WO2025036060A1 - 通信方法、装置和系统 - Google Patents
通信方法、装置和系统 Download PDFInfo
- Publication number
- WO2025036060A1 WO2025036060A1 PCT/CN2024/105839 CN2024105839W WO2025036060A1 WO 2025036060 A1 WO2025036060 A1 WO 2025036060A1 CN 2024105839 W CN2024105839 W CN 2024105839W WO 2025036060 A1 WO2025036060 A1 WO 2025036060A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- frequency domain
- message
- domain resource
- resource subset
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
Definitions
- the present application relates to the field of communications, and in particular to a communication method, device and system.
- the high-frequency spectrum has sufficient spectrum resources, large available bandwidth, and less interference. However, when propagating in the air, the corresponding loss is much greater than that of the low-frequency band.
- the industry In order to overcome the large loss problem of high-frequency transmission, the industry generally adopts a beam-based transmission method to communicate.
- beam matching in side transmission. For example, in the beam matching process, multiple receiving ends do not know whether they are the receiving ends of the transmitting end, so these receiving ends need to perform beam matching, which causes unnecessary transmission and power consumption.
- the present application provides a communication method, device and system.
- the method can avoid unnecessary transmission and save power consumption.
- a communication method comprising: determining a first reference signal and a first message, the first reference signal being used to determine a first beam, the first message being used by a second device to discover or request communication with the second communication device, the first beam being a candidate beam for communication between the first communication device and the second communication device, there being a first interval between time domain resources of the first reference signal and the first message, the first interval being less than or equal to a first threshold, the first threshold being configured or predefined, and sending the first reference signal and the first message.
- the interval between the time domain resource of the first message and the time domain resource of the first reference signal is within the first threshold, so that the second communication device can learn the target communication device of the first communication device in advance according to the first message, so as to facilitate the determination of whether to perform beam matching and other processes in the future. For example, if the second communication device is not the target communication device of the first communication device, it is not necessary to perform beam matching and other processes, which can save power consumption.
- the first reference signal is quasi co-located (QCL) with the first message.
- the direction of the beam for sending the first reference signal is the same as the direction of the beam for sending the first message.
- transmission resources of a first message corresponding to the first reference signal are before transmission resources of the second message, and the second message is used to indicate a reception status of the first reference signal.
- the reception status of the first reference signal includes one or more of the following:
- the first message is sent before the second message, and the non-target communication device does not need to perform beam matching and other processes.
- the beam matching process is performed and the second message is further sent to the first communication device, which can reduce unnecessary signaling overhead.
- the first reference signal is used to determine the first beam includes:
- the first reference signal is used for initial beam pairing between the first communication device and the second communication device; and/or,
- the first reference signal is used for beam maintenance between the first communication device and the second communication device; and/or,
- the first reference signal is used for candidate beam detection between the first communication device and the second communication device; and/or,
- the first reference signal is used for beam failure detection between the first communication device and the second communication device; and/or,
- the first reference signal is used for beam management between the first communication device and the second communication device to determine the first beam.
- the first reference signal may be a side synchronization signal block S-SSB, or a channel state information reference signal CSI-RS and/or a demodulation reference signal DM-RS.
- the first communication device receives a third message, wherein the third message indicates the first threshold, or the third message indicates a starting position of a time domain resource of the first message, or the third message indicates the first interval.
- the first reference signal is an S-SSB
- the third message is carried on the PBCH included in the S-SSB
- the first reference signal is a CSI-RS
- the third message is carried on control information, and the control information and the CSI-RS are sent in the same time domain resource unit.
- the time domain resource unit may be a time slot.
- the third message may be sent from other communication devices to the first communication device, for example, other terminal devices send the third message to the first communication device.
- the network device sends the third message to the first communication device.
- the first communication device may also send the third message to other communication devices, such as other terminal devices.
- the first threshold is determined based on at least one of a priority of the first message, a priority of a service to be transmitted indicated by the first message, or a transmission delay margin.
- the first reference signal is CSI-RS and/or DM-RS, and the first message and the first reference signal are carried in the same time domain resource unit; the first reference signal is S-SSB, and the first message is carried in the time domain resource unit after the time domain resource unit of the first reference signal.
- the sending period of the first reference signal is T1
- the sending period of the first message is T2, wherein T1 is an integer multiple of T2, or T2 is an integer multiple of T1, and T1 and T2 are positive integers.
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- M is an integer greater than or equal to 1
- the interval between the time domain resources of two adjacent reference signals is a second interval, and the second interval is configured or predefined; and/or, among the M first messages, the interval between the time domain resources of two adjacent first messages is a third interval, and the third interval is configured or predefined.
- the second interval is the same as the third interval.
- the first reference signal occupies a first subset of frequency domain resources
- the first message occupies a second subset of frequency domain resources
- the first subset of frequency domain resources corresponds to the second subset of frequency domain resources
- the correspondence between the first frequency domain resource subset and the second frequency domain resource subset includes:
- the frequency domain resource positions and sizes of the first frequency domain resource subset and the second frequency domain resource subset are the same; or,
- the center frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and/or the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same in size; or,
- the center frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and the size of the first frequency domain resource subset is less than or equal to the size of the frequency domain resources of the second frequency domain resource subset, or,
- the center frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and the size of the second frequency domain resource subset is smaller than or equal to the size of the frequency domain resources of the first frequency domain resource subset.
- the reference signals occupy the same time domain resources and are sent in a frequency division manner, which can further save time domain resources.
- the first reference signal belongs to M reference signals
- the first message corresponding to the first reference signal belongs to M first messages
- M is an integer greater than or equal to 1
- the intervals between frequency domain resource subsets of any two adjacent reference signals in the M reference signals in the frequency domain are equal
- the intervals between frequency domain resource subsets of any two adjacent first messages in the M first messages in the frequency domain are equal.
- the first reference signal belongs to M reference signals
- the first message corresponding to the first reference signal belongs to M first messages
- M is an integer greater than or equal to 1
- the M reference signals also include a second reference signal
- the M first messages also include a first message corresponding to the second reference signal
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- at least two of the M first messages have different frequency domain resource subset positions and the same time domain resource positions
- at least two of the M reference signals have the same frequency domain resource subset positions and different time domain resource positions.
- the reference signal is sent in a time division manner, and the first message is sent in a frequency division manner, which can save time domain resources and improve resource utilization.
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- at least two of the M first messages have different frequency domain resource subset positions and the same time domain resource positions
- the M reference signals There are at least two reference signals in which the frequency domain resource subset positions and time domain resource positions are the same but the sequences are different.
- the time domain resources and frequency domain resources of multiple reference signals are the same, and the multiple reference signals are sent in a code division manner, which can further save time and frequency resources.
- intervals between frequency domain resource subsets of any two adjacent first messages in the M first messages in the frequency domain are equal.
- the sequence of the first reference signal is associated with the second frequency domain resource subset; or, the first reference signal includes first indication information, and the first indication information indicates an index of the second frequency domain resource subset.
- the index of the time domain resource of the first reference signal is associated with the index of the second frequency domain resource subset.
- the index of the time domain resource of the first reference signal corresponds to the index of the second frequency domain resource subset, including: the M reference signals include the first reference signal and the second reference signal, the index of the frequency domain resource subset of the first message is the first index, and the index of the frequency domain resource subset of the first message corresponding to the second reference signal is the second index,
- the index of the time domain resource of the first reference signal is a third index, and the third index corresponds to the first index;
- the index of the time domain resource of the second reference signal is a fourth index, and the fourth index corresponds to the second index.
- the first reference signal is associated with a data channel carrying the first message, including: a first sequence used by a demodulation reference signal in the data channel is associated with the first reference signal; and/or, bits of the first message are scrambled using a second sequence, and the second sequence is associated with the first reference signal.
- the first sequence is associated with the first reference signal, including: the first sequence or the second sequence is generated based on a first parameter, and the first parameter includes one or more of the following:
- the first reference signal includes a value indicated by control information.
- the first sequence or the second sequence is further generated based on a source identifier and/or a destination identifier.
- the first sequence or the second sequence is generated based on a first parameter, including: a cyclic shift value of the first sequence or the second sequence is generated based on the first parameter; and/or a root sequence number of the first sequence or the second sequence is generated based on the first parameter.
- the first sequence or the second sequence is generated based on the first parameter, including: an initial value of the first sequence or the second sequence is generated based on the first parameter; and/or an initial position of the first sequence or the second sequence is generated based on the first parameter.
- a fourth message is sent, where the fourth message indicates the numerical value.
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- the M reference signals also include a second reference signal
- the second reference signal is associated with a data channel carrying the first message corresponding to the second reference signal
- a third sequence used by the demodulation reference signal in the data channel is associated with the second reference signal
- a fourth sequence is used to scramble the bits of the first message corresponding to the second reference signal, the first sequence is different from the third sequence, and the second sequence is different from the fourth sequence.
- configuration information is received, the configuration information indicating at least one of the following:
- the type of the first reference signal is S-SSB or CSI-RS.
- a fifth message is sent, where the fifth message indicates that there is a first message within a period in which the first reference signal is sent.
- a communication method comprising: receiving a first reference signal and a first message, the first message being used by a second communication device to discover or request communication with the second communication device, a first interval being present between a time domain resource of the first reference signal and the first message, the first interval being less than or equal to a first threshold, the first threshold being configured or predefined;
- the second communication device determines a first beam according to the first reference signal and the first message, wherein the first beam is the first
- the communication device communicates with the candidate beams of the second communication device.
- the first reference signal is quasi co-located with the first message.
- the reception status of the first reference signal includes one or more of the following:
- the quality of the first reference signal received by the second communication device is the highest among the M reference signals received by the second communication device.
- the first reference signal is a side synchronization signal block S-SSB, and the third message is carried on the PBCH included in the S-SSB; or, the first reference signal is a CSI-RS, and the third message is carried on control information, and the control information and the CSI-RS are sent in the same time domain resource unit.
- the time domain resource unit may be a time slot.
- the first threshold is determined based on at least one of a priority of the first message, a priority of a service to be transmitted indicated by the first message, or a transmission delay margin.
- the first reference signal is CSI-RS and/or DM-RS, and the first message and the first reference signal are carried in the same time domain resource unit; the first reference signal is S-SSB, and the first message is carried in the time domain resource unit after the time domain resource unit of the first reference signal.
- the sending period of the first reference signal is T1
- the sending period of the first message is T2, wherein T1 is an integer multiple of T2, or T2 is an integer multiple of T1, and T1 and T2 are positive integers.
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- M is an integer greater than or equal to 1
- the interval between the time domain resources of two adjacent reference signals is a second interval, and the second interval is configured or predefined; and/or, among the M first messages, the interval between the time domain resources of two adjacent first messages is a third interval, and the third interval is configured or predefined.
- the second interval is the same as the third interval.
- the first reference signal occupies a first subset of frequency domain resources
- the first message occupies a second subset of frequency domain resources
- the first subset of frequency domain resources corresponds to the second subset of frequency domain resources
- the correspondence between the first frequency domain resource subset and the second frequency domain resource subset includes:
- the frequency domain resource positions and sizes of the first frequency domain resource subset and the second frequency domain resource subset are the same; or,
- the center frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and/or the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same in size; or,
- the center frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and the size of the first frequency domain resource subset is less than or equal to the size of the frequency domain resources of the second frequency domain resource subset, or,
- the center frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and the size of the second frequency domain resource subset is smaller than or equal to the size of the frequency domain resources of the first frequency domain resource subset.
- the first reference signal belongs to M reference signals
- the first message corresponding to the first reference signal belongs to M first messages
- M is an integer greater than or equal to 1
- the intervals between frequency domain resource subsets of any two adjacent reference signals in the M reference signals in the frequency domain are equal
- the intervals between frequency domain resource subsets of any two adjacent first messages in the M first messages in the frequency domain are equal.
- the first reference signal belongs to M reference signals
- the first message corresponding to the first reference signal belongs to M first messages
- M is an integer greater than or equal to 1
- the M reference signals also include a second reference signal
- the M first messages also include a first message corresponding to the second reference signal
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- at least two of the M first messages have different frequency domain resource subset positions and the same time domain resource positions
- at least two of the M reference signals have the same frequency domain resource subset positions and different time domain resource positions.
- the reference signal is sent in a time division manner and the first message is sent in a frequency division manner, which can save time domain resources and improve resource utilization.
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- at least two of the M first messages have different frequency domain resource subset positions and the same time domain resource positions
- at least two of the M reference signals have the same frequency domain resource subset position and time domain resource position but different sequences.
- the reference signal is sent in a code division manner, which can further save time and frequency resources.
- intervals between frequency domain resource subsets of any two adjacent first messages in the M first messages in the frequency domain are equal.
- the sequence of the first reference signal is associated with the second frequency domain resource subset; or, the first reference signal includes first indication information, and the first indication information indicates an index of the second frequency domain resource subset.
- the index of the time domain resource of the first reference signal is associated with the index of the second frequency domain resource subset.
- the index of the time domain resource of the first reference signal corresponds to the index of the second frequency domain resource subset, including: the M reference signals include the first reference signal and the second reference signal, the index of the frequency domain resource subset of the first message is the first index, and the index of the frequency domain resource subset of the first message corresponding to the second reference signal is the second index,
- the index of the time domain resource of the first reference signal is a third index, and the third index corresponds to the first index;
- the index of the time domain resource of the second reference signal is a fourth index, and the fourth index corresponds to the second index.
- the first reference signal is associated with a data channel carrying the first message, including: a first sequence used by a demodulation reference signal in the data channel is associated with the first reference signal; and/or, bits of the first message are scrambled using a second sequence, and the second sequence is associated with the first reference signal.
- the first sequence is associated with the first reference signal, including: the first sequence or the second sequence is generated based on a first parameter, and the first parameter includes one or more of the following:
- the first reference signal includes a value indicated by control information.
- the first sequence or the second sequence is further generated based on a source identifier and/or a destination identifier.
- the first sequence or the second sequence is generated based on a first parameter, including: a cyclic shift value of the first sequence or the second sequence is generated based on the first parameter; and/or a root sequence number of the first sequence or the second sequence is generated based on the first parameter.
- the first sequence or the second sequence is generated based on the first parameter, including: an initial value of the first sequence or the second sequence is generated based on the first parameter; and/or an initial position of the first sequence or the second sequence is generated based on the first parameter.
- a fourth message is received, the fourth message indicating the numerical value.
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- the M reference signals also include a second reference signal
- the second reference signal is associated with a data channel carrying the first message corresponding to the second reference signal
- a third sequence used by the demodulation reference signal in the data channel is associated with the second reference signal
- a fourth sequence is used to scramble the bits of the first message corresponding to the second reference signal, the first sequence is different from the third sequence, and the second sequence is different from the fourth sequence.
- the type of the first reference signal is SSB or CSI-RS.
- a fifth message is received, where the fifth message indicates that there is a first message within a period in which the first reference signal is sent.
- a communication device which includes a processing module and a transceiver module, the processing module is used to determine a first reference signal and a first message, the first reference signal is used to determine a first beam, the first message is used by a second device to discover or request communication with the second communication device, the first beam is a candidate beam for the first communication device to communicate with the second communication device, there is a first interval between the time domain resources of the first reference signal and the first message, the first interval is less than or equal to a first threshold, and the first threshold is configured or predefined; the transceiver module is used to send the first reference signal and the first message.
- a communication device which includes a processing module and a transceiver module.
- the transceiver module is used to receive a first reference signal and a first message, wherein the first message is used by a second communication device to discover or request communication with the second communication device, and there is a first interval between the time domain resources of the first reference signal and the first message, and the first interval is less than or equal to a first threshold, which is configured or predefined;
- the processing module is used to determine a first beam based on the first reference signal and the first message, and the first beam is a candidate beam for communication between the first communication device and the second communication device.
- the processing module is further used to determine whether to send a second message according to the first reference signal and the first message, wherein the second message is used to indicate a reception status of the first reference signal.
- a computer-readable medium which stores a program code for execution by a communication device, wherein the program code includes instructions for executing the method of the first aspect, or any possible implementation of the first aspect, or all possible implementations of the first aspect.
- a computer-readable medium which stores a program code for execution by a communication device, wherein the program code includes instructions for executing the method of the second aspect, or any possible implementation of the second aspect, or all possible implementations of the second aspect.
- a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute the method of the above-mentioned first aspect, or any possible implementation of the first aspect, or all possible implementations of the first aspect.
- a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute the method of the above-mentioned second aspect, or any possible implementation of the second aspect, or all possible implementations of the second aspect.
- a communication system which includes a device having a method for implementing the above-mentioned first aspect to the second aspect, or any possible implementation method of the first aspect to the second aspect, or all possible implementation methods of the first aspect to the second aspect and various possible designed functions.
- a processor configured to execute the method of the above-mentioned first aspect, or any possible implementation of the first aspect, or all possible implementations of the first aspect.
- the processor is configured to be coupled to a memory.
- a processor configured to execute the method of the above-mentioned second aspect, or any possible implementation of the second aspect, or all possible implementations of the second aspect.
- the processor is configured to be coupled to a memory.
- a chip is provided, the chip including a processor, and the processor is used to implement the above-mentioned first aspect, or any possible implementation method of the first aspect, or, or a method of all possible implementation methods of the first aspect.
- the chip further includes a communication interface, where the communication interface is used to communicate with an external device or an internal device.
- the chip may further include a memory, in which instructions are stored, and the processor is used to execute the instructions stored in the memory or instructions from other sources.
- the processor is used to implement the above-mentioned first aspect, or any possible implementation of the first aspect, or all possible implementations of the first aspect.
- the chip may be integrated into a terminal device and/or a network device.
- a chip including a processor configured to execute the method of the second aspect, or any possible implementation of the second aspect, or all possible implementations of the second aspect.
- the chip further includes the communication interface, and the communication interface is used to communicate with an external device or an internal device.
- the chip may further include a memory, in which instructions are stored, and the processor is used to execute the instructions stored in the memory or instructions from other sources.
- the processor is used to implement the above-mentioned second aspect, or any possible implementation of the second aspect, or all possible implementations of the second aspect.
- the chip may be integrated into a terminal device and/or a network device.
- FIG. 1A and FIG. 1B are schematic diagrams of a wireless communication system applicable to an embodiment of the present application.
- FIG. 2 is a schematic diagram of establishing communication between UEs.
- FIG3 is a schematic diagram of an information transmission method 300 provided in an embodiment of the present application.
- FIG. 4 is a schematic diagram of time domain resources of a first message and a reference signal.
- FIG5 is a schematic diagram of frequency domain resources of yet another reference signal and a first message.
- FIG6 is a schematic diagram of yet another reference signal and time-frequency resources of a first message.
- FIG7 is a schematic diagram of yet another reference signal and time-frequency resources of a first message.
- FIG8 is a schematic diagram of a second message, a first reference signal, and time-frequency resources of the first message.
- FIG9 is a schematic diagram of yet another type of time-frequency resources of a second message, a first message, and a reference signal.
- FIG. 10 is a schematic block diagram of a communication device 1000 provided in an embodiment of the present application.
- FIG. 11 is a schematic block diagram of a communication device 1100 provided in an embodiment of the present application.
- FIG. 12 is a schematic block diagram of a chip system 1200 provided in an embodiment of the present application.
- the technical solution provided in this application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
- the technical solution provided in this application can also be applied to future communication systems, such as the sixth generation (6th generation, 6G) mobile communication system.
- D2D device to device
- V2X vehicle-to-everything
- M2M machine to machine
- MTC machine type communication
- IoT Internet of things
- V2X communication may include: vehicle-to-vehicle (V2V) communication, vehicle-to-roadside infrastructure (V2I) communication, vehicle-to-pedestrian (V2P) communication, and vehicle-to-network (V2N) communication.
- V2V refers to communication between vehicles.
- V2P refers to communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers, etc.).
- V2I refers to communication between vehicles and infrastructure, such as roadside units (RSU) or network equipment.
- RSU roadside units
- RSU includes two types: terminal-type RSU, which is in a non-mobile state because it is located on the roadside and does not need to consider mobility; base station-type RSU, which can provide timing synchronization and resource scheduling for vehicles communicating with it.
- V2N refers to communication between vehicles and network equipment. It can be understood that the above is an exemplary description and the embodiments of the present application are not limiting.
- V2X may also include V2X communications based on the NR system of the current 3GPP Rel-16 and subsequent versions.
- the terminal device in the embodiments of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device.
- UE user equipment
- the terminal device may be a device that provides voice/data to the user, for example, a handheld device with wireless connection function, a vehicle-mounted device, etc.
- the terminal device may include a user equipment, sometimes also referred to as a terminal, an access station, a UE station, a remote station, a wireless communication device, or a user device, etc.
- the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, D2D, V2X, machine-to-machine/machine-type communications (M2M/MTC), Internet of Things (IoT), virtual reality (VR), augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
- scenarios such as but not limited to the following scenarios: cellular communication, D2D, V2X, machine-to-machine/machine-type communications (M2M/MTC), Internet of Things (IoT), virtual reality (VR), augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
- M2M/MTC machine-to-machine/machine-type communications
- IoT Internet
- the terminal device can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a VR terminal, an AR terminal, a wireless terminal in industrial control, a whole vehicle, a wireless communication module in a whole vehicle, a vehicle-mounted T-box (Telematics BOX), a roadside unit RSU, a wireless terminal in unmanned driving, a smart speaker in an IoT network, a wireless terminal device in telemedicine, a wireless terminal device in a smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city, or a wireless terminal device in a smart home, etc., and the embodiments of the present application are not limited to this.
- the terminal device may also be a wearable device.
- Wearable devices may also be called wearable smart devices, which are a general term for wearable devices that are designed and developed by applying wearable technology to intelligently design daily wearables, such as glasses, gloves, watches, clothing and shoes.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also realize powerful functions through software support, data interaction, and cloud interaction.
- wearable smart devices include full-featured, large-sized, and independent of smartphones to achieve complete or partial functions, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for measuring vital signs.
- the terminal device may also be a terminal device in an IoT system.
- IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology. This will realize an intelligent network that interconnects people and machines, and things and things.
- the various terminal devices introduced above if located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be considered as vehicle-mounted terminal devices, which are also called on-board units (OBU).
- the terminal device of the present application can also be an on-board module, on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units.
- the vehicle can implement the method of the present application through the built-in on-board module, on-board module, on-board component, on-board chip or on-board unit.
- the network device in the wireless communication system may be a device that can communicate with the terminal device, and the network device may also be referred to as an access network device or a wireless access network device, such as a base station.
- the network device in the embodiment of the present application may refer to a wireless access network (RAN) node (or device) that connects the terminal device to the wireless network.
- RAN wireless access network
- Base station can broadly cover various names as follows, or be replaced with the following names, such as: NodeB, evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting and receiving point (TRP), transmitting point (TP), master eNodeB (MeNB), secondary eNodeB (SeNB), multi standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
- NodeB evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting and receiving point (TRP), transmitting point (TP), master eNodeB (MeNB), secondary eNodeB (SeNB), multi standard radio (MSR) node, home base station, network controller, access no
- the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
- the base station may also refer to a communication module, a modem or a chip used to be arranged in the aforementioned device or apparatus.
- the base station may also be a mobile switching center and a device that performs the base station function in D2D, V2X, and M2M communications, a network-side device in a 6G network, and a device that performs the base station function in a future communication system.
- the base station may support networks with the same or different access technologies. The embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
- Base stations can be fixed or mobile.
- a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move based on the location of the mobile base station.
- a helicopter or drone can be configured to act as a device that communicates with another base station.
- the network device mentioned in the embodiments of the present application may be a device including a CU, or a DU, or a device including a CU and a DU, or a device including a control plane CU node (central unit control plane (central unit-control plane, CU-CP)) and a user plane CU node (central unit user plane (central unit-user plane, CU-UP)) and a DU node.
- CU-CP central unit control plane
- CU-UP central unit user plane
- the device for realizing the function of the network device can be a network device, or a device capable of supporting the network device to realize the function, such as a chip system or a chip, which can be installed in the network device.
- the chip system can be composed of a chip, or can include a chip and other discrete devices.
- the network device and the terminal device can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; can also be deployed on the water surface; can also be deployed on aircraft, balloons and satellites in the air.
- the embodiments of the present application do not limit the scenarios in which the network device and the terminal device are located.
- FIG. 1A and FIG. 1B a communication system applicable to an embodiment of the present application is briefly introduced with reference to FIG. 1A and FIG. 1B as follows.
- FIG1A and FIG1B are schematic diagrams of a wireless communication system applicable to an embodiment of the present application.
- the wireless communication system may include at least one terminal device, such as UE1, UE2, UE3, UE4, and UE5 as shown in the figure.
- the wireless communication system may also include at least one network device, such as the network device shown in the figure.
- the network device and the terminal device can communicate with each other.
- the network device and the terminal device can communicate with each other through the Uu interface, and the link for communication between the network device and the terminal device can be recorded as a Uu link.
- the network device and UE1 can communicate directly, and as shown in Figure 1A(b) or Figure 1B(b), the network device and UE1 can also communicate through UE2; similarly, the network device and UE2 can communicate directly, and the network device and UE2 can also communicate through UE1.
- the Uu link represents a connection relationship between the terminal device and the network device, which is a logical concept, not a physical entity.
- the main link is only named for distinction, and its specific naming does not limit the scope of protection of this application.
- Terminal devices may also communicate with each other.
- terminal devices may communicate directly with each other, as shown in FIG. 1A(a) to (c) and FIG. 1B(a) to (c), UE1 and UE2 may communicate directly with each other.
- terminal devices may communicate with each other through other devices, such as network devices or terminal devices.
- UE1 and UE2 may communicate through a network device, and as shown in FIG. 1A(d) and FIG. 1B(d), UE1 and UE2 may communicate through UE3.
- the interface for communication between terminal devices may be recorded as a proximity-based services communication 5 (PC5) interface
- the multi-link for communication between terminal devices may be recorded as a sidelink (SL)
- the communication between terminal devices may also be recorded as SL communication.
- the sidelink may also be referred to as an edge link or a sidelink, etc. It can be understood that the sidelink represents a connection relationship between terminal devices and terminal devices, and is a logical concept rather than a physical entity.
- the sidelink is only for The specific names do not limit the protection scope of this application.
- Unicast communication can be performed between devices, such as between terminal devices.
- Unicast means that a sending terminal and a receiving terminal form a unicast connection pair.
- UE1 and UE2 can perform unicast communication.
- Multicast communication can be performed between devices, such as multicast communication can be performed between terminal devices.
- Multicast means that a transmitting terminal and at least one receiving terminal form a multicast connection pair.
- multicast communication can be performed between UE1 and UE2, UE4 and UE5.
- the network device and UE1 can communicate directly, and one UE1 can communicate with multiple UEs, such as UE2, UE4 and UE5.
- UE1 performs multicast communication with multiple UEs, it can be performed under network coverage, as shown in (a) or (b) in Figure 1B, or it can be performed without network coverage, as shown in (c) or (d) in Figure 1B.
- Figure 1B uses the example of UE1 performing multicast communication with three UEs for illustrative purposes, and there is no limitation to this.
- UE1 can perform multicast communication with a larger number of UEs.
- SL communication between terminal devices can be used in vehicle networking or intelligent transportation system (ITS), such as the V2X communication mentioned above.
- ITS intelligent transportation system
- SL communication between terminal devices can be performed under network coverage or without network coverage.
- UE1 and other UEs can communicate under network coverage; or, as shown in Figures 1A(c) to (d) and 1B(c) to (d), UE1 and other UEs can communicate out of network coverage (out-of-coverage).
- configuration information during SL communication between terminal devices may be configured or scheduled by a network device, or may be independently selected by the terminal device without restriction.
- Figures 1A and 1B are simplified schematic diagrams for ease of understanding, and the wireless communication system may also include other network devices or other terminal devices, which are not shown in Figures 1A and 1B.
- the embodiments of the present application may be applicable to any communication scenario in which a transmitting device and a receiving device communicate.
- time-frequency resources can include one or more frequency domain units.
- a frequency domain unit can be a resource element (RE), or a resource block (RB), or a subchannel, or a subband, or a resource pool, or a bandwidth, or a bandwidth part (BWP), or a carrier, or a channel, or an interlace RB, etc.
- RE resource element
- RB resource block
- BWP bandwidth part
- a time slot is the most basic time domain resource unit for one transmission.
- a time slot includes: a full time slot, a mini time slot, a partial time slot, or a sub-time slot consisting of one or more OFDM symbols.
- a time slot can also be a set of one or more symbols.
- a time slot can also include a set of one or more OFDM symbols, for example, the number of the one or more OFDM symbols is 1, 2, 3, 4, 6, 7, 12 or 14, etc.
- the time slot referred to in this application may include any of a time slot, a mini time slot, or a partial time slot or a full time slot.
- the frequency domain resource referred to in this application may be a frequency domain resource subset, which may include the above one or more frequency domain units.
- the terminal may send multiple services at the same time, and the priorities of multiple services may be different. Therefore, the priority of the UE can also be described as the service priority of the UE.
- the service priority of the terminal is specifically the transmission priority of the UE.
- Service priority may also be called L1 priority, physical layer priority, priority carried in sidelink control information (SCI), priority corresponding to the physical side link shared channel (PSSCH) associated with SCI, sending priority, priority for sending PSSCH, priority for resource selection, priority of logical channel, and the highest level of priority of logical channel.
- SCI sidelink control information
- PSSCH physical side link shared channel
- the priority level and the priority value may have a certain corresponding relationship, for example, the higher the priority level, the lower the corresponding priority value. Or the lower the priority level, the lower the corresponding priority value. Taking the higher the priority level, the lower the corresponding priority value as an example, the priority value range can be an integer from 1 to 8 or an integer from 0 to 7. If the priority value range is 1 to 8, the priority value of 1 represents the highest priority level.
- the identifier of the terminal device communication refers to the identifier used to indicate, identify or correspond to the corresponding terminal device during the communication process.
- the terminal device can be an index or number used to uniquely identify the terminal device.
- This identifier can be signaling configured, preconfigured, or predefined.
- the identifier of the terminal device is any of the following: the terminal's media access control (MAC) address, the subscriber identity module (SIM) card number, the international mobile equipment identity (IMEI), etc.
- the identifier of the terminal device communication can also be used to indicate, identify or correspond to the identifier of the corresponding terminal device during transmission.
- This identifier can be configured by signaling, preconfigured, or predefined. For example: IP address, radio network temporary identifier (RNTI), source identifier of the sending device, and destination identifier of the receiving device.
- the source identifier of the sending device can be an identifier associated with a specific service or message to be sent, such as an identifier used to identify the transmitting terminal during the transmission process. This identifier can be determined by the service and can be used for unicast, multicast or broadcast.
- a transmitting terminal can have multiple sidelink links, so there can be multiple different source identifiers.
- the destination identifier of the receiving device can be an identifier associated with a specific service or message to be received, used to identify the receiving UE during the transmission process.
- This identifier can be determined by the service and can be used for unicast, multicast or broadcast.
- a receiving UE can have multiple sidelink links, so there can be multiple different destination identifiers.
- the discovery message is carried in the PSSCH channel and is used to indicate the information of the transmitting UE itself, or to indicate the information of the target UE to be found, thereby realizing the process of surrounding UEs discovering each other before communication.
- DCR Direct communication request
- the message may include the following information: layer 2 identification of the target UE; IP-related capabilities and information; source UE information, application layer identification of the target UE, service information, security information, etc.
- Direct communication accept Indication information of receiving a communication request, which includes: source user information, quality of service (QoS) information, IP address information, etc.
- the source user information includes the application layer identifier, source identifier or layer 2 identifier of the sending DCA message.
- 5G NR can support very high data rates and lower latency. Its frequency bands include FR1 and FR2, of which FR1 is below 6GHz or below 7.125GHz, from 450 to 6000MHz; and FR2 is the millimeter wave band (from 24.25GHz to 52.6GHz).
- the main purpose of beam management is to acquire and maintain an optimal set of TRxPs (transmission/reception points) and UE beams that can be used for DL and UL transmission/reception.
- the following operations are mainly performed: beam scanning, beam maintenance, beam measurement, beam selection, beam reporting and beam recovery.
- Beam scanning refers to covering a spatial area with a set of transmitted and received beams at pre-specified time intervals and directions.
- Beam measurement refers to the evaluation of the received signal quality at the gNB or UE.
- different metrics can be used, such as reference signal receiving power (RSRP), reference signal receiving quality (RSRQ) or signal to interference plus noise ratio (SINR).
- RSRP reference signal receiving power
- RSRQ reference signal receiving quality
- SINR signal to interference plus noise ratio
- Beam selection refers to selecting one or more appropriate beams at the gNB or UE based on the measurement results obtained through the beam measurement process. Beam scanning is used to select and align the transmit beam at the transmitter and the receive beam at the receiver, which is beam matching or beam pairing.
- Beam maintenance It is to track, lock or fine-tune the beam used in the current communication through the measurement results of gNB or UE to achieve stable communication quality.
- Beam recovery refers to the process of restoring communication by searching or identifying an available beam among candidate beams when the currently used beam is mismatched, interrupted, or the signal quality is significantly reduced.
- the large-scale properties of the channel experienced by the symbols on one antenna port can be inferred from the channel experienced by the symbols on another antenna port, then the two antenna ports are considered to be quasi-co-located.
- the large-scale properties include delay spread, Doppler spread, Doppler shift, average gain, average delay, spatial Rx parameters, etc.
- the synchronization signal is used to establish a time-frequency synchronization signal between the transceivers of the synchronization signal.
- the synchronization signal may include a master synchronization signal and a slave synchronization signal.
- the synchronization signal when physical broadcast information is sent together with the synchronization signal, is also called a synchronization signal block SSB (SS Block).
- SSB synchronization signal block
- the synchronization signal or the synchronization signal block can be used for a cellular link, a relay link or a sidelink.
- SSB can also be expressed as S-SSB (Sidelink SSB).
- the synchronization signal can be sent once, can be sent for a period of time at a certain period, or can be sent periodically at a certain period.
- the side synchronization signal block may be an S-SSB.
- the S-SSB includes a master synchronization signal S-PSS, a slave synchronization signal S-SSS and a side broadcast channel PSBCH.
- the S-SSB may be referred to as a synchronization signal, a side synchronization signal, or a side signal, etc.
- the above names are only examples and should not constitute any limitation on the technical solution of the present application.
- the S-SSB may be composed of a predetermined number of symbols in the time domain and occupy a preset bandwidth in the frequency domain. For example, the S-SSB includes 4 symbols in the time domain and occupies 20 PRBs in the frequency domain.
- the S-SSB includes 13 or 11 symbols in the time domain and occupies 11 PRBs in the frequency domain.
- the S-SSB may include AGC symbols and/or empty symbols in the time domain, or may not include them. The present application does not impose any restrictions on this.
- the information indicated by the indication information is called the information to be indicated.
- the information to be indicated can be directly indicated, such as the information to be indicated itself or the index of the information to be indicated.
- the information to be indicated can also be indirectly indicated by indicating other information, wherein there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while the other parts of the information to be indicated are known or agreed in advance.
- the indication of specific information can also be achieved with the help of the arrangement order of each information agreed in advance (such as specified by the protocol), thereby reducing the indication overhead to a certain extent.
- UE-1 when UE-1 initiates a direct communication (sidelink) request, UE-1 needs to first find the UE-2 to be communicated through a discovery message before initiating a communication request for UE-2.
- UE-1 In the V2X scenario, UE-1 first initiates a direct (communication sidelink) request to UE-2, then establishes security, and then performs a direct communication response, thereby implementing a unicast-based V2X service.
- UE-1 originally wanted to conduct unicast communication with UE-2. However, before the beams were successfully paired, UE-1 did not know which UE was UE-2, nor did it know whether UE-2 was near UE-1. Currently, UE-1 will initiate a beam pairing request before finding UE-2. As shown in Figure 2, UE-2 to UE-5 will respond to UE-1's beam pairing request and complete beam pairing with UE-2 respectively. After completing beam pairing, UE-1 initiates DCR to UE-2 to UE-5 respectively, and then UE-2 to UE-5 send DCA to UE-1 accordingly after clarifying that they are the target receiving UEs of UE-1. Among them, UE-3, UE-4, and UE-5 do unnecessary beam pairing because they do not know whether they are the receiving UEs of UE-1, resulting in corresponding power consumption and waste of spectrum resources.
- the present application proposes a communication method, which can avoid unnecessary pairing of beam requests and save power consumption.
- the method 300 includes the following steps:
- a first communication device determines a first reference signal and a first message.
- the first reference signal is a beam management reference signal (BM-RS).
- the beam management reference signal can be divided into different types.
- the first reference signal may be a sidelink synchronization signal block (S-SSB), that is, S-SSB is a first type of beam management reference signal.
- the first reference signal may be a channel state information reference signal (CSI-RS) and/or a demodulation reference signal (DM-RS), that is, CSI-RS and/or DM-RS are second types of beam management reference signals.
- the first reference signal may be a random access reference signal, that is, the random access reference signal is a third type of beam management reference signal.
- the first reference signal may be a reference signal for transmitting feedback information, that is, the reference signal for transmitting feedback information is a fourth type of beam management reference signal.
- the first reference signal is used to determine a first beam, and the first beam is a candidate beam for the first communication device to communicate with the second communication device.
- the second communication device may be a receiving device of the first reference signal.
- the second communication device is a target device of the first communication device.
- the second communication device is a device that the first communication device determines to communicate with.
- the second communication device is a receiving device of data to be sent by the first communication device.
- the second communication device may be a terminal device.
- the first communication device may also be a terminal device.
- the communication between the first communication device and the second communication device is sideline communication.
- the first reference signal can be used to determine the beam used for communication between the transmitter and receiver in the sideline communication.
- the first beam is a candidate beam for communication between the first communication device and the second communication device.
- the first communication device and the second communication device complete beam pairing through the first reference signal, and determine that beam A can be used for communication between the first communication device and the second communication device.
- Beam A is a candidate beam.
- the first communication device and the second communication device can select beam A for communication, or other beams for communication, such as a beam with a beam direction similar to beam A.
- the first reference signal may determine the first beam by one or more of the following implementations:
- Implementation 1 The first reference signal is used for initial beam matching between the first communication device and the second communication device.
- the first reference signal is used for beam maintenance between the first communication device and the second communication device.
- the first reference signal is used for candidate beam detection between the first communication device and the second communication device.
- Implementation 4 The first reference signal is used for beam failure detection between the first communication device and the second communication device.
- Implementation 5 The first reference signal is used for beam management between the first communication device and the second communication device.
- the first message is used by the second communication device to discover or request communication with the second communication device.
- the first message may be used for the first communication device to discover the second communication device, or the first message may be used for the second communication device to discover the first communication device, or the first message may be used for the first communication device and the second communication device to discover each other.
- the first message may be a discovery message.
- the resource for transmitting the first message may be configured by signaling, preconfigured or predefined.
- the resource for transmitting the first message may be configured outside the resource pool or within the resource pool.
- the first message is used to request communication with the second communication device, and may be used by the first communication device to request direct communication with the second communication device, such as sideline communication.
- the first message may be a DCR.
- the first message may carry information of the first communication device (i.e., source identifier), such as the identifier of the first communication device, or the service identifier corresponding to the data to be sent by the first communication device.
- the first message may also carry information of the second communication device (i.e., destination identifier), such as the identifier of the second communication device.
- the first reference signal corresponds to the first message.
- there is a first interval between the time domain resources of the first reference signal and the first message that is, the first reference signal and the first message are separated by the first interval in the time domain, for example, the time interval between the start time (or end time) of the resource where the first reference signal is located and the start time (or end time) of the resource where the first message is located is the first interval.
- the first interval is less than or equal to a first threshold, and the first threshold can be signaling configured, preconfigured, or predefined, and is not limited to this.
- the first message and the first reference signal are quasi co-located.
- the first communication device sends a first reference signal and a first message to the second communication device.
- the second communication device receives the first reference signal and the first message.
- an interval between a time domain resource for receiving the first reference signal by the second communication device and a time domain resource for receiving the first message is less than or equal to a first threshold.
- the second communication device determines a first beam according to the first reference signal and the first message.
- this embodiment further includes 340, where the second communication device determines, according to the first reference signal and the first message, whether to send the second message.
- the second message indicates a reception status of the first reference signal.
- the reception status of the first reference signal is one or more of the following:
- the second communication device receives M reference signals, among which there are M1 signals with the best signal quality, and any one of the M1 reference signals is higher.
- the threshold may be configured by signaling, preconfigured, or predefined, and is not limited thereto.
- the beam corresponding to the reference signal may be used for communication, or in other words, the beam corresponding to the reference signal or the beam, physical channel, or physical signal with the same QCL as the reference signal may be used as a candidate beam.
- the second communication device may receive multiple reference signals. For example, the second communication device receives a reference signal #A with a quality of 1, a reference signal #B with a quality of 2, and a reference signal #C with a quality of 3. The second communication device may determine that the quality of the reference signal #C is the highest and the quality of the reference signal #B is relatively high.
- the beam corresponding to the reference signal with the highest quality or the reference signal with a relatively high quality may be used for communication, or in other words, may be used as a candidate beam.
- the time domain resource of the second message is after the time domain resource of the first message. That is, the second communication device determines whether to send the second message after receiving the first message.
- the specific implementation is as follows:
- the second communication device determines that it is the target device of the first communication device, and sends a second message to the first communication device.
- Implementation 2 The second communication device determines that it is not the target device of the first communication device and does not send the second message to the first communication device.
- the second communication device can detect the first message on the time domain resource after the first interval with the time domain resource of the first reference signal to determine whether it is the target device of the first communication device, or in other words, determine whether it is the target receiving device of the data to be sent by the first communication device. Further determine whether to send the second message.
- the second communication device does not need to perform beam management (or beam matching), avoiding unnecessary information transmission, such as no need to send the second message, and at the same time, reducing the power consumption of the second communication device.
- Aspect 1 First reference signal.
- the first reference signal belongs to M reference signals.
- the M reference signals may be reference signals sent in the same period.
- the M reference signals are identical and are all sent in one transmission cycle.
- the identical M reference signals include that the sequences used by the M reference signals are identical and/or the beam directions are identical or are in QCL with each other.
- the reference signal is sent M times in one transmission cycle, and the first reference signal is one of the M reference signals, or the first reference signal is a reference signal sent once out of the M transmissions.
- the M reference signals are different from each other or at least two of them are different from each other, and the M reference signals are all sent in one transmission cycle.
- the at least two of the M reference signals are different, including: at least two of the M reference signals use different sequences, and/or at least two of the M reference signals use different or non-QCL beam directions.
- M reference signals are sent in one transmission cycle
- the first reference signal is one of the M reference signals
- the first reference signal is a reference signal sent once among the M reference signals.
- the first communication device sends M reference signals to the second communication device.
- the transmission period is T1.
- T1 or the duration of the transmission period of the M reference signals, may be configured by signaling, preconfigured, or predefined, and is not limited thereto.
- the value of T1 may be, for example, 1 ms, 2 ms, 4 ms, 5 ms, 10 ms, 20 ms, 40 ms, 50 ms, 80 ms, 100 ms, 160 ms, etc.
- the time domain position of the first reference signal in the transmission period can be determined by an offset value.
- the offset value is the time domain offset of the first reference signal relative to the starting position of the period (such as the offset in FIG. 4 ).
- the offset is the time domain offset of the first reference signal relative to the time domain position of the first reference signal in the period.
- the offset is less than the transmission period T1.
- the offset value is 0.
- the interval between the time domain resources of two adjacent reference signals may be configured by signaling, preconfigured, or predefined, and is not limited thereto.
- M is 3
- the three reference signals include reference signal #A, reference signal #B, and reference signal #C
- the interval between the time domain resource of reference signal #A and the time domain resource of reference signal #B is the second interval
- the interval between reference signal #B and reference signal #C is also the second interval.
- the value of the second interval is less than the transmission period T1.
- adjacent reference signals can be understood as two reference signals without any other reference signals in between. For example, if there is no other reference signal between reference signal #A and reference signal #B, then reference signal #A and reference signal #B are adjacent reference signals. Or, two reference signals with an index value difference of 1. For example, the index of reference signal #A is 1, and the index of reference signal #B is 2, then reference signal #A and reference signal #B are adjacent reference signals.
- the index can be the index of the reference signal in the M reference signals, or the index of the time domain resource corresponding to a reference signal, For example, the index of the time domain resource corresponding to a certain reference signal in the time domain resources corresponding to M reference signals.
- the time domain resource of the first message and the time domain resource of the first reference signal may be in the same time domain resource unit, and the time domain resource unit may be a time slot.
- the first message and the first reference signal may be in the same time slot or in different time slots.
- the first message and the first reference signal may be located in the same time slot.
- the CSI-RS occupies part of the symbols in the time slot
- the DM-RS is a DM-RS used for demodulation in a control channel and/or a data channel, occupying part of the symbols in the time slot.
- the first message may be carried in a control channel and/or a data channel.
- the first message is located in a time slot after the time slot where the first reference signal is located.
- the first message belongs to M first messages.
- the interval between the time domain resources of two adjacent first messages ie, the third interval
- the third interval may be configured by signaling, preconfigured, or predefined, and is not limited thereto.
- the value of M is 3, the three first messages include the first message #A, the first message #B and the first message #C, the interval between the time domain resources of the first message #A and the time domain resources of the first message #B is the third interval, and the interval between the first message #B and the first message #C is also the third interval.
- adjacent first messages can be understood as two first messages without other first messages in between, such as if there is no other first message between the first message #A and the first message #B, then the first message #A and the first message #B are adjacent first messages. Or, two first messages with an index value difference of 1. For example, the index of the first message #A is 1, and the index of the first message #B is 2, then the first message #A and the first message #B are adjacent first messages.
- the index can be the index of the first message in the M first messages, or the index of the time domain resource corresponding to a first message, such as the index of the time domain resource corresponding to a first message in the time domain resources corresponding to the M first messages.
- the third interval may refer to the example in FIG. 4 .
- the number of first messages and the number of reference signals may be the same or different.
- the first communication device sends 5 first messages and 4 reference signals.
- the first communication device sends 3 first messages and 6 reference signals. That is, the number of first messages may be greater than the number of reference signals, may be equal to the number of reference signals, or may be less than the number of reference signals.
- the example in which the number of first messages and the number of reference signals are the same i.e., both are M) is used for explanation.
- the first communication device sends M first messages to the second communication device, and the M first messages include the first message corresponding to the first reference signal.
- the M first messages may be sent in the same cycle.
- the cycle is T2.
- the duration of the cycle and the number of times the first message is sent in the cycle (for example, M) may be configured by signaling, preconfigured, or predefined, and are not limited thereto.
- T1 is an integer multiple of T2, or T2 is an integer multiple of T1, and T1 and T2 are positive integers.
- T1 can be the same as T2.
- the period for sending the M first messages may also be referred to as a time window, or a time domain resource of the first message.
- the time window can be statically configured.
- the interval between the time window and the transmission period of the M reference signals is configured by signaling or is predefined.
- the position of the time window is determined accordingly.
- the interval between the time window and the transmission period of the M reference signals (hereinafter referred to as period A) can be the distance in the time domain between the starting position of the time window and the starting position of period A. Or, it is the distance in the time domain between the end position of the time window and the end position of period A. Or, it is the distance in the time domain between the predefined position of the time window and the predefined position of period A.
- the interval between the time window and cycle A can also be represented by the time domain resources of the reference signal and the first message.
- the interval between the time window and cycle A is: the interval between the first message in the time window and the reference signal in cycle A in the time domain.
- the position of the time window, or the interval between the time window and cycle A is associated with the first message.
- the first message is a DCR.
- the interval is associated with the priority and/or transmission delay margin of the DCR (or the service to be transmitted indicated in the DCR).
- the position of the time window may be indicated by indication information (ie, the third message).
- the third message indicates the interval between the time window and cycle A (ie, the first interval).
- the time window may also be dynamically indicated.
- the position of the time window and the window size (the number of time slots included) are configured or predefined.
- the starting position of the time window and the window size may be configured, and the position of the time window in the time domain may be determined.
- the starting position of the time window is time slot 1, and the window size is 3 time slots. Then, the time window in the time domain is based on time slot 1. Starting point, occupies 3 time slots.
- the position of the time window can be indicated by indication information (ie, the third message).
- the third message indicates the starting position of the time domain resources of the M first messages. Further, the third message can also indicate the value of M.
- the third message may also indicate the first threshold.
- the first reference signal is a sidelink synchronization signal block S-SSB
- the third message can be carried on a physical sidelink broadcast channel (PSBCH) included in the S-SSB; or, the first reference signal is a CSI-RS, and the third message can be carried on control information sent together with the CSI-RS.
- the control information includes: downlink control information (DCI), media access control control element (MAC CE) or radio resource control (RRC).
- DCI downlink control information
- MAC CE media access control control element
- RRC radio resource control
- the control information includes: sidelink control information (SCI), MAC CE or PC5 RRC.
- PSBCH Physical broadcast channel
- each of the M first messages is quasi-co-located with the corresponding reference signal.
- the M first messages correspond to the transmission beam directions of the M reference signals one-to-one.
- Aspect 3 Correspondence between the first reference signal and the first message
- the first message S is used below to represent the first message corresponding to the first reference signal.
- the first message S and the first reference signal may correspond to each other in the following manner:
- Method 1 The time domain resources of the first reference signal correspond to the time domain resources of the first message S.
- the interval between the time domain resources of the first reference signal and the time domain resources of the first message S (ie, the first interval) is the same as the interval between the time window and the cycle A mentioned above.
- the first interval is less than or equal to a first threshold
- the first threshold may be configured by signaling, preconfigured, or predefined, and is not limited thereto. That is, the interval between the time window and cycle A is less than or equal to the first threshold.
- the M first messages correspond one-to-one to the M reference signals in the time domain.
- the M first messages also include a first message corresponding to a second reference signal, and there is a fourth interval between the time domain resources of the second reference signal and the first message corresponding to the second reference signal, and the fourth interval is the same as the first interval.
- Fig. 4 it is a schematic diagram of time domain resources of a first message and a reference signal.
- the first interval and the fourth interval mentioned above can refer to the example in Fig. 4.
- the figure contains four S-SSBs and four DCRs, and these four S-SSBs correspond to these four DCRs one by one.
- S-SSB#A corresponds to DCR#A
- S-SSB#B corresponds to DCR#B
- S-SSB#C corresponds to DCR#C
- S-SSB#D corresponds to DCR#D.
- the arrangement order of S-SSB#A to S-SSB#D in the time domain is the arrangement order of DCR#A to DCR#D.
- the interval between any pair of S-SSBs and DCRs in the time domain is the same.
- the index of the first reference signal in the M reference signals corresponds to the index of the first message S in the M first messages.
- M is 3, the three reference signals are reference signal 1, reference signal 2, and reference signal 3; the three first messages are first message 1, first message 2, and first message 3.
- the first reference signal is reference signal 1, and the first message S is first message 1.
- the index of the time domain resource of the first reference signal in the time domain resources of the M reference signals corresponds to the index of the time domain resource of the first message S in the time domain resources of the M first messages.
- M is 3, and the three reference signals are reference signal A, the time domain resource is time slot 1, reference signal B, the time domain resource is time slot 2, and reference signal C, the time domain resource is time slot 3; the three first messages are first message A, the time domain resource is time slot A, first message B, the time domain resource is time slot B, and first message C, the time domain resource is time slot C.
- the first reference signal is reference signal B, and the first message S is first message B.
- Method 2 The frequency domain resources of the first reference signal correspond to the frequency domain resources of the first message S.
- the first reference signal occupies a first frequency domain resource subset
- the first message S occupies a second frequency domain resource subset
- the first frequency domain resource subset corresponds to the second frequency domain resource subset
- Case 1 The location of the frequency domain resource of the first reference signal is the same as the location of the frequency domain resource of the first message, and the sizes may be the same or different.
- the frequency domain resource positions and sizes of the first frequency domain resource subset and the second frequency domain resource subset are the same.
- the size of the frequency domain resource subset occupied by the S-SSB is the same as the size of the frequency domain resource subset occupied by the first message, and the S-SSB is in the resource pool or transmission bandwidth.
- the position of the first message is the same as the position of the first message in the resource pool or the transmission bandwidth.
- the optional frequency position and size unit can be any one of Hz, kHz, MHz, RE or RB, and this application does not limit this.
- Possibility 2 the frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and/or the sizes of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same.
- Possibility 3 The frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and the size of the first frequency domain resource subset is smaller than or equal to the size of the frequency domain resources of the second frequency domain resource subset.
- Possibility 4 The frequencies of the frequency domain resources of the first frequency domain resource subset and the second frequency domain resource subset are the same, and the size of the second frequency domain resource subset is less than or equal to the size of the frequency domain resources of the first frequency domain resource subset.
- the BMRS is a CSI-RS
- the bandwidth of the CSI-RS may be greater than the bandwidth of the first message.
- the frequencies are the same, including the same center frequency and the same start and end frequencies.
- the unit of frequency position and size may be any one of Hz, kHz, MHz, RE or RB, and the present application does not limit this.
- the frequency is the same, including the same center frequency and/or the same start and end frequency.
- the occupied frequency domain is the same, which may be that all occupied REs are the same, or that the occupied RBs are the same, but the number of occupied REs is different.
- FIG5 shows a schematic diagram of frequency domain resources of a reference signal and a first message.
- S-SSB is used as an example of a reference signal
- DCR is used as an example of a first message
- subband is used as an example of a subset of frequency domain resources.
- the figure includes four S-SSBs, namely S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D, and the four DCRs are DCR#A, DCR#B, DCR#C, and DCR#D.
- the frequency domain resources occupied by S-SSB#A and DCR#A are on subband A
- the frequency domain resources occupied by S-SSB#B and DCR#B are on subband B
- the frequency domain resources occupied by S-SSB#C and DCR#C are on subband C
- the frequency domain resources occupied by S-SSB#D and DCR#D are on subband D.
- the center frequencies of the frequency domain resources occupied by S-SSB and DCR are the same.
- the frequencies of the frequency domain resources occupied by the S-SSB and the DCR are the same, and all occupied REs may be the same, or the occupied RBs may be the same, but the number of occupied REs may be different.
- a subband may be a set of frequency domain resources for sending a first reference signal and/or a first message.
- the frequency domain resources may be continuous in the frequency domain.
- the size of the subband may be configured or predefined by signaling.
- the optional unit of the subband may be: RE, PRB, subchannel, etc.
- the size of the frequency domain resource subset occupied by each S-SSB is the same, and the size of the frequency domain resource subset occupied by each DCR is also the same.
- the size of the frequency domain resource subset occupied by the S-SSB is the same as the size of the frequency domain resource subset occupied by the DCR.
- the interval between frequency domain resource subsets of any two adjacent reference signals in the frequency domain among the M reference signals is equal, and the interval between frequency domain resource subsets of any two adjacent first messages in the frequency domain among the M first messages is equal.
- reference signals that are adjacent in the frequency domain can be understood as reference signals that are adjacent to the subset of frequency domain resources occupied.
- S-SSB#A and S-SSB#B, or S-SSB#B and S-SSB#C, or S-SSB#C and S-SSB#D in Figure 5 are all reference signals that are adjacent in the frequency domain.
- First messages that are adjacent in the frequency domain can be understood as first messages that are adjacent to the subset of frequency domain resources occupied.
- DCR#A and DCR#B, or DCR#B and DCR#C, or DCR#C and DCR#D in Figure 5 are all first messages that are adjacent in the frequency domain.
- the intervals between the time domain resources of each reference signal and its corresponding first message are the same.
- Case 2 The location of the frequency domain resource of the first reference signal is different from the location of the frequency domain resource of at least one first message among the M first messages.
- the first reference signal belongs to M reference signals
- the first message corresponding to the first reference signal belongs to M first messages
- at least two of the M first messages have different frequency domain resource subset positions and the same time domain resource positions
- at least two of the M reference signals have the same frequency domain resource subset positions and different time domain resource positions.
- FIG6 shows a schematic diagram of time-frequency resources of a reference signal and a first message.
- S-SSB is used as an example of a reference signal
- DCR is used as an example of a first message
- subband is used as an example of a subset of frequency domain resources.
- the figure includes four S-SSBs, namely S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D, and the four DCRs are DCR#A, DCR#B, DCR#C, and DCR#D.
- the frequency domain resources occupied by DCR#A are on subband A
- the frequency domain resources occupied by DCR#B are on subband B
- the frequency domain resources occupied by DCR#C are on subband C
- the frequency domain resources occupied by DCR#D are on subband D.
- the frequency domain resources occupied by S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D are the same, but the time domain resources occupied by S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D are different.
- the intervals between each reference signal and the time domain resources of the corresponding first message are different.
- the following takes the first reference signal and the first message S as an example to illustrate the correspondence between the reference signal and the first message in this case.
- Method 1 The index of the time domain resource of the first reference signal is associated with the index of the second frequency domain resource subset.
- the M reference signals include a first reference signal and a second reference signal
- the index of the frequency domain resource subset of the first message corresponding to the first reference signal is the first index
- the index of the frequency domain resource subset of the first message corresponding to the second reference signal is the second index
- the index of the time domain resource of the first reference signal is a third index, and the third index is associated with the first index;
- the index of the time domain resource of the second reference signal is a fourth index, and the fourth index is associated with the second index.
- the first reference signal is S-SSB#A
- the first message S is DCR#A
- the index of the time domain resource occupied by S-SSB#A is 1
- the index of the frequency domain resource subset occupied by DCR#A is 1
- the index of the time domain resource occupied by S-SSB#B is 2
- the index of the frequency domain resource subset occupied by DCR#A is 2. That is, the frequency domain resource subset occupied by DCR#A can be determined by the time domain resource occupied by S-SSB#A.
- the first reference signal carries first indication information, and the first indication information indicates the frequency domain resources of the first message S.
- the first indication information indicates an index of the second frequency domain resource subset.
- the first reference signal is S-SSB
- the PBCH included in the S-SSB carries an index indicating the second frequency domain subset.
- the first reference signal is CSI-RS and/or DM-RS
- the first indication information is indicated in the control information sent together with the CSI-RS and/or DM-RS in the first time slot
- the control information includes: SCI, MAC CE or PC5 RR.
- Method 3 Associating the frequency domain resources of the first message S through the sequence of the first reference signal.
- the first reference signal is associated with a data channel carrying a first message corresponding to the first reference signal, and a first sequence used by a demodulation reference signal in the data channel is associated with the first reference signal; and/or, bits of the first message corresponding to the first reference signal are scrambled using a second sequence, and the second sequence is associated with the first reference signal.
- the bits of the first message corresponding to the first reference signal may be bits of the first message before encoding, or bits of the first message after encoding but before modulation.
- the first sequence or the second sequence is generated based on a first parameter, and the first parameter includes one or more of the following:
- the first reference signal includes a value indicated by the control information.
- the index of the time domain resource of the first reference signal may be the index of the time slot where the S-SSB is located.
- the index of the beam of the first reference signal may be the index of the beam that sends the S-SSB.
- the first reference signal sequence identifier may be the identifier of the sequence used to send the S-SSB.
- the sequence identifier is the identifier of the synchronization signal transmitted in the S-SSB.
- the sequence identifier is the cyclic shift value of the sequence used by the first reference signal.
- the sequence identifier is the root sequence number of the sequence used by the first reference signal.
- the control information included in the first reference signal indicates a value, which is an integer.
- the value may be generated by the first communication device, or may be indicated by configuration signaling.
- the value is a random number.
- the first sequence or the second sequence is also generated based on a source identifier and/or a destination identifier.
- the source identifier is an identifier of the first communication device
- the destination identifier is an identifier of the second communication device or a service identifier of data to be sent by the first communication device.
- the source identifier and the destination identifier can refer to the introduction above and will not be repeated here.
- the source identifier and/or the destination identifier may be indicated by control information included in a reference signal.
- control information includes: DCI, MAC CE or RRC.
- control information includes: SCI, MAC CE or PC5 RRC.
- the first communication device may send a fourth message, where the fourth message indicates the above-mentioned numerical value, ie, a random number.
- a cyclic shift value, a root sequence number, an initial value, an initial position, and an orthogonal cover code of the first sequence and/or the second sequence may be determined based on the first parameter.
- the first parameter may be any one of the following:
- N sID is the source identifier
- N dID is the destination identifier
- NR is a random number (i.e., the value indicated in the reference signal)
- B ID is the index of the beam of the first reference signal
- the index of the time domain resource of the first reference signal where n is an integer and m is an integer.
- n and m can be positive integers. Zero or negative integer, which is not limited in this application.
- the parameters used in the above-mentioned sequence generation may be complete bits or partial bits of the parameters.
- the random number may occupy 24 bits
- NR may be 24 bits or partial bits, such as 8 bits, 16 bits, etc.
- the value of one or more of the cyclic shift value, the root sequence number, the initial value, and the initial position of the first sequence and/or the second sequence may be equal to the value determined by the first parameter.
- Nc 1600
- the initial values of the second m-sequence x2 (n) are
- the initial value c init for generating the random sequence may be determined in any of the above ways.
- the above sequence is sometimes also called a Gold sequence.
- the length of its shift register is 31 bits.
- the first sequence and/or the second sequence may be determined as follows:
- N x is determined according to the first parameter mentioned above.
- the first reference signal belongs to M reference signals
- the first message belongs to M first messages
- at least two of the M first messages have different frequency domain resource subset positions and the same time domain resource positions
- at least two of the M reference signals have the same frequency domain resource subset position and time domain resource position but different sequences.
- sequences in the present application refer to different values of any one or more parameters in the following generated sequences: initial value of the sequence, initial position of the sequence, root sequence number of the sequence, cyclic shift value of the sequence, orthogonal cover code of the sequence.
- the same sequence in the present application means that the values of any one or more parameters in the following generated sequences are the same: the initial value of the sequence, the initial position of the sequence, the root sequence number of the sequence, the cyclic shift value of the sequence, and the orthogonal cover code of the sequence.
- the intervals between each reference signal and the time domain resources of the corresponding first message are different.
- the M reference signals are sent in a code division manner.
- FIG. 7 shows a schematic diagram of time-frequency resources of a reference signal and a first message.
- S-SSB is used as an example of a reference signal
- DCR is used as an example of a first message
- subband is used as an example of a frequency domain resource subset.
- the figure includes four S-SSBs, namely S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D, and the four DCRs are DCR#A, DCR#B, DCR#C, and DCR#D.
- the frequency domain resource subset occupied by DCR#A is on subband A
- the frequency domain resource subset occupied by DCR#B is on subband B
- the frequency domain resource subset occupied by DCR#C is on subband C
- the frequency domain resource subset occupied by DCR#D is on subband D.
- the time domain resources occupied by S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D are the same, and the frequency domain resources are also the same, but the sequences of S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D are different.
- sequences used to send S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D are different.
- S-SSB#A corresponds to sequence A
- S-SSB#B corresponds to sequence B
- S-SSB#C corresponds to sequence C
- S-SSB#D corresponds to sequence D.
- sequences can be generated based on the parameters of the corresponding reference signal.
- sequence A is generated based on the parameters of S-SSB#A
- sequence B is generated based on the parameters of S-SSB#B
- sequence C is generated based on the parameters of S-SSB#C
- sequence D is generated based on the parameters of S-SSB#D.
- sequence generation method please refer to the description in the above method 3.
- sequence A is associated with subband A
- sequence B is associated with subband B
- sequence C is associated with subband C
- sequence D is associated with subband D.
- the first communication device sends a fifth message to the second communication device, the fifth message indicating whether there is a first message in the period where the reference signal is located. If there is a first message, the second communication device can receive the first message on the corresponding time-frequency resource. If there is no first message, the second communication device does not need to receive the first message. The power consumption of the second communication device can be further reduced.
- the fifth message is carried in the control information sent together with the reference signal.
- the control information sent together with the reference signal can be understood as the control information occupying the same time domain resource as the reference signal. Further, it can be understood as the control information occupying the same time domain resource unit (such as time slot) as the reference signal.
- the control information can be a sidelink master information block (SL-MIB).
- the control information includes: DCI, MAC CE or RRC.
- the control information includes: SCI, MAC CE or PC5RRC.
- control information sent together with the reference signal in other parts of this application can refer to the description here.
- the first message is a DCR message
- the fifth message may indicate the following information:
- the second communication device needs to detect on the time-frequency resources of the DCR message corresponding to the reference signal, or try to receive the DCR message.
- the second message may be a beam response message, such as a beam report.
- the second message corresponds to the first reference signal.
- the fifth interval is less than or equal to the second threshold value
- the second threshold value can be configured by signaling, preconfigured, or predefined, and there is no limitation on this.
- the time domain resource of the first reference signal corresponds to the time domain resource of the second message.
- the M first reference signals correspond to the time domain resources of the M second messages one by one.
- reference may be made to the description of the correspondence between the time domain resources of the first reference signal and the first message in the aforementioned method 1, which is also applicable to the correspondence between the time domain resources of the second message and the first reference signal.
- the frequency domain resources of the first reference signal correspond to the frequency domain resources of the second message.
- the position of the frequency domain resources of the first reference signal is the same as the position of the frequency domain resources of the second message, and the sizes may be the same or different.
- the position of the frequency domain resources of the first reference signal is different from the position of the frequency domain resources of at least one of the M first messages.
- the description of the correspondence between the frequency domain resources of the first reference signal and the first message in Mode 2 can be referred to, which is also applicable to the correspondence between the time domain resources of the second message and the first reference signal.
- the first reference signal is associated with a first channel of the second message.
- the first channel is a data or control channel for transmitting information based on coded bits.
- a third sequence used by a demodulation reference signal in the first channel is associated with the first reference signal; and/or, bits of the second message corresponding to the first reference signal are scrambled using a fourth sequence, and the fourth sequence is associated with the first reference signal.
- the first reference signal is associated with the first channel of the second message.
- the first channel is a control channel based on the fifth sequence indication information.
- the fifth sequence in the first channel is associated with the first reference signal.
- the first channel is a feedback channel, such as PUCCH or PSFCH.
- the third sequence, the fourth sequence and/or the fifth sequence may be determined using the first parameter in the above manner 3.
- the value of at least one of the following parameters of the third sequence, the fourth sequence and/or the fifth sequence is determined: an initial value of the sequence, an initial position of the sequence, a root sequence number of the sequence, a cyclic shift value of the sequence, and an orthogonal cover code of the sequence.
- the correspondence between the first reference signal and the first message is also applicable to the correspondence between the first reference signal and the second message.
- the second message corresponds to the first message.
- the sixth interval can be the interval between the first reference signal and the start (or end position) of the time domain resources of the second message corresponding to the first reference signal, or it can be the interval between the first reference signal and the predefined position of the time domain resources of the second message corresponding to the first reference signal, and there is no restriction on this.
- Fig. 8 shows a schematic diagram of a second message, a first reference signal and time-frequency resources of the first message.
- the fifth interval may refer to the example in Fig. 8 .
- the time domain resources of the M second messages correspond one-to-one with the time domain resources of the M reference signals, and also correspond one-to-one with the time domain resources of the M first messages.
- the value of M is 4.
- the correspondence between the second message and the reference signal can refer to the correspondence between the first message and the reference signal in aspect 3, and will not be repeated here.
- the time domain resources of the M second messages may also be referred to as the time window of the second message, and the time window of the second message may be determined based on the position of the time domain resources of the reference signal and the fifth interval.
- the time window of the second message may be determined based on the starting position of the time window and the second
- the time window of the second message may be determined according to the position of the time window of the first message and the interval between the time window of the second message and the time window of the first message.
- the intervals between adjacent second messages in the M second messages may be the same.
- the adjacent second messages may be second messages adjacent in the frequency domain, or may be second messages adjacent in the time domain.
- the explanation of adjacent may refer to the above description, which will not be repeated here.
- the time window of the M second messages is after the time window of the M first messages, and may be before or after the time window of the sixth message.
- the sixth message is used to establish a connection between the first communication device and the second communication device.
- the sixth message may be a direct communication acceptance DCA message, or may be a security establishment message.
- Implementation 1 The time domain resources of the second message are different from the time domain resources of the first message, but the frequency domain resources are the same.
- Implementation 2 The time domain resources of the second message are the same as those of the first message, but the frequency domain resources are different.
- Implementation 3 The time domain resources of the second message are different from the time domain resources of the first message, and the frequency domain resources are different.
- FIG9 shows a schematic diagram of time-frequency resources of a second message, a first message, and a reference signal.
- S-SSB is used as an example of a reference signal
- DCR is used as an example of a first message
- a beam response message is used as an example of a second message
- a subband is used as an example of a frequency domain resource subset.
- the figure includes four S-SSBs, namely S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D
- four DCRs are respectively DCR#A, DCR#B, DCR#C, and DCR#D
- four second messages are respectively beam response message #A, beam response message #B, beam response message #C, and beam response message #D.
- the frequency domain resource subset occupied by DCR#A is on subband A
- the frequency domain resource subset occupied by DCR#B is on subband B
- the frequency domain resource subset occupied by DCR#C is on subband C
- the frequency domain resource subset occupied by DCR#D is on subband D.
- the time domain resources occupied by S-SSB#A, S-SSB#B, S-SSB#C, and S-SSB#D are the same, but the frequency domain resources are different.
- the time domain resources occupied by beam response message #A, beam response message #B, beam response message #C, and beam response message #D are the same, but the frequency domain resources are different.
- the time domain resources of the beam response message are different from the time domain resources of the first message, but the frequency domain resources are the same.
- S-SSB#A corresponds to DCR#A and beam response message #A
- the frequency domain resources of S-SSB#A, DCR#A, and beam response message #A are all on subband 1.
- the number of the second messages may be greater than or equal to the number of reference signals. That is, the number of the second messages is not limited to M, and may also be other values greater than or equal to M.
- the first communication device detects (also referred to as receiving, parsing, decoding, etc.) the second message sent by the second communication device within the time window of the Q second messages. If the first communication device does not detect the second message within the time window, the first communication device sends at most Q reference signals until the second message is detected.
- the second communication device determines whether it is the target of the first communication device:
- the corresponding first message and the reference signal corresponding thereto are not processed.
- the second communication device If the second communication device is the target of the first communication device, it is determined whether to accept the first message (such as DCR) of the first communication device. If not, the corresponding first message and the reference signal associated therewith are not processed. If accepted, the second communication device sends a second message corresponding to the reference signal and/or the first message to the first communication device.
- the first message such as DCR
- the first communication device may also obtain configuration information, which may indicate the type of reference signal, the number of times the reference signal is sent, the time domain information of the reference signal (including the sending period, the time domain position within the sending period, the number within the sending period, and the interval between adjacent reference signals within the period), the time domain information of the first message (such as the time window), the time domain information of the second message (such as the time window, the time domain position within the time window, the number of second messages within the time window, and the interval between adjacent second messages), and the frequency domain resources (including the frequency domain resources of the reference signal, the frequency domain resources of the first message, and the frequency domain resources of the second message).
- the second communication device may also receive the configuration information.
- the first communication device sends the configuration information to the second communication device, or the network device indicates the configuration information to the second communication device.
- the configuration information may be indicated by the network device, or by other terminal devices, or may be preconfigured or predefined.
- the first communication device can detect which subband is idle on each subband in the bandwidth of the resource pool, and then send a reference signal and a first message on the corresponding subband.
- the subband can also be used by the second communication device to send a second message.
- the above configuration message also includes a signal quality threshold for idle subbands and a threshold for signal quality occupancy.
- the second communication device determines that it is the target of the first communication device, it performs beam processing, such as beam matching. If the second communication device is not the target of the transmitter, no processing is performed, such as beam matching. This reduces unnecessary transmission of non-target communication devices and corresponding power consumption.
- the interaction between the first communication device and the second communication device is mainly used as an example to illustrate. This is just an example, and the application is not limited to this.
- the methods and operations implemented by the communication device can also be implemented by components (such as chips or circuits) that can be implemented by the communication device.
- the embodiments of the present application also provide corresponding devices, which include modules for executing the corresponding methods in the above-mentioned method embodiments.
- the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above-mentioned method embodiments are also applicable to the following device embodiments.
- Fig. 10 is a schematic block diagram of a communication device 1000 provided in an embodiment of the present application.
- the device 1000 includes a transceiver unit 1010.
- the transceiver unit 1010 can be used to implement corresponding communication functions.
- the transceiver unit 1010 can also be called a communication interface or a communication unit.
- the device 1000 further includes a processing unit 1020.
- the processing unit 1020 may be used to perform information processing.
- the device 1000 also includes a storage unit, which can be used to store instructions and/or data.
- the processing unit 1020 can read the instructions and/or data in the storage unit so that the device implements the actions of the communication device in the aforementioned method embodiments.
- the device 1000 may be the first communication device in the aforementioned embodiment, or may be a component (such as a chip) of the first communication device.
- the device 1000 may implement the steps or processes corresponding to those performed by the first communication device in the above method embodiment, wherein the transceiver unit 1010 may be used to perform the transceiver-related operations of the first communication device in the above method embodiment, and the processing unit 1020 may be used to perform the processing-related operations of the first communication device in the above method embodiment.
- the transceiver unit 1010 is used to send a reference signal and a first message; and may also be used to receive a second message from a second communication device; and may also receive configuration information.
- the processing unit 1020 is configured to detect the second message and also to process configuration information.
- the device 1000 can implement steps or processes executed by the first communication device in the method embodiment according to the embodiment of the present application.
- the device 1000 may include a unit for executing the method executed by the first communication device in the embodiments shown in Figures 3 to 9.
- the device 1000 may be the second communication device in the aforementioned embodiment, or may be a component (such as a chip) of the second communication device.
- the device 1000 may implement the steps or processes corresponding to those performed by the second communication device in the above method embodiment, wherein the transceiver unit 1010 may be used to perform the transceiver-related operations of the second communication device in the above method embodiment, and the processing unit 1020 may be used to perform the processing-related operations of the second communication device in the above method embodiment.
- the processing unit 1020 is configured to process the reference signal and the first message.
- the transceiver unit 1010 is used to receive a reference signal and a first message; and may also be used to send a second message.
- the device 1000 can implement steps or processes executed by the second communication device in the method embodiment according to the embodiment of the present application, and the device 1000 may include a unit for executing the method executed by the second communication device in the embodiments shown in Figures 3 to 9.
- the device 1000 here is embodied in the form of a functional unit.
- the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a combined logic circuit and/or other suitable components that support the described functions.
- ASIC application specific integrated circuit
- the device 1000 can be specifically a communication device (such as a first communication device, and also such as a second communication device) in the above-mentioned embodiments, and can be used to execute the various processes and/or steps corresponding to the communication device in the above-mentioned method embodiments. To avoid repetition, it will not be repeated here.
- the device 1000 of each of the above schemes has the function of implementing the corresponding steps performed by the communication device (such as the first communication device, and the second communication device) in the above method.
- the function can be implemented by hardware, or by hardware executing the corresponding software implementation.
- the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
- the transceiver unit 1010 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
- the device in FIG. 10 may be the device in the aforementioned embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
- the transceiver unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
- FIG11 is a schematic block diagram of a communication device 1100 provided in an embodiment of the present application.
- the device 1100 includes a processor 1110, and the processor 1110 is coupled to a memory 1120.
- the memory 1120 is further included, which is used to store computer programs or instructions and/or data, and the processor 1110 is used to execute the computer programs or instructions stored in the memory 1120, or read the data stored in the memory 1120, so as to execute the methods in the above method embodiments.
- processors 1110 there are one or more processors 1110 .
- the memory 1120 is one or more.
- the memory 1120 is integrated with the processor 1110 or provided separately.
- the device 1100 further includes a transceiver 1130, and the transceiver 1130 is used for receiving and/or sending signals.
- the processor 1110 is used for controlling the transceiver 1130 to receive and/or send signals.
- the device 1100 is used to implement the operations performed by the communication device in each of the above method embodiments.
- the processor 1110 is configured to execute a computer program or instruction stored in the memory 1120 to implement related operations of the first communication device or the second communication device in each of the above method embodiments.
- each step of the above method can be completed by an integrated logic circuit of the hardware in the processor 1110 or an instruction in the form of software.
- the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in the processor for execution.
- the software module can be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
- the storage medium is located in the memory 1120, and the processor 1110 reads the information in the memory 1120 and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
- the processor may be one or more integrated circuits for executing related programs to execute the embodiments of the methods of the present application.
- a processor may include one or more processors and be implemented as a combination of computing devices.
- the processor may include one or more of the following: a microprocessor, a microcontroller, a digital signal processor (DSP), a digital signal processing device (DSPD), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), a gating logic, a transistor logic, a discrete hardware circuit, a processing circuit or other suitable hardware, firmware and/or a combination of hardware and software for performing the various functions described in the present disclosure.
- the processor may be a general-purpose processor or a special-purpose processor.
- processor 1110 may be a baseband processor or a central processing unit.
- the baseband processor may be used to process communication protocols and communication data.
- the central processing unit may be used to enable the device to execute a software program and process data in the software program.
- a portion of the processor may also include a non-volatile random access memory.
- the processor may also store information about the type of device.
- Program in this application is used to refer to software in a broad sense.
- Non-limiting examples of software include: program code, program, subroutine, instruction, instruction set, code, code segment, software module, application, or software application, etc.
- the program can be run in a processor and/or computer. So that the device performs various functions and/or processes described in this application.
- a memory can store data required by a processor (e.g., processor 1110) when executing software.
- the memory can be implemented using any suitable storage technology.
- the memory can be any available storage medium that can be accessed by the processor and/or the computer.
- Non-limiting examples of storage media include: random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (SDR), and so on.
- DDR SDRAM double data rate SDRAM
- ESDRAM enhanced synchronous dynamic random access memory
- SLDRAM synchronous link dynamic random access memory
- DR RAM direct rambus RAM
- removable media optical disk storage, magnetic disk storage media, magnetic storage devices, flash memory, registers, state memory, remote mounted memory, local or remote memory components, or any other medium capable of carrying or storing software, data or information and accessible by a processor/computer.
- DDR SDRAM double data rate SDRAM
- ESDRAM enhanced synchronous dynamic random access memory
- SLDRAM synchronous link dynamic random access memory
- DR RAM direct rambus RAM
- removable media optical disk storage
- magnetic disk storage media magnetic storage devices
- flash memory registers, state memory, remote mounted memory, local or remote memory components, or any other medium capable of carrying or storing software, data or information and accessible by a processor/computer.
- the memory e.g., memory 1120
- the processor e.g., processor 1110
- the memory may be used to connect to the processor so that the processor can read information from the memory, store and/or write information in the memory.
- the memory and the processor may be provided in an integrated circuit (for example, the integrated circuit may be provided in a UE or other network node).
- FIG12 is a schematic block diagram of a chip system 1200 provided in an embodiment of the present application.
- the chip system 1200 (or also referred to as a processing system) includes a logic circuit 1210 and an input/output interface 1220.
- the logic circuit 1210 can be a processing circuit in the chip system 1200.
- the logic circuit 1210 can be coupled to the storage unit and call the instructions in the storage unit so that the chip system 1200 can implement the methods and functions of each embodiment of the present application.
- the input/output interface 1220 can be an input/output circuit in the chip system 1200, outputting information processed by the chip system 1200, or inputting data or signaling information to be processed into the chip system 1200 for processing.
- the chip system 1200 is used to implement the operations performed by the communication device in the above method embodiments.
- the logic circuit 1210 is used to implement the processing-related operations performed by the first communication device in the above method embodiments, such as the processing-related operations performed by the first communication device in the embodiment shown in Figure 3;
- the input/output interface 1220 is used to implement the sending and/or receiving-related operations performed by the first communication device in the above method embodiments, such as the sending and/or receiving-related operations performed by the first communication device in the embodiment shown in Figure 3.
- the logic circuit 1210 is used to implement the processing-related operations performed by the second communication device in the above method embodiments, such as the processing-related operations performed by the second communication device in the embodiment shown in Figure 3;
- the input/output interface 1220 is used to implement the sending and/or receiving-related operations performed by the second communication device in the above method embodiments, such as the sending and/or receiving-related operations performed by the second communication device in the embodiment shown in Figure 3.
- An embodiment of the present application also provides a computer-readable storage medium on which computer instructions for implementing the methods executed by a communication device (such as a first communication device or a second communication device) in the above-mentioned method embodiments are stored.
- a communication device such as a first communication device or a second communication device
- An embodiment of the present application further provides a computer program product, comprising instructions, which, when executed by a computer, implement the methods performed by a communication device (such as a first communication device or a second communication device) in the above-mentioned method embodiments.
- a communication device such as a first communication device or a second communication device
- An embodiment of the present application further provides a communication system, which includes the first communication device and the second communication device in the above embodiments.
- the disclosed devices and methods can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the above units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
- the units described above as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement the solution provided by this application.
- each functional unit in each embodiment of the present application may be integrated into one unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the computer program product includes one or more computer instructions.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network or other programmable devices.
- the computer can be a personal computer, a server, or a network device, etc.
- the computer instruction can be stored in a computer-readable storage medium, or transmitted from a computer-readable storage medium to another computer-readable storage medium, for example, the computer instruction can be transmitted from a website site, a computer, a server or a data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
- wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
- wireless such as infrared, wireless, microwave, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种通信方法、装置和系统,可以适用于蜂窝通信、V2X、车联网、自动驾驶、辅助驾驶等领域。该方法包括:确定第一参考信号和第一消息,第一参考信号用于确定第一波束,第一消息用于第二设备发现或者用于请求与第二通信装置通信,第一波束为第一通信装置与第二通信装置通信的候选波束,第一参考信号与第一消息的时域资源之间存在第一间隔,第一间隔小于或等于第一阈值,第一阈值为配置的或是预定义的,发送第一参考信号和第一消息。接收端在确定自己是发送端的目标后,再进行波束处理,比如波束匹配等。如果该接收端不是发送端的目标,则不作处理,比如不执行波束匹配。从而减少了非目标通信装置不必要的传输和相应的功率消耗。
Description
本申请要求在2023年08月11日提交中国国家知识产权局、申请号为202311021444.9、发明名称为“通信方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信领域。尤其涉及一种通信方法、装置和系统。
高频段频谱频谱资源充足、可用带宽大、并且干扰较小。但是在空中传播时,对应的损耗比低频段要大很多。为了克服高频段传输的大的损耗问题,业界普遍采用基于波束的传输方式来进进进进行通信。目前在侧行传输中,波束匹配还存在一定的问题。比如,在波束匹配过程中,多个接收端因为不知道自己是否是发射端的接收端,这些接收端都需要进行波束配对,这样造成了不必要的传输和功率消耗。
发明内容
本申请提供一种通信方法、装置和系统。该方法能够避免不必要的传输,节省功率消耗。
第一方面,提供了一种通信方法,该方法包括:确定第一参考信号和第一消息,所述第一参考信号用于确定第一波束,所述第一消息用于第二设备发现或者用于请求与所述第二通信装置通信,所述第一波束为所述第一通信装置与所述第二通信装置通信的候选波束,所述第一参考信号与所述第一消息的时域资源之间存在第一间隔,所述第一间隔小于或等于第一阈值,所述第一阈值为配置的或是预定义的,发送所述第一参考信号和所述第一消息。
该方法中,第一消息的时域资源与第一参考信号的时域资源的间隔在第一阈值内,能够使得第二通信装置提前根据第一消息获知第一通信装置的目标通信装置,便于确定后续是否执行波束匹配等流程。比如,如果第二通信装置并非第一通信装置的目标通信装置,则无需执行波束匹配等流程,能够节省功率消耗。
在某些实现方式中,所述第一参考信号与所述第一消息准共址(QCL)。
或者说,发送第一参考信号的波束的方向,与发送第一消息的波束的方向相同。
在某些实现方式中,所述第一参考信号对应的第一消息的传输资源在所述第二消息的传输资源之前,所述第二消息用于指示所述第一参考信号的接收状态。
在某些实现方式中,所述第一参考信号的接收状态包括以下中的一种或多种:
所述第一参考信号是否被所述第二通信装置接收到,或,
所述第一参考信号的接收质量,或,
所述第一参考信号的接收质量是否超过门限,或,
所述第一参考信号的接收质量是否是接收到的参考信号中的最高的。
该方式中,第一消息在第二消息之前发送,非目标通信装置无需执行波束匹配等流程。在确定自己是第一通信装置的目标通信装置之后,再执行波束匹配流程,进一步向第一通信装置发送第二消息,能够减少不必要的信令开销。
在某些实现方式中,所述第一参考信号用于确定第一波束包括:
所述第一参考信号用于所述第一通信装置与第二通信装置之间的初始波束配对;和/或,
所述第一参考信号用于所述第一通信装置与第二通信装置之间的波束维护;和/或,
所述第一参考信号用于所述第一通信装置与第二通信装置之间的候选波束检测;和/或,
所述第一参考信号用于所述第一通信装置与第二通信装置之间的波束失败检测;和/或,
所述第一参考信号用于所述第一通信装置与第二通信装置之间的波束管理,以确定所述第一波束。
可选的,第一参考信号可以是侧行同步信号块S-SSB,或者信道状态信息参考信号CSI-RS和/或解调参考信号DM-RS。
在某些实现方式中,所述第一通信装置接收第三消息,其中,所述第三消息指示所述第一阈值,或者,所述第三消息指示所述第一消息的时域资源的起始位置,或者,所述第三消息指示所述第一间隔。
在某些实现方式中,所述第一参考信号为S-SSB,所述第三消息承载于所述S-SSB包括的PBCH;或者,所述第一参考信号为CSI-RS,所述第三消息承载于控制信息,所述控制信息与所述CSI-RS在相同的时域资源单元中发送。
示例地,时域资源单元可以是时隙。
可选的,该第三消息可以是其他通信装置发送给第一通信装置的,比如其他终端装置向第一通信装置发送第三消息。又或者,网络装置向第一通信装置发送第三消息。
可选的,第一通信装置也可以向其他通信装置,比如其他的终端装置,发送该第三消息。
在某些实现方式中,所述第一阈值是根据所述第一消息的优先级、所述第一消息指示的待传输业务的优先级或者传输时延余量中的至少一项确定的。
在某些实现方式中,所述第一参考信号为CSI-RS和/或DM-RS,所述第一消息与所述第一参考信号承载于同一个时域资源单元;所述第一参考信号为S-SSB,所述第一消息承载于所述第一参考信号的时域资源单元之后的时域资源单元。
在某些实现方式中,所述第一参考信号的发送周期为T1,所述第一消息的发送周期为T2,其中,T1为T2的整数倍,或者,T2为T1的整数倍,T1,T2为正整数。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,M为大于或等于1的整数,
所述M个参考信号中,相邻两个参考信号的时域资源之间的间隔为第二间隔,所述第二间隔为配置的或预定义的;和/或,所述M个第一消息中,相邻两个第一消息的时域资源之间的间隔为第三间隔,所述第三间隔为配置的或预定义的。
在某些实现方式中,所述第二间隔与所述第三间隔相同。
在某些实现方式中,所述第一参考信号占用第一频域资源子集,所述第一消息占用第二频域资源子集,所述第一频域资源子集与所述第二频域资源子集对应。
在某些实现方式中,所述第一频域资源子集与所述第二频域资源子集对应包括:
所述第一频域资源子集和所述第二频域资源子集的频域资源位置和大小相同;或者,
所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,和/或,所述第一频域资源子集和所述第二频域资源子集的频域资源大小相同;或者,
所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第一频域资源子集的大小小于或等于所述第二频域资源子集的频域资源大小,或者,
所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第二频域资源子集的大小小于或等于所述第一频域资源子集的频域资源大小。
该方式中,参考信号占用的时域资源相同,以频分的方式发送,能够进一步节省时域资源。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号中在频域上任意两个相邻参考信号的频域资源子集之间的间隔相等,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号还包括第二参考信号,所述M个第一消息还包括所述第二参考信号对应的第一消息,所述第二参考信号与所述第二参考信号对应的第一消息的时域资源之间存在第四间隔,所述第四间隔与所述第一间隔相同。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号中至少有两个参考信号的频域资源子集位置相同且时域资源位置不同。
该方式中,参考信号以时分方式发送,第一消息以频分方式发送,能够节约时域资源,提高资源利用率。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号
中至少有两个参考信号的频域资源子集位置和时域资源位置相同且序列不同。
该方式中,多个参考信号的时域资源与频域资源相同,该多个参考信号以码分的方式发送,能够进一步节省时频资源。
在某些实现方式中,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
在某些实现方式中,所述第一参考信号的序列与所述第二频域资源子集关联;或者,所述第一参考信号包括第一指示信息,所述第一指示信息指示所述第二频域资源子集的索引。
在某些实现方式中,所述第一参考信号的时域资源的索引与所述第二频域资源子集的索引关联。
在某些实现方式中,所述第一参考信号的时域资源的索引与所述第二频域资源子集的索引对应包括:所述M个参考信号包括所述第一参考信号和第二参考信号,所述第一消息的频域资源子集的索引为第一索引,所述第二参考信号对应的第一消息的频域资源子集的索引为第二索引,
所述第一参考信号的时域资源的索引为第三索引,所述第三索引与所述第一索引对应;
所述第二参考信号的时域资源的索引为第四索引,所述第四索引与所述第二索引对应。
在某些实现方式中,所述第一参考信号与承载所述第一消息的数据信道相关联,包括:所述数据信道中的解调参考信号使用的第一序列与所述第一参考信号相关联;和/或,对所述第一消息的比特使用第二序列进行加扰,所述第二序列与所述第一参考信号相关联。
在某些实现方式中,所述第一序列与所述第一参考信号相关联,包括:所述第一序列或者所述第二序列基于第一参数生成,所述第一参数包括以下中的一种或多种:
所述第一参考信号的时域资源的索引;
所述第一参考信号的波束的索引;
所述第一参考信号序列标识;
所述第一参考信号包括的控制信息指示的数值。
在某些实现方式中,所述第一序列或者所述第二序列还基于源标识和/或目的标识生成。
在某些实现方式中,所述第一序列或者所述第二序列基于第一参数生成,包括:所述第一序列或者所述第二序列的循环移位值基于所述第一参数生成;和/或,所述第一序列或者所述第二序列的根序列号基于所述第一参数生成。
在某些实现方式中,所述第一序列或者所述第二序列基于所述第一参数生成,包括:所述第一序列或者所述第二序列的初始值基于所述第一参数生成;和/或,所述第一序列或者所述第二序列的初始位置基于所述第一参数生成。
在某些实现方式中,在未获取所述源标识和/或目的标识的情况下,发送第四消息,所述第四消息指示所述数值。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个参考信号还包括第二参考信号,所述第二参考信号与承载所述第二参考信号对应的第一消息的数据信道相关联,所述数据信道中的解调参考信号使用的第三序列与所述第二参考信号相关联;和/或,对所述第二参考信号对应的第一消息的比特使用第四序列进行加扰,所述第一序列与所述第三序列不同,所述第二序列与所述第四序列不同。
在某些实现方式中,接收配置信息,所述配置信息指示以下中的至少一项:
所述第一参考信号的类型、所述第一间隔、所述第一阈值、所述第一参考信号的时频资源、所述第一消息的时频资源、所述第一参考信号的发送周期、所述第一参考信号的发送次数、所述第一消息的发送周期。
在某些实现方式中,所述第一参考信号的类型为S-SSB或CSI-RS。
在某些实现方式中,发送第五消息,所述第五消息指示发送所述第一参考信号的周期内有第一消息。
在某些实现方式中,所述第一参考信号与所述第二消息的时域资源之间存在第五间隔,所述第五间隔小于或等于第二阈值,所述第二阈值为配置的或是预定义的。
第二方面,提供了一种通信方法,该方法包括:接收第一参考信号和第一消息,所述第一消息用于第二通信装置发现或者用于请求与所述第二通信装置通信,所述第一参考信号与所述第一消息的时域资源之间存在第一间隔,所述第一间隔小于或等于第一阈值,所述第一阈值为配置的或是预定义的;
所述第二通信装置根据所述第一参考信号和所述第一消息确定第一波束,所述第一波束为所述第一
通信装置与所述第二通信装置通信的候选波束。
在某些实现方式中,所述第一参考信号与所述第一消息准共址。
在某些实现方式中,根据所述第一参考信号和所述第一消息,确定是否发送第二消息,所述第二消息用于指示所述第一参考信号的接收状态。
在某些实现方式中,所述第一参考信号的接收状态包括以下中的一种或多种:
所述第二通信装置是否接收到所述第一参考信号,或,
所述第二通信装置接收到的所述第一参考信号的质量,或,
所述第二通信装置接收到的所述第一参考信号的质量是否超过门限,或,
所述第二通信装置接收到的所述第一参考信号的质量是否是所述第二通信装置接收到的M个参考信号中最高的。
在某些实现方式中,所述第一参考信号为侧行同步信号块S-SSB,所述第三消息承载于所述S-SSB包括的PBCH;或者,所述第一参考信号为CSI-RS,所述第三消息承载于控制信息,所述控制信息与所述CSI-RS在相同的时域资源单元中发送。
示例地,时域资源单元可以是时隙。
在某些实现方式中,所述第一阈值是根据所述第一消息的优先级、所述第一消息指示的待传输业务的优先级或者传输时延余量中的至少一项确定的。
在某些实现方式中,所述第一参考信号为CSI-RS和/或DM-RS,所述第一消息与所述第一参考信号承载于同一个时域资源单元;所述第一参考信号为S-SSB,所述第一消息承载于所述第一参考信号的时域资源单元之后的时域资源单元。
在某些实现方式中,所述第一参考信号的发送周期为T1,所述第一消息的发送周期为T2,其中,T1为T2的整数倍,或者,T2为T1的整数倍,T1,T2为正整数。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,M为大于或等于1的整数,
所述M个参考信号中,相邻两个参考信号的时域资源之间的间隔为第二间隔,所述第二间隔为配置的或预定义的;和/或,所述M个第一消息中,相邻两个第一消息的时域资源之间的间隔为第三间隔,所述第三间隔为配置的或预定义的。
在某些实现方式中,所述第二间隔与所述第三间隔相同。
在某些实现方式中,所述第一参考信号占用第一频域资源子集,所述第一消息占用第二频域资源子集,所述第一频域资源子集与所述第二频域资源子集对应。
在某些实现方式中,所述第一频域资源子集与所述第二频域资源子集对应包括:
所述第一频域资源子集和所述第二频域资源子集的频域资源位置和大小相同;或者,
所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,和/或,所述第一频域资源子集和所述第二频域资源子集的频域资源大小相同;或者,
所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第一频域资源子集的大小小于或等于所述第二频域资源子集的频域资源大小,或者,
所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第二频域资源子集的大小小于或等于所述第一频域资源子集的频域资源大小。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号中在频域上任意两个相邻参考信号的频域资源子集之间的间隔相等,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号还包括第二参考信号,所述M个第一消息还包括所述第二参考信号对应的第一消息,所述第二参考信号与所述第二参考信号对应的第一消息的时域资源之间存在第四间隔,所述第四间隔与所述第一间隔相同。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号中至少有两个参考信号的频域资源子集位置相同且时域资源位置不同。
该方式中,参考信号以时分方式方式,第一消息以频分方式发送,能够节约时域资源,提高资源利用率。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号中至少有两个参考信号的频域资源子集位置和时域资源位置相同且序列不同。
即,参考信号以码分的方式发送。能够进一步节省时频资源。
在某些实现方式中,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
在某些实现方式中,所述第一参考信号的序列与所述第二频域资源子集关联;或者,所述第一参考信号包括第一指示信息,所述第一指示信息指示所述第二频域资源子集的索引。
在某些实现方式中,所述第一参考信号的时域资源的索引与所述第二频域资源子集的索引关联。
在某些实现方式中,所述第一参考信号的时域资源的索引与所述第二频域资源子集的索引对应包括:所述M个参考信号包括所述第一参考信号和第二参考信号,所述第一消息的频域资源子集的索引为第一索引,所述第二参考信号对应的第一消息的频域资源子集的索引为第二索引,
所述第一参考信号的时域资源的索引为第三索引,所述第三索引与所述第一索引对应;
所述第二参考信号的时域资源的索引为第四索引,所述第四索引与所述第二索引对应。
在某些实现方式中,所述第一参考信号与承载所述第一消息的数据信道相关联,包括:所述数据信道中的解调参考信号使用的第一序列与所述第一参考信号相关联;和/或,对所述第一消息的比特使用第二序列进行加扰,所述第二序列与所述第一参考信号相关联。
在某些实现方式中,所述第一序列与所述第一参考信号相关联,包括:所述第一序列或者所述第二序列基于第一参数生成,所述第一参数包括以下中的一种或多种:
所述第一参考信号的时域资源的索引;
所述第一参考信号的波束的索引;
所述第一参考信号序列标识;
所述第一参考信号包括的控制信息指示的数值。
在某些实现方式中,所述第一序列或者所述第二序列还基于源标识和/或目的标识生成。
在某些实现方式中,所述第一序列或者所述第二序列基于第一参数生成,包括:所述第一序列或者所述第二序列的循环移位值基于所述第一参数生成;和/或,所述第一序列或者所述第二序列的根序列号基于所述第一参数生成。
在某些实现方式中,所述第一序列或者所述第二序列基于所述第一参数生成,包括:所述第一序列或者所述第二序列的初始值基于所述第一参数生成;和/或,所述第一序列或者所述第二序列的初始位置基于所述第一参数生成。
在某些实现方式中,接收第四消息,所述第四消息指示所述数值。
在某些实现方式中,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个参考信号还包括第二参考信号,所述第二参考信号与承载所述第二参考信号对应的第一消息的数据信道相关联,所述数据信道中的解调参考信号使用的第三序列与所述第二参考信号相关联;和/或,对所述第二参考信号对应的第一消息的比特使用第四序列进行加扰,所述第一序列与所述第三序列不同,所述第二序列与所述第四序列不同。
在某些实现方式中,所述第一参考信号的类型为SSB或CSI-RS。
在某些实现方式中,接收第五消息,所述第五消息指示发送所述第一参考信号的周期内有第一消息。
在某些实现方式中,所述第一参考信号与所述第二消息的时域资源之间存在第五间隔,所述第五间隔小于或等于第二阈值,所述第二阈值为配置的或是预定义的。
关于第二方面的有益效果,可以参考第一方面中的相关描述,此处不再赘述。
第三方面,提供了一种通信装置,该装置包括处理模块和收发模块,该处理模块用于确定第一参考信号和第一消息,所述第一参考信号用于确定第一波束,所述第一消息用于第二设备发现或者用于请求与所述第二通信装置通信,所述第一波束为所述第一通信装置与所述第二通信装置通信的候选波束,所述第一参考信号与所述第一消息的时域资源之间存在第一间隔,所述第一间隔小于或等于第一阈值,所述第一阈值为配置的或是预定义的;该收发模块用于发送所述第一参考信号和所述第一消息。
第四方面,提供了一种通信装置,该装置包括处理模块和收发模块,该收发模块用于接收第一参考信号和第一消息,所述第一消息用于第二通信装置发现或者用于请求与所述第二通信装置通信,所述第一参考信号与所述第一消息的时域资源之间存在第一间隔,所述第一间隔小于或等于第一阈值,所述第一阈值为配置的或是预定义的;该处理模块用于根据所述第一参考信号和所述第一消息确定第一波束,所述第一波束为所述第一通信装置与所述第二通信装置通信的候选波束。
可选的,该处理模块还用于根据所述第一参考信号和所述第一消息,确定是否发送第二消息,所述第二消息用于指示所述第一参考信号的接收状态
第五方面,提供一种计算机可读介质,该计算机可读介质存储用于通信装置执行的程序代码,该程序代码包括用于执行第一方面,或,第一方面中任一可能的实现方式,或,第一方面中所有可能的实现方式的方法的指令。
第六方面,提供一种计算机可读介质,该计算机可读介质存储用于通信装置执行的程序代码,该程序代码包括用于执行第二方面,或,第二方面中任一可能的实现方式,或,第二方面中所有可能的实现方式的方法的指令。
第七方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面,或,第一方面中任一可能的实现方式,或,第一方面中所有可能的实现方式的方法中。
第八方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或,第二方面中任一可能的实现方式,或,第二方面中所有可能的实现方式的方法。
第九方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面至第二方面,或,第一方面至第二方面中任一可能的实现方式,或,第一方面至第二方面中所有可能的实现方式的方法及各种可能设计的功能的装置。
第十方面,提供了一种处理器,配置用于执行上述第一方面,或,第一方面中任一可能的实现方式,或,第一方面中所有可能的实现方式的方法。
在一种可能的方式中,所述处理器用于与存储器耦合。
第十一方面,提供了一种处理器,配置用于执行上述第二方面,或,第二方面中任一可能的实现方式,或,第二方面中所有可能的实现方式的方法。
在一种可能的方式中,所述处理器用于与存储器耦合。
第十二方面,提供了一种芯片,芯片包括处理器,处理器用于实现上述第一方面,或,第一方面中任一可能的实现方式,或,或,第一方面中所有可能的实现方式的方法。
在一种可能的方式中,所述芯片还包括通信接口,该通信接口用于与外部器件或内部器件进行通信。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面,或,第一方面中任一可能的实现方式,或,第一方面中所有可能的实现方式的方法。
可选地,该芯片可以集成在终端装置和/或网络装置上。
第十三方面,提供了一种芯片,芯片包括处理器,配置用于执行第二方面,或,第二方面中任一可能的实现方式,或,第二方面中所有可能的实现方式的方法。
在一种可能的方式中,所述芯片还包括与所述通信接口,该通信接口用于与外部器件或内部器件进行通信。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第二方面,或,第二方面中任一可能的实现方式,或,第二方面中所有可能的实现方式的方法。
可选地,该芯片可以集成在终端装置和/或网络装置上。
图1A和图1B是适用于本申请实施例的无线通信系统的一示意图。
图2是一种UE间建立通信的示意图。
图3本申请实施例提供的一种信息传输的方法300的示意图。
图4是一种第一消息与参考信号的时域资源的示意图。
图5是又一种参考信号和第一消息的频域资源的示意图。
图6是又一种参考信号和第一消息的时频资源的示意图。
图7是又一种参考信号和第一消息的时频资源的示意图。
图8是一种第二消息、第一参考信号和第一消息的时频资源的示意图。
图9是又一种第二消息与第一消息、参考信号的时频资源的示意图。
图10是本申请实施例提供的一种通信装置1000的示意性框图。
图11是本申请实施例提供的一种通信装置1100的示意性框图。
图12是本申请实施例提供的一种芯片系统1200的示意性框图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th generation,6G)移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
作为示例,V2X通信可以包括:车与车(vehicle-to-vehicle,V2V)通信、车与路侧基础设施(vehicle-to-infrastructure,V2I)通信、车与行人(vehicle-to-pedestrian,V2P)通信、车与网络(vehicle-to-network,V2N)通信。V2V指的是车辆间的通信。V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客等)的通信。V2I指的是车辆与基础设施的通信,基础设施例如路侧单元(road side unit,RSU)或者网络设备。其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。V2N指的是车辆与网络设备的通信。可以理解,上述为示例性说明,本申请实施例不予限性。例如,V2X还可包括目前3GPP的Rel-16及后续版本的基于NR系统的V2X通信等。
本申请实施例中的终端装置也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端装置可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端装置可包括用户设备,有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端装置用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、D2D、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景的终端装置。例如,所述终端装置可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端、AR终端、工业控制中的无线终端、整车、整车中的无线通信模块、车载T-box(Telematics BOX)、路侧单元RSU、无人驾驶中的无线终端、IoT网络中智能音箱、远程医疗中的无线终端装置、智能电网中的无线终端装置、运输安全中的无线终端装置、智慧城市中的无线终端装置,或智慧家庭中的无线终端装置等等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端装置还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征测量的智能手环、智能首饰等。此外,在本申请实施例中,终端装置还可以是IoT系统中的终端装置,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,
从而实现人机互连,物物互连的智能化网络。
如上介绍的各种终端装置,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端装置,车载终端装置例如也称为车载单元(on-board unit,OBU)。本申请的终端装置还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
应理解,该无线通信系统中的网络装置可以是能和终端设备通信的设备,该网络装置也可以称为接入网设备或无线接入网设备,如网络装置可以是基站。本申请实施例中的网络装置可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站(master eNodeB,MeNB)、辅站(secondary eNodeB,SeNB)、多制式无线(multi standard radio,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络装置所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例所提及的网络装置可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(中央单元控制面(central unit-control plane,CU-CP))和用户面CU节点(中央单元用户面(central unit-user plane,CU-UP))以及DU节点的设备。
本申请实施例中,用于实现网络装置的功能的装置,可以是网络装置,也可以是能够支持网络装置实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在网络装置中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
网络装置和终端装置可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络装置和终端装置所处的场景不做限定。
首先结合图1A和图1B简单介绍适用于本申请实施例的通信系统,如下。
图1A和图1B是适用于本申请实施例的无线通信系统的一示意图。如图1A和图1B所示,该无线通信系统可以包括至少一个终端装置,如图所示的UE1、UE2、UE3、UE4、UE5。可选地,该无线通信系统还可以包括至少一个网络装置,如图所示的网络装置。
网络装置和终端装置之间可进行通信。如网络装置和终端装置之间可通过Uu接口进行通信,网络装置和终端装置之间通信的链路(link)可记为Uu链路。如图1A(a)或图1B(a)所示,网络装置和UE1之间可直接通信,如图1A(b)或图1B(b)所示,网络装置和UE1之间也可通过UE2进行通信;类似地,网络装置和UE2之间可直接通信,网络装置和UE2之间也可通过UE1进行通信。可以理解,其中,Uu链路表征了终端装置和网络装置间的一种连接关系,是一个逻辑概念,而非一个物理实体。主链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。
终端装置和终端装置之间也可进行通信。例如,终端装置和终端装置之间可以直接通信,如图1A(a)至(c)、图1B(a)至(c)所示,UE1和UE2之间可以直接通信。再例如,终端装置和终端装置之间可以通过其他设备,如网络装置或终端装置,进行通信,如图1A(a)所示,UE1和UE2之间可以通过网络装置进行通信,又如图1A(d)、图1B(d)所示,UE1和UE2之间可以通过UE3进行通信。终端装置和终端装置之间通信的接口可记为基于邻近服务通信5(proximity-based services communication5,PC5)接口,终端装置与终端装置之间通信多链路可记为侧行链路(sidelink,SL),终端装置与终端装置之间的通信也可记为SL通信。侧行链路,也可称为边链路或副链路等。可以理解,其中,侧行链路表征了终端装置和终端装置间的一种连接关系,是一个逻辑概念,而非一个物理实体。侧行链路仅是为
区分做的命名,其具体命名不对本申请的保护范围造成限定。
设备之间可以进行单播通信,如终端装置之间可以进行单播通信。单播是指:一个发送终端和一个接收终端组成一个单播连接对。例如,以图1A为例,UE1与UE2之间可以进行单播通信。
设备之间可以进行组播通信,如终端装置之间可以进行组播通信。组播是指:一个发送终端和至少一个接收终端组成一个组播连接对。例如,以图1B为例,UE1与UE2、UE4以及UE5之间可以进行组播通信。如图1B中(a)所示,网络装置和UE1之间可直接通信,一个UE1可与多个UE,如UE2、UE4以及UE5之间可以进行组播通信。UE1与多个UE之间进行组播通信时,可以在网络覆盖下进行,如图1B中(a)或(b)所示,或者也可以在无网络覆盖下进行,如图1B中(c)或(d)所示。可以理解,图1B中以UE1与三个UE进行组播通信为例进行了示例性说明,对此不予限制,例如UE1可以与更多数量的UE进行组播通信。
作为示例,终端装置和终端装置之间的SL通信,可以用于车联网或智能交通系统(intelligent transportation system,ITS),如上文所述的V2X通信中。
可选地,终端装置和终端装置之间的SL通信,可以在网络覆盖下进行,也可以在无网络覆盖下进行。如图1A(a)至(b)、图1B(a)至(b)所示,UE1和其它UE之间可以在网络覆盖下进行通信;或者,如图1A(c)至(d)、图1B(c)至(d)所示,UE1和其它UE之间可以在网络覆盖范围之外(out-of-coverage)进行通信。
可选地,终端装置和终端装置之间SL通信时的配置信息,如终端装置和终端装置之间SL通信时的时频资源可以是网络装置配置或调度的,也可以是终端装置自主选择的,不予限制。
可以理解,图1A和图1B仅为便于理解而示例的简化示意图,该无线通信系统中还可以包括其他网络装置或者还可以包括其他终端装置,图1A和图1B中未予以画出。本申请实施例可以适用于发送端设备和接收端设备通信的任何通信场景。
为便于理解本申请实施例,下面对本申请中涉及的几个术语做简单介绍。
1.时频资源
在本申请中,数据或信息可以通过时频资源来承载。其中,时频资源也可称为传输资源。
在时域上,时频资源可以包括一个或多个时域单元(或者,也可以称为时间单位)。一个时域单位可以是一个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者部分时隙(partial slot),或者一个子帧(subframe),或者一个无线帧(frame),等等。
在频域上,时频资源可以包括一个或多个频域单元。一个频域单元可以是一个资源单元(resource element,RE),或者一个资源块(resource block,RB),或者一个子信道(subchannel),或者一个子带,或者一个资源池(resource pool),或者一个带宽(bandwidth),或者一个带宽部分(bandwidth part,BWP),或者一个载波(carrier),或者一个信道(channel),或者一个交错(interlace)RB等。
在本申请中,作为示例,时隙是一次传输的最基本的时域资源单位。可选地,时隙包括:完整时隙、迷你时隙、部分时隙、或一个或多个OFDM符号组成的子时隙。可选地,时隙也可以是一个或多个符号的集合。例如一个时隙内还可以包括一个或多个OFDM符号组成的集合,例如所述一个或多个的数量为1、2、3、4、6、7、12或14等。
另外,时隙的时长可以与子载波间隔相关。例如,子载波间隔为15kHz时,一个时隙的时长为1毫秒(ms);子载波间隔为30kHz时,一个时隙的时长为0.5ms;子载波间隔为60kHz时,一个时隙的时长为0.25ms。同理可推,子载波间隔为15*2μ时,一个时隙的时长为2-μms,μ=0,1,2,…等整数。
为了便于描述,在本申请中所称的时隙可以包括时隙、迷你时隙、或者部分时隙、完整时隙中的任一。本申请中所称的频域资源可以是频域资源子集,该频域资源子集可以包括上述一个或多个频域单元。
2.优先级:
终端可能同时发送了多个业务,多个业务的优先级可能不一样。因此,UE的优先级也可以描述为UE的业务优先级。终端的业务优先级具体而言是UE的发送优先级(transmission priority)。
业务优先级,还可以称为L1优先级(L1 priority)、物理层优先级、侧行链路控制信息(sidelink control information,SCI)中携带的优先级、SCI关联的物理侧行共享信道(physical side link share channel,PSSCH)对应的优先级、发送优先级、发送PSSCH的优先级、用于资源选择的优先级、逻辑信道的优先级、逻辑信道的最高等级的优先级。
其中,优先级等级与优先级数值可具有某种对应关系,例如优先级等级越高对应的优先级数值越低,
或者优先级等级越低对应的优先级数值越低。以优先级等级越高对应的优先级数值越低为例,优先级数值取值范围可以为1-8的整数或者0-7的整数。若以优先级数值取值范围为1-8,则优先级的值为1时代表最高等级的优先级。
3.终端装置通信的标识:
终端装置通信的标识,是指在通信过程中,用以指示、识别或对应到相应的终端设备的标识。例如,终端装置可以是用以唯一识别终端设备的索引或编号。这个标识可以是信令配置的、预配置的,或者预定义的。作为示例,终端装置的标识为以下任一项:终端的媒体接入控制(medium access control,MAC)地址,用户身份识别模块(subscriber identity module,SIM)卡号,国际移动设备识别码(international mobile equipment identity,IMEI)等。
可选地,终端装置通信的标识,也可以是用以指示、识别或对应到相应的终端设备传输时的标识。这个标识可以是信令配置的、预配置的,或者预定义的。例如:IP地址,网络临时标识符(radio network temporary identifier,RNTI),发送设备的源标识,接收设备的目的标识。可选的,发送设备的源标识,可以是关联到特定待发送的业务或消息的标识,比如用于标识发射终端在传输过程中的标识,这个标识可以是由业务确定的,可以用于单播、组播或广播。一个发射终端可以有多个sidelink的链接,因此也可以有多个不同的源标识。可选的,接收设备的目的标识,可以是关联到特定待接收的业务或消息的标识,用于标识接收UE在传输过程中的标识,这个标识可以是由业务确定的,可以用于单播、组播或广播。一个接收UE可以有多个sidelink的链接,因此也可以有多个不同的目的标识。
4.发现消息(discovery message):在NR sidelink中,发现消息承载在PSSCH信道中,用来指示传输UE自身的信息,或指示要寻找的目标UE的信息,从而实现在通信之前周围UE相互发现的过程。
5.直接通信请求(direct communication request,DCR):在单播通信之前,用于请求通信的消息。该消息中可能包括以下信息:目标UE的层2标识;IP相关的能力和信息;源UE信息、目标UE的应用层标识、服务信息、安全信息等。
6.直接通信接受(direct communication accept,DCA):接收通信请求的指示信息,该信息包括:源用户信息,服务质量(quality of service,QoS)信息,IP地址信息等。可选地,源用户信息包括发送DCA消息的应用层标识、源标识或层2标识。
7.波束管理:5G NR可以支持很高的数据速率和更低的延迟。其频段包括FR1和FR2两个频段,其中FR1为低于6GHz或低于7.125GHz,从450到6000MHz;而FR2为毫米波频段(从24.25GHz到52.6GHz)。
由于毫米波波段的频率高,会导致较高的传播损耗。为了补偿损耗,定向通信在这种频率下必不可少。但是,频率高相对来说其波长较小,这使得大量天线元件的天线阵列成为可能。也就为RF链路预算提供了波束赋形的增益,有助于补偿传播损耗。此外,由于空间复用技术,大型天线阵列也有助于实现更高的数据速率。这些定向链路需要发射和接收波束r的精确对准。为了实现波束对准并达到端到端所需的延迟要求,在5G NR中引入了波束管理操作。
波束管理的主要目是为了获取和维护可用于DL和UL传输/接收的一组最优TRxP(传输/接收点)和UE波束。
在5G NR的波束管理过程中,主要执行以下如下操作:波束扫描、波束维护、波束测量、波束选择、波束上报和波束恢复。
波束扫描:是指按照预先指定的时间间隔和方向,用一组发送和接收的波束覆盖空间区域。
波束测量:指的是对gNB或UE处接收信号质量的评估。为此,可以使用不同的度量标准,例如参考信号接收功率(reference signal receiving power,RSRP),参考信号接收质量(reference signal receiving quality,RSRQ)或者信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
波束选择:是指根据通过波束测量过程获得的测量结果,在gNB或UE处选择合适的一个或多个波束。通过波束扫描来实现发送端的发送波束和接收端的接收波束的选择和对准,即波束匹配或波束配对。
波束维护:就是通过gNB或UE的测量结果,来跟踪、锁定或微调当前通信时使用的波束,以达到通信质量稳定的目的。
波束恢复:是指在当前使用的波束出现不匹配、中断或信号质量大幅度下降的条件下,通过在候选波束中寻找或识别出可用的波束,从而恢复通信的过程。
8.准共址(Quasi Co-located,QCL)
若某个天线端口上的符号所经历的信道的大尺度属性可以用另外一个天线端口上的符号所经历的信道推断出来,则认为这两个天线端口是准共址的。其中,大尺度属性包括时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(Doppler shift)、平均增益(average gain)、平均时延(average delay)、空间接收参数(spatial Rx parameters)等。
9.同步信号(synchronization signal,SS)/同步信号块SSB(synchronization signal block,SSB)
同步信号用于在同步信号的收发机之间建立时频同步的信号。可选地,同步信号可以包括主同步信号、从同步信号。可选地,当与同步信号还一起发送物理广播信息时,同步信号又称之为同步信号块SSB(SS Block)。可选地,同步信号或同步信号块可以用于蜂窝链路、中继链路或侧行链路。在侧行链路时,SSB也可以表示成S-SSB(Sidelink SSB)。可选地,同步信号可以是单次发送的,也可以是以一定周期发送一段时间的,还可以按一定周期进行周期性发送的。
在本申请中,侧行同步信号块可以是S-SSB。其中,S-SSB包括主同步信号S-PSS、从同步信号S-SSS和侧行广播信道PSBCH。可选地,S-SSB可以称为同步信号、侧行同步信号、或者侧行信号等。以上名称仅是示例,不应构成对本申请技术方案的任何限定。应理解,S-SSB时域上可以是由预定的符号数组成、频域上占用预设的带宽。例如,S-SSB在时域上包括4个符号,频域上占用20个PRB。又如,S-SSB在时域上包括13或11个符号,频域上占用11个PRB。S-SSB时域上可以包括AGC符号和/或空符号,也可以不包括。本申请对此不做限制。
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。此外,上文关于术语的说明,仅是为便于理解做的说明,其对本申请实施例的保护范围不造成限定。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还可以理解,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
在NR的D2D通信中,UE-1在发起直接通信(sidelink)请求时,UE-1需要先通过发现消息找到待通信的UE-2,然后才能针对UE-2发起通信请求。在V2X场景中,UE-1先向UE-2发起直接(通信sidelink)请求,然后建立安全,再进行直接通信应答,以此实现基于单播的V2X服务。
但是在初始波束匹配或配对的过程中,UE-1本来是希望与UE-2进行单播通信,但是在波束成功配对之前,UE-1不知道哪个UE是UE-2,也不知道UE-2是否在UE-1附近。目前,UE-1在找到UE-2之前,会先发起波束配对的请求。如图2所示,UE-2~UE-5都会响应UE-1的波束配对请求,并分别与UE-2完成波束配对。在完成波束配对之后,UE-1分别向UE-2~UE-5发起DCR,然后UE-2~UE-5在明确自己是UE-1的目标接收UE之后,相应的向UE-1发送DCA。其中,UE-3,UE-4,UE-5因为不知道自己是否是UE-1的接收UE,做了不必要的波束配对,从而造成了和相应的功率消耗和频谱资源的浪费。
有鉴于此,本申请提出一种通信方法,该方法能够避免不必要的波束请求的配对,节省功耗。
下文将结合附图详细说明本申请实施例提供的信息传输的方法。本申请提供的实施例可以适用于发送端设备和接收端设备通信的任何通信场景,如可以应用于上述图1A和图1B所示的通信系统中。
如图3所示,该方法300包括下述步骤:
310,第一通信装置确定第一参考信号和第一消息。
可选的,第一参考信号为波束管理参考信号(beam manager reference signal,BM-RS)。该波束管理参考信号可以分为不同类型。比如,第一参考信号可以是侧行同步信号块(sidelink synchronization signal and PBCH block,S-SSB),即S-SSB为第一类型的波束管理参考信号。或者,第一参考信号可以是信道状态信息参考信号(channel state information-reference signal,CSI-RS)和/或解调参考信号(demodulation reference signal,DM-RS),即CSI-RS和/或DM-RS为第二类型的波束管理参考信号。或者,第一参考信号可以是随机接入参考信号,即随机接入参考信号为第三类型的波束管理参考信号。或者,第一参考信号可以是用于传输反馈信息的参考信号,即传输反馈信息的参考信号为第四类型的波束管理参考信号。
其中,第一参考信号用于确定第一波束,第一波束为第一通信装置与第二通信装置通信的候选波束。
第二通信装置可以是第一参考信号的接收装置。或者说,第二通信装置为第一通信装置的目标装置。比如,第二通信装置为第一通信装置确定与之通信的装置。或者说,第二通信装置为第一通信装置的待发送数据的接收装置。
可选地,第二通信装置可以是终端装置。第一通信装置也可以是终端装置。换句话说,如果第一通信装置与第二通信装置建立通信,第一通信装置与第二通信装置之间的通信为侧行通信。
也即,第一参考信号可以用于确定侧行通信中收发双方之间通信所用的波束。
该第一波束为第一通信装置与第二通信装置通信的候选波束。比如,第一通信装置和第二通信装置通过第一参考信号完成波束配对,确定波束A可以用于第一通信装置与第二通信装置的通信。该波束A即候选波束。在建立通信时,第一通信装置与第二通信装置可以选用波束A进行通信,也可以选用其他波束进行通信,比如与波束A波束方向近似的波束。
示例地,第一参考信号可以通过下述实现中的一种或多种来确定第一波束:
实现1:第一参考信号用于第一通信装置与第二通信装置之间的初始波束配。
实现2:第一参考信号用于第一通信装置与第二通信装置之间的波束维护。
实现3:第一参考信号用于第一通信装置与第二通信装置之间的候选波束检测。
实现4:第一参考信号用于第一通信装置与第二通信装置之间的波束失败检测。
实现5:第一参考信号用于第一通信装置与第二通信装置之间的波束管理。
第一消息用于第二通信装置发现或者用于请求与第二通信装置通信。
示例地,第一消息可以用于第一通信装置发现第二通信装置,或者,第一消息可以用于第二通信装置发现第一通信装置,或者,第一消息可以用于第一通信装置与第二通信装置互相发现。比如,第一消息可以是发现消息。
可选地,在本申请中,传输第一消息的资源可以是信令配置的、预配置的或预定义的。可选地,传输第一消息的资源可以是配置在资源池之外的,也可以是配置在资源池之内的。
第一消息用于请求与第二通信装置通信,可以是用于第一通信装置请求与第二通信装置的直接通信,比如侧行通信。比如,第一消息可以是DCR。
可选的,该第一消息中可以携带第一通信装置的信息(即源标识),比如第一通信装置的标识,或者第一通信装置待发送数据对应的业务标识。该第一消息中也可以携带第二通信装置的信息(即目的标识),比如第二通信装置的标识。
一种可能的实现,上述第一参考信号与第一消息对应。比如,上述第一参考信号与第一消息的时域资源之间存在第一间隔,即第一参考信号与第一消息在时域上间隔该第一间隔,例如为第一参考信号所在资源的起始时刻(或终止时刻)与第一消息所在资源的起始时刻(或终止时刻)之间的时间间隔为第一间隔。第一间隔小于或等于第一阈值,该第一阈值可以是信令配置的、预配置的,或预定义的,对此不予限制。
又一种可能的实现,第一消息和第一参考信号准共址。
320,第一通信装置向第二通信装置发送第一参考信号和第一消息,对应的,第二通信装置接收该第一参考信号和第一消息。
示例地,第二通信装置接收第一参考信号的时域资源,与接收第一消息的时域资源的间隔,小于或等于第一阈值。
330,第二通信装置根据第一参考信号和第一消息确定第一波束。
可选的,该实施例还包括340,第二通信装置根据第一参考信号和第一消息确定,是否发送第二消息。
该第二消息指示第一参考信号的接收状态。第一参考信号的接收状态为以下中的一项或是多项:
第二通信装置是否接收到第一参考信号,或,
第二通信装置接收到的第一参考信号的质量,或,
第二通信装置接收到的第一参考信号的质量是否超过门限,或,
第二通信装置接收到的第一参考信号的质量是否是第二通信装置接收到的参考信号中最高的或是较高的。可选地,较高的是指:第二通信装置接收到M个参考信号,其中有M1个信号质量最好的信号,M1个参考信号中的任意一个即为较高的。
其中,第一参考信号的质量可以通过RSRP,RSRQ,接收的信号强度指示(received signal strength
indication,RSSI),信道质量指示(channel quality indicator,CQI),信噪比(signal to noise ratio,SNR)或者SINR等参数中的一种或多种来表示。
该门限可以是信令配置的、预配置的,或预定义的,对此不予限制。当参考信号的质量大于或是等于该门限时,该参考信号对应的波束可以用于通信,或者说,该参考信号对应的波束或与该参考信号的QCL的波束、物理信道或物理信号可以作为候选波束。
示例地,第二通信装置可能接收到多个参考信号比如第二通信装置接收到参考信号#A的质量为1,参考信号#B的质量为2,参考信号#C的质量为3,则第二通信装置可以判断参考信号#C的质量最高,参考信号#B的质量较高。该质量最高的参考信号或是质量较高的参考信号对应的波束可以用于通信,或者说,可以作为候选波束。
一种可能的实现,第二消息的时域资源在第一消息的时域资源之后。也就是说,第二通信装置在接收到第一消息之后再确定是否发送第二消息。具体有以下实现:
实现1:第二通信装置确定自己是第一通信装置的目标装置,向第一通信装置发送第二消息。
实现2:第二通信装置确定自己不是第一通信装置的目标装置,不向第一通信装置发送第二消息。
基于此,第二通信装置可以在与第一参考信号的时域资源第一间隔之后的时域资源上检测第一消息,以此确定自己是否是第一通信装置的目标装置,或者说,确定自己是否是第一通信装置的待发送数据的目标接收装置。进一步确定是否发送第二消息。当第二通信装置并非第一通信装置的目标装置时,第二通信装置无需执行波束管理(或者波束匹配),避免了不必要的信息传输,比如无需再发送第二消息,同时,降低了第二通信装置的功率消耗。
下面结合几个方面详细介绍关于方法300所示实施例的方案。
方面1:第一参考信号。
一种可能的实现,第一参考信号属于M个参考信号。该M个参考信号可以是在同一个周期中发送的参考信号。
比如,该M个参考信号相同,均在一个发送周期中发送。该M个参考信号相同包括M个参考信号使用的序列相同和/或波束方向相同或相互QCL。或者说,在一个发送周期内发送M次参考信号,第一参考信号为M个参考信号中的一个,或者,第一参考信号为发送M次的其中一次发送的参考信号。
比如,该M个参考信号中各不相同或者至少有两个互不相同,该M个参考信号均在一个发送周期中发送。该M个参考信号中至少两个不同,包括:M个参考信号中至少两个参考信号使用的序列不同,和/或M个参考信号中至少两个参考信号使用的波束方向不同或不QCL。或者说,在一个发送周期内发送M个参考信号,第一参考信号为M个参考信号中的一个,或者,第一参考信号为发送M个参考信号中的一次发送的参考信号。
即第一通信装置向第二通信装置发送M个参考信号。
示例地,该发送周期为T1。T1的取值,或者说,M个参考信号所在的发送周期的时长可以是信令配置的、预配置的,或预定义的,对此不予限制。具体的,该T1的取值例如1ms,2ms,4ms,5ms,10ms,20ms,40ms,50ms,80ms,100ms,160ms等。
第一参考信号在发送周期内的时域位置可以通过偏移值确定。该偏移值为第一参考信号相对于该周期的起始位置的时域偏移量(比如图4中的偏移量)。或者,该偏移量为第一参考信号相对于该周期内首个参考信号的时域位置的时域偏移量。可选地,该偏移量小于发送周期T1。可选地,该偏移量取值为0。
该M个参考信号中,相邻两个参考信号的时域资源之间的间隔(即第二间隔)可以是信令配置的、预配置的,或预定义的,对此不予限制。
例如,M取值为3,3个参考信号包括参考信号#A、参考信号#B和参考信号#C,参考信号#A的时域资源与参考信号#B的时域资源之间的间隔为第二间隔,参考信号#B和参考信号#C之间的间隔也是第二间隔。可选地,第二间隔的值小于发送周期T1。
即,在M个参考信号中,任意两个相邻参考信号的时域资源之间的间隔相同。其中,相邻参考信号可以理解为,中间不存在其他参考信号的两个参考信号。比如参考信号#A和参考信号#B之间不存在其他参考信号,则参考信号#A和参考信号#B为相邻的参考信号。或者,索引取值差为1的两个参考信号。比如,参考信号#A的索引为1,参考信号#B的索引为2,则参考信号#A和参考信号#B为相邻的参考信号。应理解,该索引可以是参考信号在M个参考信号中的索引,或者是某个参考信号对应的时域资源的索引,
比如某个参考信号对应的时域资源在M个参考信号对应的时域资源中的索引。
方面2:第一消息
该第一消息的时域资源与第一参考信号的时域资源可以在同一个时域资源单元中,该时域资源单元可以是时隙。比如,该第一消息和第一参考信号可以在相同的时隙中,也可以在不同的时隙中。
示例地,当第一参考信号为CSI-RS和/或DM-RS时,第一消息与第一参考信号可以位于同一个时隙。其中CSI-RS占用时隙中的部分符号,而DM-RS则为控制信道和/或数据信道中用于解调的DM-RS,占用时隙中的部分符号。第一消息可以承载于控制信道和/或数据信道中。
当第一参考信号为SSB时,第一消息位于第一参考信号所在时隙之后的时隙。
一种可能的实现,上述第一消息属于M个第一消息。该M个第一消息中,相邻两个第一消息的时域资源之间的间隔(即第三间隔)可以是信令配置的、预配置的,或预定义的,对此不予限制。
例如,M取值为3,3个第一消息包括第一消息#A、第一消息#B和第一消息#C,第一消息#A的时域资源与第一消息#B的时域资源之间的间隔为第三间隔,第一消息#B和第一消息#C之间的间隔也是第三间隔。
即,在M个第一消息中,任意两个相邻第一消息的时域资源之间的间隔相同。其中,相邻第一消息可以理解为,中间不存在其他第一消息的两个第一消息,比如第一消息#A和第一消息#B之间不存在其他第一消息,则第一消息#A和第一消息#B为相邻的第一消息。或者,索引取值差为1的两个第一消息。比如,第一消息#A的索引为1,第一消息#B的索引为2,则第一消息#A和第一消息#B为相邻的第一消息。应理解,该索引可以是第一消息在M个第一消息中的索引,或者是某个第一消息对应的时域资源的索引,比如某个第一消息对应的时域资源在M个第一消息对应的时域资源中的索引。
具体地,该第三间隔可以参考图4中的示例。
可选的,第一消息的数量与参考信号的数量可以相同,也可以不同。比如,第一通信装置发送5个第一消息,发送4个参考信号。或者,第一通信装置发送3个第一消息,发送6个参考信号。即,第一消息的数量可以大于参考信号的数量,也可以等于参考信号的数量,也可以小于参考信号的数量。本申请中,以第一消息的数量和参考信号的数量相同(即都取M)作为示例进行说明。
即第一通信装置向第二通信装置发送M个第一消息,该M个第一消息包括第一参考信号对应的第一消息。
该M个第一消息可以是在同一个周期中发送的。比如该周期为T2。该周期的时长以及在该周期内发送第一消息的次数(比如M)可以是信令配置的、预配置的,或预定义的,对此不予限制。
可选的,上述T1为T2的整数倍,或者,T2为T1的整数倍,T1,T2为正整数。可选地,T1可以与T2的值相同。
该发送M个第一消息的周期也可以称为时间窗,或称第一消息的时域资源。
该时间窗可以是静态配置的。例如,该时间窗与M个参考信号的发送周期之间的间隔为信令配置的,或是预定义的。当M个参考信号的发送周期确定后,该时间窗的位置即随之确定。其中,该时间窗与M个参考信号的发送周期(下称周期A)之间的间隔,可以是该时间窗的起始位置与周期A的起始位置之间在时域上的距离。或者,是该时间窗的结束位置与周期A的结束位置之间在时域上的距离。又或者,是该时间窗的预定义位置与周期A的预定义位置之间在时域上的距离。
可选的,该时间窗与周期A之间的间隔,也可以通过参考信号与第一消息的时域资源表征。比如,该时间窗与周期A之间的间隔为:该时间窗内的第一消息与周期A中的参考信号在时域上的间隔。
可选的,该时间窗的位置,或者说,该时间窗与周期A之间的间隔,与第一消息相关联。
比如,第一消息为DCR。该间隔与DCR(或DCR中指示的待传输的业务)的优先级和/传输时延余量相关联。
具体的,DCR(或DCR中指示的待传输的业务)的优先级越高和/或时延余量越小,间隔越小;反之,DCR(或DCR中指示的待传输的业务)的优先级越高和/或时延余量越大,间隔越大。
可选的,该时间窗的位置可以通过指示信息(即第三消息)指示。比如,第三消息指示时间窗与周期A之间的间隔(即第一间隔)。
该时间窗也可以是动态指示的。比如,该时间窗的位置与窗口大小(包括的时隙数量)为配置的,或是预定义的。示例地,可以配置该时间窗的起始位置,以及窗口大小,则可以确定该时间窗在时域上的位置。比如,该时间窗的起始位置为时隙1,该窗口大小为3个时隙,则该时间窗在时域上以时隙1为
起点,占用3个时隙。
可选的,该时间窗的位置可以通过指示信息(即第三消息)指示。比如,第三消息指示M个第一消息的时域资源的起始位置。进一步可选的,第三消息还可以指示M的取值
可选的,该第三消息还可以指示第一阈值。
示例地,第一参考信号为侧行同步信号块S-SSB,第三消息可以承载于S-SSB包括的物理侧行广播信道(physical sidelink broadcast channel,PSBCH);或者,第一参考信号为CSI-RS,第三消息可以承载于与CSI-RS一起发送的控制信息。该控制信息包括:下行控制信息(downlink control information,DCI),媒体接入控制控制元素(media access control control element,MAC CE)或无线资源控制(radio resource control,RRC)。在侧行链路中,该控制信息包括:侧行链路控制信息(sidelink control information,SCI)、MAC CE或PC5 RRC。
如无特殊说明,本申请中PSBCH与物理广播信道(physical broadcast channel,PBCH)可以互相替换。
又一种可能的实现,上述M个第一消息中的每个第一消息和与之对应的参考信号准共址。或者说,上述M个第一消息与M个参考信号的发送波束方向一一对应。
方面3:第一参考信号与第一消息的对应
为了便于描述,下面以第一消息S表示与第一参考信号对应的第一消息。
示例的,第一消息S与第一参考信号可以有以下对应方式:
方式1:第一参考信号的时域资源与第一消息S的时域资源对应。
举个例子,第一参考信号的时域资源与第一消息S的时域资源之间的间隔(即第一间隔)与上述时间窗与周期A之间的间隔相同。
该第一间隔小于或等于第一阈值,该第一阈值可以是信令配置的、预配置的,或预定义的,对此不予限制。也就是说,上述时间窗与周期A之间的间隔小于或等于第一阈值。
一种可能的实现,上述M个第一消息与M个参考信号在时域上一一对应。
比如,M个第一消息还包括第二参考信号对应的第一消息,第二参考信号与第二参考信号对应的第一消息的时域资源之间存在第四间隔,第四间隔与第一间隔相同。
如图4所示,为一种第一消息与参考信号的时域资源的示意图。上述第一间隔和第四间隔可以参考图4中的示例。
以参考信号为S-SSB,第一消息为DCR为例,图中包含四个S-SSB,四个DCR,这四个S-SSB与这四个DCR一一对应。具体的,S-SSB#A与DCR#A对应,S-SSB#B与DCR#B对应,S-SSB#C与DCR#C对应,S-SSB#D与DCR#D对应,比如,在时域上S-SSB#A至S-SSB#D的排列顺序即DCR#A至DCR#D的排列顺序。并且,任一对S-SSB与DCR之间在时域上的间隔相同。
或者,第一参考信号在M个参考信号中的索引,与第一消息S在M个第一消息中的索引对应。比如,M取3,该三个参考信号分别为参考信号1,参考信号2,参考信号3;该三个第一消息分别为第一消息1,第一消息2,第一消息3。第一参考信号为参考信号1,第一消息S为第一消息1。
又或者,第一参考信号的时域资源在M个参考信号的时域资源中的索引,与第一消息S的时域资源在M个第一消息的时域资源中的索引对应。比如,M取3,该三个参考信号分别为参考信号A,时域资源为时隙1,参考信号B,时域资源为时隙2,参考信号C,时域资源为时隙3;该三个第一消息分别为第一消息A,时域资源为时隙A,第一消息B,时域资源为时隙B,第一消息C,时域资源为时隙C。第一参考信号为参考信号B,第一消息S为第一消息B。
方式2:第一参考信号的频域资源与第一消息S的频域资源对应。
示例地,第一参考信号占用第一频域资源子集,第一消息S占用第二频域资源子集,第一频域资源子集与第二频域资源子集对应。
具体的,可以有两种情况,下面分别对不同的情况进行说明。
情形1:第一参考信号的频域资源的位置和第一消息的频域资源的位置相同,大小可以相同,也可以不同。
示例地,有以下可能:
可能1:第一频域资源子集和第二频域资源子集的频域资源位置和大小相同。如,BMRS为S-SSB,S-SSB占用的频域资源子集的大小与第一消息占用的频域资源子集的大小,S-SSB在资源池或发送带宽中
的位置和第一消息在资源池或发送带宽中的位置相同。可选的频率位置与大小的单位可以是Hz,kHz,MHz,RE或RB中的任意一种,本申请对此不做限制。
可能2:第一频域资源子集和第二频域资源子集的频域资源的频率相同,和/或,第一频域资源子集和第二频域资源子集的频域资源大小相同。
可能3:第一频域资源子集和第二频域资源子集的频域资源的频率相同,并且,第一频域资源子集的大小小于或等于第二频域资源子集的频域资源大小。
可能4:第一频域资源子集和第二频域资源子集的频域资源的频率相同,并且,第二频域资源子集的大小小于或等于第一频域资源子集的频域资源大小。如,BMRS为CSI-RS,CSI-RS的带宽可以大于第一消息的带宽。可选地,频率相同,包括中心频率相同、起止频率相同。
可选地,在本申请中,频率位置与大小的单位可以是Hz,kHz,MHz,RE或RB中的任意一种,本申请对此不做限制。可选地,频率相同,包括中心频率相同和/或起止频率相同。占用的频域相同,可以是所占用的所有RE都相同,也可以是占用的RB相同,但占用的RE数量不同。
图5示出了一种参考信号和第一消息的频域资源的示意图。
如图中所示,以S-SSB作为参考信号的示例,以DCR作为第一消息的示例,以子带作为频域资源子集的示例。图中包括四个S-SSB,分别为S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D,四个DCR分别为DCR#A,DCR#B,DCR#C,DCR#D。S-SSB#A与DCR#A占用的频域资源在子带A上,S-SSB#B与DCR#B占用的频域资源在子带B上,S-SSB#C与DCR#C占用的频域资源在子带C上,S-SSB#D与DCR#D占用的频域资源在子带D上。每个子带上,S-SSB与DCR占用的频域资源的中心频率均相同。可选地,每个子带上,S-SSB与DCR占用的频域资源的频率均相同,可以是所占用的所有RE都相同,也可以是占用的RB相同,但占用的RE数量不同。
可选地,在本申请中,子带可以是一个发送第一参考信号和/或第一消息的频域资源的集合。可选的,这个频域资源可以是频域连续的。可选的,子带的大小可以是信令配置或预定义的。可选的子带的单位以是:RE,PRB,subchannel等。
此外,在该图例中,每个S-SSB占用的频域资源子集的大小均相同,每个DCR占用的频域资源子集的大小也相同。并且,S-SSB占用的频域资源子集的大小,与DCR占用的频域资源子集的大小相同。
一种可能的实现,M个参考信号中的任意两个在频域上相邻参考信号的频域资源子集之间的间隔相等,M个第一消息中的任意两个在频域上相邻第一消息的频域资源子集之间的间隔相等。
其中,在频域上相邻的参考信号可以理解为占用的频域资源子集相邻的参考信号。比如,图5中的S-SSB#A和S-SSB#B,或者,S-SSB#B和S-SSB#C,或者,S-SSB#C和S-SSB#D,均为在频域上相邻的参考信号。在频域上相邻的第一消息可以理解为占用的频域资源子集相邻的第一消息。比如,图5中的DCR#A和DCR#B,或者,DCR#B和DCR#C,或者,DCR#C和DCR#D,均为在频域上相邻的第一消息。
该情况下,各参考信号与其对应的第一消息的时域资源之间的间隔均相同。
情形2:第一参考信号的频域资源的位置和M个第一消息中的至少一个第一消息的频域资源的位置不同。
该情况下又有两种情形:
情形2.1:第一参考信号属于M个参考信号,第一参考信号对应的第一消息属于M个第一消息,M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,M个参考信号中至少有两个参考信号的频域资源子集位置相同且时域资源位置不同。
图6示出了一种参考信号和第一消息的时频资源的示意图。
如图中所示,以S-SSB作为参考信号的示例,以DCR作为第一消息的示例,以子带作为频域资源子集的示例。图中包括四个S-SSB,分别为S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D,四个DCR分别为DCR#A,DCR#B,DCR#C,DCR#D。DCR#A占用的频域资源在子带A上,DCR#B占用的频域资源在子带B上,DCR#C占用的频域资源在子带C上,DCR#D占用的频域资源在子带D上。S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D占用的频域资源相同,但是,S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D占用的时域资源不同。
该情形下,各参考信号与其对应的第一消息的时域资源之间的间隔不同。
下面以第一参考信号和第一消息S为例,对这种情况下参考信号和第一消息的对应方式说明。
方式①:第一参考信号的时域资源的索引与第二频域资源子集的索引关联。
示例地,M个参考信号包括第一参考信号和第二参考信号,第一参考信号对应的第一消息的频域资源子集的索引为第一索引,第二参考信号对应的第一消息的频域资源子集的索引为第二索引,
第一参考信号的时域资源的索引为第三索引,第三索引与第一索引关联;
第二参考信号的时域资源的索引为第四索引,第四索引与第二索引关联。
还是以图6为例:假设第一参考信号为S-SSB#A,第一消息S为DCR#A,S-SSB#A占用的时域资源的索引为1,DCR#A占用的频域资源子集的索引为1,S-SSB#B占用的时域资源的索引为2,DCR#A占用的频域资源子集的索引为2。即,通过S-SSB#A占用的时域资源即可确定DCR#A占用的频域资源子集。
方式②:第一参考信号携带第一指示信息,该第一指示信息指示该第一消息S的频域资源。
示例地,该第一指示信息指示第二频域资源子集的索引。
举个例子,第一参考信号为S-SSB,该S-SSB包括的PBCH中携带有指示第二频域子集的索引。
另一示例,第一参考信号为CSI-RS和/或DM-RS,在第一时隙上,与CSI-RS和/或DM-RS一起发送的控制信息中指示第一指示信息,该控制信息包括:SCI、MAC CE或PC5 RR。
方式③:通过第一参考信号的序列关联第一消息S的频域资源。
示例地,第一参考信号与承载第一参考信号对应的第一消息的数据信道相关联,数据信道中的解调参考信号使用的第一序列与第一参考信号相关联;和/或,对第一参考信号对应的第一消息的比特使用第二序列进行加扰,第二序列与第一参考信号相关联。
其中,第一参考信号对应的第一消息的比特,可以是第一消息编码前的比特,或者是第一消息编码后调制前的比特。
可选的,第一序列或者第二序列基于第一参数生成,第一参数包括以下中的一种或多种:
第一参考信号的时域资源的索引;
第一参考信号的波束的索引;
第一参考信号序列标识;
第一参考信号包括的控制信息指示的数值。
举个例子,当第一参考信号为S-SSB时,第一参考信号的时域资源的索引可以是S-SSB所在时隙的索引。第一参考信号的波束的索引可以是发送S-SSB的波束的索引。第一参考信号序列标识可以是发送S-SSB使用的序列的标识。可选地,序列标识是S-SSB的中传输的同步信号的标识。可选地,序列标识是第一参考信号使用序列的循环移位值。可选地,序列标识是第一参考信号使用序列的根序列号。
第一参考信号包括的控制信息指示的数值,,该数值为整数。例如该数值可以第一通信装置生成的,也可以是配置信令指示的。可选的,此数值为一随机数。
可选的,第一序列或者第二序列还基于源标识和/或目的标识生成。源标识为第一通信装置的标识,目的标识为第二通信装置的标识或者第一通信装置待发送数据的业务标识。具体的,源标识和目的标识可以参考前文的介绍,不再赘述。
一种可能的实现,该源标识和/或目的标识可以通过参考信号包括的控制信息指示。
示例地,上述控制信息包括:DCI,MAC CE或RRC。在侧行链路中,该控制信息包括:SCI、MAC CE或PC5 RRC。
当第一通信装置未获取源标识和/或目的标识的情况下,第一通信装置可以发送第四消息,该第四消息指示上述数值,即随机数。
示例地,第一序列和/或第二序列的循环移位值、根序列号、初始值、初始位置、序列的正交覆盖码中的一项或多项可以基于第一参数确定。可选地,第一参数可以是以下中的任意一种:
NR,
2n·BID+NR,或BID+2n·NR
或
或
或,
或
或,
其中,NsID为源标识,NdID为目的标识,NR为随机数(即参考信号中指示的数值),BID为第一参考信号的波束的索引,第一参考信号的时域资源的索引,n为m为整数。可选的n和m可以是正整数、
零或负整数,本申请对此不做限定。
可选地,上述生成序列所使用的参数,可以是完整比特,也可以是使用参数的部分比特。例如,随机数可以占24比特,NR可以是24比特,也可以是部分比特,如8比特,16比特等。
可选地,第一序列和/或第二序列的循环移位值、根序列号、初始值、初始位置中的一项或多项的值可以等于上述第一参数确定的值。
可选地,在本申请中,随机序列或伪随机序列。可以按如下的方式生成:长为MPN的序列c(n),n=0,1,...,MPN-1按如下方式定义:
c(n)=(x1(n+NC)+x2(n+NC))mod 2
x1(n+31)=(x1(n+3)+x1(n))mod 2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2
c(n)=(x1(n+NC)+x2(n+NC))mod 2
x1(n+31)=(x1(n+3)+x1(n))mod 2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2
这里,Nc=1600,并且第一m序列x1(n)初始值为x1(0)=1,x1(n)=0,n=1,2,...,30。第二m序列x2(n)的初始值为
可选地,生成这个随机序列的初始值cinit可以按上面的任意一种方式确定。
可选地,上述序列有时候也称之为Gold序列。其移位寄存器的长度为31位。
可选地,对于初始位置Nx可以按如下方式确定第一序列和/或第二序列:
c(n)=(x1(n+NC+Nx)+x2(n+NC+Nx))mod 2
其中,Nx是根据上述的第一参数确定的。
情形2.2:第一参考信号属于M个参考信号,第一消息属于M个第一消息,M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,M个参考信号中至少有两个参考信号的频域资源子集位置和时域资源位置相同且序列不同。
可选地,本申请中序列不同是指以下生成序列中的任意一种或多种参数的值不同:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值、序列的正交覆盖码。
可选地,本申请中序列相同是指以下生成序列中的任意一种或多种参数的值相同:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值、序列的正交覆盖码。
该情形下,各参考信号与其对应的第一消息的时域资源之间的间隔不同。
换句话说,M个参考信号以码分的方式发送。
图7示出了一种参考信号和第一消息的时频资源的示意图。
如图中所示,以S-SSB作为参考信号的示例,以DCR作为第一消息的示例,以子带作为频域资源子集的示例。图中包括四个S-SSB,分别为S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D,四个DCR分别为DCR#A,DCR#B,DCR#C,DCR#D。DCR#A占用的频域资源子集在子带A上,DCR#B占用的频域资源子集在子带B上,DCR#C占用的频域资源子集在子带C上,DCR#D占用的频域资源子集在子带D上。S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D占用的时域资源相同,频域资源也相同,但是,S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D的序列各不相同。或者说,用于发送S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D的序列不同。比如,S-SSB#A对应序列A,S-SSB#B对应序列B,S-SSB#C对应序列C,S-SSB#D对应序列D。
可选的,不同的序列可以基于对应参考信号的参数生成。比如,序列A是基于S-SSB#A的参数生成的,序列B是基于S-SSB#B的参数生成的,序列C是基于S-SSB#C的参数生成的,序列D是基于S-SSB#D的参数生成的。具体的序列生成方式可以参考上述方式③中的说明。
其中,序列A与子带A关联,序列B与子带B关联,序列C与子带C关联,序列D与子带D关联。
可选的,第一通信装置向第二通信装置发送第五消息,该第五消息指示在该参考信号所在的周期内是否有第一消息。如果有第一消息,第二通信装置可以在对应的时频资源上接收该第一消息。如果无第一消息,第二通信装置则无需接收第一消息。能够进一步降低第二通信装置的功率消耗。
一种可能的实现,该第五消息承载于与参考信号一起发送的控制信息中。其中,与参考信号一起发送的控制信息,可以理解为与参考信号占用相同时域资源的控制信息。进一步的,可以理解为与参考信号占用相同时域资源单元(比如时隙)的控制信息。比如,以S-SSB作为参考信号的示例,该控制信息
可以是侧行主信息块(sidelink master information block,SL-MIB)。
该控制信息包括:DCI,MAC CE或RRC。在侧行链路中,该控制信息包括:SCI、MAC CE或PC5RRC。
本申请其他部分中的与参考信号一起发送的控制信息,均可以参考此处描述。
具体的,以第一消息为DCR消息,第五消息可以指示以下信息:
本参考信号所在的周期内无DCR消息;
本参考信号所在的周期内有DCR消息;
不确定本参考信号所在的周期内是否有DCR消息,或者本参考信号所在的周期内可能有、也可能没有DCR消息。
其中,当第五消息指示本参考信号所在的周期内有DCR消息或者不确定本参考信号所在的周期内是否有DCR消息时,第二通信装置需要在该参考信号对应的DCR消息的时频资源上检测,或者说尝试接收DCR消息。
方面4:第二消息
示例地,该第二消息可以是波束响应消息,比如波束报告(beam report)。
一种可能的实现,该第二消息与第一参考信号对应。比如,第一参考信号与第一参考信号对应的第二消息的时域资源之间存在第五间隔,第五间隔小于或等于第二阈值,第二阈值可以是信令配置的、预配置的,或预定义的,对此不予限制。
示例地,第一参考信号的时域资源与第二消息的时域资源对应。比如,M个第一参考信号与M个第二消息的时域资源一一对应,具体的,可以参考前述方式1中第一参考信号与第一消息的时域资源对应方式的说明,同样适用于第二消息与第一参考信号的时域资源的对应。
示例地,第一参考信号的频域资源与第二消息的频域资源对应。比如,第一参考信号的频域资源的位置和第二消息的频域资源的位置相同,大小可以相同,也可以不同。又比如,第一参考信号的频域资源的位置和M个第一消息中的至少一个第一消息的频域资源的位置不同。具体的,可以参考方式2中第一参考信号与第一消息的频域资源对应方式的说明,同样适用于第二消息与第一参考信号的时域资源的对应。
示例地,第一参考信号与第二消息的第一信道相关联。第一信道为数据或基于编码比特传输信息的控制信道。第一信道中的解调参考信号使用的第三序列与第一参考信号相关联;和/或,对第一参考信号对应的第二消息的比特使用第四序列进行加扰,第四序列与第一参考信号相关联。
示例地,第一参考信号与第二消息的第一信道相关联。第一信道为基于第五序列指示信息的控制信道。第一信道中的第五序列与第一参考信号相关联。可选地,第一信道为反馈信道。如PUCCH,或PSFCH。
可选地,第三序列、第四序列和/或第五序列,可以使用上述方式③中的第一参数来确定。可选地,确定的是第三序列、第四序列和/或第五序列的以下参数中至少一种的值:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值、序列的正交覆盖码。
换句话说,第一参考信号与第一消息的对应方式,同样适用于第一参考信号与第二消息的对应。
一种可能的实现,该第二消息与第一消息对应。比如,第一参考信号与第一参考信号对应的第二消息的时域资源之间存在第六间隔(可以参考图8中的示例),第六间隔小于或等于第三阈值,第三阈值可以是信令配置的、预配置的,或预定义的,对此不予限制。该第六间隔可以是第一参考信号与第一参考信号对应的第二消息的时域资源的起始(或是结束位置)之间的间隔,也可以是第一参考信号与第一参考信号对应的第二消息的时域资源的预定义位置之间的间隔,不予限制。
图8示出了一种第二消息、第一参考信号和第一消息的时频资源的示意图。第五间隔可以参考图8中的示例。
如图所示,M个第二消息的时域资源与M个参考信号的时域资源一一对应,同时与M个第一消息的时域资源一一对应。图中M取值为4。
其中,第二消息与参考信号的对应方式可以参考方面3中第一消息与参考信号的对应方式,不再赘述。
该M个第二消息的时域资源也可以称为第二消息的时间窗,该第二消息的时间窗可以根据参考信号的时域资源的位置以及第五间隔确定。或者,该第二消息的时间窗可以根据该时间窗的起始位置和第二
消息的数量确定。又或者,该第二消息的时间窗可以根据第一消息的时间窗的位置,以及该第二消息的时间窗与第一消息的时间窗之间的间隔确定。
可选的,该M个第二消息中的相邻第二消息之间的间隔可以相同。其中,相邻的第二消息可以是在频域上相邻的第二消息,可以是在时域上相邻的第二消息。具体的,对于相邻的解释可以参考前文说明,不再赘述。
可选的,该M个第二消息的时间窗在M个第一消息的时间窗之后,可以在第六消息的时间窗之前或是之后。该第六消息用于第一通信装置和第二通信装置建立连接。比如该第六消息可以是直接通信接受DCA消息,或者,可以是安全建立消息。
也就是说,可以有以下实现:
实现1:第二消息的时域资源与第一消息的时域资源不同,频域资源相同。
实现2:第二消息的时域资源与第一消息的时域资源相同,频域资源不同。
实现3:第二消息的时域资源与第一消息的时域资源不同,频域资源不同。
以实现1为例,图9示出了一种第二消息与第一消息、参考信号的时频资源的示意图。
如图中所示,以S-SSB作为参考信号的示例,以DCR作为第一消息的示例,以波束响应消息作为第二消息的示例,以子带作为频域资源子集的示例。图中包括四个S-SSB,分别为S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D,四个DCR分别为DCR#A,DCR#B,DCR#C,DCR#D,四个第二消息分别为波束响应消息#A,波束响应消息#B,波束响应消息#C,波束响应消息#D。DCR#A占用的频域资源子集在子带A上,DCR#B占用的频域资源子集在子带B上,DCR#C占用的频域资源子集在子带C上,DCR#D占用的频域资源子集在子带D上。S-SSB#A,S-SSB#B,S-SSB#C,S-SSB#D占用的时域资源相同,频域资源不同。波束响应消息#A,波束响应消息#B,波束响应消息#C,波束响应消息#D占用的时域资源相同,频域资源不同。波束响应消息的时域资源与第一消息的时域资源不同,频域资源相同。比如,S-SSB#A对应DCR#A、波束响应消息#A,S-SSB#A、DCR#A和波束响应消息#A的频域资源均在子带1上。
一种可能的实现,该第二消息的数量可以大于或等于参考信号的数量。即,该第二消息的数量不局限于M,也可以是其他大于或等于M的取值。
进一步可选的,第一通信装置在Q个第二消息的时间窗内检测(也称接收,解析,解码等)第二通信装置发送过来的第二消息。如果第一通信装置在该时间窗内未检测到第二消息,则第一通信装置最多发Q个参考信号,直到检测第二消息为止。
进一步可选的,如果第二通信装置成功检测到第一消息,确定自己是不是第一通信装置的目标:
如果不是第一通信装置的目标,则不处理相应的第一消息和与之对应的参考信号。
如果第二通信装置是第一通信装置的目标,再确定是否接受第一通信装置的第一消息(比如DCR),如果不接受,则不处理相应的第一消息和与之关联的参考信号。如果接受,则第二通信装置向第一通信装置发送与参考信号和/或第一消息对应的第二消息。
进一步可选的,第一通信装置在发送参考信号之前,还可以获取配置信息,该配置信息可以指示参考信号的类型、参考信号的发送次数、参考信号的时域信息(包括发送周期、在发送周期内的时域位置、在发送周期内的数量、相邻参考信号在周期内的间隔)、第一消息的时域信息(比如时间窗)、第二消息的时域信息(比如时间窗、在时间窗内的时域位置、时间窗内第二消息的数量、相邻的第二消息的间隔)、频域资源(包括参考信号的频域资源、第一消息的频域资源和第二消息的频域资源)。可选地,第二通信装置也可以接收该配置信息。比如,第一通信装置向第二通信装置发送该配置信息,或者,网络装置向第二通信装置指示该配置信息。可选地,该配置信息可以是网络装置指示的,也可以是其他终端装置指示的,也可以是预配置的,或预定义的。
一种可能的实现,以子带作为频域资源的示例,第一通信装置可以在资源池的带宽上检测各个子带上哪个子带空闲,便在相应的子带上发送参考信号和第一消息。该子带也可以用于第二通信装置发送第二消息。可选的,在上述配置消息中,还包括子带宽空闲的信号质量门限、信号质量占用的门限。
该方法中,第二通信装置在确定自己是第一通信装置的目标后,再进行波束处理,比如波束匹配等。如果该第二通信装置不是发送端的目标,则不作处理,比如不执行波束匹配。从而减少了非目标通信装置不必要的传输和相应的功率消耗。
应理解,本申请实施例提供的通信方法能够适用于侧行通信。
还可以理解,在本申请的各实施例中,主要以第一通信装置和第二通信装置之间的交互为例进行示
例性说明,本申请不限于此。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,上述各个方法实施例中,由通信设备实现的方法和操作,也可以由可由通信设备的组成部件(例如芯片或者电路)来实现。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图10是本申请实施例提供的一种通信装置1000的示意性框图。该装置1000包括收发单元1010。收发单元1010可以用于实现相应的通信功能。收发单元1010还可以称为通信接口或通信单元。
可选地,该装置1000还包括处理单元1020。处理单元1020可以用于进行信息处理。
可选地,该装置1000还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1020可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中通信装置的动作。
在一种设计中,该装置1000可以是前述实施例中的第一通信装置,也可以是第一通信装置的组成部件(如芯片)。该装置1000可实现对应于上文方法实施例中的第一通信装置执行的步骤或者流程,其中,收发单元1010可用于执行上文方法实施例中第一通信装置的收发相关的操作,处理单元1020可用于执行上文方法实施例中第一通信装置的处理相关的操作。
一种可能的实现方式,收发单元1010,用于发送参考信号和第一消息;还可以用于接收来自第二通信装置的第二消息;还可以接收配置信息。
另一种可能的实现方式,处理单元1020,用于检测第二消息;还用于处理配置信息。
该装置1000可实现对应于根据本申请实施例的方法实施例中的第一通信装置执行的步骤或者流程,该装置1000可以包括用于执行图3至图9所示实施例中的第一通信装置执行的方法的单元。
在另一种设计中,该装置1000可以是前述实施例中的第二通信装置,也可以是第二通信装置的组成部件(如芯片)。该装置1000可实现对应于上文方法实施例中的第二通信装置执行的步骤或者流程,其中,收发单元1010可用于执行上文方法实施例中第二通信装置的收发相关的操作,处理单元1020可用于执行上文方法实施例中第二通信装置的处理相关的操作。
一种可能的实现方式,处理单元1020,用于处理参考信号和第一消息。
另一种可能的实现方式,收发单元1010,用于接收参考信号和第一消息;还可以用于发送第二消息。
该装置1000可实现对应于根据本申请实施例的方法实施例中的第二通信装置执行的步骤或者流程,该装置1000可以包括用于执行图3至图9所示实施例中的第二通信装置执行的方法的单元。
有关该装置1000更详细的描述可以参考上文方法实施例中相关描述直接得到,在此不再赘述。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置1000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1000可以具体为上述实施例中的通信装置(如第一通信装置,又如第二通信装置),可以用于执行上述各方法实施例中与通信装置对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1000具有实现上述方法中通信装置(如第一通信装置,又如第二通信装置)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1010还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图10中的装置可以是前述实施例中的设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图11是本申请实施例提供的一种通信装置1100的示意性框图。该装置1100包括处理器1110,处理器1110与存储器1120耦合。可选地,还包括存储器1120,用于存储计算机程序或指令和/或数据,处理器1110用于执行存储器1120存储的计算机程序或指令,或读取存储器1120存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器1110为一个或多个。
可选地,存储器1120为一个或多个。
可选地,该存储器1120与该处理器1110集成在一起,或者分离设置。
可选地,如图11所示,该装置1100还包括收发器1130,收发器1130用于信号的接收和/或发送。例如,处理器1110用于控制收发器1130进行信号的接收和/或发送。
作为一种方案,该装置1100用于实现上文各个方法实施例中由通信装置执行的操作。
例如,处理器1110用于执行存储器1120存储的计算机程序或指令,以实现上文各个方法实施例中第一通信装置或第二通信装置的相关操作。
在实现过程中,上述方法的各步骤可以通过处理器1110中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1120,处理器1110读取存储器1120中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,处理器可以为一个或多个集成电路,用于执行相关程序,以执行本申请方法实施例。
处理器(例如,处理器1110)可包括一个或多个处理器并实现为计算设备的组合。处理器可分别包括以下一种或多种:微处理器、微控制器、数字信号处理器(digital signal processor,DSP)、数字信号处理设备(digital signal processing device,DSPD)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、选通逻辑、晶体管逻辑、分立硬件电路、处理电路或其它合适的硬件、固件和/或硬件和软件的组合,用于执行本公开中所描述的各种功能。处理器可以是通用处理器或专用处理器。例如,处理器1110可以是基带处理器或中央处理器。基带处理器可用于处理通信协议和通信数据。中央处理器可用于使装置执行软件程序,并处理软件程序中的数据。此外,处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
本申请中的程序在广义上用于表示软件。软件的非限制性示例包括:程序代码、程序、子程序、指令、指令集、代码、代码段、软件模块、应用程序、或软件应用程序等。程序可以在处理器和/或计算机中运行。以使得装置执行本申请中描述的各种功能和/或过程。
存储器(例如,存储器1120)可存储供处理器(例如,处理器1110)在执行软件时所需的数据。存储器可以使用任何合适的存储技术实现。例如,存储器可以是处理器和/或计算机能够访问的任何可用存储介质。存储介质的非限制性示例包括:随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、光盘只读存储器(Compact Disc-ROM,CD-ROM)、静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(doubledata rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)、可移动介质、光盘存储器、磁盘存储介质、磁存储设备、闪存、寄存器、状态存储器、远程挂载存储器、本地或远程存储器组件,或能够携带或存储软件、数据或信息并可由处理器/计算机访问的任何其它介质。需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
存储器(例如,存储器1120)和处理器(例如,处理器1110)可以分开设置或集成在一起。存储器可以用于与处理器连接,使得处理器能够从存储器中读取信息,在存储器中存储和/或写入信息。存储器
可以集成在处理器中。存储器和处理器可以设置在集成电路中(例如,该集成电路可以设置在UE或其他网络节点中)。
图12是本申请实施例提供的一种芯片系统1200的示意性框图。该芯片系统1200(或者也可以称为处理系统)包括逻辑电路1210以及输入/输出接口(input/output interface)1220。
其中,逻辑电路1210可以为芯片系统1200中的处理电路。逻辑电路1210可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统1200可以实现本申请各实施例的方法和功能。输入/输出接口1220,可以为芯片系统1200中的输入输出电路,将芯片系统1200处理好的信息输出,或将待处理的数据或信令信息输入芯片系统1200进行处理。
作为一种方案,该芯片系统1200用于实现上文各个方法实施例中由通信装置执行的操作。
例如,逻辑电路1210用于实现上文方法实施例中由第一通信装置执行的处理相关的操作,如,图3所示实施例中第一通信装置执行的处理相关的操作;输入/输出接口1220用于实现上文方法实施例中由第一通信装置执行的发送和/或接收相关的操作,如,图3所示实施例中的第一通信装置执行的发送和/或接收相关的操作。
再例如,逻辑电路1210用于实现上文方法实施例中由第二通信装置执行的处理相关的操作,如,图3所示实施例中第二通信装置执行的处理相关的操作;输入/输出接口1220用于实现上文方法实施例中由第二通信装置执行的发送和/或接收相关的操作,如,图3所示实施例中的第二通信装置执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由通信装置(如第一通信装置,又如第二通信装置)执行的方法的计算机指令。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由通信装置(如第一通信装置,又如第二通信装置)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的第一通信装置和第二通信装置。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域
的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (46)
- 一种通信方法,其特征在于,包括:确定第一参考信号和第一消息,所述第一参考信号用于确定第一波束,所述第一消息用于第二设备发现或者用于请求与所述第二通信装置通信,所述第一波束为所述第一通信装置与所述第二通信装置通信的候选波束,所述第一参考信号与所述第一消息的时域资源之间存在第一间隔,所述第一间隔小于或等于第一阈值,所述第一阈值为配置的或是预定义的;发送所述第一参考信号和所述第一消息。
- 根据权利要求1所述的方法,其特征在于,所述第一参考信号与所述第一消息准共址。
- 根据权利要求1或2所述的方法,其特征在于,所述第一消息的传输资源在所述第二消息的传输资源之前,所述第二消息用于指示所述第一参考信号的接收状态。
- 根据权利要求3所述的方法,其特征在于,所述第一参考信号的接收状态包括以下中的一种或多种:所述第一参考信号是否被所述第二通信装置接收到,或,所述第一参考信号的接收质量,或,所述第一参考信号的接收质量是否超过门限,或,所述第一参考信号的接收质量是否是接收到的参考信号中的最高的。
- 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一阈值是根据所述第一消息的优先级、所述第一消息指示的待传输业务的优先级或者传输时延余量中的至少一项确定的。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一参考信号的发送周期为T1,所述第一消息的发送周期为T2,其中,T1为T2的整数倍,或者,T2为T1的整数倍,T1,T2为正整数。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号中,相邻两个参考信号的时域资源之间的间隔为第二间隔,所述第二间隔为配置的或预定义的;和/或,所述M个第一消息中,相邻两个第一消息的时域资源之间的间隔为第三间隔,所述第三间隔为配置的或预定义的。
- 根据权利要求7所述的方法,其特征在于,所述第二间隔与所述第三间隔相同。
- 根据权利要求1所述的方法,其特征在于,所述第一参考信号占用第一频域资源子集,所述第一消息占用第二频域资源子集,所述第一频域资源子集与所述第二频域资源子集对应。
- 根据权利要求9所述的方法,其特征在于,所述第一频域资源子集与所述第二频域资源子集对应包括:所述第一频域资源子集和所述第二频域资源子集的频域资源位置和大小相同;或者,所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,和/或,所述第一频域资源子集和所述第二频域资源子集的频域资源大小相同;或者,所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第一频域资源子集的大小小于或等于所述第二频域资源子集的频域资源大小,或者,所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第二频域资源子集的大小小于或等于所述第一频域资源子集的频域资源大小。
- 根据权利要求9或10所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号中在频域上任意两个相邻参考信号的频域资源子集之间的间隔相等,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
- 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号还包括第二参考信号,所述M个第一消息还包括所述第二参考信号对应的第一消息,所述第二参考信号与所述第二参考信号对应的第一消息的时域资源之间存在第四间隔,所述第四间隔与所述第一间隔相同。
- 根据权利要求9所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号中至少有两个参考信号的频域资源子集位置相同且时域资源位置不同。
- 根据权利要求13所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号中至少有两个参考信号的频域资源子集位置和时域资源位置相同且序列不同。
- 根据权利要求13或14所述的方法,其特征在于,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
- 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一参考信号的序列与所述第二频域资源子集关联;或者,所述第一参考信号包括第一指示信息,所述第一指示信息指示所述第二频域资源子集的索引。
- 根据权利要求13所述的方法,其特征在于,所述第一参考信号的时域资源的索引与所述第二频域资源子集的索引关联。
- 根据权利要求1所述的方法,其特征在于,所述第一参考信号与承载所述第一消息的数据信道相关联,包括:所述数据信道中的解调参考信号使用的第一序列与所述第一参考信号相关联;和/或,对所述第一消息的比特使用第二序列进行加扰,所述第二序列与所述第一参考信号相关联。
- 根据权利要求18所述的方法,其特征在于,所述第一序列与所述第一参考信号相关联,包括:所述第一序列或者所述第二序列基于第一参数生成,所述第一参数包括以下中的一种或多种:所述第一参考信号的时域资源的索引;所述第一参考信号的波束的索引;所述第一参考信号序列标识;所述第一参考信号包括的控制信息指示的数值。
- 根据权利要求1至19中任一项所述的方法,其特征在于,所述方法还包括:接收配置信息,所述配置信息指示以下中的至少一项:所述第一参考信号的类型、所述第一间隔、所述第一阈值、所述第一参考信号的时频资源、所述第一消息的时频资源、所述第一参考信号的发送周期、所述第一参考信号的发送次数、所述第一消息的发送周期。
- 一种通信方法,其特征在于,包括:接收第一参考信号和第一消息,所述第一消息用于第二通信装置发现或者用于请求与所述第二通信装置通信,所述第一参考信号与所述第一消息的时域资源之间存在第一间隔,所述第一间隔小于或等于第一阈值,所述第一阈值为配置的或是预定义的;根据所述第一参考信号和所述第一消息确定第一波束,所述第一波束为所述第一通信装置与所述第二通信装置通信的候选波束。
- 根据权利要求21所述的方法,其特征在于,所述第一参考信号与所述第一消息准共址。
- 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:根据所述第一参考信号和所述第一消息,确定是否发送第二消息,所述第二消息用于指示所述第一参考信号的接收状态。
- 根据权利要求23所述的方法,其特征在于,所述第一参考信号的接收状态包括以下中的一种或多种:所述第二通信装置是否接收到所述第一参考信号,或,所述第二通信装置接收到的所述第一参考信号的质量,或,所述第二通信装置接收到的所述第一参考信号的质量是否超过门限,或,所述第二通信装置接收到的所述第一参考信号的质量是否是所述第二通信装置接收到的M个参考信号中最高的。
- 根据权利要求21至24中任一项所述的方法,其特征在于,所述第一阈值是根据所述第一消息的优先级、所述第一消息指示的待传输业务的优先级或者传输时延余量中的至少一项确定的。
- 根据权利要求21至25中任一项所述的方法,其特征在于,所述第一参考信号的发送周期为T1,所述第一消息的发送周期为T2,其中,T1为T2的整数倍,或者,T2为T1的整数倍,T1,T2为正整数。
- 根据权利要求21至26中任一项所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号中,相邻两个参考信号的时域资源之间的间隔为第二间隔,所述第二间隔为配置的或预定义的;和/或,所述M个第一消息中,相邻两个第一消息的时域资源之间的间隔为第三间隔,所述第三间隔为配置的或预定义的。
- 根据权利要求27所述的方法,其特征在于,所述第二间隔与所述第三间隔相同。
- 根据权利要求21所述的方法,其特征在于,所述第一参考信号占用第一频域资源子集,所述第一消息占用第二频域资源子集,所述第一频域资源子集与所述第二频域资源子集对应。
- 根据权利要求29所述的方法,其特征在于,所述第一频域资源子集与所述第二频域资源子集对应包括:所述第一频域资源子集和所述第二频域资源子集的频域资源位置和大小相同;或者,所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,和/或,所述第一频域资源子集和所述第二频域资源子集的频域资源大小相同;或者,所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第一频域资源子集的大小小于或等于所述第二频域资源子集的频域资源大小,或者,所述第一频域资源子集和所述第二频域资源子集的频域资源的中心频率相同,并且,所述第二频域资源子集的大小小于或等于所述第一频域资源子集的频域资源大小。
- 根据权利要求29或30所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号中在频域上任意两个相邻参考信号的频域资源子集之间的间隔相等,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
- 根据权利要求21至31中任一项所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一参考信号对应的第一消息属于M个第一消息,M为大于或等于1的整数,所述M个参考信号还包括第二参考信号,所述M个第一消息还包括所述第二参考信号对应的第一消息,所述第二参考信号与所述第二参考信号对应的第一消息的时域资源之间存在第四间隔,所述第四间隔与所述第一间隔相同。
- 根据权利要求29所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号中至少有两个参考信号的频域资源子集位置相同且时域资源位置不同。
- 根据权利要求29所述的方法,其特征在于,所述第一参考信号属于M个参考信号,所述第一消息属于M个第一消息,所述M个第一消息中至少有两个第一消息的频域资源子集位置不同且时域资源位置相同,所述M个参考信号中至少有两个参考信号的频域资源子集位置和时域资源位置相同且序列不同。
- 根据权利要求33或34所述的方法,其特征在于,所述M个第一消息中在频域上任意两个相邻第一消息的频域资源子集之间的间隔相等。
- 根据权利要求33至35中任一项所述的方法,其特征在于,所述第一参考信号的序列与所述第二频域资源子集关联;或者,所述第一参考信号包括第一指示信息,所述第一指示信息指示所述第二频域资源子集的索引。
- 根据权利要求33所述的方法,其特征在于,所述第一参考信号的时域资源的索引与所述第二频域资源子集的索引关联。
- 根据权利要求21所述的方法,其特征在于,所述第一参考信号与承载所述第一消息的数据信道相关联,包括:所述数据信道中的解调参考信号使用的第一序列与所述第一参考信号相关联;和/或,对所述第一消息的比特使用第二序列进行加扰,所述第二序列与所述第一参考信号相关联。
- 根据权利要求38所述的方法,其特征在于,所述第一序列与所述第一参考信号相关联,包括:所述第一序列或者所述第二序列基于第一参数生成,所述第一参数包括以下中的一种或多种:所述第一参考信号的时域资源的索引;所述第一参考信号的波束的索引;所述第一参考信号序列标识;所述第一参考信号包括的控制信息指示的数值。
- 根据权利要求21至39中任一项所述的方法,其特征在于,所述方法还包括:接收配置信息,所述配置信息指示以下中的至少一项:所述第一参考信号的类型、所述第一间隔、所述第一阈值、所述第一参考信号的时频资源、所述第一消息的时频资源、所述第一参考信号的发送周期、所述第一参考信号的发送次数、所述第一消息的发送周期。
- 一种通信装置,其特征在于,包括用于执行权利要求1至40中任一项所述的方法的模块或单元。
- 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述装置执行权利要求1至40中任一项所述的方法。
- 根据权利要求42所述的装置,其特征在于,所述装置还包括所述存储器和/或通信接口,所述通信接口与所述处理器耦合,所述通信接口,用于输入和/或输出信息。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在通信装置上运行时,使得所述通信装置执行如权利要求1至40中任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至40中任一项所述的方法的计算机程序或指令。
- 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1至40中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311021444.9 | 2023-08-11 | ||
CN202311021444.9A CN119483861A (zh) | 2023-08-11 | 2023-08-11 | 通信方法、装置和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025036060A1 true WO2025036060A1 (zh) | 2025-02-20 |
Family
ID=94580310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/105839 WO2025036060A1 (zh) | 2023-08-11 | 2024-07-17 | 通信方法、装置和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN119483861A (zh) |
WO (1) | WO2025036060A1 (zh) |
-
2023
- 2023-08-11 CN CN202311021444.9A patent/CN119483861A/zh active Pending
-
2024
- 2024-07-17 WO PCT/CN2024/105839 patent/WO2025036060A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN119483861A (zh) | 2025-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11626947B2 (en) | Communication method and communications device | |
CN111435845B (zh) | 通信方法和通信装置 | |
TWI812691B (zh) | 信號傳輸的方法、網路設備和終端設備 | |
US20230179374A1 (en) | Channel transmission method, terminal device, and network device | |
WO2020221318A1 (zh) | 一种上行波束管理方法及装置 | |
KR20230110629A (ko) | RedCap UE들의 식별을 위한 방법 및 장치 | |
US20230308141A1 (en) | Communication Method, Device, and System | |
KR20210021066A (ko) | 멀티-브랜치 noma 무선 통신 | |
CN115835406B (zh) | 无线通信的方法及设备 | |
WO2023024957A1 (zh) | 一种通信方法及装置 | |
CN115245027A (zh) | 资源分配方法和终端 | |
CN114845417A (zh) | 信息确定方法、信息指示方法、终端设备和网络设备 | |
WO2023029008A1 (zh) | 信息传输方法、设备及存储介质 | |
CN116321456B (zh) | 资源集合的传输方法和终端 | |
US11503645B2 (en) | Method and apparatus for performing communication in wireless communication system | |
JP7652370B2 (ja) | 通信方法及び装置 | |
WO2025036060A1 (zh) | 通信方法、装置和系统 | |
CN114449625A (zh) | 模式切换方法及相关装置 | |
WO2024169575A1 (zh) | 通信方法、装置及系统 | |
WO2024169584A1 (zh) | 一种通信方法及相关设备 | |
WO2021244580A1 (zh) | 一种测量配置方法及通信装置 | |
WO2024152165A1 (zh) | 侧行通信方法、装置、设备及存储介质 | |
WO2025035923A1 (zh) | 侧行通信方法和装置 | |
WO2024061069A1 (zh) | 侧行链路通信的方法及装置 | |
KR20240073800A (ko) | 사이드링크 통신에서 클러스터 기반 빔 관리 방법 및 장치 |