり、平板状の底面31を有している。ウェル3内には、液体培地LCMが注液されるとともに、試験細胞が播種される。底面31には、播種された細胞Cが、接着または浮遊の態様で配置されている。選別プレート2は、下方に配置されたカメラユニット5による細胞Cの撮像を可能とするため、透光性の樹脂材料やガラスで作製された部材が用いられる。選別プレート2としては、例えば市販の6ウェルプレート(例えばコーニング社製型番3516)を用いることができる。 The sorting plate 2 is a container from which the cells C are moved, and is provided with multiple wells 3 for culturing the cells C. Each well 3 is a small container that is open at the top and has a flat bottom surface 31. Liquid medium LCM is poured into the wells 3, and test cells are seeded therein. The seeded cells C are arranged on the bottom surface 31 in an adherent or floating state. The sorting plate 2 is made of a member made of a translucent resin material or glass, so that the cells C can be imaged by the camera unit 5 arranged below. For example, a commercially available 6-well plate (for example, Corning model number 3516) can be used as the sorting plate 2.

 図2(A)は、上掲の6ウェルプレートからなる選別プレート2の一例を示す平面図、図2(B)は、各ウェル3の底面31を示す平面図である。選別プレート2は、2行×3列に配置された6つのウェル3を備えている。ウェル3は、上面か開口した円柱形の凹部である。これら6つのウェル3には、アドレスとしてA1、A2、A3、B1、B2、B3の識別符号が与えられている。ウェル3の底面31には、微小な凹部である多数のグリッド3G(複数の凹部)が設けられている。グリッド3Gは、1辺が200μm、高さが100μm程度の直方体からなり、底面31の全体にマトリクス配列されている。グリッド3Gには、細胞Cが収容される。 Fig. 2(A) is a plan view showing an example of a sorting plate 2 consisting of the above-mentioned 6-well plate, and Fig. 2(B) is a plan view showing the bottom surface 31 of each well 3. The sorting plate 2 has six wells 3 arranged in 2 rows and 3 columns. The wells 3 are cylindrical recesses with an open top. These six wells 3 are given identification codes A1, A2, A3, B1, B2, and B3 as addresses. The bottom surface 31 of the wells 3 is provided with a large number of grids 3G (multiple recesses), which are minute recesses. The grids 3G are rectangular parallelepipeds with sides of about 200 μm and a height of about 100 μm, and are arranged in a matrix across the entire bottom surface 31. The grids 3G contain cells C.

 本実施形態では、ターゲット細胞Cの単離のために、選別プレート2の第1ウェル3A1(第1容器)に細胞Cを播種し、第1ウェル3A1のグリッド3Gからターゲット細胞Cを含む細胞群をチップ10で吸引し、液体培地を貯留する第2ウェル3B1(第2容器)へ吐出させる。この吐出により、第2ウェル3B1のグリッド3Gの一つにターゲット細胞Cを単独で収容させる。そして、グリッド3Gに単離されたターゲット細胞Cを特定する。当該グリッド3Gからターゲット細胞Cをチップ10で吸引し、移動先プレート4に吐出させる。この動作については、後記で詳述する。なお、第2ウェル3B1にではなく、別途用意されたグリッド付き容器に、第1ウェル3A1のグリッド3Gから吸引した細胞群を吐出させても良い。 In this embodiment, in order to isolate target cells C, cells C are seeded in the first well 3A1 (first container) of the sorting plate 2, and a cell group including target cells C is aspirated from the grid 3G of the first well 3A1 by the chip 10 and discharged into the second well 3B1 (second container) that stores liquid culture medium. This discharge causes the target cells C to be accommodated alone in one of the grids 3G of the second well 3B1. The target cells C isolated on the grid 3G are then identified. The target cells C are aspirated from the grid 3G by the chip 10 and discharged into the destination plate 4. This operation will be described in detail later. It should be noted that the cell group aspirated from the grid 3G of the first well 3A1 may be discharged into a separately prepared container with a grid, rather than into the second well 3B1.

 移動先プレート4は、選別プレート2からピッキングされた細胞Cが吐出される複数のウェル41を有する。ウェル41は、移動先プレート4の上面に開口した有底の孔である。1つのウェル41には、液体の培地と共に必要個数(通常は1個)の細胞Cが収容される。ウェル41に収容された細胞Cに対し、試薬や反応剤の添加等の各種試験や観察、培養などが行われる。移動先プレート4も、透光性の樹脂材料やガラスで作製された部材が用いられる。移動先プレート4としては、例えば市販の96ウェルプレート(例えばコーニング社製型番3595)を用いることができる。 The destination plate 4 has a number of wells 41 into which the cells C picked from the sorting plate 2 are discharged. The wells 41 are bottomed holes that open onto the top surface of the destination plate 4. Each well 41 contains the required number of cells C (usually one) together with liquid culture medium. The cells C contained in the well 41 are subjected to various tests such as the addition of reagents or reactants, as well as observation and culture. The destination plate 4 is also made of a member made of a translucent resin material or glass. For example, a commercially available 96-well plate (for example, Corning model number 3595) can be used as the destination plate 4.

 カメラユニット5は、選別プレート2または移動先プレート4の底部に保持されている細胞Cの画像を、これらの下面側から撮像する機器で、レンズ部51およびカメラ本体52を備える。レンズ部51は、光学顕微鏡に用いられている対物レンズであり、所定倍率の光像を結像させるレンズ群と、このレンズ群を収容するレンズ鏡筒とを含む。カメラ本体52は、CCDイメージセンサ等の撮像素子を備える。レンズ部51は、前記撮像素子の受光面に撮像対象物の光像を結像させる。カメラユニット5は、基台1と平行に左右方向に延びるガイドレール5Gに沿って、基台1の下方においてX方向およびY方向に移動可能である。また、レンズ部51は、合焦動作のためにZ方向に移動可能である。本実施形態のカメラユニット5は、通常の明視野撮像と、蛍光させたターゲット細胞Cを撮像する蛍光撮像とを実行可能である。 The camera unit 5 is a device that captures images of the cells C held at the bottom of the sorting plate 2 or the destination plate 4 from the underside of these plates, and includes a lens unit 51 and a camera body 52. The lens unit 51 is an objective lens used in optical microscopes, and includes a lens group that forms an optical image of a predetermined magnification, and a lens barrel that houses this lens group. The camera body 52 includes an imaging element such as a CCD image sensor. The lens unit 51 forms an optical image of the imaging object on the light receiving surface of the imaging element. The camera unit 5 is movable in the X and Y directions below the base 1 along a guide rail 5G that extends in the left-right direction parallel to the base 1. The lens unit 51 is also movable in the Z direction for focusing. The camera unit 5 of this embodiment is capable of performing normal bright field imaging and fluorescent imaging to capture fluorescent target cells C.

 ヘッドユニット6は、細胞Cを選別プレート2からピッキングして移動先プレート4へ移動させるために設けられた機器である。ヘッドユニット6は、複数本のヘッド61と、これらヘッド61が組み付けられるヘッド本体62とを含む。各ヘッド61の先端には、細胞Cの吸引および吐出を行う先端部10Tを有するチップ10が装着されている。ヘッド本体62は、ヘッド61を+Zおよび-Z方向(上下方向)に昇降可能に保持し、ガイドレール6Gに沿って+Xおよび-X方向(水平方向)に移動可能である。なお、ヘッド本体62は、Y方向にも移動可能である。つまりヘッド61は、XYZの三次元方向に移動可能である。 The head unit 6 is a device provided for picking cells C from the sorting plate 2 and moving them to the destination plate 4. The head unit 6 includes multiple heads 61 and a head body 62 to which these heads 61 are attached. A tip 10 having a tip portion 10T for aspirating and discharging cells C is attached to the tip of each head 61. The head body 62 holds the head 61 so that it can be raised and lowered in the +Z and -Z directions (up and down directions), and can move in the +X and -X directions (horizontal directions) along the guide rails 6G. The head body 62 can also move in the Y direction. In other words, the head 61 can move in three dimensions of XYZ.

 ヘッド61の大略的な動作は次の通りである。チップ10が装着されたヘッド61は、カメラユニット5が撮像した画像に基づいて特定された、移動対象とするウェル3(第1容器)内のターゲット細胞Cの位置に対応する座標位置へXY移動される。続いて、ヘッド61は、ターゲット細胞Cにアプローチするように下降される。そして、ターゲット細胞Cを含む細胞群が、チップ10内に吸引される。吸引後、ヘッド61は上昇され、選別プレート2の他のウェル3(第2容器)もしくは別途用意された選別容器へXY移動される。移動後、チップ10に保持されている細胞群は、他のウェル3または選別容器に吐出される。これにより、ターゲット細胞C以外の移動対象外細胞が希釈される。続いて、ウェル3もしくは選別容器から、ターゲット細胞Cのみがチップ10に再吸引される。しかる後、ヘッド61が移動先プレート4(第3容器)へXY移動され、チップ10内のターゲット細胞Cが所定のウェル41へ吐出される。 The operation of the head 61 is roughly as follows. The head 61 to which the chip 10 is attached is moved in the XY direction to a coordinate position corresponding to the position of the target cell C in the well 3 (first container) to be moved, which is specified based on the image captured by the camera unit 5. Next, the head 61 is lowered to approach the target cell C. Then, a group of cells including the target cell C is sucked into the chip 10. After the suction, the head 61 is raised and moved in the XY direction to another well 3 (second container) of the sorting plate 2 or a separately prepared sorting container. After the movement, the group of cells held in the chip 10 is discharged into the other well 3 or sorting container. This dilutes the cells other than the target cell C that are not to be moved. Next, only the target cell C is re-aspirated into the chip 10 from the well 3 or sorting container. After that, the head 61 is moved in the XY direction to the destination plate 4 (third container), and the target cell C in the chip 10 is discharged into the specified well 41.

 [チップおよびヘッドの詳細]
 図3(A)は、ヘッド61に装着されるチップ10の断面図と、該チップ10の移動機構および吸引機構とを示す図である。チップ10は、細胞Cの移動のため当該細胞Cの吸引または吐出を行うツールであって、細胞Cが出入り可能な先端開口tが開けられた先端部10Tを備えている。本実施形態のチップ10は、シリンジ11とプランジャ12との組立体からなる。シリンジ11は、細胞Cの吸引経路となる管状通路11Pを内部に備えている。プランジャ12は、管状通路11Pを画定するシリンジ11の内周壁と摺接しつつ管状通路11P内を進退移動する。
[Tip and head details]
3A is a cross-sectional view of the tip 10 mounted on the head 61, and a diagram showing the movement mechanism and suction mechanism of the tip 10. The tip 10 is a tool that sucks or discharges the cell C in order to move the cell C, and is equipped with a tip portion 10T having a tip opening t through which the cell C can enter and exit. The tip 10 of this embodiment is composed of an assembly of a syringe 11 and a plunger 12. The syringe 11 has a tubular passage 11P therein, which serves as a suction path for the cell C. The plunger 12 moves back and forth within the tubular passage 11P while sliding against the inner peripheral wall of the syringe 11 that defines the tubular passage 11P.

 シリンジ11は、大径の円筒体からなるシリンジ基端部111と、細径で長尺の円筒体からなるシリンジ本体部112とを含む。管状通路11Pは、シリンジ本体部112に形成されている。上述の先端開口tは、シリンジ本体部112の下端であるシリンジ先端部113(チップの先端)に設けられている。先端開口tに、管状通路11Pの一端が連なっている。シリンジ基端部111は、シリンジ本体部112の他端側に、テーパ状の部分を介して連設されている。シリンジ基端部111の上端部分は、ヘッド61の下端に嵌め込み装着されている。 The syringe 11 includes a syringe base end 111 consisting of a large-diameter cylinder, and a syringe body 112 consisting of a long, thin-diameter cylinder. The tubular passage 11P is formed in the syringe body 112. The tip opening t described above is provided in the syringe tip 113 (tip end), which is the lower end of the syringe body 112. One end of the tubular passage 11P is connected to the tip opening t. The syringe base end 111 is connected to the other end side of the syringe body 112 via a tapered portion. The upper end portion of the syringe base end 111 is fitted and attached to the lower end of the head 61.

 プランジャ12は、円筒体からなるプランジャ基端部121と、このプランジャ基端部121の下方に連なる針状のプランジャ本体部122と、プランジャ本体部122の下端であるプランジャ先端部123とを含む。プランジャ基端部121がシリンジ基端部111内に収容され、プランジャ本体部122がシリンジ本体部112の管状通路11Pに挿通される態様で、シリンジ11に対してプランジャ12が組み付けられている。プランジャ本体部122がシリンジ本体部112に最も深く挿通された図3(A)の状態では、プランジャ先端部123は先端開口tから突出する。プランジャ基端部121の上端には、ヘッド61の内部空間内において上下方向に移動可能なロッド61Rが取り付けられている。 The plunger 12 includes a cylindrical plunger base end 121, a needle-shaped plunger body 122 connected to the bottom of the plunger base end 121, and a plunger tip end 123 which is the bottom end of the plunger body 122. The plunger 12 is attached to the syringe 11 in such a manner that the plunger base end 121 is housed within the syringe base end 111 and the plunger body 122 is inserted into the tubular passage 11P of the syringe body 112. In the state shown in FIG. 3(A) where the plunger body 122 is inserted deepest into the syringe body 112, the plunger tip end 123 protrudes from the tip opening t. A rod 61R which is movable up and down within the internal space of the head 61 is attached to the top end of the plunger base end 121.

 ヘッド本体62内には、ヘッド駆動部64が装備されている。ヘッド駆動部64は、ヘッド61に装着されたチップ10の上下方向への移動機構、並びに、チップ10の先端開口tを通して細胞Cをチップ10内に吸引および吐出させる機構として機能する。ヘッド駆動部64は、ヘッド昇降モータ641とプランジャ昇降モータ642とを含む。 The head body 62 is equipped with a head drive unit 64. The head drive unit 64 functions as a mechanism for moving the tip 10 attached to the head 61 in the vertical direction, and as a mechanism for sucking and discharging the cells C into the tip 10 through the tip opening t of the tip 10. The head drive unit 64 includes a head lift motor 641 and a plunger lift motor 642.

 ヘッド昇降モータ641は、ヘッド61をヘッド本体62に対して昇降させる駆動源となるモータである。ヘッド昇降モータ641の駆動によってヘッド61が昇降されると、このヘッド61の下端に装着されているチップ10も昇降する。つまり、先端部10Tの先端開口tの高さ位置は、ヘッド昇降モータ641の動作制御によって所望の位置に設定することができる。 The head lift motor 641 is a motor that serves as a drive source for raising and lowering the head 61 relative to the head body 62. When the head 61 is raised and lowered by the drive of the head lift motor 641, the tip 10 attached to the lower end of the head 61 also rises and falls. In other words, the height position of the tip opening t of the tip portion 10T can be set to a desired position by controlling the operation of the head lift motor 641.

 プランジャ昇降モータ642は、ヘッド61の内部空間内において、ロッド61Rを昇降させる駆動源となるモータである。ロッド61Rが昇降されると、このロッド61Rに取り付けられたプランジャ12も昇降する。プランジャ12がシリンジ11に対して上昇することで、先端開口tには吸引力が発生する。一方、プランジャ12がシリンジ11に対して下降することで、先端開口tには吐出力が発生する。つまり、プランジャ昇降モータ642の動作制御によって、チップ10による細胞Cの吸引動作およびその吐出動作を制御することができる。 The plunger lift motor 642 is a motor that serves as a drive source for raising and lowering the rod 61R within the internal space of the head 61. When the rod 61R is raised and lowered, the plunger 12 attached to this rod 61R also rises and falls. When the plunger 12 rises relative to the syringe 11, a suction force is generated at the tip opening t. On the other hand, when the plunger 12 descends relative to the syringe 11, a discharge force is generated at the tip opening t. In other words, by controlling the operation of the plunger lift motor 642, the suction operation and discharge operation of the cell C by the tip 10 can be controlled.

 図3(A)は、プランジャ12が最も下降された状態を示している。この状態は、細胞Cの吸引を行う前の状態、または、チップ10に吸引した細胞Cを吐出した状態である。プランジャ先端部123は、シリンジ先端部113よりも僅かに下方へ突出している。図3(B)は、プランジャ12が所定高さだけ上昇された状態を示している。この状態は、細胞Cの吸引を行う吸引動作時のチップ10の状態である。図3(C)には、図3(B)の要部の拡大図が示されている。 Figure 3(A) shows the state in which the plunger 12 is lowered to the lowest point. This state is the state before cells C are aspirated, or the state in which cells C aspirated into the tip 10 have been discharged. The plunger tip 123 protrudes slightly downward beyond the syringe tip 113. Figure 3(B) shows the state in which the plunger 12 is raised a predetermined height. This state is the state of the tip 10 during the suction operation to aspirate cells C. Figure 3(C) shows an enlarged view of the main parts of Figure 3(B).

 吸引動作時には、プランジャ先端部123は管状通路11Pの内部に没する。この際、先端開口tに吸引力が発生し、該先端開口tの周囲の流体は、プランジャ先端部123の内没により管状通路11P内に形成された吸引空間Hへ吸引される。つまり、細胞Cを含む培地LCMが、吸引空間Hにおいて保持される。この吸引動作の後、プランジャ12を下方向へ移動させると、吸引空間H内に保持された前記流体は、先端開口tから吐出される。前記流体の吸引量は、プランジャ12の上昇高さにより、また前記流体の吸引速度は、プランジャ12の上昇速度によって調整することができる。 During the suction operation, the plunger tip 123 is submerged inside the tubular passage 11P. At this time, a suction force is generated at the tip opening t, and the fluid around the tip opening t is sucked into the suction space H formed inside the tubular passage 11P by the plunger tip 123 being submerged. In other words, the culture medium LCM containing the cells C is held in the suction space H. After this suction operation, when the plunger 12 is moved downward, the fluid held in the suction space H is discharged from the tip opening t. The amount of the fluid sucked in can be adjusted by the rising height of the plunger 12, and the suction speed of the fluid can be adjusted by the rising speed of the plunger 12.

 [細胞移動装置の電気的構成]
 図4は、細胞移動装置Sの電気的構成を示すブロック図である。細胞移動装置Sは、ヘッドユニット6(図1参照)の移動およびヘッド61(チップ10)の昇降、つまりヘッド61の三次元方向の移動動作を制御する制御部7を備える。このほか制御部7は、細胞Cのチップ10への吸引および吐出動作、並びにカメラユニット5の移動および撮像動作等を制御する。
[Electrical configuration of the cell migration device]
4 is a block diagram showing the electrical configuration of the cell movement device S. The cell movement device S includes a control unit 7 that controls the movement of the head unit 6 (see FIG. 1) and the elevation of the head 61 (chip 10), that is, the movement operation of the head 61 in three-dimensional directions. In addition, the control unit 7 controls the suction and discharge operations of the cells C to the chip 10, as well as the movement and image capture operations of the camera unit 5, etc.

 また、細胞移動装置Sは、カメラ軸駆動部53、サーボモータ54、ヘッドユニット軸駆動部63およびヘッド駆動部64を備える。カメラ軸駆動部53は、ガイドレール5G(図1)に沿ってカメラユニット5を水平移動させる駆動モータを含む。サーボモータ54は、正回転または逆回転することで、図略の動力伝達機構を介して、レンズ部51を所定の分解能で上下方向に移動させる。これにより、ウェル3に収容された細胞Cにレンズ部51の焦点位置が合わせられる。なお、図4おいて点線で示しているように、レンズ部51ではなく、基台1側を上下動させるようにしても良い。ヘッドユニット軸駆動部63は、ガイドレール6Gに沿ってヘッドユニット6(ヘッド本体62)をXまたはY方向に水平移動させる駆動モータを含む。ヘッド駆動部64は、図3に基づき上述した通りである。 The cell moving device S also includes a camera axis drive unit 53, a servo motor 54, a head unit axis drive unit 63, and a head drive unit 64. The camera axis drive unit 53 includes a drive motor that moves the camera unit 5 horizontally along the guide rail 5G (FIG. 1). The servo motor 54 rotates forward or backward to move the lens unit 51 vertically at a predetermined resolution via a power transmission mechanism (not shown). This allows the focal position of the lens unit 51 to be adjusted to the cell C contained in the well 3. As shown by the dotted line in FIG. 4, the base 1 side may be moved vertically instead of the lens unit 51. The head unit axis drive unit 63 includes a drive motor that moves the head unit 6 (head body 62) horizontally in the X or Y direction along the guide rail 6G. The head drive unit 64 is as described above based on FIG. 3.

 制御部7は、プロセッサー等からなり、所定のプログラムが実行されることで、軸制御部71、ヘッド制御部72、撮像制御部73、画像処理部74、記憶部75および主制御部78を備えるように機能する。さらに、制御部7に各種の情報を入力する入力部76と、各種の情報を表示する表示部77が備えられている。入力部76は、操作者から各種の操作情報の入力を受け付ける。表示部77は、カメラユニット5が撮像する画像等を表示するモニターとして機能する。 The control unit 7 is made up of a processor and the like, and functions to include an axis control unit 71, a head control unit 72, an imaging control unit 73, an image processing unit 74, a memory unit 75, and a main control unit 78 by executing a predetermined program. In addition, the control unit 7 is provided with an input unit 76 that inputs various information to the control unit 7, and a display unit 77 that displays various information. The input unit 76 accepts input of various operational information from the operator. The display unit 77 functions as a monitor that displays images captured by the camera unit 5, etc.

 軸制御部71は、ヘッドユニット軸駆動部63の動作を制御する。軸制御部71は、ヘッドユニット軸駆動部63を制御することで、ヘッドユニット6を水平方向の所定の目標位置へ移動させる。ヘッド61(チップ10)の、選別プレート2と移動先プレート4との間ならびにウェル3間の移動、ウェル3に収容された細胞Cに対する鉛直上方での位置決め、並びに吐出対象となるウェル41に対する鉛直上方での位置決め等は、軸制御部71によるヘッドユニット軸駆動部63の制御によって実現される。また、軸制御部71は、カメラ軸駆動部53を制御して、カメラユニット5をガイドレール5Gに沿って移動させる動作を制御する。 The axis control unit 71 controls the operation of the head unit axis drive unit 63. By controlling the head unit axis drive unit 63, the axis control unit 71 moves the head unit 6 to a predetermined target position in the horizontal direction. Movement of the head 61 (chip 10) between the sorting plate 2 and the destination plate 4 and between the wells 3, positioning vertically above the cells C contained in the wells 3, and positioning vertically above the wells 41 to be ejected are achieved by the control of the head unit axis drive unit 63 by the axis control unit 71. The axis control unit 71 also controls the camera axis drive unit 53 to control the operation of moving the camera unit 5 along the guide rail 5G.

 ヘッド制御部72は、ヘッド駆動部64のヘッド昇降モータ641を制御することにより、制御対象とするヘッド61を所定の目標位置に向けて昇降させる。また、ヘッド制御部72は、プランジャ昇降モータ642を制御することにより、所定のタイミングでチップ10の先端開口tに吸引力または吐出力を発生させる。 The head control unit 72 raises and lowers the head 61 to be controlled toward a predetermined target position by controlling the head lift motor 641 of the head drive unit 64. The head control unit 72 also controls the plunger lift motor 642 to generate a suction force or discharge force at the tip opening t of the tip 10 at a predetermined timing.

 撮像制御部73は、カメラユニット5による選別プレート2または移動先プレート4の撮像動作、例えば露光量やシャッタータイミング等を制御する。また、撮像制御部73は、合焦動作のために、サーボモータ54にレンズ部51を上下方向に所定のピッチ(例えば数十μmピッチ)で移動させるための制御パルスを与える。撮像制御部73は、通常の明視野撮像と、ターゲット細胞Cを蛍光させる蛍光撮像とをカメラユニット5に実行させることが可能である。 The imaging control unit 73 controls the imaging operation of the camera unit 5 of the sorting plate 2 or the destination plate 4, such as the exposure amount and shutter timing. In addition, for focusing operations, the imaging control unit 73 provides the servo motor 54 with a control pulse for moving the lens unit 51 vertically at a predetermined pitch (for example, a pitch of several tens of μm). The imaging control unit 73 can cause the camera unit 5 to perform normal bright field imaging and fluorescent imaging that causes the target cells C to fluoresce.

 画像処理部74は、カメラ本体52により取得された画像データに対して、エッジ検出処理や特徴量抽出を伴うパターン認識処理などの画像処理を施す。画像処理部74は、細胞Cを収容している選別プレート2の画像に基づき、ウェル3の底面31上における細胞Cの存在、グリッド3G(複数の凹部)への細胞Cの収容状態を画像上で認識する処理等を実行する。同様に、画像処理部74は、細胞Cが移動されたウェル41の画像に基づき、ウェル41に収容された細胞Cの個数、量、蛍光強度等を認識する処理を実行する。 The image processing unit 74 performs image processing such as edge detection processing and pattern recognition processing involving feature extraction on the image data acquired by the camera body 52. Based on an image of the sorting plate 2 containing the cells C, the image processing unit 74 executes processing to recognize the presence of the cells C on the bottom surface 31 of the well 3 and the state of the cells C contained in the grid 3G (multiple recesses) on the image. Similarly, based on an image of the well 41 to which the cells C have been moved, the image processing unit 74 executes processing to recognize the number, amount, fluorescence intensity, etc. of the cells C contained in the well 41.

 記憶部75は、細胞移動装置Sにおける各種設定値やデータ、プログラム等を記憶する。この他、記憶部75は、使用する選別プレート2に関する情報、例えばプレートサイズ、ウェル3のサイズ、グリッド3Gのサイズなどのデータを記憶する。また、チップ10の先端形状に関する情報、例えばシリンジ先端部113の外径、肉厚、先端開口tの開口径等も、記憶部75に格納される。さらに、細胞Cの吸引動作における吸引量および吸引速度などの設定情報等も、記憶部75に格納される。 The memory unit 75 stores various setting values, data, programs, etc. for the cell movement device S. In addition, the memory unit 75 stores information about the sorting plate 2 to be used, such as the plate size, the size of the well 3, and the size of the grid 3G. Information about the tip shape of the tip 10, such as the outer diameter, thickness, and opening diameter of the tip opening t of the syringe tip 113, is also stored in the memory unit 75. Furthermore, setting information such as the suction volume and suction speed in the suction operation of the cells C is also stored in the memory unit 75.

 主制御部78は、カメラユニット5およびヘッドユニット6の動作を統括的に制御する。主制御部78は、選別プレート2の撮像を行わせると共に、移動対象に選択されたウェル3内のターゲット細胞Cを、ヘッド61に装着されたチップ10に吸引させるピッキング動作を制御する。また、主制御部78は、吸引させたターゲット細胞Cを、選別プレート2の他のウェル3もしくは移動先プレート4へ移動させる移動動作、ならびに、吐出させる吐出動作を制御する。主制御部78は、上掲のピッキング動作、移動動作および吐出動作を行わせるよう、軸制御部71、ヘッド制御部72および撮像制御部73を通して、カメラユニット5およびヘッドユニット6を制御する。 The main control unit 78 comprehensively controls the operation of the camera unit 5 and the head unit 6. The main control unit 78 captures images of the sorting plate 2, and controls a picking operation in which the target cell C in the well 3 selected as the moving target is sucked into the tip 10 attached to the head 61. The main control unit 78 also controls a moving operation in which the sucked target cell C is moved to another well 3 of the sorting plate 2 or to the destination plate 4, and a discharging operation in which the sucked target cell C is discharged. The main control unit 78 controls the camera unit 5 and the head unit 6 through the axis control unit 71, head control unit 72, and imaging control unit 73 to perform the above-mentioned picking operation, moving operation, and discharging operation.

 主制御部78は、上記の制御のため機能的に、移動吐出制御部781、吐出圧制御部782およびピッキング制御部783を含む。移動吐出制御部781は、チップ10からの細胞吐出動作および吐出時におけるヘッド61の移動動作を制御する。吐出圧制御部782は、チップ10からの細胞吐出時における吐出圧、つまり先端開口tに与える吐出用の正圧を制御する。ピッキング制御部783は、軸制御部71およびヘッド制御部72を通して、チップ10による細胞Cのピッキング動作を制御する。 The main control unit 78 functionally includes a movement and discharge control unit 781, a discharge pressure control unit 782, and a picking control unit 783 for the above control. The movement and discharge control unit 781 controls the cell discharge operation from the chip 10 and the movement operation of the head 61 during discharge. The discharge pressure control unit 782 controls the discharge pressure during cell discharge from the chip 10, that is, the positive pressure for discharge applied to the tip opening t. The picking control unit 783 controls the picking operation of the cell C by the chip 10 through the axis control unit 71 and head control unit 72.

 [本実施形態に係る細胞吐出動作]
 図2(B)に例示したような、底面31にグリッド3Gを有するウェル3に多数の細胞Cを吐出する場合、なるべく多くのグリッド3Gに細胞Cが分散して収容されるような吐出を行うことが望ましい。細胞Cが特定箇所に偏って底面31に配置されると、移動対象のターゲット細胞Cの選択的ピッキングが行い難くなる。一つのグリッド3Gに一つの細胞Cが収容されること、つまり細胞Cが単離されることが理想である。この場合、ターゲット細胞Cだけを容易にチップ10でピッキングできる。本実施形態では、細胞吐出後のターゲット細胞Cのピッキングを効率良く行えるように、チップ10から細胞Cを吐出させる。
[Cell Discharge Operation According to the Present Embodiment]
When discharging a large number of cells C into a well 3 having a grid 3G on the bottom surface 31 as exemplified in FIG. 2B, it is desirable to discharge the cells C so that they are dispersed and accommodated on as many grids 3G as possible. If the cells C are arranged on the bottom surface 31 in a biased manner in a specific location, it becomes difficult to selectively pick the target cells C to be moved. Ideally, one cell C is accommodated on one grid 3G, that is, the cell C is isolated. In this case, only the target cells C can be easily picked by the chip 10. In this embodiment, the cells C are discharged from the chip 10 so that the target cells C can be efficiently picked after the cells are discharged.

 図5は、チップ10からウェル3への細胞吐出状況を示す断面図である。移動吐出制御部781は、ヘッド61を移動させながらチップ10から細胞Cを吐出させる制御を行う。細胞吐出に際し、ウェル3には予め液体培地LCMが貯留される。つまり、グリッド3Gおよびその上方空間が液体培地LCMで満たされる。一方、チップ10の吸引空間Hには、別の容器で吸引された複数の細胞Cが保持される。移動吐出制御部781は、軸制御部71およびヘッド制御部72を制御してヘッド61をXYZ移動させ、チップ10の先端部10Tをウェル3内の液体培地LCMに浸漬させる。 FIG. 5 is a cross-sectional view showing the state of cell discharge from the chip 10 to the well 3. The movement and discharge control unit 781 controls the discharge of cells C from the chip 10 while moving the head 61. When discharging cells, liquid medium LCM is stored in advance in the well 3. In other words, the grid 3G and the space above it are filled with liquid medium LCM. Meanwhile, a number of cells C aspirated in a separate container are held in the suction space H of the chip 10. The movement and discharge control unit 781 controls the axis control unit 71 and head control unit 72 to move the head 61 in the XYZ directions, and immerses the tip 10T of the chip 10 in the liquid medium LCM in the well 3.

 上記の状態が形成された後、移動吐出制御部781は、ヘッド61を移動させながらチップ10の先端開口tから細胞Cを吐出させる。すなわち、ヘッド61のXY移動に伴いチップ10を矢印a1または矢印a2で示すようにXY移動させつつ、プランジャ本体部122を下降させて吸引空間Hに保持している細胞Cを先端開口tから吐出させる。吐出された細胞Cは、ヘッド61の移動に伴い拡散しながら自重で沈降し、やがて底面31のグリッド3Gに収容される。このように、チップ10を移動させながら、当該チップ10から細胞Cを吐出させる。このため、細胞Cをウェル3の底面31の一部に偏らせず、点在状に配置することが可能となる。従って、移動対象となるターゲット細胞Cを単離させ易くなる。 After the above state is formed, the movement and discharge control unit 781 discharges the cells C from the tip opening t of the tip 10 while moving the head 61. That is, while moving the tip 10 in the XY direction as shown by the arrow a1 or the arrow a2 with the XY movement of the head 61, the plunger main body 122 is lowered to discharge the cells C held in the suction space H from the tip opening t. The discharged cells C settle under their own weight while diffusing with the movement of the head 61, and are eventually accommodated in the grid 3G on the bottom surface 31. In this way, the cells C are discharged from the tip 10 while moving the tip 10. This makes it possible to arrange the cells C in a scattered manner without being concentrated on a part of the bottom surface 31 of the well 3. This makes it easier to isolate the target cells C to be moved.

 細胞Cの吐出時におけるヘッド61の移動の態様は、細胞の分散を促進できる限りにおいて適宜設定して良い。図6(A)~(E)は、細胞吐出時における、チップ10の各種移動例を示す図である。図6(A)は、ヘッド61をX方向またはY方向に直進させる態様である。ヘッド61をX方向またはY方向に往復動させても良いし、XY方向に同時移動させることにより斜め方向に直進させても良い。また、ヘッド61をX方向またはY方向に直進させつつ、Z方向に僅かに往復動、つまり昇降させても良い。図6(B)は、ヘッド61をジグザグ移動させる例である。例えば、ヘッド61をX方向に直進させながらY方向に往復動(振動)させる、XまたはY方向に直進させながらZ移動させる、という動作を例示することができる。 The manner of movement of the head 61 when discharging the cells C may be set appropriately as long as it promotes the dispersion of the cells. Figures 6(A) to (E) are diagrams showing various examples of movement of the chip 10 when discharging the cells. Figure 6(A) shows a manner in which the head 61 moves straight in the X or Y direction. The head 61 may be reciprocated in the X or Y direction, or may be moved straight in an oblique direction by simultaneously moving in the X and Y directions. The head 61 may also be moved straight in the X or Y direction while slightly reciprocating in the Z direction, that is, raised and lowered. Figure 6(B) shows an example of moving the head 61 in a zigzag manner. For example, the head 61 may be moved straight in the X direction while reciprocating (oscillating) in the Y direction, or moved straight in the X or Y direction while moving in the Z direction.

 図6(C)は、ヘッド61を平面視で円形の渦巻き状に移動させる例、図6(D)は、ヘッド61を矩形の渦巻き状に移動させる例である。渦巻き移動の始点は、渦巻きの中心位置もしくは最外周位置のいずれとしても良い。但し、最外周を始点とするとチップ10とウェル3の側壁との干渉が起こり易いので、中心位置を始点とすることが望ましい。なお、渦巻き移動に代えて、ヘッド61を単純に円または楕円軌道、あるいは正方形または矩形軌道を描くように移動させても良い。 Figure 6(C) is an example of moving the head 61 in a circular spiral shape in a plan view, and Figure 6(D) is an example of moving the head 61 in a rectangular spiral shape. The starting point of the spiral movement may be either the center position or the outermost periphery position of the spiral. However, since using the outermost periphery as the starting point is likely to cause interference between the chip 10 and the sidewall of the well 3, it is preferable to use the center position as the starting point. Note that instead of a spiral movement, the head 61 may simply move in a circular or elliptical orbit, or a square or rectangular orbit.

 図6(E)は、ヘッド61を振動させる例である。振動は、ヘッド61をX方向またはY方向に微小距離の範囲で往復動させることで実現できる。ヘッド61をX方向に直進させながらY方向に振動させる、あるいはY方向に直進させながらX方向に振動させても良い。また、ヘッド61をウェル3内のある定点ポイントに位置させて所定時間だけ振動させ、定点ポイントをウェル3内の他の位置へ移動させた上で所定時間だけ振動させる態様としても良い。XY方向の振動に加えて、ヘッド61にZ方向の振動を与えても良い。 Figure 6 (E) is an example of vibrating the head 61. The vibration can be achieved by reciprocating the head 61 in the X or Y direction over a small distance. The head 61 may be vibrated in the Y direction while moving straight in the X direction, or may be vibrated in the X direction while moving straight in the Y direction. Alternatively, the head 61 may be positioned at a fixed point in the well 3 and vibrated for a predetermined time, and the fixed point may be moved to another position in the well 3 and vibrated for a predetermined time. In addition to vibration in the X and Y directions, the head 61 may be vibrated in the Z direction.

 [多量の細胞の中からターゲット細胞のピッキング例]
 一つの容器に含まれる全細胞数に対してターゲット細胞の数が非常に少ない場合、当該ターゲット細胞を選択的にピッキングすることは困難である。従来は、限界希釈法を適用して、ターゲット細胞が含まれる細胞懸濁液を希釈してからピッキングが行われている。しかし、限界希釈では、細胞を含む培地をウェルに分注する作業が必要となる。このため、全細胞数が多量であるときは多数の分注作業が必要となり、非常に多くの手間を要するとともに多数枚のウェルプレートを要するという問題があった。この点に鑑み、本実施形態では、多量の細胞の中からターゲット細胞を効率的に単離させ、ピッキングを容易に行える例を示す。
[Example of picking a target cell from a large number of cells]
When the number of target cells is very small relative to the total number of cells contained in one container, it is difficult to selectively pick the target cells. Conventionally, the cell suspension containing the target cells is diluted by applying the limiting dilution method, and then the target cells are picked. However, in the limiting dilution method, the work of dispensing the medium containing the cells into the well is required. Therefore, when the total number of cells is large, a large number of dispensing operations are required, which requires a lot of time and effort, and there is a problem that a large number of well plates are required. In view of this point, in this embodiment, an example is shown in which the target cells can be efficiently isolated from a large number of cells and can be easily picked.

 図7(A)~(D)は、図2に例示したウェル3の第1ウェル3A1(第1容器)と第2ウェル3B1(第2容器)とを使用して、細胞Cの播種~ターゲット細胞Ctのピッキングまでの流れを示す断面図である。第1ウェル3A1は、複数の第1グリッド3G1(第1凹部)を有する第1底面31Aを含む。図7(A)では、第1グリッド3G1として、5つのグリッド3G11、3G12、3G13、3G14、3G15を示している。第2ウェル3B1は、複数の第2グリッド3G2(第2凹部)を有する第2底面31Bを含む。図7(C)では、第2グリッド3G2として、5つのグリッド3G21、3G22、3G23、3G24、3G25を示している。第1ウェル3A1および第2ウェル3B1には、予め所定量の液体培地LCMが貯留されている。 7(A) to (D) are cross-sectional views showing the flow from seeding of cells C to picking of target cells Ct using the first well 3A1 (first container) and the second well 3B1 (second container) of the well 3 illustrated in FIG. 2. The first well 3A1 includes a first bottom surface 31A having a plurality of first grids 3G1 (first recesses). In FIG. 7(A), five grids 3G11, 3G12, 3G13, 3G14, and 3G15 are shown as the first grid 3G1. The second well 3B1 includes a second bottom surface 31B having a plurality of second grids 3G2 (second recesses). In FIG. 7(C), five grids 3G21, 3G22, 3G23, 3G24, and 3G25 are shown as the second grid 3G2. A predetermined amount of liquid medium LCM is stored in the first well 3A1 and the second well 3B1.

 図7(A)~(D)に示すピッキング方法は、大略的に、次の工程(1)~(5)からなる。
(1)第1ウェル3A1に多量の細胞を播種する、
(2)チップ10に第1ウェル3A1から複数の細胞Cを吸引させる、
(3)第2ウェル3B1へ細胞Cを保持したチップ10を移動させる、
(4)チップ10の先端部10Tを第2ウェル3B1内の液体培地LCMに浸漬させた状態で、チップ10を移動させながら細胞Cを吐出させる、および、
(5)第2ウェル3B1からターゲット細胞Ctをピッキングする。
The picking method shown in FIGS. 7(A) to (D) roughly comprises the following steps (1) to (5).
(1) Seeding a large amount of cells into the first well 3A1;
(2) causing the chip 10 to aspirate a plurality of cells C from the first well 3A1;
(3) Moving the chip 10 holding the cell C to the second well 3B1;
(4) With the tip 10T of the chip 10 immersed in the liquid medium LCM in the second well 3B1, the chip 10 is moved to eject the cells C; and
(5) Pick the target cell Ct from the second well 3B1.

 図7(A)は、上記の工程(1)の実施状況を示している。チップ10は、多数の細胞Cの播種のため、第1ウェル3A1に対峙している。チップ10には、予め分注チューブから吸引された多数の細胞Cが保持されている。第1ウェル3A1の細胞Cの播種においても、細胞Cの分散性を高めるためチップ10を移動させながらの細胞吐出が行われる。移動吐出制御部781(図4)は、チップ10の先端部10Tを第1ウェル3A1の液体培地LCMに浸漬させた状態で、ヘッド61を移動させながらチップ10から細胞Cを吐出させる。ここでは、チップ10が水平移動される例を示す。 FIG. 7(A) shows the implementation of step (1) above. The chip 10 faces the first well 3A1 in order to seed a large number of cells C. The chip 10 holds a large number of cells C that have been sucked up in advance from a dispensing tube. When seeding the cells C in the first well 3A1, cells are discharged while moving the chip 10 in order to increase the dispersibility of the cells C. The movement and discharge control unit 781 (FIG. 4) discharges the cells C from the chip 10 while moving the head 61 with the tip 10T of the chip 10 immersed in the liquid medium LCM in the first well 3A1. Here, an example is shown in which the chip 10 is moved horizontally.

 細胞Cの播種は、第1ウェル3A1が備える第1グリッド3G1の各々に、計算上で予め定められた数の細胞Cが収容されるように実行される。第1ウェル3A1が、1辺=200μmの正方形の第1グリッド3G1を16000個有する場合を想定して、一例を挙げる。この場合、1個の第1グリッド3G1当たり150個の細胞Cが収容される量の細胞Cが播種される。すなわち、150個×16000=240万個の細胞Cが、第1ウェル3A1に播種される。チップ10からの1回の吐出動作で全量を播種できない場合は、図7(A)に示す播種動作が繰り返される。ピッキング対象となるターゲット細胞Ctが、1万個の細胞中に1個の割合でしか存在しない場合は、上掲の例では240個のターゲット細胞Ctが含まれることになる。 The cells C are seeded so that a predetermined number of cells C are accommodated in each of the first grids 3G1 of the first well 3A1. An example will be given assuming that the first well 3A1 has 16,000 square first grids 3G1 with sides of 200 μm. In this case, the cells C are seeded in an amount that accommodates 150 cells C per first grid 3G1. In other words, 150 cells x 16,000 = 2.4 million cells C are seeded in the first well 3A1. If the entire amount cannot be seeded in one discharge operation from the chip 10, the seeding operation shown in FIG. 7(A) is repeated. If the target cell Ct to be picked is present at a rate of only 1 cell in 10,000 cells, the above example will contain 240 target cells Ct.

 第1ウェル3A1に播種された細胞Cの中から、ターゲット細胞Ctが特定される。この特定の手段としては、例えばターゲット細胞Ctを蛍光励起させる、あるいは蛍光タンパク質をターゲット細胞Ctに結合させる等の処理を施し、カメラユニット5にてその蛍光を撮像する手段が例示できる。図7(A)では、グリッド3G11~3G15の各々に細胞Cが収容され、グリッド3G13だけにターゲット細胞Ctが含有されている例を示している。ピッキング制御部783は、このターゲット細胞Ctを収容するグリッド3G13を、上記工程(2)において吸引対象とするターゲットグリッド(ターゲット凹部)として特定する。 A target cell Ct is identified from among the cells C seeded in the first well 3A1. Examples of the means for identifying the target cell Ct include a means for exciting the target cell Ct with fluorescence or binding a fluorescent protein to the target cell Ct, and then capturing an image of the fluorescence with the camera unit 5. FIG. 7(A) shows an example in which a cell C is contained in each of the grids 3G11 to 3G15, and only the grid 3G13 contains the target cell Ct. The picking control unit 783 identifies the grid 3G13 containing the target cell Ct as the target grid (target recess) to be sucked in the above step (2).

 図7(B)は、工程(2)の実施状況を示している。ピッキング制御部783は、新たなチップ10を装着したヘッド61をターゲットグリッド3G13に位置合わせし、当該ターゲットグリッド3G13存在する細胞Cの全てをチップ10に吸引させる。この吸引により、チップ10にはターゲット細胞Ctと、移動対象ではない細胞Cとが保持される。上掲の例では、統計的な計算上で150個の細胞Cがチップ10に吸引され、そのうち1個がターゲット細胞Ctということになる。吸引を終えると、上記工程(3)の通り、チップ10が第2ウェル3B1に向かうよう、ヘッド61が移動される。 FIG. 7(B) shows the implementation status of step (2). The picking control unit 783 aligns the head 61 with a new tip 10 attached to the target grid 3G13, and causes the tip 10 to suck in all of the cells C present on the target grid 3G13. This suction causes the tip 10 to hold the target cells Ct and cells C that are not to be moved. In the above example, statistical calculations show that 150 cells C are sucked into the tip 10, one of which is the target cell Ct. Once suction is complete, the head 61 is moved so that the tip 10 faces the second well 3B1, as in step (3) above.

 図7(C)は、上記工程(4)の実施状況を示している。移動吐出制御部781は、チップ10の先端部10Tを第2ウェル3B1内の液体培地LCMに浸漬させた状態で、チップ10を移動させながら細胞Cを吐出させる。第2ウェル3B1への細胞Cの播種は、当該第2ウェル3B1が具備する第2グリッド3G2の各々に所望数の細胞Cが分散的に収容されるように実行される。理想的な分散状態は、一つの第2グリッド3G2に一つの細胞Cが収容される状態である。このような分散状態を確保可能な限りにおいて、工程(4)を繰り返しても良い。 FIG. 7(C) shows the implementation of step (4) above. The movement and ejection control unit 781 ejects cells C while moving the tip 10 with the tip 10's tip end 10T immersed in the liquid medium LCM in the second well 3B1. The cells C are seeded into the second well 3B1 so that a desired number of cells C are contained in a dispersed manner in each of the second grids 3G2 that the second well 3B1 has. The ideal dispersed state is one in which one cell C is contained in one second grid 3G2. Step (4) may be repeated as long as such a dispersed state can be ensured.

 具体例を挙げる。上記で例示した第1ウェル3A1と同様に、第2ウェル3B1も1辺=200μmの正方形の第1グリッド3G1を16000個有しているとする。この場合、4000個~8000個程度の細胞Cを播種しても、一つ細胞Cだけを収容する第2グリッド3G2の発生確率を高く維持できる。上掲の例では、一つのターゲットグリッド3G13からの吸引でピッキングされるのは150個の細胞であるので、25回~55回程度、工程(2)~(4)を繰り返すことができる。 Here is a specific example. As with the first well 3A1 illustrated above, the second well 3B1 also has 16,000 first grids 3G1 each having a square shape with one side measuring 200 μm. In this case, even if about 4,000 to 8,000 cells C are seeded, the probability of a second grid 3G2 containing only one cell C can be maintained high. In the above example, 150 cells are picked by suction from one target grid 3G13, so steps (2) to (4) can be repeated about 25 to 55 times.

 第2ウェル3B1への細胞Cの収容状態は、カメラユニット5が取得する画像に基づいて確認される。図7(C)では、第2ウェル3B1のグリッド3G21~3G25のうち、グリッド3G23に1個のターゲット細胞Ctが収容されている例を示している。ターゲット細胞Ctの収容位置は、カメラユニット5による蛍光撮像の結果に基づき特定される。ピッキング制御部783は、ターゲット細胞Ctを収容するグリッド3G23をターゲットグリッドとして特定する。 The state of cell C contained in second well 3B1 is confirmed based on the image acquired by camera unit 5. FIG. 7(C) shows an example in which one target cell Ct is contained in grid 3G23 among grids 3G21 to 3G25 of second well 3B1. The containment position of target cell Ct is identified based on the results of fluorescent imaging by camera unit 5. The picking control unit 783 identifies grid 3G23 containing target cell Ct as the target grid.

 図7(D)は、上記工程(5)の実施状況を示している。ピッキング制御部783は、新たなチップ10を装着したヘッド61をターゲットグリッド3G23に位置合わせし、単離されているターゲット細胞Ctをチップ10に吸引させる。吸引後、チップ10が移動先プレート4に向かうよう、ヘッド61が移動される。移動後、移動先プレート4の一つのウェル41に、チップ10からターゲット細胞Ctが吐出される。工程(5)は、第2ウェル3B1において単離されているターゲット細胞Ctの存在数だけ繰り返される。 FIG. 7(D) shows the implementation status of step (5) above. The picking control unit 783 aligns the head 61 with a new chip 10 attached to the target grid 3G23, and causes the chip 10 to aspirate the isolated target cells Ct. After aspirating, the head 61 is moved so that the chip 10 faces the destination plate 4. After movement, the target cells Ct are ejected from the chip 10 into one of the wells 41 of the destination plate 4. Step (5) is repeated the number of times equal to the number of isolated target cells Ct present in the second well 3B1.

 本実施形態によれば、第1ウェル3A1の第1グリッド3G1群の中からターゲット細胞Ctを収容しているターゲットグリッド3G13を特定し、そのターゲットグリッド3G13に存在する細胞Cの全てが吸引される。次いで、吸引されたターゲット細胞Ctを含む細胞Cの群が第2ウェル3B1に吐出される。いずれの際にも、チップ10を移動させながらの細胞吐出が行われるので細胞Cが分散し、多数のグリッド3G1、3G2へ満遍なく細胞Cを収容させることができる。また、上記の2ステップの吐出により、自ずと移動対象外細胞の希釈化を図ることができる。上掲の具体例では、第1ウェル3A1では1万個の細胞C中に1つのターゲット細胞Ctが含有されていたものを、第2ウェル3B1では150個の細胞C中に1個のターゲット細胞Ctが含有される状態を形成できる。従って、第2ウェル3B1においてターゲット細胞Ctの単離が行い易くなり、その後のピッキングを容易に行わせることができる。 In this embodiment, the target grid 3G13 that contains the target cells Ct is identified from the group of first grids 3G1 in the first well 3A1, and all the cells C present in the target grid 3G13 are aspirated. Next, the group of cells C containing the aspirated target cells Ct is discharged into the second well 3B1. In either case, the cells are discharged while the chip 10 is moving, so that the cells C are dispersed and can be evenly accommodated in a large number of grids 3G1 and 3G2. Furthermore, the above two-step discharge naturally dilutes the cells that are not to be moved. In the specific example shown above, while one target cell Ct is contained in 10,000 cells C in the first well 3A1, a state in which one target cell Ct is contained in 150 cells C in the second well 3B1 can be created. Therefore, it becomes easier to isolate the target cells Ct in the second well 3B1, and subsequent picking can be easily performed.

 [細胞吐出時の各種の工夫について]
 以上が細胞Cの播種からターゲット細胞Ctのピッキングまでの一例であるが、上記の工程(1);図7(A)および工程(4);図7(C)の細胞吐出時において、好ましい吐出の態様を以下に示す。
[Various ideas for cell ejection]
The above is an example of the process from seeding the cells C to picking the target cells Ct. A preferred mode of cell ejection in the above step (1) (FIG. 7(A)) and step (4) (FIG. 7(C) is shown below.

 <吐出圧の設定>
 例えば移動先プレート4のウェル41へ、チップ10からターゲット細胞Ctを吐出させる際、吐出圧制御部782は、チップ10の先端開口tに予め定められた吐出用の基準正圧を与えるよう制御する。具体的には吐出圧制御部782は、プランジャ12(図3)の下降速度を制御する。基準正圧は、チップ10の吸引空間Hに保持された細胞Cが速やかに先端開口tから吐出される圧力に設定される。
<Discharge pressure setting>
For example, when discharging a target cell Ct from the chip 10 into a well 41 of the destination plate 4, the discharge pressure control unit 782 performs control so as to apply a predetermined reference positive pressure for discharge to the tip opening t of the chip 10. Specifically, the discharge pressure control unit 782 controls the descending speed of the plunger 12 (FIG. 3). The reference positive pressure is set to a pressure at which the cell C held in the suction space H of the chip 10 is quickly discharged from the tip opening t.

 一方、上記の工程(1)および工程(4)においては、速やかな吐出を行うと細胞Cの分散性が損なわれることがある。チップ10の先端開口tに吐出用の基準正圧を与えると、チップ10内に保持されている細胞Cが一気に勢い良く飛び出すからである。従って、チップ10を移動させながら細胞吐出を行わせる際、先端開口tに正圧を与えないようにしても良い。すなわち、チップ10の先端部10Tを第1ウェル3A1または第2ウェル3B1の液体培地LCMに浸漬させた状態で、先端開口tに吐出用の正圧を与えることなく、ヘッド61を移動させても良い。この態様によれば、チップ10内の細胞Cは、先端開口tから重力を利用した自由落下で底面31A、31Bに向かう。しかも、チップ10は移動している。従って、細胞Cの飛び出しを抑制でき、細胞Cを分散して底面31A、31Bのグリッド3G1、3G2に満遍なく配置し易くなる。 On the other hand, in the above steps (1) and (4), rapid discharge may impair the dispersibility of the cells C. This is because when a reference positive pressure for discharge is applied to the tip opening t of the chip 10, the cells C held in the chip 10 are forced to fly out at once. Therefore, when discharging cells while moving the chip 10, it is also possible to avoid applying positive pressure to the tip opening t. In other words, the head 61 may be moved without applying positive pressure for discharge to the tip opening t while the tip 10T of the chip 10 is immersed in the liquid medium LCM of the first well 3A1 or the second well 3B1. According to this embodiment, the cells C in the chip 10 move toward the bottom surfaces 31A and 31B by free fall using gravity from the tip opening t. Moreover, the chip 10 is moving. Therefore, it is possible to suppress the cells C from flying out, and it becomes easier to disperse the cells C and place them evenly on the grids 3G1 and 3G2 of the bottom surfaces 31A and 31B.

 上記の自由落下だけに依存すると、チップ10に保持させた細胞Cの吐出に時間を要することがある。従って、工程(1)および工程(4)の実行時において、前記基準正圧よりも小さい正圧を先端開口tに与えるようにしても良い。例えば、基準正圧の1/2~1/10程度の正圧を先端開口tに与えることができる。この態様によれば、チップ10から細胞Cが勢い良く飛び出すことを抑制しながら、細胞吐出に要する時間を短縮することができる。 If one relies solely on the above-mentioned free fall, it may take time to eject the cells C held in the chip 10. Therefore, when steps (1) and (4) are performed, a positive pressure smaller than the reference positive pressure may be applied to the tip opening t. For example, a positive pressure of about 1/2 to 1/10 of the reference positive pressure may be applied to the tip opening t. According to this embodiment, it is possible to reduce the time required to eject the cells while preventing the cells C from flying out of the chip 10 with force.

 <チップ内での細胞の分散>
 細胞Cは液体培地LCM内において沈降する。このため、チップ10内に液体培地LCMとともに吸引された細胞Cは、吸引から吐出までの間に時間を要すると先端部10T付近に沈降してしまう。この状態で先端開口tに吐出圧を与えると、先端部10T付近に偏在している細胞Cが一気に放出され、分散性が損なわれる場合がる。この場合を想定して、チップ10内で細胞Cを分散させるステップを介入させることが望ましい。
<Dispersion of cells within the chip>
The cells C settle in the liquid medium LCM. Therefore, if the cells C aspirated into the chip 10 together with the liquid medium LCM take time to be discharged from the aspiration, they will settle near the tip 10T. If discharge pressure is applied to the tip opening t in this state, the cells C unevenly distributed near the tip 10T may be released all at once, resulting in loss of dispersibility. In anticipation of this case, it is desirable to intervene a step of dispersing the cells C in the chip 10.

 図8(A)~(D)は、チップ10内での細胞分散のステップを含む、ウェル3への細胞Cの播種の一例を示す図である。ここでは、上記工程(1)の第1次播種を想定している。図8(A)に示すように、液体培地LCM中に多数の細胞Cが含有されている細胞懸濁液を貯留する分注チューブ21に、チップ10の先端部10Tが挿入される。そして、チップ10に、液体培地LCMとともに多数の細胞Cが吸引される。 FIGS. 8(A) to (D) are diagrams showing an example of seeding cells C into a well 3, including a step of dispersing cells in the chip 10. Here, the first seeding in step (1) above is assumed. As shown in FIG. 8(A), the tip 10T of the chip 10 is inserted into a dispensing tube 21 that stores a cell suspension containing a large number of cells C in a liquid medium LCM. Then, a large number of cells C are aspirated into the chip 10 together with the liquid medium LCM.

 続いて、図8(B)に示すように、ヘッド61の上昇動作でチップ10が引き上げられ、播種を行うウェル3に向けてヘッド61が移動される。この際、チップ10内に吸引された細胞Cは、先端部10T付近に沈降する。この状態で、先端部10Tをウェル3の液体培地LCMへ着水させると、細胞Cが先端開口tから意図せず一気に漏れ落ちることが生じ得る。そこで、図8(C)に示すように、チップ10に僅かに吸引力を発生させ、先端部10T付近で塊状となっている細胞Cを上方に持ち上げ、分散させる。つまり、チップ10内に吸引されている細胞Cが当該チップ10内の奥行側に移動するように、チップ10に吸引の動作を行わせる。 Next, as shown in FIG. 8(B), the tip 10 is pulled up by the lifting operation of the head 61, and the head 61 is moved toward the well 3 where seeding will be performed. At this time, the cells C sucked into the tip 10 settle near the tip 10T. In this state, if the tip 10T is landed in the liquid medium LCM of the well 3, the cells C may unintentionally leak out all at once from the tip opening t. Therefore, as shown in FIG. 8(C), a slight suction force is generated in the tip 10, and the cells C that have formed a clump near the tip 10T are lifted upward and dispersed. In other words, the tip 10 is made to perform a suction operation so that the cells C sucked into the tip 10 move toward the depth of the tip 10.

 続いて、図8(D)に示すように、先端部10Tをウェル3の液体培地LCMへ浸漬させた状態で、チップ10を移動させながら細胞Cの吐出が行われる。実際にチップ10の水平移動および吐出を行わせる前に、ステップ(D1)に示すように、チップ10に僅かに吸引力を発生させ、液体培地LCMを少量だけチップ10に吸引させることで、チップ10内の細胞Cを舞い上がらせる。すなわち、ここでもチップ10内に吸引されている細胞Cが当該チップ10内の奥行側に移動するように、チップ10に吸引の動作を行わせるこの動作により、チップ10内の細胞Cはさらに分散される。 Next, as shown in FIG. 8(D), with the tip 10T immersed in the liquid medium LCM in the well 3, the chip 10 is moved and the cells C are discharged. Before the chip 10 is actually moved horizontally and discharged, as shown in step (D1), a slight suction force is generated in the chip 10, and a small amount of the liquid medium LCM is sucked into the chip 10, causing the cells C in the chip 10 to fly up. In other words, the chip 10 is made to perform the suction operation so that the cells C sucked into the chip 10 move toward the depth of the chip 10, and this operation further disperses the cells C in the chip 10.

 その後のステップ(D2)、(D3)では、チップ10を移動させながら細胞Cが吐出される。チップ10内で細胞Cは分散されているので、多量の細胞Cが一気に吐出されることはない。吐出された細胞Cは沈降し、底面31のグリッド3Gに収容される。ステップ(D2)~(D3)の途中で、ステップ(D1)と同様な、液体培地LCMを少量だけチップ10に再吸引させるステップを介在させても良い。これにより、チップ10内で再沈降しつつある細胞Cを再び舞い上がらせ、分散させることができる。 In the subsequent steps (D2) and (D3), the cells C are discharged while the chip 10 is moved. Because the cells C are dispersed within the chip 10, a large amount of the cells C is not discharged all at once. The discharged cells C settle and are accommodated in the grid 3G on the bottom surface 31. In the middle of steps (D2) to (D3), a step of re-aspirating a small amount of liquid medium LCM into the chip 10, similar to step (D1), may be inserted. This allows the cells C that are settling again within the chip 10 to be lifted up again and dispersed.

 <細胞未分散領域の検出>
 ウェル3への細胞Cの播種は、底面31の全域に満遍なく細胞Cが分散されることが望ましい。底面31において細胞Cが収容されていない未分散領域が存在する場合は、その未分散領域を指向してチップ10から細胞Cと吐出させることが望ましい。図7(C)および上記工程(4)で一例として挙げたように、第2ウェル3B1への細胞Cの播種では、チップ10から複数回の細胞吐出が行われる。複数回の細胞吐出の途中で未分散領域を特定し、その後の細胞吐出を、当該未分散領域を対象として行わせることが望ましい。
<Detection of cell undispersed areas>
When the cells C are seeded into the well 3, it is desirable that the cells C are evenly dispersed over the entire area of the bottom surface 31. When there is an undispersed area on the bottom surface 31 where the cells C are not contained, it is desirable to eject the cells C from the chip 10 toward the undispersed area. As shown as an example in FIG. 7C and in step (4) above, when the cells C are seeded into the second well 3B1, the cells are ejected from the chip 10 multiple times. It is desirable to identify an undispersed area during the multiple cell ejections, and to eject the cells thereafter toward the undispersed area.

 図9(A)~(C)は、最終的にウェル3の底面31に細胞未分散領域を生じさせないようにする、細胞吐出の一例を示す図である。図9(A)は、ある程度の細胞播種が進み、底面31に細胞Cが分散している状態である。底面31における細胞Cの分散状態は、カメラユニット5が撮像した画像に対して、画像処理部74がオブジェクト検出処理、フィルタリング処理等の画像処理を施すことで検知される。 Figures 9 (A) to (C) are diagrams showing an example of cell ejection that ultimately prevents the formation of areas on the bottom surface 31 of the well 3 where cells are not dispersed. Figure 9 (A) shows a state in which cell seeding has progressed to a certain extent and cells C are dispersed on the bottom surface 31. The dispersed state of cells C on the bottom surface 31 is detected by the image processing unit 74 applying image processing such as object detection processing and filtering processing to the image captured by the camera unit 5.

 図9(B)は、画像処理の一例を示す図である。ここでは、1つのグリッド3Gに1個のみ収容されている細胞Cと、1つのグリッド3Gに2個以上が収容されている細胞Cとを色分けしている画像を示している。白色の細胞Cが、単離されている細胞Cである。白色の細胞Cの中にターゲット細胞Ctが存在していれば、ピッキングの対象となる。また、図9(B)の画像では、細胞Cが未だ撒かれていない未分散領域MAが明らかとなる。 FIG. 9(B) is a diagram showing an example of image processing. Here, an image is shown in which cells C that are contained in only one grid 3G and cells C that are contained in two or more grids 3G are color-coded. White cells C are isolated cells C. If a target cell Ct is present among the white cells C, it will be the target for picking. The image in FIG. 9(B) also clearly shows undispersed areas MA where cells C have not yet been dispersed.

 図9(C)は、検知された未分散領域MAに対して、その後の細胞吐出を行う際のチップ10の移動ライン10Lの設定例を示している。移動ライン10Lは、未分散領域MAをチップ10が通過するように設定される。移動吐出制御部781は、移動ライン10Lに沿ってヘッド61を移動させつつ、チップ10から細胞Cを吐出させる。これにより、底面31における、細胞Cの未分散領域MAに向けて細胞が吐出されるので、底面31の全域に満遍なく細胞Cを配置することができる。 Figure 9 (C) shows an example of setting the movement line 10L of the chip 10 when subsequent cell ejection is performed into the detected undispersed region MA. The movement line 10L is set so that the chip 10 passes through the undispersed region MA. The movement ejection control unit 781 ejects cells C from the chip 10 while moving the head 61 along the movement line 10L. This causes the cells to be ejected toward the undispersed region MA of the cells C on the bottom surface 31, allowing the cells C to be evenly distributed over the entire area of the bottom surface 31.

 [細胞ピッキングの制御フロー]
 図10は、主制御部78が実行する細胞ピッキング処理を示すフローチャートである。図10に記されている「第1容器」、「第2容器」は、互いに独立した容器、あるいは一つのプレートが備える2つのウェルである。以下では、上述の例に沿って、選別プレート2の「第1ウェル3A1」を「第1容器」、「第2ウェル3B1」を「第2容器」と扱って説明する。
[Cell picking control flow]
Fig. 10 is a flowchart showing the cell picking process executed by the main controller 78. The "first container" and "second container" shown in Fig. 10 are containers independent of each other, or two wells in one plate. In the following, following the above example, the "first well 3A1" of the sorting plate 2 will be described as the "first container" and the "second well 3B1" as the "second container."

 主制御部78の移動吐出制御部781が、軸制御部71およびヘッド制御部72を制御してヘッド61を動作させ、当該ヘッド61に装着されているチップ10から、選別プレート2の第1ウェル3A1へ、ピッキングの母体となるサンプル細胞を播種させる(ステップS1)。播種の動作は、図7(A)で説明した通り、ヘッド61を水平移動させながら、チップ10から細胞Cを吐出させる動作である。 The movement/ejection control unit 781 of the main control unit 78 controls the axis control unit 71 and the head control unit 72 to operate the head 61, and seed sample cells to be picked from the chip 10 attached to the head 61 into the first well 3A1 of the sorting plate 2 (step S1). The seeding operation is an operation in which the head 61 is moved horizontally while cells C are ejected from the chip 10, as described in FIG. 7(A).

 次に、撮像制御部73がカメラユニット5を制御して、第1ウェル3A1の第1底面31Aが撮像され、播種された細胞Cのグリッド3Gへの収容状態が画像上で確認される(ステップS2)。前記撮像として、明視野撮像と、ターゲット細胞Ctを蛍光させる蛍光撮像とが行われる。前記撮像として、位相差撮像を行っても良い。明視野撮像で取得された画像に基づき、全ての細胞のグリッド3Gへの収容状態が確認される。蛍光撮像で取得された画像に基づき、ターゲット細胞Ctの存在が確認される。この確認動作は、画像処理部74の画像処理により、画像中における輝度の高い点を認識させる動作とすることができる。もちろん、画像を表示部77に表示させ、オペレータの目視確認としても良い。 Next, the imaging control unit 73 controls the camera unit 5 to image the first bottom surface 31A of the first well 3A1, and the state of containment of the seeded cells C in the grid 3G is confirmed on the image (step S2). The imaging includes bright-field imaging and fluorescent imaging in which the target cells Ct fluoresce. Phase-contrast imaging may also be performed as the imaging. The state of containment of all the cells in the grid 3G is confirmed based on the image acquired by bright-field imaging. The presence of the target cells Ct is confirmed based on the image acquired by fluorescent imaging. This confirmation operation can be an operation of recognizing points of high brightness in the image by image processing by the image processing unit 74. Of course, the image may also be displayed on the display unit 77 for visual confirmation by the operator.

 続いて、蛍光している細胞、つまりターゲット細胞CtがステップS2で撮像された画像上で認識されたか否かが判定される(ステップS3)。ターゲット細胞Ctが認識されていない場合(ステップS3でNO)、ターゲット細胞Ctが存在しないと判定され(ステップS4)、その旨のメッセージが表示部77に表示される。この場合、オペレータは、第1ウェル3A1への播種をやり直す、あるいは選別プレート2の他のウェルへ播種を行うことになる。 Then, it is determined whether or not the fluorescent cell, i.e., the target cell Ct, has been recognized in the image captured in step S2 (step S3). If the target cell Ct has not been recognized (NO in step S3), it is determined that the target cell Ct does not exist (step S4), and a message to that effect is displayed on the display unit 77. In this case, the operator will either redo the seeding in the first well 3A1, or seed another well of the sorting plate 2.

 ターゲット細胞Ctが認識された場合(ステップS3でYES)、ターゲット細胞Ctを収容している第1グリッド3G1の選択を受け付ける(ステップS5)。つまり、第2ウェル3B1へ移動させるターゲット細胞Ctの選択を、第1グリッド3G1の選択として受け付ける。例えば、蛍光撮像された画像を表示部77に表示させ、入力部76からオペレータのグリッド選択操作を受け付ける。図7(A)の例では、グリッド3G13が選択されることになる。なお、ターゲット細胞Ctを含むグリッドの選択が、画像認識結果に基づき自動的に行われるようにしても良い。 If the target cell Ct is recognized (YES in step S3), the selection of the first grid 3G1 containing the target cell Ct is accepted (step S5). In other words, the selection of the target cell Ct to be moved to the second well 3B1 is accepted as the selection of the first grid 3G1. For example, the fluorescent image is displayed on the display unit 77, and the operator's grid selection operation is accepted from the input unit 76. In the example of FIG. 7(A), grid 3G13 is selected. Note that the selection of the grid containing the target cell Ct may be performed automatically based on the image recognition results.

 次に、ピッキング制御部783が、軸制御部71およびヘッド制御部72を制御してヘッド61を動作させ、ステップS5で選択された第1グリッド3G1に収容されている細胞Cの全てをチップ10に吸引させる(ステップS6)。この動作は、図7(B)に示した通りである。その後、軸制御部71により、ヘッド61が第2ウェル3B1の上空へ移動される(ステップS7)。つまり、ターゲット細胞Ctを含む細胞群を保持したチップ10が、第2ウェル3B1へ移動される。 Next, the picking control unit 783 controls the axis control unit 71 and head control unit 72 to operate the head 61, and causes all of the cells C contained in the first grid 3G1 selected in step S5 to be sucked into the chip 10 (step S6). This operation is as shown in FIG. 7(B). After that, the axis control unit 71 moves the head 61 above the second well 3B1 (step S7). In other words, the chip 10 holding the cell group including the target cells Ct is moved to the second well 3B1.

 続いて、移動吐出制御部781がヘッド61を動作させて、チップ10の先端部10Tを、第2ウェル3B1に貯留されている液体培地LCMへ浸漬させる(ステップS8)。そして、図7(C)に例示したように、移動吐出制御部781がヘッド61を動作させて、チップ10を水平移動させながら、当該チップ10からターゲット細胞Ctを含む細胞群を吐出させる(ステップS9)。 Then, the movement and discharge control unit 781 operates the head 61 to immerse the tip 10T of the chip 10 into the liquid medium LCM stored in the second well 3B1 (step S8). Then, as illustrated in FIG. 7(C), the movement and discharge control unit 781 operates the head 61 to horizontally move the chip 10 while discharging a cell group including the target cells Ct from the chip 10 (step S9).

 その後、第2ウェル3B1に対して所定量の細胞Cが吐出されたか否かが確認される(ステップS10)。上記では、第2ウェル3B1に対して4000個~8000個程度の細胞Cを播種可能との例を示した。ステップS10では、このような数の細胞播種が完了したが否かが確認される。所定量の細胞Cの吐出が完了していない場合(ステップS10でNO)、ステップS5で選択したグリッド3G1、つまりターゲット細胞Ctを含むグリッドが残存しているか否かが確認される(ステップS11)。 Then, it is confirmed whether a predetermined amount of cells C has been discharged into the second well 3B1 (step S10). In the above example, about 4,000 to 8,000 cells C can be seeded into the second well 3B1. In step S10, it is confirmed whether seeding of this number of cells has been completed. If the discharge of the predetermined amount of cells C has not been completed (NO in step S10), it is confirmed whether the grid 3G1 selected in step S5, i.e., the grid containing the target cells Ct, remains (step S11).

 ターゲット細胞Ctを含む選択グリッドが残存している場合(ステップS11でYES)、ステップS6に戻って処理が繰り返される。一方、選択グリッドが残存していない場合(ステップS11でNO)、第2ウェル3B1へ追加の播種を行える余地があるときでも、播種を終える。また、第2ウェル3B1へ所定量の細胞Cの吐出が完了した場合も(ステップS10でYES)、播種を終える。 If any selection grids containing target cells Ct remain (YES in step S11), the process returns to step S6 and is repeated. On the other hand, if no selection grids remain (NO in step S11), seeding is terminated even if there is room for additional seeding in the second well 3B1. Seeding is also terminated when the ejection of a predetermined amount of cells C into the second well 3B1 is completed (YES in step S10).

 その後、第2ウェル3B1の第2底面31Bがカメラユニット5により撮像され、播種された細胞Cの第2グリッド3G2への収容状態が画像上で確認される(ステップS12)。ここでも、ステップS2と同様に明視野撮像と、ターゲット細胞Ctを蛍光させる蛍光撮像とが行われる。第2グリッド3G2において単離されているターゲット細胞Ctが確認されたら、ピッキング制御部783により当該ターゲット細胞Ctをチップ10に吸引させる動作が実行される(ステップS13)。 Then, the second bottom surface 31B of the second well 3B1 is imaged by the camera unit 5, and the state of the seeded cells C contained in the second grid 3G2 is confirmed on the image (step S12). Here, as in step S2, bright field imaging and fluorescent imaging to make the target cells Ct fluoresce are performed. Once the target cells Ct isolated on the second grid 3G2 are confirmed, the picking control unit 783 executes an operation to suck the target cells Ct into the chip 10 (step S13).

 [上記実施形態に含まれる発明]
 以上説明した実施形態には、以下に示す発明が含まれている。
[Inventions included in the above embodiments]
The above-described embodiment includes the following inventions.

 本発明の一局面に係る細胞移動装置は、第1容器に収容されている複数の細胞を、液体を貯留する第2容器へ移動させる細胞移動装置であって、細胞の吸引および吐出を行う先端を有するチップが装着され、前記第1容器において複数の細胞を前記チップに吸引させ、前記第2容器へ移動し、前記チップ内の前記複数の細胞を前記第2容器へ吐出させる動作を行うヘッドと、前記ヘッドの動作を制御する制御部と、を備え、前記制御部は、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記ヘッドを移動させながら前記チップから細胞を吐出させるよう前記ヘッドを制御する。 A cell movement device according to one aspect of the present invention is a cell movement device that moves a plurality of cells contained in a first container to a second container that stores liquid, and includes a head equipped with a tip having a tip that aspirates and ejects cells, and that performs the operations of aspirating a plurality of cells in the first container into the tip, moving the cells to the second container, and ejecting the plurality of cells in the tip into the second container, and a control unit that controls the operation of the head, and the control unit controls the head to eject cells from the tip while moving the head with the tip of the tip immersed in the liquid in the second container.

 この細胞移動装置によれば、チップ内に吸引された複数の細胞を第2容器へ吐出させるに際し、ヘッドを移動させる。つまり、チップを移動させながら、当該チップから細胞を吐出させる。このため、細胞を第2容器の一部に偏って配置させず、点在状に配置することが可能となる。従って、移動対象となるターゲット細胞を単離させ易くなり、当該ターゲット細胞のピッキングの容易化を図ることができる。 With this cell movement device, the head is moved when discharging multiple cells sucked into the tip into the second container. In other words, the cells are discharged from the tip while the tip is being moved. This makes it possible to dispose the cells in a scattered manner, rather than disposing them unevenly in one part of the second container. This makes it easier to isolate the target cells to be moved, and makes it easier to pick the target cells.

 上記の細胞移動装置において、前記第1容器は、液体を貯留する容器であって、前記制御部は、予め多数の細胞を吸引させた前記チップの先端を前記第1容器内の液体に浸漬させた状態で、前記ヘッドを移動させながら前記チップから細胞を吐出させても良い。 In the above cell movement device, the first container may be a container for storing liquid, and the control unit may eject cells from the tip while moving the head, with the tip of the tip having previously aspirated a large number of cells immersed in the liquid in the first container.

 この態様によれば、第1容器に細胞を播種する際にも、チップを移動させながら、当該チップから細胞を吐出させる。従って、第1容器に細胞を満遍なく分散させることができる。 According to this embodiment, when the cells are seeded in the first container, the cells are discharged from the tip while the tip is being moved. Therefore, the cells can be evenly dispersed in the first container.

 上記の細胞移動装置において、前記第2容器は、複数の凹部を有する底部を含み、前記制御部は、前記複数の凹部に所望数の細胞が分散的に収容されるように、前記ヘッドの移動および前記吐出を行わせる。 In the above cell movement device, the second container includes a bottom having a plurality of recesses, and the control unit controls the movement of the head and the ejection so that the desired number of cells are dispersedly contained in the plurality of recesses.

 この態様によれば、特定の凹部に細胞が偏って収容されることを抑制できる。例えば、統計学手法を適用して、底部面積、凹部の数を考慮して細胞播種数を調整することで、1つ当たりの凹部へ収容される細胞数を大略的に調整することができる。 This embodiment makes it possible to prevent cells from being unevenly accommodated in specific wells. For example, by applying statistical methods and adjusting the number of cells seeded taking into account the bottom area and number of wells, it is possible to roughly adjust the number of cells accommodated in each well.

 上記の細胞移動装置において、前記第1容器は、複数の第1凹部を有する第1底部を含み、前記第2容器は、複数の第2凹部を有する第2底部を含み、前記制御部は、前記第1容器への細胞の吐出後に、前記複数の第1凹部のうち、移動対象となるターゲット細胞を収容しているターゲット凹部を特定し、前記ターゲット凹部に存在する細胞の全てを前記チップに吸引させるとともに、前記ヘッドを前記第2容器へ移動させ、前記複数の第2凹部に所望数の細胞が分散的に収容されるように、前記ヘッドの移動および前記吐出を行わせることが望ましい。 In the above cell movement device, it is preferable that the first container includes a first bottom having a plurality of first recesses, the second container includes a second bottom having a plurality of second recesses, and the control unit, after discharging cells into the first container, identifies a target recess among the plurality of first recesses that contains a target cell to be moved, and causes all of the cells present in the target recess to be sucked into the tip, moves the head to the second container, and performs the movement of the head and the discharge so that a desired number of cells are contained in a dispersed manner in the plurality of second recesses.

 この態様によれば、複数の第1凹部の中からターゲット凹部を特定し、そのターゲット凹部に存在する細胞の全てが吸引される。次いで、吸引されたターゲット細胞を含む細胞群が第2容器に吐出される。この2ステップにより、自ずとターゲット細胞に対するターゲット以外の細胞の含有度合いを希釈化することができる。例えば、第1容器では1万個の細胞中に1つのターゲット細胞が含有されていたものを、第2容器では100個の細胞中に1個のターゲット細胞が含有される状態を形成可能となる。従って、第2容器からのターゲット細胞のピッキングを容易に行わせることができ、ピッキング作業の効率化を図ることができる。 According to this aspect, a target recess is identified from among a plurality of first recesses, and all of the cells present in the target recess are aspirated. Next, the cell group including the aspirated target cells is discharged into the second container. These two steps naturally dilute the degree of inclusion of non-target cells relative to the target cells. For example, if one target cell is contained in 10,000 cells in the first container, it is possible to create a state in which one target cell is contained in 100 cells in the second container. Therefore, picking of target cells from the second container can be easily performed, and the efficiency of the picking operation can be improved.

 上記の細胞移動装置において、前記制御部は、前記ヘッドを平面視で渦巻き状の軌跡を描くように移動させることができる。 In the cell migration device described above, the control unit can move the head so that it traces a spiral trajectory in a planar view.

 この態様によれば、細胞を吐出するチップを、第1容器または第2容器のキャビティ全体を満遍なく通過させ易い。従って、容器底面全体に細胞を分散させ易い。 In this embodiment, the tip that ejects the cells can be easily passed through the entire cavity of the first or second container evenly. This makes it easier to distribute the cells over the entire bottom surface of the container.

 上記の細胞移動装置において、前記制御部は、さらに前記ヘッドに振動を加えつつ、前記ヘッドの移動を行わせても良い。これにより、一層細胞を分散させ易くなる。 In the cell movement device described above, the control unit may further vibrate the head while moving the head. This makes it even easier to disperse the cells.

 上記の細胞移動装置において、前記制御部は、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記チップの先端に吐出用の正圧を与えることなく、前記ヘッドを移動させても良い。 In the above cell movement device, the control unit may move the head without applying positive pressure for ejection to the tip of the tip while the tip of the tip is immersed in the liquid in the second container.

 チップの先端に吐出用の正圧を与えると、チップ内に吸引している細胞が勢い良く飛び出すことがある。上記の態様によれば、重力を利用した自由落下で容器底面に細胞を配置させ得る。従って、細胞を分散して容器底面に配置し易い。ここでの「配置」は、容器底面に細胞を接着させること、容器底面上に浮遊させることを含む。 When positive pressure for discharge is applied to the tip of the tip, the cells sucked into the tip may be ejected with force. According to the above embodiment, the cells can be placed on the bottom of the container by free fall using gravity. This makes it easy to disperse the cells and place them on the bottom of the container. Here, "placement" includes attaching the cells to the bottom of the container and floating them on the bottom of the container.

 上記の細胞移動装置において、一つの細胞を保持している前記チップから当該細胞を吐出させる際に当該チップに与える正圧が、基準正圧として予め定められ、前記制御部は、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記チップの先端に前記基準正圧よりも小さい正圧を与えて、前記ヘッドを移動させる。 In the above cell movement device, the positive pressure applied to the tip when ejecting a cell from the tip holding the cell is determined in advance as a reference positive pressure, and the control unit applies a positive pressure smaller than the reference positive pressure to the tip of the tip while the tip of the tip is immersed in the liquid in the second container, thereby moving the head.

 この態様によれば、チップから自由落下で細胞を吐出する場合に比べて、速やかに細胞を吐出させることができる。また、吐出圧は基準正圧よりも小さい正圧であるので、チップから細胞が勢い良く飛び出すことを抑制できる。 According to this embodiment, cells can be ejected more quickly than when cells are ejected from the tip by free fall. In addition, because the ejection pressure is a positive pressure that is smaller than the reference positive pressure, it is possible to prevent the cells from flying out of the tip with force.

 上記の細胞移動装置において、前記制御部は、前記第2容器の液体に前記チップの先端を浸漬させた状態で、前記チップに吸引されている前記複数の細胞が当該チップ内の奥行側に移動するよう前記チップに吸引の動作を行わせた後、前記ヘッドを移動させながら前記チップから細胞を吐出させても良い。 In the above cell movement device, the control unit may, with the tip of the tip immersed in the liquid in the second container, cause the tip to perform a suction operation so that the multiple cells sucked into the tip move toward the depth of the tip, and then eject the cells from the tip while moving the head.

 この態様によれば、細胞吐出の前に吸引動作を実行させることで、チップ内に吸引されている複数の細胞が分散される。従って、細胞吐出の際に、多量の細胞が一気にチップから放出されることを抑制できる。 According to this embodiment, the suction operation is performed before the cells are discharged, dispersing the multiple cells that have been sucked into the tip. This makes it possible to prevent a large number of cells from being released from the tip all at once when the cells are discharged.

 上記の細胞移動装置において、前記制御部は、前記チップの先端を前記第2容器の液体に浸漬させる前に、前記チップに吸引されている前記複数の細胞が当該チップ内の奥行側に移動するよう前記チップに吸引の動作を行わせても良い。 In the above cell movement device, the control unit may cause the tip to perform a suction operation so that the multiple cells sucked into the tip move toward the depth of the tip before immersing the tip tip in the liquid in the second container.

 この態様によれば、チップの先端が第2容器の液体へ浸漬される前に吸引動作が行われる。このため、チップの先端に吸引された細胞が沈降した場合であっても、これら細胞を上方へ持ち上げることができる。従って、チップの浸漬当初に、当該チップの先端から第2容器の液体へ細胞が落下することを抑制できる。また、吐出前にチップ内で細胞が分散されるので、細胞の吐出量を調整し易い利点もある。 In this embodiment, the suction operation is performed before the tip of the tip is immersed in the liquid in the second container. Therefore, even if cells sucked into the tip of the tip settle, these cells can be lifted upward. This prevents cells from falling from the tip of the tip into the liquid in the second container when the tip is first immersed. Another advantage is that the amount of cells discharged can be easily adjusted because the cells are dispersed within the tip before being discharged.

 上記の細胞移動装置において、前記第1容器または前記第2容器の底部を撮像可能なカメラをさらに備え、前記制御部は、前記カメラが取得した画像に基づいて、前記複数の凹部への細胞の収容状態を特定する画像処理部を有することが望ましい。 In the above cell migration device, it is desirable to further include a camera capable of capturing an image of the bottom of the first container or the second container, and for the control unit to have an image processing unit that identifies the state of cells contained in the multiple recesses based on the image captured by the camera.

 この態様によれば、第1容器または第2容器の底部における細胞の分散状態やターゲット細胞の位置を、カメラ画像に基づき容易に特定することができる。 According to this embodiment, the dispersion state of cells at the bottom of the first or second container and the position of the target cells can be easily identified based on the camera image.

 上記の細胞移動装置において、前記画像処理部は、前記画像に基づいて、前記第2容器の底部において細胞が収容されていない未分散領域を特定し、前記制御部は、前記未分散領域を前記チップが通過するよう、前記ヘッドを移動させつつ、前記チップから細胞を吐出させても良い。 In the above cell movement device, the image processing unit may identify an undispersed region at the bottom of the second container that does not contain cells based on the image, and the control unit may eject cells from the tip while moving the head so that the tip passes through the undispersed region.

 この態様によれば、第2容器の底部における、細胞の未分散領域に向けて細胞が吐出される。従って、前記底部の全域に満遍なく細胞を配置することができる。 According to this embodiment, the cells are discharged toward the undispersed cell area at the bottom of the second container. Therefore, the cells can be evenly distributed over the entire area of the bottom.

 上記の細胞移動装置において、前記第2容器からターゲット細胞が移動される第3容器をさらに備え、前記制御部は、前記複数の第2凹部の中から、ターゲット細胞を収容している第2凹部を特定し、当該第2凹部から前記ターゲット細胞を前記チップに吸引させるとともに、前記ヘッドを前記第3容器へ移動させ、前記第3容器内へ前記チップから前記ターゲット細胞を吐出させても良い。 The above cell transfer device may further include a third container into which target cells are transferred from the second container, and the control unit may identify a second container that contains target cells from among the plurality of second containers, and suck the target cells from the second container into the tip, while moving the head to the third container and discharging the target cells from the tip into the third container.

 この態様によれば、ターゲット細胞のみをピッキングし、これを第3容器へ移動できる。第1容器から第2容器への細胞移動により、全細胞に対するターゲット細胞の含有割合は高められている。このため、ターゲット細胞を単体で収容する第2凹部の発生確率も高まっている。従って、複数の第2凹部の中から、ターゲット細胞を収容している第2凹部を特定し、これをピッキングすることも容易に行い得る。 According to this embodiment, only the target cells can be picked and moved to the third container. The ratio of target cells to all cells is increased by moving the cells from the first container to the second container. This also increases the probability of a second recess containing a single target cell. Therefore, it is easy to identify a second recess containing a target cell from among multiple second recesses and pick it.

 上記の細胞移動装置において、前記ヘッドは複数本が備えられ、前記制御部は、前記複数本のヘッドの動作を同時または個別に制御可能であることが望ましい。 In the above cell migration device, it is desirable that the heads are provided in multiple units, and that the control unit is capable of controlling the operation of the multiple heads simultaneously or individually.

 この態様によれば、複数本のヘッドおよびこれらに各々装着されるチップを使用できる。つまり、複数のチップを同時または個別に自在に使用できるので、細胞のピッキングおよび移動作業の効率を高めることができる。 According to this embodiment, multiple heads and chips attached to each of these can be used. In other words, multiple chips can be used simultaneously or individually, which increases the efficiency of cell picking and moving operations.

 本発明の他の局面に係る細胞移動方法は、第1容器に収容されている複数の細胞を、液体を貯留する第2容器へ移動させる細胞移動方法であって、細胞の吸引および吐出を行う先端を有するチップを用いて、前記第1容器において複数の細胞を前記チップに吸引させ、前記第2容器へチップを移動させ、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記チップを移動させながら当該チップから細胞を吐出させる。 A cell transfer method according to another aspect of the present invention is a method for transferring a plurality of cells contained in a first container to a second container that stores liquid, in which a tip having a tip for aspirating and discharging cells is used to aspirate a plurality of cells in the first container into the tip, the tip is moved to the second container, and the cells are discharged from the tip while the tip is moved with the tip immersed in the liquid in the second container.

 この細胞移動方法によれば、チップ内に吸引された複数の細胞を第2容器へ吐出させるに際し、チップを移動させながら、当該チップから細胞を吐出させる。このため、細胞を第2容器の一部に偏らせず、点在状に配置することが可能となる。従って、移動対象となるターゲット細胞を単離させ易くなり、当該ターゲット細胞のピッキングの容易化を図ることができる。 According to this cell transfer method, when multiple cells sucked into the tip are discharged into the second container, the cells are discharged from the tip while the tip is being moved. This makes it possible to dispose the cells in a scattered manner, without concentrating them in one part of the second container. This makes it easier to isolate the target cells to be transferred, and makes it easier to pick the target cells.

 上記の細胞移動方法において、前記第1容器は、液体を貯留するとともに複数の第1凹部を有する第1底部を含み、前記第2容器は、複数の第2凹部を有する第2底部を含み、予め多数の細胞を吸引させた前記チップの先端を前記第1容器内の液体に浸漬させた状態で、前記チップを移動させながら前記チップから細胞を吐出させ、前記複数の第1凹部のうち、移動対象となるターゲット細胞を収容しているターゲット凹部を特定し、前記ターゲット凹部に存在する細胞の全てを前記チップに吸引させるとともに、当該チップを前記第2容器へ移動させ、前記第2容器への前記吐出の後、前記複数の第2凹部への細胞の収容状態を確認するとともに、前記ターゲット細胞が収容されている前記第2凹部を特定し、前記特定された前記第2凹部から前記ターゲット細胞を前記チップで吸引することが望ましい。 In the above cell transfer method, it is preferable that the first container includes a first bottom that stores liquid and has a plurality of first recesses, the second container includes a second bottom that has a plurality of second recesses, and while the tip of the tip that has previously sucked in a large number of cells is immersed in the liquid in the first container, the tip is moved while discharging the cells from the tip, a target recess that contains a target cell to be transferred is identified among the plurality of first recesses, all of the cells present in the target recess are sucked into the tip, and the tip is moved to the second container, and after the discharging into the second container, the state of cells contained in the plurality of second recesses is confirmed, the second recess in which the target cell is contained is identified, and the target cell is sucked from the identified second recess by the tip.

 この態様によれば、複数の第1凹部の中からターゲット凹部を特定し、そのターゲット凹部に存在する細胞の全てが吸引される。次いで、吸引されたターゲット細胞を含む細胞群が第2容器に吐出される。この2ステップにより、自ずとターゲット細胞に対するターゲット以外の細胞の含有度合いを希釈化することができる。従って、第2容器からのターゲット細胞のピッキングを容易に行わせることができ、ピッキング作業の効率化を図ることができる。 According to this aspect, a target recess is identified from among a plurality of first recesses, and all of the cells present in the target recess are aspirated. Next, a cell group including the aspirated target cells is discharged into a second container. These two steps naturally dilute the degree of non-target cells relative to the target cells. Therefore, picking of target cells from the second container can be easily performed, and the efficiency of the picking operation can be improved.

 本発明によれば、多数個の細胞の中からターゲット細胞を効率良くピッキングすることが可能な細胞移動装置および方法を提供することができる。 The present invention provides a cell migration device and method that can efficiently pick a target cell from among a large number of cells.

Claims (16)

 第1容器に収容されている複数の細胞を、液体を貯留する第2容器へ移動させる細胞移動装置であって、
 細胞の吸引および吐出を行う先端を有するチップが装着され、前記第1容器において複数の細胞を前記チップに吸引させ、前記第2容器へ移動し、前記チップ内の前記複数の細胞を前記第2容器へ吐出させる動作を行うヘッドと、
 前記ヘッドの動作を制御する制御部と、を備え、
 前記制御部は、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記ヘッドを移動させながら前記チップから細胞を吐出させるよう前記ヘッドを制御する、細胞移動装置。
A cell transfer device that transfers a plurality of cells contained in a first container to a second container that stores a liquid, comprising:
a head equipped with a tip having a tip for aspirating and discharging cells, the head performing an operation of aspirating a plurality of cells in the first container into the tip, moving the cells to the second container, and discharging the plurality of cells in the tip into the second container;
A control unit for controlling the operation of the head,
The control unit controls the head to eject cells from the tip while moving the head with the tip of the tip immersed in the liquid in the second container.
 請求項1に記載の細胞移動装置において、
 前記第1容器は、液体を貯留する容器であって、
 前記制御部は、予め多数の細胞を吸引させた前記チップの先端を前記第1容器内の液体に浸漬させた状態で、前記ヘッドを移動させながら前記チップから細胞を吐出させる、細胞移動装置。
2. The cell migration device according to claim 1,
The first container is a container for storing a liquid,
The control unit is a cell movement device that ejects cells from the tip while moving the head while immersing the tip of the tip, which has previously aspirated a large number of cells, in the liquid in the first container.
 請求項1に記載の細胞移動装置において、
 前記第2容器は、複数の凹部を有する底部を含み、
 前記制御部は、前記複数の凹部に所望数の細胞が分散して収容されるように、前記ヘッドの移動および前記吐出を行わせる、細胞移動装置。
2. The cell migration device according to claim 1,
the second container includes a bottom having a plurality of recesses;
The control unit controls the movement of the head and the ejection so that a desired number of cells are dispersed and contained in the plurality of wells.
 請求項2に記載の細胞移動装置において、
 前記第1容器は、複数の第1凹部を有する第1底部を含み、
 前記第2容器は、複数の第2凹部を有する第2底部を含み、
 前記制御部は、
  前記第1容器への細胞の吐出後に、前記複数の第1凹部のうち、移動対象となるターゲット細胞を収容しているターゲット凹部を特定し、
  前記ターゲット凹部に存在する細胞の全てを前記チップに吸引させるとともに、前記ヘッドを前記第2容器へ移動させ、
  前記複数の第2凹部に所望数の細胞が分散して収容されるように、前記ヘッドの移動および前記吐出を行わせる、細胞移動装置。
The cell migration device according to claim 2,
the first container includes a first base having a plurality of first recesses;
the second container includes a second bottom having a plurality of second recesses;
The control unit is
After discharging the cells into the first container, a target well containing a target cell to be moved is identified among the first wells;
All of the cells present in the target well are aspirated into the tip, and the head is moved to the second container;
A cell movement device that moves the head and ejects the cells so that a desired number of cells are dispersed and contained in the plurality of second wells.
 請求項1~4のいずれか1項に記載の細胞移動装置において、
 前記制御部は、前記ヘッドを平面視で渦巻き状の軌跡を描くように移動させる、細胞移動装置。
The cell migration device according to any one of claims 1 to 4,
The control unit of the cell movement device moves the head so as to trace a spiral trajectory in a planar view.
 請求項1~4のいずれか1項に記載の細胞移動装置において、
 前記制御部は、さらに前記ヘッドに振動を加えつつ、前記ヘッドの移動を行わせる、細胞移動装置。
The cell migration device according to any one of claims 1 to 4,
The control unit further applies vibration to the head while moving the head.
 請求項1~4のいずれか1項に記載の細胞移動装置において、
 前記制御部は、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記チップの先端に吐出用の正圧を与えることなく、前記ヘッドを移動させる、細胞移動装置。
The cell migration device according to any one of claims 1 to 4,
The control unit moves the head without applying positive pressure for ejection to the tip of the tip while the tip of the tip is immersed in the liquid in the second container.
 請求項1~4のいずれか1項に記載の細胞移動装置において、
 一つの細胞を保持している前記チップから当該細胞を吐出させる際に当該チップに与える正圧が、基準正圧として予め定められ、
 前記制御部は、前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記チップの先端に前記基準正圧よりも小さい正圧を与えて、前記ヘッドを移動させる、細胞移動装置。
The cell migration device according to any one of claims 1 to 4,
a positive pressure applied to the chip when discharging a single cell from the chip holding the cell is determined in advance as a reference positive pressure;
The control unit applies a positive pressure smaller than the reference positive pressure to the tip of the tip while the tip of the tip is immersed in the liquid in the second container, thereby moving the head.
 請求項1~4のいずれか1項に記載の細胞移動装置において、
 前記制御部は、前記第2容器の液体に前記チップの先端を浸漬させた状態で、前記チップに吸引されている前記複数の細胞が当該チップ内の奥行側に移動するよう前記チップに吸引の動作を行わせた後、前記ヘッドを移動させながら前記チップから細胞を吐出させる、細胞移動装置。
The cell migration device according to any one of claims 1 to 4,
The control unit, while immersing the tip of the tip in the liquid of the second container, causes the tip to perform an suction operation so that the multiple cells sucked into the tip move toward the depth of the chip, and then ejects the cells from the chip while moving the head.
 請求項1~4のいずれか1項に記載の細胞移動装置において、
 前記制御部は、前記チップの先端を前記第2容器の液体に浸漬させる前に、前記チップに吸引されている前記複数の細胞が当該チップ内の奥行側に移動するよう前記チップに吸引の動作を行わせる、細胞移動装置。
The cell migration device according to any one of claims 1 to 4,
The control unit of the cell movement device causes the tip to perform a suction operation so that the multiple cells sucked into the tip move toward the depth within the chip before immersing the tip of the tip into the liquid in the second container.
 請求項3に記載の細胞移動装置において、
 前記第1容器または前記第2容器の底部を撮像可能なカメラをさらに備え、
 前記制御部は、前記カメラが取得した画像に基づいて、前記複数の凹部への細胞の収容状態を特定する画像処理部を有する、細胞移動装置。
The cell migration device according to claim 3,
Further comprising a camera capable of capturing an image of a bottom of the first container or the second container,
The control unit of the cell migration device has an image processing unit that identifies the containment state of cells in the multiple wells based on images acquired by the camera.
 請求項11に記載の細胞移動装置において、
 前記画像処理部は、前記画像に基づいて、前記第2容器の底部において細胞が収容されていない未分散領域を特定し、
 前記制御部は、前記未分散領域を前記チップが通過するよう、前記ヘッドを移動させつつ、前記チップから細胞を吐出させる、細胞移動装置。
The cell migration device according to claim 11,
The image processing unit identifies an undispersed region in a bottom portion of the second container that does not contain cells based on the image,
The control unit ejects cells from the tip while moving the head so that the tip passes through the undispersed region.
 請求項4に記載の細胞移動装置において、
 前記第2容器からターゲット細胞が移動される第3容器をさらに備え、
 前記制御部は、
  前記複数の第2凹部の中から、ターゲット細胞を収容している第2凹部を特定し、
  当該第2凹部から前記ターゲット細胞を前記チップに吸引させるとともに、前記ヘッドを前記第3容器へ移動させ、
  前記第3容器内へ前記チップから前記ターゲット細胞を吐出させる、細胞移動装置。
The cell migration device according to claim 4,
Further comprising a third container into which target cells are transferred from the second container;
The control unit is
Identifying a second well containing a target cell from among the plurality of second wells;
The target cells are sucked into the tip from the second well, and the head is moved to the third container;
A cell transfer device that ejects the target cells from the tip into the third container.
 請求項1に記載の細胞移動装置において、
 前記ヘッドは複数本が備えられ、
 前記制御部は、前記複数本のヘッドの動作を同時または個別に制御可能である、細胞移動装置。
2. The cell migration device according to claim 1,
The head is provided with a plurality of heads,
The control unit is capable of controlling the operation of the multiple heads simultaneously or individually.
 第1容器に収容されている複数の細胞を、液体を貯留する第2容器へ移動させる細胞移動方法であって、
 細胞の吸引および吐出を行う先端を有するチップを用いて、前記第1容器において複数の細胞を前記チップに吸引させ、
 前記第2容器へチップを移動させ、
 前記チップの先端を前記第2容器内の液体に浸漬させた状態で、前記チップを移動させながら当該チップから細胞を吐出させる、細胞移動方法。
A cell transfer method for transferring a plurality of cells contained in a first container to a second container that stores a liquid, comprising the steps of:
using a tip having a tip for aspirating and discharging cells, aspirating a plurality of cells in the first container into the tip;
Moving the chip to the second container;
A cell movement method comprising: discharging cells from the tip while moving the tip with the tip being immersed in the liquid in the second container.
 請求項15に記載の細胞移動方法において、前記第1容器は、液体を貯留するとともに複数の第1凹部を有する第1底部を含み、前記第2容器は、複数の第2凹部を有する第2底部を含み、
 予め多数の細胞を吸引させた前記チップの先端を前記第1容器内の液体に浸漬させた状態で、前記チップを移動させながら前記チップから細胞を吐出させ、
 前記複数の第1凹部のうち、移動対象となるターゲット細胞を収容しているターゲット凹部を特定し、
 前記ターゲット凹部に存在する細胞の全てを前記チップに吸引させるとともに、当該チップを前記第2容器へ移動させ、
 前記第2容器への前記吐出の後、前記複数の第2凹部への細胞の収容状態を確認するとともに、前記ターゲット細胞が収容されている前記第2凹部を特定し、
 前記特定された前記第2凹部から前記ターゲット細胞を前記チップで吸引する、細胞移動方法。
16. The cell migration method according to claim 15, wherein the first container includes a first bottom portion configured to store a liquid and having a plurality of first recesses, and the second container includes a second bottom portion configured to have a plurality of second recesses;
Discharging the cells from the tip while moving the tip in a state in which the tip of the tip into which a large number of cells have been previously sucked is immersed in the liquid in the first container;
identifying a target well containing a target cell to be moved among the plurality of first wells;
All of the cells present in the target well are aspirated into the tip, and the tip is moved to the second container;
After the discharge into the second container, a state of cells contained in the plurality of second wells is confirmed, and the second well in which the target cell is contained is identified;
The cell migration method comprises aspirating the target cell from the identified second well with the tip.
PCT/JP2024/022477 2023-08-16 2024-06-20 Cell movement device and method WO2025037480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-132544 2023-08-16
JP2023132544 2023-08-16

Publications (1)

Publication Number Publication Date
WO2025037480A1 true WO2025037480A1 (en) 2025-02-20

Family

ID=94632778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/022477 WO2025037480A1 (en) 2023-08-16 2024-06-20 Cell movement device and method

Country Status (1)

Country Link
WO (1) WO2025037480A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070316A (en) * 2017-01-31 2017-04-13 ヤマハ発動機株式会社 Apparatus for moving objects
WO2017110004A1 (en) * 2015-12-25 2017-06-29 ヤマハ発動機株式会社 Target object travel method and device
WO2022145086A1 (en) * 2020-12-28 2022-07-07 ヤマハ発動機株式会社 Cell moving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110004A1 (en) * 2015-12-25 2017-06-29 ヤマハ発動機株式会社 Target object travel method and device
JP2017070316A (en) * 2017-01-31 2017-04-13 ヤマハ発動機株式会社 Apparatus for moving objects
WO2022145086A1 (en) * 2020-12-28 2022-07-07 ヤマハ発動機株式会社 Cell moving device

Similar Documents

Publication Publication Date Title
JP6883648B2 (en) Cell handling device
WO2019163270A1 (en) Device for picking up biological subject
WO2017110005A1 (en) Target object pick-up method
JP6450476B2 (en) Object moving method and apparatus
JP7525657B2 (en) Cell migration device
WO2025037480A1 (en) Cell movement device and method
WO2019150756A1 (en) Movement method and movement device for biological subject
JP6853880B2 (en) Cell migration method and cell migration device
JP6913184B2 (en) Biological object processing device
WO2018074086A1 (en) Cell transfer apparatus
CN111699243B (en) Imaging system and biological object moving device
JP6710772B2 (en) Cell transfer device and cell transfer method
WO2018070153A1 (en) Method for imaging cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24854071

Country of ref document: EP

Kind code of ref document: A1