WO2025033724A1 - Probe station device - Google Patents
Probe station device Download PDFInfo
- Publication number
- WO2025033724A1 WO2025033724A1 PCT/KR2024/009590 KR2024009590W WO2025033724A1 WO 2025033724 A1 WO2025033724 A1 WO 2025033724A1 KR 2024009590 W KR2024009590 W KR 2024009590W WO 2025033724 A1 WO2025033724 A1 WO 2025033724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- supporter
- sample stage
- station device
- probe station
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 146
- 230000003287 optical effect Effects 0.000 claims description 29
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 description 15
- 239000003507 refrigerant Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2855—Environmental, reliability or burn-in testing
- G01R31/2872—Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
- G01R31/2874—Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
- G01R31/2877—Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to cooling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/073—Multiple probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2855—Environmental, reliability or burn-in testing
- G01R31/286—External aspects, e.g. related to chambers, contacting devices or handlers
- G01R31/2862—Chambers or ovens; Tanks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2855—Environmental, reliability or burn-in testing
- G01R31/286—External aspects, e.g. related to chambers, contacting devices or handlers
- G01R31/2865—Holding devices, e.g. chucks; Handlers or transport devices
- G01R31/2867—Handlers or transport devices, e.g. loaders, carriers, trays
Definitions
- the present invention relates to a probe station device.
- the conduction-cooled probe station is a device used to analyze the electrical characteristics of electronic components, semiconductor devices, etc. as a function of temperature. For example, in the semiconductor industry, it is used to measure and test the characteristics of semiconductor devices at high temperatures. It is also used in experiments and measurements that require heat transfer and temperature control in various fields such as nanotechnology, materials research, and optical equipment.
- Conduction-cooled probe station devices perform cooling by conducting heat, providing a stable operating environment.
- vibrations are generated due to the reciprocating piston movement of the refrigerator and the movement of gas in the conduction-cooled probe station device, and the generated vibrations are transmitted to the stage, causing problems such as mechanical friction of the probe needle and reduced resolution of the optical microscope.
- An object according to one embodiment is to provide a probe station device that suppresses vibrations generated in a refrigerator from being transmitted to a workpiece.
- a probe station device includes a sample stage on which a specimen is placed, a refrigerator disposed below the sample stage and controlling a temperature of the sample stage, a mounting member disposed below the refrigerator and supporting the refrigerator, a first chamber surrounding the outside of the sample stage and having an interior that is maintained in a vacuum state, a second chamber surrounding the outside of the first chamber, and a vibration reduction member connecting the refrigerator to the second chamber, wherein the sample stage, the first chamber, and the second chamber can be connected to each other.
- a probe station device may further include a first supporter connecting the sample stage to the first chamber and a second supporter disposed between the first chamber and the second chamber, connecting the first chamber to the second chamber.
- the first supporter can be secured to the sample stage while being spaced apart from the sample stage.
- the sample stage is connected to the first chamber and the second chamber through the first supporter and the second supporter to transmit the load of the first chamber and the second chamber.
- a probe station device further includes a connector formed on an inner wall of the second chamber, wherein the connector and a portion of the second supporter are interlocked with each other, and a portion of the sample stage and a portion of the first supporter are interlocked with each other.
- the first chamber includes a sidewall disposed between the first supporter and the second supporter and surrounding the periphery of the sample stage, a cover supported by the sidewall, and an observation element disposed on the cover to monitor the sample stage, wherein the cover can be provided to be movable with respect to the sidewall.
- the first chamber further includes a base extending from a lower end of the side wall, a clearance exists between the base and the outer wall of the refrigerator, and the base can be connected to the outer wall of the refrigerator by a first heat-conducting link.
- the cover may be connected to the side wall by a second heat-conducting link.
- the first heat-conducting link may be formed of copper or aluminum.
- the first heat-conducting link may be formed of either a single or multiple wires, a braided wire or a stranded wire.
- the probe station device may further include a bridge connecting the first supporter and the second supporter.
- the bridge can support a side wall of the first chamber.
- the bridges may be provided in multiple numbers along the periphery centered on the sample stage.
- the connectors may be provided in multiple numbers along the inner wall of the second chamber.
- the second supporter may include a supporter body supported by a side wall of the first chamber, and a plurality of supporter protrusions extending from the supporter body toward the second chamber.
- each of the plurality of supporter protrusions may be passable between two adjacent connectors among the plurality of connectors.
- the probe station device may further include a plurality of supporter holes formed through the first supporter or the second supporter.
- the plurality of supporter holes may be formed penetrating in a first direction, which is a height direction of a side wall of the first chamber, or may be formed penetrating in a second direction intersecting the first direction.
- the shape of the supporter hole formed through the first supporter and the shape of the supporter hole formed through the second supporter may be different from each other.
- the vibration reduction member may be a damper or a bellows.
- a probe station device further includes an optical table disposed on the ground and supporting the second chamber, wherein the sample stage, the first chamber, the second chamber and the optical table can be connected to each other.
- a probe station device includes a refrigerator arranged below the sample stage and controlling a temperature of the sample stage, a mounting member arranged below the refrigerator and supported on the ground, a stage supporter connected to the mounting member and supporting the sample stage, a first chamber surrounding the outside of the sample stage and maintaining an inside in a vacuum state, a second chamber surrounding the outside of the first chamber, and a vibration reduction member connecting the refrigerator to the second chamber, wherein the sample stage can receive a load of the mounting member through the stage supporter.
- a probe station device can suppress vibrations generated in a refrigerator from being transmitted to a workpiece.
- FIG. 1 is a front view schematically illustrating a probe station device according to one embodiment.
- FIG. 2 is a front view schematically illustrating the interior of a first chamber and a second chamber according to one embodiment.
- FIG. 3 is a plan view schematically illustrating the interior of a first chamber and a second chamber according to one embodiment.
- FIG. 4 is a plan view schematically illustrating a first supporter, a second supporter, and a supporter hole according to one embodiment.
- FIG. 5 is a plan view schematically illustrating a first supporter, a second supporter, and a supporter hole according to one embodiment.
- FIG. 6 is a front view schematically illustrating the interior of the first chamber and the second chamber according to one embodiment.
- FIG. 7 is a plan view schematically illustrating a second chamber, a connector, and a second supporter according to one embodiment.
- FIG. 8 is a plan view schematically illustrating a second chamber, a connector, and a second supporter according to one embodiment.
- FIG. 9 is a plan view schematically illustrating a first supporter, a second supporter, and a bridge according to one embodiment.
- FIG. 10 is a front view schematically illustrating a probe station device according to one embodiment.
- FIG. 11 is a front view schematically illustrating a mounting portion, an optical table leg, and a spacer according to one embodiment.
- first or second may be used to describe various components, such terms should be construed only for the purpose of distinguishing one component from another.
- a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
- FIG. 1 is a front view schematically illustrating a probe station device according to one embodiment.
- a probe station device (1) can measure and test the characteristics of a specimen placed on a sample stage (11).
- the probe station device (1) can maximize the masses of the sample stage (11) and the refrigerator (12), respectively, to reduce the amount of vibration generated from the refrigerator (12) and transmitted to the sample stage (11).
- the probe station device (1) can include a sample stage (11), a refrigerator (12), a mounting portion (91), a first chamber (13), a second chamber (14), and an optical table (92).
- a specimen can be placed on the sample stage (11).
- a refrigerator (12) is arranged below the sample stage (11) and can control the temperature of the sample stage (11).
- the refrigerator (12) can include a CCR first stage (121, closed-cycle refrigerator first stage), a CCR second stage (122, closed-cycle refrigerator second stage), a refrigerator outer wall (123), and a motor (124).
- the CCR first stage (121) can compress the refrigerant.
- the CCR first stage (121) can be configured as a compressor.
- the refrigerant compressed through the CCR first stage (121) can be maintained in a liquid state as the pressure increases.
- the CCR second stage (122) can remove heat from the compressed refrigerant and evaporate the refrigerant to perform cooling.
- the CCR second stage (122) can be composed of a condenser and an expansion device.
- the condenser can release heat from the compressed refrigerant and convert the refrigerant into a liquid state.
- the expansion device can reduce the pressure of the refrigerant in a liquid state.
- the CCR second stage (122) can be connected to the sample stage (11) via a CCR heat conduction link (93).
- the CCR heat conduction link (93) can be composed of, for example, an elastic body and a damper.
- the CCR heat conduction link (93) can reduce the temperature of the sample stage (11) by taking heat from the sample stage (11).
- the refrigerator outer wall (123) can cover the side of the CCR second stage (122) and the CCR heat conduction link (93) while being supported by the CCR first stage (121).
- the refrigerator outer wall (123) can reduce the amount of air flowing in from the outside to the surroundings of the CCR second stage (122) and the CCR heat conduction link (93).
- the refrigerator outer wall (123) can reduce interference of the outside air and reduce heat intrusion by radiant heat from the outside while the temperature of the sample stage (11) is controlled.
- the refrigerator outer wall (123) may also be referred to as a 'heat radiation shield'.
- the motor (124) can provide power to the CCR first stage (121) and the CCR second stage (122). At this time, vibration may occur when the motor (124) is driven, or vibration may occur when the refrigerant moves to the CCR first stage (121) and the CCR second stage (122).
- the mounting part (91) is arranged on the lower side of the refrigerator (12) and can support the refrigerator (12). One side of the mounting part (91) can be supported on the ground.
- the refrigerator (12) is connected to the mounting part (91) and can receive the load of the mounting part (91).
- the mass of the refrigerator (12) increases and the vibration generated in the refrigerator (12) can be reduced.
- the weight of the mounting part (91) can be increased.
- the first chamber (13) can surround the outside of the sample stage (11).
- the first chamber (13) can maintain the inside at a constant temperature.
- the temperature inside the first chamber (13) can be 100K or less, for example, 4.2K.
- the sample stage (11) can be connected to the first chamber (13) and receive the load of the first chamber (13).
- the second chamber (14) can maintain the inside in a vacuum state and surround the outside of the first chamber (13).
- the second chamber (14) can maintain the inside at a constant temperature.
- the temperature inside the second chamber (14) can be 30K to 300K.
- the first chamber (13) is connected to the second chamber (14) and can receive the load of the second chamber (14). From this structure, the sample stage (11) can receive the load of not only the first chamber (13) but also the second chamber (14).
- the second chamber (14) may be connected to the refrigerator (12) via a vibration reduction member (15).
- the vibration reduction member may absorb some of the vibration generated in the refrigerator (12) and reduce the amount of vibration transmitted to the chamber.
- the vibration reduction member (15) may be, for example, a damper or a bellows.
- the optical table (92) may include a leg (921) placed on the ground and a top plate (922) connected to the leg (921) and supporting the second chamber (14).
- the sample stage (11), the first chamber (13), the second chamber (14), and the optical table (92) may be connected to each other.
- the sample stage (11) may receive the load of the optical table (92) as well as the load of the first chamber (13) and the second chamber (14).
- vibration dampening feet may be additionally provided on the legs (921) of the optical table (92) that contact the ground. This can reduce vibrations generated in the optical table (92) due to external impacts on the probe station device (1) and reduce noise generated during operation of the probe station device (1).
- FIG. 2 is a front view schematically illustrating the interior of a first chamber and a second chamber according to one embodiment
- FIG. 3 is a plan view schematically illustrating the interior of the first chamber and the second chamber according to one embodiment.
- FIGS. 4 and 5 are plan views schematically illustrating a first supporter, a second supporter, and a supporter hole according to one embodiment.
- a sample stage (11) may be connected to a first chamber (13) through a first supporter (16), and the first chamber (13) may be connected to a second chamber (14) through a second supporter (17).
- the sample stage (11) may receive loads of the first chamber (13) and the second chamber (14) through the first supporter (16) and the second supporter (17).
- a part of the first supporter (16) and a part of the sample stage (11) may be interlocked with each other.
- the sample stage (11) may have a shape in which the center thereof protrudes upward.
- the upper part is in the +z direction.
- the first supporter has a ring shape in which the center thereof is perforated, and the upper part of the first supporter (16) may protrude toward the center of the sample stage (11).
- the first supporter (16) In a state in which the protruding center of the sample stage (11) is inserted into the perforated center of the first supporter (16), the first supporter (16) may be supported by the edge of the sample stage (11).
- the lower part of the first supporter (16) may be supported by the first chamber (13).
- the sample stage (11) and the first supporter (16) may be mechanically connected while being spaced apart from each other. For example, a gap may exist between the edge of the sample stage (11) and the first supporter (16). From this structure, heat conducted from the first supporter (16) to the sample stage (11) may be reduced.
- the second supporter (17) may be arranged between the first chamber (13) and the second chamber (14), so as to connect the first chamber (13) to the second chamber (14).
- the lower part of the second supporter (17) may protrude into the inner wall of the second chamber (14) and may be engaged with a connector (19) formed on the inner wall of the second chamber (14).
- the portion where the second supporter (17) and the connector (19) are engaged may be connected with a screw.
- first supporter (16) and the second supporter (17) may be formed of a material that is crack-free at extremely low temperatures and has low thermal conductivity.
- first supporter (16) and the second supporter (17) may be formed of a fiber reinforced resin composite material, such as glass fiber epoxy resin.
- the connector (19) can be formed to protrude along the perimeter of the inner wall of the second chamber (14).
- the connector (19) can be formed continuously along the perimeter of the inner wall of the second chamber (14). From this structure, the second supporter (17) can be restricted in upward movement by the connector (19) and in downward movement by the first chamber (13).
- the first supporter (16) may be formed of a material having low thermal conductivity.
- the second supporter (17) may be formed of a material having low thermal conductivity.
- a plurality of supporter holes (18) may be formed penetratingly in the height direction of the first chamber (13) along the circumference based on the center in the first supporter (16) and the second supporter (17).
- the plurality of supporter holes (18) may be formed spaced apart from each other at equal intervals. Heat conducted from the outside of the second chamber (14) to the inside of the first chamber (13) through the first supporter (16) and the second supporter (17) may be reduced. The insulation effect of the first chamber (13) and the second chamber (14) may be increased.
- the shape and number of the plurality of holes (18) are not limited to the shape and number of the holes (18) illustrated in Fig. 3.
- the plurality of holes may have a single or multiple types of shapes capable of minimizing heat conduction, such as circular, elliptical, spiral, or radial.
- a plurality of supporter holes (58) may be formed lengthwise in the first supporter (56) and the second supporter (57) respectively along the periphery centered on the sample stage (11).
- a plurality of supporter holes (68) may be formed to penetrate the first supporter (66) and the second supporter (67) respectively in the horizontal direction rather than the vertical direction.
- the first chamber (13) and the refrigerator outer wall (123) may be separated from each other. Vibrations generated from the refrigerator and transmitted to the first chamber (13) may be reduced.
- the first chamber (13) may include a base (131), a side wall (132), a cover (133), and an observation element (134).
- the base (131) can support the lower part of the first supporter (16) and the lower part of the second supporter (17), respectively. There may be a gap between the base (131) and the outer wall (123) of the refrigerator.
- the base (131) can be connected to the outer wall (123) of the refrigerator by the first heat-conducting link (94).
- the first heat-conducting link (94), like the CCR heat-conducting link (93), may be formed of a flexible and highly thermally conductive material.
- the CCR heat-conducting link (93) and the first heat-conducting link (94) may be a single or multiple thin and long wire, a braided wire made of wires, or a twisted wire.
- the CCR heat-conducting link (93) and the first heat-conducting link (94) may be formed of a metal such as copper or aluminum.
- the outer wall (123) of the refrigerator and the side wall (132) of the first chamber (13) are connected by the first heat conduction link (94), so that vibration transmitted from the outer wall (123) of the refrigerator to the side wall (132) of the first chamber (13) can be reduced.
- the refrigerator can take away heat inside the first chamber (13) through the first heat conduction link (94) and maintain the temperature inside the first chamber (13) constant.
- the side wall (132) may be formed to extend upward from the base (131).
- the side wall (132) may be arranged between the first supporter (16) and the second supporter (17) and may surround the perimeter of the sample stage (11).
- the side wall (132) may prevent heat from entering due to radiant heat from the outside.
- the side wall (132) may be formed of, for example, aluminum.
- the cover (133) may be supported on the side wall (132).
- the cover (133) may move horizontally with respect to the side wall (132).
- the horizontal direction is a direction parallel to the y-axis.
- the cover (133) may be connected to the side wall (132) by a second heat-conducting link (95).
- the second heat-conducting link (95) may be formed of a flexible and highly heat-conductive material.
- the second heat-conducting link (95) may be formed of the same material as the first heat-conducting link (94).
- the second heat-conducting link (95) may be formed of a metal such as copper or aluminum.
- the heat of the cover (133) may be transferred to the side wall (132) through the second heat-conducting link and then to the refrigerator through the first heat-conducting link (94). Heat diffusion into the first chamber (13) through the cover (133) can be reduced.
- each of the CCR heat conduction link (93), the first heat conduction link (94) and the second heat conduction link (95) may be provided in multiple units and placed in each section.
- the observation element (134) can face the sample stage (11) while being placed on the cover (133). As the cover (133) moves horizontally with respect to the side wall (132), the observation element (134) can also move integrally with the cover (133). In addition to monitoring the sample stage (11) through the observation element (134), a wide range of optical experiments, such as magnified observation of a specimen image and analysis of reflected light after injection of optical energy such as a laser, can be possible.
- a cover sealing element (135) can be placed between the observation element (134) and the cover (133). The cover sealing element (135) can reduce heat penetrating from the second chamber (34) into the first chamber (33) and reduce frost generated on the surface of the observation element (134).
- FIG. 6 is a front view schematically illustrating the interior of the first chamber and the second chamber according to one embodiment.
- the center of the sample stage (21) of the probe station device (2) may protrude downward.
- the lower part of the first supporter (26) may protrude toward the center of the sample stage (21) and support the edge of the sample stage (21).
- the lower part of the first supporter (26) may be supported by the base (231) of the first chamber.
- the upper part of the second supporter (27) may be formed to protrude toward the inside of the second chamber (24).
- the connector (29) may support the second supporter (27) from below.
- the assembly process may be simplified.
- the first supporter (26) may be first placed inside the side wall (232) of the first chamber with the cover removed so as to be supported by the base (231) of the first chamber, and then the sample stage (21) may be placed on the first supporter (26).
- the second supporter (27) may be placed so as to be supported by the connector (29) and the base (231) of the first chamber.
- FIGS. 7 and 8 are plan views schematically illustrating a second chamber, a connector, and a second supporter according to one embodiment.
- a plurality of connectors (49) may be provided.
- the connectors (49) may be formed discontinuously along the perimeter of the inner wall of the second chamber (44).
- the second supporter (47) may be screw-connected to the connector (49) after passing through the gap between the connectors (49).
- the second supporter (47) may be connected to the second chamber (44) regardless of the assembly order between the second chamber (44) and the second supporter (47).
- the second chamber (44) may be placed first and then the second supporter (47) may be connected to the connector (49), or the second supporter (47) may be placed first and then the connector (49) may be connected to the second supporter (47).
- the second supporter (47) can be separated from the second chamber (44) regardless of the disassembly order between the second chamber (44) and the second supporter (47).
- the second supporter (47) may include a supporter body (471) supported by the side wall of the first chamber, and a plurality of supporter protrusions (472) formed to extend from the supporter body (471) toward the second chamber (44).
- the supporter body (471) may have a ring shape with a through-hole in the center, and the supporter protrusions (472) may protrude circumferentially from the supporter body (471).
- Each of the plurality of supporter protrusions (472) can pass between two adjacent connectors (49). From this structure, when the second supporter (47) rotates in one direction after the supporter protrusions (472) pass between the connectors (49), the supporter protrusions (472) can overlap the connectors (49) with respect to the z-axis direction. Each of the supporter protrusions (472) can be connected to each of the overlapped connectors (49) with a screw.
- FIG. 9 is a plan view schematically illustrating a first supporter, a second supporter, and a bridge according to one embodiment.
- a probe station device may further include a bridge (85).
- the bridge (85) may connect a first supporter (86) and a second supporter (87).
- the first supporter (86), the second supporter (87), and the bridge (85) may be connected to each other to have an integrated structure.
- the bridge (85) may be formed of, for example, the same material as the first supporter (86) and the second supporter (87).
- a plurality of bridges (85) may be provided around the sample stage.
- a portion of the side wall of the first chamber may be extended to pass through a hole (H) surrounded by two adjacent bridges (85), a first supporter (86), and a second supporter (87), while being supported by each bridge (85).
- the side wall of the first chamber passing through the hole (H) may be connected to the outer wall of the refrigerator through a first heat conduction link.
- the width of the hole (H) may be greater than the width of the bridge (85). As the width of the hole (H) increases and the width of the bridge (85) decreases, the amount of heat conducted from the second supporter (87) to the first supporter (86) may decrease.
- FIG. 10 is a front view schematically illustrating a probe station device according to one embodiment.
- the sample stage (31) of the probe station device (3) can receive the load of the mounting part (71) through the stage supporter (36).
- the stage supporter (36) can support the lower part of the sample stage (31) while being connected to the mounting part (71) supported on the ground. From this structure, the sample stage (31) can be physically separated from the refrigerator where vibration occurs.
- the stage supporter (36) may include a plurality of frames.
- the stage supporter (36) may include a first frame (361) supported by an upper portion of the mounting portion (71) and extending upwardly, a second frame (362) connected to the first frame (361) and extending upwardly, and a third frame (363) connected to the second frame (362), extending upwardly, and connected to a lower portion of the sample stage (31).
- the upper part of the first frame (361) and the lower part of the second frame (362) are connected by a coupler (37), so that their movement with respect to each other can be restricted.
- the upper part of the second frame (362) and the lower part of the third frame (363) are also connected by a coupler (37), so that their movement with respect to each other can be restricted.
- the first frame (361) can penetrate the first chamber (33) and the second chamber (34).
- a chamber sealing element (38) is arranged between the first frame (361) and the second chamber (34), so as to reduce heat penetrating from the outside into the second chamber (34).
- a chamber sealing element (38) is arranged between the first frame (361) and the first chamber (33), so as to reduce heat penetrating from the second chamber (34) into the first chamber (33).
- the first frame (361), the second frame (362), the third frame (363) and the coupler (37) may each be provided in multiple units.
- the CCR second stage (322) can be connected to the sample stage (31) using a CCR heat conduction link (73).
- the CCR heat conduction link (73) can cool the temperature of the sample stage (31) to a cryogenic temperature.
- two CCR heat conduction links (73) can be provided.
- the two CCR heat conduction links (73) can generate a phase difference to cancel out the amplitude of the vibration waveform generated in the refrigerator.
- FIG. 11 is a front view schematically illustrating a mounting portion, an optical table leg, and a spacer according to one embodiment.
- a probe station device can align a side wall of a first chamber and an outer wall of a refrigerator in the z-axis direction by using a spacer (77). Since the side wall of the first chamber (e.g., the side wall (132) of the first chamber (13) of FIG. 2) and the outer wall of the refrigerator (e.g., the outer wall (123) of the refrigerator of FIG. 2) are spaced apart from each other, if they are not aligned with each other, the heat blocking efficiency may decrease or tension may be applied to the first heat conduction link and the CCR heat conduction link.
- the spacer (77) can assist in arranging the mounting portion (e.g., the mounting portion (91) of FIG. 1 and the mounting portion (71) of FIG. 10) at the center of the legs of a plurality of optical tables (e.g., the legs (921) of the optical table of FIG. 1 and the legs (721) of the optical table of FIG. 10).
- the spacers (77) can be provided in the same number as the legs (721, 921) of the optical table, and the lengths of each spacer (77) can be the same.
- one end of a plurality of spacers (77) can be connected to each of the legs (721, 921) of the optical table.
- the other end of the spacer (77) can be placed toward the center of the leg (721, 921) of the optical table.
- the mounting portion (71) is placed where the other ends of the spacers (77) meet, and the other ends of the spacers (77) can be connected to the mounting portion (71, 91).
- the mounting portions (71, 91) can be arranged at the center of the optical table legs (721, 921). Meanwhile, since the center can be marked on the top plate of the optical table supporting the first chamber and the second chamber, the side wall of the first chamber can always be arranged at the center of the optical table. In a state where the mounting portions (71, 91) are arranged at the center of the optical table legs (721, 921), the side wall (132) of the first chamber and the outer wall (123) of the refrigerator can be aligned with each other in the z-axis direction.
- the spacer (77) can be removably connected to the legs (721, 921) of the optical table and the mounting members (71, 91), respectively. After the mounting members (71, 91) are placed on the ground, the spacer (77) can be removed from the probe station device before operating the probe station device.
- the spacer (77) may be formed of a plurality of segments. Each of the plurality of segments forming one spacer (77) may be detachably connected to each other. By controlling the presence or absence of connection and the connection strength between the plurality of segments, the vibration transmitted from the mounting portion (71, 91) to the legs (721, 921) of the optical table may be controlled.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
본 발명은 프로브스테이션 장치에 관한 것이다.The present invention relates to a probe station device.
전도냉각형 프로브스테이션 장치는 전자 부품, 반도체 소자 등의 전기적 특성을 온도의 함수로 분석하기 위해 사용되는 장치이다. 예를 들어, 반도체 산업에서는 고온에서 반도체 소자의 특성을 측정하고 테스트하는 데 사용된다. 또한, 나노기술, 재료 연구, 광학 장비 등 다양한 분야에서도 열 전달과 온도 제어가 필요한 실험과 측정에 활용된다.The conduction-cooled probe station is a device used to analyze the electrical characteristics of electronic components, semiconductor devices, etc. as a function of temperature. For example, in the semiconductor industry, it is used to measure and test the characteristics of semiconductor devices at high temperatures. It is also used in experiments and measurements that require heat transfer and temperature control in various fields such as nanotechnology, materials research, and optical equipment.
전도냉각형 전도냉각형 프로브스테이션 장치는 열을 전도하는 방식으로 냉각을 수행하여 안정적인 작동 환경을 제공한다.Conduction-cooled probe station devices perform cooling by conducting heat, providing a stable operating environment.
한편, 전도냉각형 프로브스테이션 장치의 냉동기의 왕복 피스톤 운동과 가스의 이동으로 인해 진동이 발생하고, 발생한 진동이 재물대에 전달되어 프로브 니들의 기계적 마찰, 광학 현미경의 분해능 저하 등의 문제가 발생한다.Meanwhile, vibrations are generated due to the reciprocating piston movement of the refrigerator and the movement of gas in the conduction-cooled probe station device, and the generated vibrations are transmitted to the stage, causing problems such as mechanical friction of the probe needle and reduced resolution of the optical microscope.
일 실시예에 따른 목적은 냉동기에서 발생한 진동이 재물대에 전달되는 것을 억제하는 프로브스테이션 장치를 제공하는 것이다.An object according to one embodiment is to provide a probe station device that suppresses vibrations generated in a refrigerator from being transmitted to a workpiece.
일 실시예에 따른 프로브스테이션 장치는, 시편이 놓이는 샘플 스테이지, 상기 샘플 스테이지의 하측에 배치되고 상기 샘플 스테이지의 온도를 제어하는 냉동기, 상기 냉동기의 하측에 배치되고 상기 냉동기를 지지하는 마운팅부, 상기 샘플 스테이지의 외측을 감싸는 제 1 챔버 및 내부를 진공 상태로 유지하고, 상기 제 1 챔버의 외측을 감싸는 제 2 챔버 및 상기 냉동기를 상기 제 2 챔버에 연결하는 진동 저감 부재를 포함하고, 상기 샘플 스테이지, 제 1 챔버 및 제 2 챔버는 서로 연결될 수 있다.A probe station device according to one embodiment includes a sample stage on which a specimen is placed, a refrigerator disposed below the sample stage and controlling a temperature of the sample stage, a mounting member disposed below the refrigerator and supporting the refrigerator, a first chamber surrounding the outside of the sample stage and having an interior that is maintained in a vacuum state, a second chamber surrounding the outside of the first chamber, and a vibration reduction member connecting the refrigerator to the second chamber, wherein the sample stage, the first chamber, and the second chamber can be connected to each other.
일 실시예에 따른 프로브스테이션 장치는, 상기 샘플 스테이지를 상기 제 1 챔버에 연결하는 제 1 서포터 및 상기 제 1 챔버와 제 2 챔버 사이에 배치되어. 상기 제 1 챔버를 상기 제 2 챔버에 연결하는 제 2 서포터를 더 포함할 수 있다.A probe station device according to one embodiment may further include a first supporter connecting the sample stage to the first chamber and a second supporter disposed between the first chamber and the second chamber, connecting the first chamber to the second chamber.
일 실시예에 따르면, 상기 제 1 서포터는, 상기 샘플 스테이지에 대해 이격된 상태로 상기 샘플 스테이지에 고정될 수 있다.In one embodiment, the first supporter can be secured to the sample stage while being spaced apart from the sample stage.
일 실시예에 따르면, 상기 샘플 스테이지는, 상기 제 1 서포터 및 제 2 서포터를 통해 상기 제 1 챔버 및 제 2 챔버에 연결되어 상기 제 1 챔버 및 제 2 챔버의 하중을 전달받을 수 있다.According to one embodiment, the sample stage is connected to the first chamber and the second chamber through the first supporter and the second supporter to transmit the load of the first chamber and the second chamber.
일 실시예에 따른 프로브스테이션 장치는, 상기 제 2 챔버의 내벽에 형성되는 커넥터를 더 포함하고, 상기 커넥터 및 상기 제 2 서포터의 일 부분은 서로 맞물리고, 상기 샘플 스테이지의 일 부분 및 상기 제 1 서포터의 일 부분은 서로 맞물릴 수 있다.A probe station device according to one embodiment further includes a connector formed on an inner wall of the second chamber, wherein the connector and a portion of the second supporter are interlocked with each other, and a portion of the sample stage and a portion of the first supporter are interlocked with each other.
일 실시예에 따르면, 상기 제 1 챔버는, 상기 제 1 서포터 및 제 2 서포터 사이에 배치되고 상기 샘플 스테이지의 둘레를 감싸는 측벽, 상기 측벽에 지지되는 커버 및 상기 커버 상에 배치되어 상기 샘플 스테이지를 모니터링할 수 있는 관찰 요소를 포함하고, 상기 커버는 상기 측벽에 대해 이동 가능하게 마련될 수 있다.According to one embodiment, the first chamber includes a sidewall disposed between the first supporter and the second supporter and surrounding the periphery of the sample stage, a cover supported by the sidewall, and an observation element disposed on the cover to monitor the sample stage, wherein the cover can be provided to be movable with respect to the sidewall.
일 실시예에 따르면, 상기 제 1 챔버는 상기 측벽의 하단으로부터 연장되는 베이스를 더 포함하고, 상기 베이스와 상기 냉동기의 외벽 사이에는 유격이 존재하고, 상기 베이스는 제 1 열전도 링크에 의해 상기 냉동기의 외벽에 연결될 수 있다.In one embodiment, the first chamber further includes a base extending from a lower end of the side wall, a clearance exists between the base and the outer wall of the refrigerator, and the base can be connected to the outer wall of the refrigerator by a first heat-conducting link.
일 실시예에 따르면, 상기 커버는, 제 2 열전도 링크에 의해 상기 측벽에 연결될 수 있다.In one embodiment, the cover may be connected to the side wall by a second heat-conducting link.
일 실시예에 따르면, 상기 제 1 열전도 링크는, 구리 또는 알루미늄으로 형성될 수 있다.In one embodiment, the first heat-conducting link may be formed of copper or aluminum.
일 실시예에 따르면, 상기 제 1 열전도 링크는, 단일 또는 복수 개의 선재, 선재로 이루어진 편조선 또는 연선 중 어느 하나로 형성될 수 있다.According to one embodiment, the first heat-conducting link may be formed of either a single or multiple wires, a braided wire or a stranded wire.
일 실시예에 따른 프로브스테이션 장치는, 상기 제 1 서포터 및 제 2 서포터를 연결하는 브릿지를 더 포함할 수 있다.The probe station device according to one embodiment may further include a bridge connecting the first supporter and the second supporter.
일 실시예에 따르면, 상기 브릿지는, 상기 제 1 챔버의 측벽을 지지할 수 있다.In one embodiment, the bridge can support a side wall of the first chamber.
일 실시예에 따르면, 상기 브릿지는, 상기 샘플 스테이지를 중심으로 둘레를 따라 복수 개로 마련될 수 있다.According to one embodiment, the bridges may be provided in multiple numbers along the periphery centered on the sample stage.
일 실시예에 따르면, 상기 커넥터는, 상기 제 2 챔버의 내벽을 따라 복수 개로 마련될 수 있다.According to one embodiment, the connectors may be provided in multiple numbers along the inner wall of the second chamber.
일 실시예에 따르면, 상기 제 2 서포터는, 상기 제 1 챔버의 측벽에 의해 지지되는 서포터 바디와, 상기 서포터 바디로부터 상기 제 2 챔버를 향해 연장 형성되는 복수 개의 서포터 돌기를 포함할 수 있다.According to one embodiment, the second supporter may include a supporter body supported by a side wall of the first chamber, and a plurality of supporter protrusions extending from the supporter body toward the second chamber.
일 실시예에 따르면, 상기 복수 개의 서포터 돌기 각각은, 상기 복수 개의 커넥터 중 인접한 두 개의 커넥터 사이를 통과 가능할 수 있다.In one embodiment, each of the plurality of supporter protrusions may be passable between two adjacent connectors among the plurality of connectors.
일 실시예에 따른 프로브스테이션 장치는, 상기 제 1 서포터 또는 제2 서포터에 관통 형성된 복수 개의 서포터 홀을 더 포함할 수 있다.The probe station device according to one embodiment may further include a plurality of supporter holes formed through the first supporter or the second supporter.
일 실시예에 따르면, 상기 복수 개의 서포터 홀은, 상기 제 1 챔버의 측벽의 높이 방향인 제 1 방향으로 관통 형성되거나, 상기 제 1 방향과 교차하는 제 2 방향으로 관통 형성될 수 있다.According to one embodiment, the plurality of supporter holes may be formed penetrating in a first direction, which is a height direction of a side wall of the first chamber, or may be formed penetrating in a second direction intersecting the first direction.
일 실시예에 따르면, 상기 제 1 서포터에 관통 형성된 서포터 홀의 형상과, 상기 제 2 서포터에 관통 형성된 서포터 홀의 형상은 서로 상이할 수 있다.According to one embodiment, the shape of the supporter hole formed through the first supporter and the shape of the supporter hole formed through the second supporter may be different from each other.
일 실시예에 따르면, 상기 진동 저감 부재는 댐퍼 또는 벨로우즈일 수 있다.In one embodiment, the vibration reduction member may be a damper or a bellows.
일 실시예에 따른 프로브스테이션 장치는, 지면에 배치되어 상기 제 2 챔버를 지지하는 광학 테이블을 더 포함하고, 상기 샘플 스테이지, 제 1 챔버, 제 2 챔버 및 광학 테이블은 서로 연결될 수 있다.A probe station device according to one embodiment further includes an optical table disposed on the ground and supporting the second chamber, wherein the sample stage, the first chamber, the second chamber and the optical table can be connected to each other.
일 실시예에 따른 프로브스테이션 장치는, 상기 샘플 스테이지의 하측에 배치되고 상기 샘플 스테이지의 온도를 제어하는 냉동기, 상기 냉동기의 하측에 배치되고 지면에 지지되는 마운팅부, 상기 마운팅부에 연결되고 상기 샘플 스테이지를 지지하는 스테이지 서포터, 상기 샘플 스테이지의 외측을 감싸는 제 1 챔버 및 내부를 진공 상태로 유지하고, 상기 제 1 챔버의 외측을 감싸는 제 2 챔버 및 상기 냉동기를 상기 제 2 챔버에 연결하는 진동 저감 부재를 포함하고, 상기 샘플 스테이지는 상기 스테이지 서포터를 통해 상기 마운팅부의 하중을 전달받을 수 있다.A probe station device according to one embodiment includes a refrigerator arranged below the sample stage and controlling a temperature of the sample stage, a mounting member arranged below the refrigerator and supported on the ground, a stage supporter connected to the mounting member and supporting the sample stage, a first chamber surrounding the outside of the sample stage and maintaining an inside in a vacuum state, a second chamber surrounding the outside of the first chamber, and a vibration reduction member connecting the refrigerator to the second chamber, wherein the sample stage can receive a load of the mounting member through the stage supporter.
일 실시예에 따른 프로브스테이션 장치는 냉동기에서 발생한 진동이 재물대에 전달되는 것을 억제할 수 있다.A probe station device according to one embodiment can suppress vibrations generated in a refrigerator from being transmitted to a workpiece.
도 1은 일 실시예에 따른 프로브스테이션 장치를 개략적으로 도시하는 정면도이다.FIG. 1 is a front view schematically illustrating a probe station device according to one embodiment.
도 2는 일 실시예에 따른 제 1 챔버 및 제 2 챔버의 내부를 개략적으로 도시하는 정면도이다.FIG. 2 is a front view schematically illustrating the interior of a first chamber and a second chamber according to one embodiment.
도 3은 일 실시예에 따른 제 1 챔버 및 제 2 챔버의 내부를 개략적으로 도시하는 평면도이다.FIG. 3 is a plan view schematically illustrating the interior of a first chamber and a second chamber according to one embodiment.
도 4는 일 실시예에 따른 제 1 서포터, 제 2 서포터 및 서포터 홀을 개략적으로 도시하는 평면도이다.FIG. 4 is a plan view schematically illustrating a first supporter, a second supporter, and a supporter hole according to one embodiment.
도 5는 일 실시예에 따른 제 1 서포터, 제 2 서포터 및 서포터 홀을 개략적으로 도시하는 평면도이다.FIG. 5 is a plan view schematically illustrating a first supporter, a second supporter, and a supporter hole according to one embodiment.
도 6은 일 실시예에 따른 제 1 챔버 및 제 2 챔버의 내부를 개략적으로 도시하는 정면도이다.FIG. 6 is a front view schematically illustrating the interior of the first chamber and the second chamber according to one embodiment.
도 7은 일 실시예에 따른 제 2 챔버, 커넥터 및 제 2 서포터를 개략적으로 도시하는 평면도이다.FIG. 7 is a plan view schematically illustrating a second chamber, a connector, and a second supporter according to one embodiment.
도 8은 일 실시예에 따른 제 2 챔버, 커넥터 및 제 2 서포터를 개략적으로 도시하는 평면도이다.FIG. 8 is a plan view schematically illustrating a second chamber, a connector, and a second supporter according to one embodiment.
도 9는 일 실시예에 따른 제 1 서포터, 제 2 서포터 및 브릿지를 개략적으로 도시하는 평면도이다.FIG. 9 is a plan view schematically illustrating a first supporter, a second supporter, and a bridge according to one embodiment.
도 10은 일 실시예에 따른 프로브스테이션 장치를 개략적으로 도시하는 정면도이다.FIG. 10 is a front view schematically illustrating a probe station device according to one embodiment.
도 11은 일 실시예에 따른 마운팅부, 광학 테이블의 다리 및 스페이서를 개략적으로 도시하는 정면도이다.FIG. 11 is a front view schematically illustrating a mounting portion, an optical table leg, and a spacer according to one embodiment.
실시예들에 대한 특정한 구조적 또는 기능적 설명들은 단지 예시를 위한 목적으로 개시된 것으로서, 다양한 형태로 변경되어 구현될 수 있다. 따라서, 실제 구현되는 형태는 개시된 특정 실시예로만 한정되는 것이 아니며, 본 명세서의 범위는 실시예들로 설명한 기술적 사상에 포함되는 변경, 균등물, 또는 대체물을 포함한다.Specific structural or functional descriptions of the embodiments are disclosed for illustrative purposes only and may be implemented in various forms. Accordingly, the actual implemented form is not limited to the specific embodiments disclosed, and the scope of the present disclosure includes modifications, equivalents, or alternatives included in the technical idea described in the embodiments.
제 1 또는 제 2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 해석되어야 한다. 예를 들어, 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소는 제 1 구성요소로도 명명될 수 있다.Although the terms first or second may be used to describe various components, such terms should be construed only for the purpose of distinguishing one component from another. For example, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When it is said that a component is "connected" to another component, it should be understood that it may be directly connected or connected to that other component, but there may also be other components in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설명된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, the terms "comprises" or "has" and the like are intended to specify the presence of a described feature, number, step, operation, component, part, or combination thereof, but should be understood to not preclude the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.
어느 하나의 실시예에 포함된 구성 요소와, 공동적인 기능을 포함하는 구성 요소는, 다른 실시예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시예에 기재한 설명은 다른 실시예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.Components included in one embodiment and components that have common functions will be described using the same names in other embodiments. Unless otherwise stated, descriptions made in one embodiment can be applied to other embodiments, and specific descriptions will be omitted to the extent of overlap.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning they have in the context of the relevant art, and will not be interpreted in an idealized or overly formal sense unless explicitly defined herein.
이하, 실시예들을 첨부된 도면들을 참조하여 상세하게 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments will be described in detail with reference to the attached drawings. In describing with reference to the attached drawings, identical components are given the same reference numerals regardless of the drawing numbers, and redundant descriptions thereof will be omitted.
도 1은 일 실시예에 따른 프로브스테이션 장치를 개략적으로 도시하는 정면도이다.FIG. 1 is a front view schematically illustrating a probe station device according to one embodiment.
도 1을 참조하면, 일 실시예에 따른 프로브스테이션 장치(1)는 샘플 스테이지(11)에 놓인 시편의 특성을 측정하고 테스트할 수 있다. 프로브스테이션 장치(1)는, 샘플 스테이지(11) 및 냉동기(12)의 질량을 각각 극대화하여, 냉동기(12)로부터 발생하여 샘플 스테이지(11)로 전달되는 진동의 양을 감소시킬 수 있다. 프로브스테이션 장치(1)는, 샘플 스테이지(11), 냉동기(12), 마운팅부(91), 제 1 챔버(13), 제 2 챔버(14) 및 광학 테이블(92)을 포함할 수 있다.Referring to FIG. 1, a probe station device (1) according to one embodiment can measure and test the characteristics of a specimen placed on a sample stage (11). The probe station device (1) can maximize the masses of the sample stage (11) and the refrigerator (12), respectively, to reduce the amount of vibration generated from the refrigerator (12) and transmitted to the sample stage (11). The probe station device (1) can include a sample stage (11), a refrigerator (12), a mounting portion (91), a first chamber (13), a second chamber (14), and an optical table (92).
샘플 스테이지(11)에는 시편이 놓일 수 있다. 냉동기(12)는 샘플 스테이지(11)의 하측에 배치되고 샘플 스테이지(11)의 온도를 제어할 수 있다. 냉동기(12)는, CCR 제 1 단(121, closed-cycle refrigerator first stage), CCR 제 2 단(122, closed-cycle refrigerator second stage), 냉동기 외벽(123) 및 모터(124)를 포함할 수 있다.A specimen can be placed on the sample stage (11). A refrigerator (12) is arranged below the sample stage (11) and can control the temperature of the sample stage (11). The refrigerator (12) can include a CCR first stage (121, closed-cycle refrigerator first stage), a CCR second stage (122, closed-cycle refrigerator second stage), a refrigerator outer wall (123), and a motor (124).
CCR 제 1 단(121)은 냉매를 압축할 수 있다. 예를 들어, CCR 제 1 단(121)은 압축기(compressor)로 구성될 수 있다. CCR 제 1 단(121)을 통해 압축된 냉매는, 압력이 높아지면서 액체 상태로 유지될 수 있다.The CCR first stage (121) can compress the refrigerant. For example, the CCR first stage (121) can be configured as a compressor. The refrigerant compressed through the CCR first stage (121) can be maintained in a liquid state as the pressure increases.
CCR 제 2 단(122)은 압축된 냉매의 열을 제거하고, 냉매를 증발시켜 냉각을 수행할 수 있다. 예를 들어, CCR 제 2 단(122)은 콘덴서(condenser) 및 팽창 장치(expansion device)로 구성될 수 있다. 콘덴서는 압축된 냉매의 열을 방출하고, 냉매를 액체 상태로 변환시킬 수 있다. 팽창 장치는 액체 상태의 냉매의 압력을 감소시킬 수 있다.The CCR second stage (122) can remove heat from the compressed refrigerant and evaporate the refrigerant to perform cooling. For example, the CCR second stage (122) can be composed of a condenser and an expansion device. The condenser can release heat from the compressed refrigerant and convert the refrigerant into a liquid state. The expansion device can reduce the pressure of the refrigerant in a liquid state.
CCR 제 2 단(122)은 CCR 열전도 링크(93)를 통해 샘플 스테이지(11)에 연결될 수 있다. CCR 열전도 링크(93)는, 예를 들어 탄성체와 댐퍼로 구성될 수 있다. CCR 열전도 링크(93)는, 샘플 스테이지(11)의 열을 가져감으로써 샘플 스테이지(11)의 온도를 감소시킬 수 있다.The CCR second stage (122) can be connected to the sample stage (11) via a CCR heat conduction link (93). The CCR heat conduction link (93) can be composed of, for example, an elastic body and a damper. The CCR heat conduction link (93) can reduce the temperature of the sample stage (11) by taking heat from the sample stage (11).
냉동기 외벽(123)은 CCR 제 1 단(121)에 지지된 상태에서, CCR 제 2 단(122) 및 CCR 열전도 링크(93)의 측면을 커버할 수 있다. 냉동기 외벽(123)은, 외부로부터 CCR 제 2 단(122) 및 CCR 열전도 링크(93) 주변으로 유입되는 공기의 양을 감소시킬 수 있다. 냉동기 외벽(123)은, 샘플 스테이지(11)의 온도가 제어되는 동안, 외부 공기의 간섭을 감소시키고, 외부로부터 복사열에 의한 열 침입을 감소시킬 수 있다. 냉동기 외벽(123)은, '방열 쉴드부'로 지칭될 수도 있다.The refrigerator outer wall (123) can cover the side of the CCR second stage (122) and the CCR heat conduction link (93) while being supported by the CCR first stage (121). The refrigerator outer wall (123) can reduce the amount of air flowing in from the outside to the surroundings of the CCR second stage (122) and the CCR heat conduction link (93). The refrigerator outer wall (123) can reduce interference of the outside air and reduce heat intrusion by radiant heat from the outside while the temperature of the sample stage (11) is controlled. The refrigerator outer wall (123) may also be referred to as a 'heat radiation shield'.
모터(124)는, CCR 제 1 단(121) 및 CCR 제 2 단(122)에 동력을 제공할 수 있다. 이때, 모터(124)가 구동되면서 진동이 발생하거나, 냉매가 CCR 제 1 단(121) 및 CCR 제 2 단(122)으로 이동하면서 진동이 발생할 수 있다.The motor (124) can provide power to the CCR first stage (121) and the CCR second stage (122). At this time, vibration may occur when the motor (124) is driven, or vibration may occur when the refrigerant moves to the CCR first stage (121) and the CCR second stage (122).
마운팅부(91)는 냉동기(12)의 하측에 배치되고 냉동기(12)를 지지할 수 있다. 마운팅부(91)의 일 면은, 지면에 지지된 상태에 있을 수 있다. 냉동기(12)는 마운팅부(91)에 연결되어, 마운팅부(91)의 하중을 전달받을 수 있다. 냉동기(12)의 질량은 증가하고, 냉동기(12)에서 발생하는 진동은 감소할 수 있다. 마운팅부(91)에 추가적인 무게 추를 연결함으로써, 마운팅부(91)의 무게를 증가시킬 수 있다.The mounting part (91) is arranged on the lower side of the refrigerator (12) and can support the refrigerator (12). One side of the mounting part (91) can be supported on the ground. The refrigerator (12) is connected to the mounting part (91) and can receive the load of the mounting part (91). The mass of the refrigerator (12) increases and the vibration generated in the refrigerator (12) can be reduced. By connecting an additional weight to the mounting part (91), the weight of the mounting part (91) can be increased.
제 1 챔버(13)는 샘플 스테이지(11)의 외측을 감쌀 수 있다. 제 1 챔버(13)는 내부를 일정한 온도로 유지할 수 있다. 예를 들어, 제 1 챔버(13) 내부의 온도는 100K 이하, 예를 들어, 4.2K 일 수 있다. 샘플 스테이지(11)는, 제 1 챔버(13)에 연결되어 제 1 챔버(13)의 하중을 전달받을 수 있다.The first chamber (13) can surround the outside of the sample stage (11). The first chamber (13) can maintain the inside at a constant temperature. For example, the temperature inside the first chamber (13) can be 100K or less, for example, 4.2K. The sample stage (11) can be connected to the first chamber (13) and receive the load of the first chamber (13).
제 2 챔버(14)는 내부를 진공 상태로 유지하고, 제 1 챔버(13)의 외측을 감쌀 수 있다. 제 2 챔버(14)는 내부를 일정한 온도로 유지할 수 있다. 예를 들어, 제 2 챔버(14) 내부의 온도는 30K내지 300K일 수 있다. 제 1 챔버(13)는, 제 2 챔버(14)에 연결되어 제 2 챔버(14)의 하중을 전달받을 수 있다. 이러한 구조로부터, 샘플 스테이지(11)는, 제 1 챔버(13)뿐만 아니라 제 2 챔버(14)의 하중도 전달받을 수 있다.The second chamber (14) can maintain the inside in a vacuum state and surround the outside of the first chamber (13). The second chamber (14) can maintain the inside at a constant temperature. For example, the temperature inside the second chamber (14) can be 30K to 300K. The first chamber (13) is connected to the second chamber (14) and can receive the load of the second chamber (14). From this structure, the sample stage (11) can receive the load of not only the first chamber (13) but also the second chamber (14).
제 2 챔버(14)는 진동 저감 부재(15)를 통해 냉동기(12)에 연결될 수 있다. 진동 저금 부재는 냉동기(12)에서 발생하는 진동을 일부 흡수하여, 챔버로 전달되는 진동의 양을 감소시킬 수 있다. 진동 저감 부재(15)는, 예를 들어, 댐퍼 또는 벨로우즈(bellows)일 수 있다.The second chamber (14) may be connected to the refrigerator (12) via a vibration reduction member (15). The vibration reduction member may absorb some of the vibration generated in the refrigerator (12) and reduce the amount of vibration transmitted to the chamber. The vibration reduction member (15) may be, for example, a damper or a bellows.
광학 테이블(92)은 지면에 배치되는 다리(921)와, 다리(921)에 연결되고 제 2 챔버(14)를 지지하는 상판(922)을 포함할 수 있다. 샘플 스테이지(11), 제 1 챔버(13), 제 2 챔버(14) 및 광학 테이블(92)은 서로 연결될 수 있다. 샘플 스테이지(11)는 제 1 챔버(13) 및 제 2 챔버(14)뿐만 아니라 광학 테이블(92)의 하중도 전달받을 수 있다.The optical table (92) may include a leg (921) placed on the ground and a top plate (922) connected to the leg (921) and supporting the second chamber (14). The sample stage (11), the first chamber (13), the second chamber (14), and the optical table (92) may be connected to each other. The sample stage (11) may receive the load of the optical table (92) as well as the load of the first chamber (13) and the second chamber (14).
도면에는 도시되지 않았으나. 지면에 접촉하는 광학 테이블(92)의 다리(921)에는 진동 완화 발판(vibration dampening feet)이 추가적으로 마련될 수 있다. 프로브스테이션 장치(1)의 외부 충격으로 인해 광학 테이블(92)에서 발생하는 진동을 감소시키고, 프로브스테이션 장치(1)의 작동 시 발생하는 소음을 감소시킬 수 있다.Although not shown in the drawing, vibration dampening feet may be additionally provided on the legs (921) of the optical table (92) that contact the ground. This can reduce vibrations generated in the optical table (92) due to external impacts on the probe station device (1) and reduce noise generated during operation of the probe station device (1).
도 2는 일 실시예에 따른 제 1 챔버 및 제 2 챔버의 내부를 개략적으로 도시하는 정면도이고, 도 3은 일 실시예에 따른 제 1 챔버 및 제 2 챔버의 내부를 개략적으로 도시하는 평면도이다. 도 4 및 도 5는 일 실시예에 따른 제 1 서포터, 제 2 서포터 및 서포터 홀을 개략적으로 도시하는 평면도이다.FIG. 2 is a front view schematically illustrating the interior of a first chamber and a second chamber according to one embodiment, and FIG. 3 is a plan view schematically illustrating the interior of the first chamber and the second chamber according to one embodiment. FIGS. 4 and 5 are plan views schematically illustrating a first supporter, a second supporter, and a supporter hole according to one embodiment.
도 2 및 도 3을 참조하면, 일 실시예에 따른 샘플 스테이지(11)는 제 1 서포터(16)를 통해 제 1 챔버(13)에 연결되고, 제 1 챔버(13)는 제 2 서포터(17)를 통해 제 2 챔버(14)에 연결될 수 있다. 샘플 스테이지(11)는, 제 1 서포터(16) 및 제 2 서포터(17)를 통해 제 1 챔버(13) 및 제 2 챔버(14)의 하중을 전달받을 수 있다.Referring to FIGS. 2 and 3, a sample stage (11) according to one embodiment may be connected to a first chamber (13) through a first supporter (16), and the first chamber (13) may be connected to a second chamber (14) through a second supporter (17). The sample stage (11) may receive loads of the first chamber (13) and the second chamber (14) through the first supporter (16) and the second supporter (17).
제 1 서포터(16)의 일 부분과 샘플 스테이지(11)의 일 부분은 서로 맞물릴 수 있다. 예를 들어, 도 2에 도시된 바와 같이, 샘플 스테이지(11)는 중심부가 상방으로 돌출된 형상을 가질 수 있다. 여기서, 상방은 +z 방향이다. 제 1 서포터는, 중심이 천공된 링 형상을 가지며, 제 1 서포터(16)의 상부는 샘플 스테이지(11)의 중심부를 향해 돌출될 수 있다. 샘플 스테이지(11)의 돌출된 중심부가 제 1 서포터(16)의 천공된 중심에 삽입된 상태에서, 제 1 서포터(16)는 샘플 스테이지(11)의 가장자리에 의해 지지될 수 있다. 제 1 서포터(16)의 하부는, 제 1 챔버(13)에 의해 지지될 수 있다.A part of the first supporter (16) and a part of the sample stage (11) may be interlocked with each other. For example, as illustrated in FIG. 2, the sample stage (11) may have a shape in which the center thereof protrudes upward. Here, the upper part is in the +z direction. The first supporter has a ring shape in which the center thereof is perforated, and the upper part of the first supporter (16) may protrude toward the center of the sample stage (11). In a state in which the protruding center of the sample stage (11) is inserted into the perforated center of the first supporter (16), the first supporter (16) may be supported by the edge of the sample stage (11). The lower part of the first supporter (16) may be supported by the first chamber (13).
한편, 샘플 스테이지(11) 및 제 1 서포터(16)는, 서로 이격된 상태에서 기구적으로 결속될 수도 있다. 예를 들어, 샘플 스테이지(11)의 가장자리와 제 1 서포터(16) 사이에 틈이 존재할 수 있다. 이러한 구조로부터, 제 1 서포터(16)로부터 샘플 스테이지(11)로 전도되는 열은 감소할 수 있다.제 2 서포터(17)는 제 1 챔버(13)와 제 2 챔버(14) 사이에 배치되어, 제 1 챔버(13)를 제 2 챔버(14)에 연결할 수 있다. 제 2 서포터(17)의 하부는, 제 2 챔버(14)의 내벽으로 돌출되고 제 2 챔버(14)의 내벽에 형성된 커넥터(19)와 서로 맞물릴 수 있다. 제 2 서포터(17)와 커넥터(19)가 맞물린 부분은 나사로 연결될 수 있다.Meanwhile, the sample stage (11) and the first supporter (16) may be mechanically connected while being spaced apart from each other. For example, a gap may exist between the edge of the sample stage (11) and the first supporter (16). From this structure, heat conducted from the first supporter (16) to the sample stage (11) may be reduced. The second supporter (17) may be arranged between the first chamber (13) and the second chamber (14), so as to connect the first chamber (13) to the second chamber (14). The lower part of the second supporter (17) may protrude into the inner wall of the second chamber (14) and may be engaged with a connector (19) formed on the inner wall of the second chamber (14). The portion where the second supporter (17) and the connector (19) are engaged may be connected with a screw.
일 실시예에서, 제 1 서포터(16) 및 제 2 서포터(17)는, 극저온에서 균열이 없고, 열전도도가 낮은 소재로 형성될 수 있다. 예를 들어, 제 1 서포터(16) 및 제 2 서포터(17)는, 글라스 파이버 에폭시 수지(glass fiber epoxy resin)와 같은 섬유함침수지 재료(fiber reinforced resin composite material)로 형성될 수 있다.In one embodiment, the first supporter (16) and the second supporter (17) may be formed of a material that is crack-free at extremely low temperatures and has low thermal conductivity. For example, the first supporter (16) and the second supporter (17) may be formed of a fiber reinforced resin composite material, such as glass fiber epoxy resin.
커넥터(19)는 제 2 챔버(14)의 내벽의 둘레를 따라 돌출 형성될 수 있다. 커넥터(19)는 제 2 챔버(14)의 내벽의 둘레를 따라 연속적으로 형성될 수 있다. 이러한 구조로부터, 제 2서포터(17)는, 커넥터(19)에 의해 상방 움직임이 제한되고, 제 1 챔버(13)에 의해 하방 움직임이 제한될 수 있다. The connector (19) can be formed to protrude along the perimeter of the inner wall of the second chamber (14). The connector (19) can be formed continuously along the perimeter of the inner wall of the second chamber (14). From this structure, the second supporter (17) can be restricted in upward movement by the connector (19) and in downward movement by the first chamber (13).
제 1 챔버(13)의 열이 샘플 스테이지(11)로 전달되지 않도록, 제 1 서포터(16)는 열 전도율이 낮은 재질로 형성될 수 있다. 마찬가지로, 제 2 챔버(14)의 열이 제 1 챔버(13)로 전달되지 않도록, 제 2 서포터(17)는 열 전도율이 낮은 재질로 형성될 수 있다. To prevent heat from the first chamber (13) from being transferred to the sample stage (11), the first supporter (16) may be formed of a material having low thermal conductivity. Similarly, to prevent heat from the second chamber (14) from being transferred to the first chamber (13), the second supporter (17) may be formed of a material having low thermal conductivity.
제 1 서포터(16) 및 제 2 서포터(17)에는, 중심을 기준으로 둘레를 따라 제 1 챔버(13)의 높이 방향으로 복수 개의 서포터 홀(18)이 관통 형성될 수 있다. 예를 들어, 복수 개의 서포터 홀(18)은 동일한 간격으로 서로 이격되어 형성될 수 있다. 제 1 서포터(16) 및 제 2 서포터(17)를 통해 제 2 챔버(14)의 외부로부터 제 1 챔버(13)의 내부로 전도되는 열은 감소할 수 있다. 제 1 챔버(13) 및 제 2 챔버(14)의 단열 효과는 증가할 수 있다.A plurality of supporter holes (18) may be formed penetratingly in the height direction of the first chamber (13) along the circumference based on the center in the first supporter (16) and the second supporter (17). For example, the plurality of supporter holes (18) may be formed spaced apart from each other at equal intervals. Heat conducted from the outside of the second chamber (14) to the inside of the first chamber (13) through the first supporter (16) and the second supporter (17) may be reduced. The insulation effect of the first chamber (13) and the second chamber (14) may be increased.
한편, 복수 개의 홀(18)의 형상 및 개수는, 도 3에 도시된 홀(18)의 형상 및 개수에 한정되지 않음을 미리 밝혀 둔다. 복수 개의 홀은, 원형, 타원형, 나선형, 방사형 등 열전도를 최소화할 수 있는 형상을 단일 또는 복수의 종류로 가질 수 있다.Meanwhile, it is to be noted in advance that the shape and number of the plurality of holes (18) are not limited to the shape and number of the holes (18) illustrated in Fig. 3. The plurality of holes may have a single or multiple types of shapes capable of minimizing heat conduction, such as circular, elliptical, spiral, or radial.
예를 들어, 도 4에 도시된 바와 같이, 일 실시예에 따른 복수 개의 서포터 홀(58)은, 샘플 스테이지(11)를 중심으로 그 둘레를 따라 제 1 서포터(56) 및 제 2 서포터(57)에 각각 길게 형성될 수 있다. 예를 들어, 도 5에 도시된 바와 같이, 일 실시예에 따른 복수 개의 서포터 홀(68)은, 수직 방향이 아닌 수평 방향으로 제 1 서포터(66) 및 제 2 서포터(67)에 각각 관통 형성될 수도 있다. For example, as illustrated in FIG. 4, a plurality of supporter holes (58) according to one embodiment may be formed lengthwise in the first supporter (56) and the second supporter (57) respectively along the periphery centered on the sample stage (11). For example, as illustrated in FIG. 5, a plurality of supporter holes (68) according to one embodiment may be formed to penetrate the first supporter (66) and the second supporter (67) respectively in the horizontal direction rather than the vertical direction.
일 실시예에서, 냉동기에서 발생하여 샘플 스테이지(11)에 전달되는 진동을 감소시키기 위해, 제 1 챔버(13) 및 냉동기 외벽(123)은 서로 분리된 상태에 있을 수 있다. 냉동기로부터 발생하여 제 1 챔버(13)로 전달되는 진동은 감소할 수 있다. 제 1 챔버(13)는, 베이스(131), 측벽(132), 커버(133) 및 관찰 요소(134)를 포함할 수 있다.In one embodiment, to reduce vibrations generated from the refrigerator and transmitted to the sample stage (11), the first chamber (13) and the refrigerator outer wall (123) may be separated from each other. Vibrations generated from the refrigerator and transmitted to the first chamber (13) may be reduced. The first chamber (13) may include a base (131), a side wall (132), a cover (133), and an observation element (134).
베이스(131)는 제 1 서포터(16)의 하부와 제 2 서포터(17)의 하부를 각각 지지할 수 있다. 베이스(131)와 냉동기 외벽(123) 사이에는 유격이 존재할 수 있다. 베이스(131)는 제 1 열전도 링크(94)에 의해 냉동기 외벽(123)에 연결될 수 있다.The base (131) can support the lower part of the first supporter (16) and the lower part of the second supporter (17), respectively. There may be a gap between the base (131) and the outer wall (123) of the refrigerator. The base (131) can be connected to the outer wall (123) of the refrigerator by the first heat-conducting link (94).
제 1 열전도 링크(94)는, CCR 열전도 링크(93)와 마찬가지로, 유연하며 열 전도성이 높은 소재로 형성될 수 있다. 예를 들어, CCR 열전도 링크(93) 및 제 1 열전도 링크(94)는, 가늘고 긴 단일 또는 복수 개의 선재이거나, 선재로 이루어진 편조선이거나, 꼬인 형상을 갖는 연선일 수 있다. 예를 들어, CCR 열전도 링크(93) 및 제 1 열전도 링크(94)는 구리, 알루미늄 등의 금속으로 형성될 수 있다.The first heat-conducting link (94), like the CCR heat-conducting link (93), may be formed of a flexible and highly thermally conductive material. For example, the CCR heat-conducting link (93) and the first heat-conducting link (94) may be a single or multiple thin and long wire, a braided wire made of wires, or a twisted wire. For example, the CCR heat-conducting link (93) and the first heat-conducting link (94) may be formed of a metal such as copper or aluminum.
냉동기 외벽(123) 및 제 1 챔버(13)의 측벽(132)은 제 1 열전도 링크(94)로 연결되어, 냉동기 외벽(123)으로부터 제 1 챔버(13)의 측벽(132)으로 전달되는 진동은 감소될 수 있다. 냉각기는, 제 1 열전도 링크(94)를 통해 제 1 챔버(13) 내부의 열을 빼앗고, 제 1 챔버(13) 내부의 온도를 일정하게 유지할 수 있다.The outer wall (123) of the refrigerator and the side wall (132) of the first chamber (13) are connected by the first heat conduction link (94), so that vibration transmitted from the outer wall (123) of the refrigerator to the side wall (132) of the first chamber (13) can be reduced. The refrigerator can take away heat inside the first chamber (13) through the first heat conduction link (94) and maintain the temperature inside the first chamber (13) constant.
측벽(132)은 베이스(131)로부터 상부로 연장 형성될 수 있다. 측벽(132)은 제 1 서포터(16) 및 제 2 서포터(17) 사이에 배치되고 샘플 스테이지(11)의 둘레를 감쌀 수 있다. 측벽(132)은, 외부로부터 복사열에 의한 열 침입을 막을 수 있다. 측벽(132)은, 예를 들어, 알루미늄으로 형성될 수 있다.The side wall (132) may be formed to extend upward from the base (131). The side wall (132) may be arranged between the first supporter (16) and the second supporter (17) and may surround the perimeter of the sample stage (11). The side wall (132) may prevent heat from entering due to radiant heat from the outside. The side wall (132) may be formed of, for example, aluminum.
커버(133)는 측벽(132)에 지지될 수 있다. 커버(133)는 측벽(132)에 대해 수평 방향으로 움직일 수 있다. 여기서, 수평 방향은 y축과 나란한 방향이다. 커버(133)는 제 2 열전도 링크(95)에 의해 측벽(132)에 연결될 수 있다. 제 2 열전도 링크(95)는 유연하고 열 전도성이 높은 소재로 형성될 수 있다. 예를 들어, 제 2 열전도 링크(95)는 제 1 열전도 링크(94)와 동일한 소재로 형성될 수 있다. 예를 들어, 제 2 열전도 링크(95)는 구리, 알루미늄 등의 금속으로 형성될 수 있다. 커버(133)의 열은, 제 2열전도 링크를 통해 측벽(132)으로 이동한 뒤, 제 1 열전도 링크(94)를 통해 냉동기로 이동할 수 있다. 커버(133)를 통한 제 1 챔버(13) 내부로의 열 확산이 감소할 수 있다.The cover (133) may be supported on the side wall (132). The cover (133) may move horizontally with respect to the side wall (132). Here, the horizontal direction is a direction parallel to the y-axis. The cover (133) may be connected to the side wall (132) by a second heat-conducting link (95). The second heat-conducting link (95) may be formed of a flexible and highly heat-conductive material. For example, the second heat-conducting link (95) may be formed of the same material as the first heat-conducting link (94). For example, the second heat-conducting link (95) may be formed of a metal such as copper or aluminum. The heat of the cover (133) may be transferred to the side wall (132) through the second heat-conducting link and then to the refrigerator through the first heat-conducting link (94). Heat diffusion into the first chamber (13) through the cover (133) can be reduced.
한편, CCR 열전도 링크(93), 제 1 열전도 링크(94) 및 제 2 열전도 링크(95) 각각은, 복수 개로 마련되어 각 부위에 배치될 수 있음을 미리 밝혀 둔다.Meanwhile, it is to be noted in advance that each of the CCR heat conduction link (93), the first heat conduction link (94) and the second heat conduction link (95) may be provided in multiple units and placed in each section.
관찰 요소(134)는 커버(133) 상에 배치된 상태에서, 샘플 스테이지(11)를 마주할 수 있다. 커버(133)가 측벽(132)에 대해 수평 방향으로 움직이면서, 관찰 요소(134)도 커버(133)와 일체로 움직일 수 있다. 관찰 요소(134)를 통해 샘플 스테이지(11)를 모니터링 할 뿐만 아니라, 시편 이미지의 확대 관측, 레이저와 같은 광학 에너지 주입 후 반사광 분석 등, 광범위한 광학 실험이 가능할 수 있다. 관찰 요소(134)와 커버(133) 사이에는 커버 실링 요소(135)가 배치될 수 있다. 커버 실링 요소(135)는 제 2 챔버(34)로부터 제 1 챔버(33) 내부로 침입하는 열을 감소시키고, 관찰 요소(134)의 표면에 생성되는 성에를 줄일 수 있다.The observation element (134) can face the sample stage (11) while being placed on the cover (133). As the cover (133) moves horizontally with respect to the side wall (132), the observation element (134) can also move integrally with the cover (133). In addition to monitoring the sample stage (11) through the observation element (134), a wide range of optical experiments, such as magnified observation of a specimen image and analysis of reflected light after injection of optical energy such as a laser, can be possible. A cover sealing element (135) can be placed between the observation element (134) and the cover (133). The cover sealing element (135) can reduce heat penetrating from the second chamber (34) into the first chamber (33) and reduce frost generated on the surface of the observation element (134).
도 6은 일 실시예에 따른 제 1 챔버 및 제 2 챔버의 내부를 개략적으로 도시하는 정면도이다.FIG. 6 is a front view schematically illustrating the interior of the first chamber and the second chamber according to one embodiment.
도 6을 참조하면, 일 실시예에 따른 프로브스테이션 장치(2)의 샘플 스테이지(21)의 중심부는 하방으로 돌출될 수 있다. 제 1 서포터(26)의 하부는, 샘플 스테이지(21)의 중심부를 향해 돌출되고 샘플 스테이지(21)의 가장자리를 지지할 수 있다. 제 1 서포터(26)의 하부는 제 1 챔버의 베이스(231)에 의해 지지될 수 있다.Referring to FIG. 6, the center of the sample stage (21) of the probe station device (2) according to one embodiment may protrude downward. The lower part of the first supporter (26) may protrude toward the center of the sample stage (21) and support the edge of the sample stage (21). The lower part of the first supporter (26) may be supported by the base (231) of the first chamber.
제 2 서포터(27)의 상부는 제 2 챔버(24)의 내측을 향해 돌출 형성될 수 있다. 커넥터(29)는 제 2 서포터(27)를 아래에서 지지할 수 있다. 도 2에 도시된 프로브스테이션 장치와 달리, 도 6에 도시된 프로브스테이션 장치(2)를 조립하는 경우에, 각 구성들을 아래에서부터 쌓으면서 조립하므로, 조립 과정이 간단해질 수 있다. 예를 들어, 도 6에 도시된 프로브스테이션 장치(2)를 조립하는 경우, 커버가 제거된 상태에서 제 1 챔버의 측벽(232) 내부에 제 1 서포터(26)가 제 1 챔버의 베이스(231)에 의해 지지되도록 먼저 배치한 뒤, 샘플 스테이지(21)를 제 1 서포터(26) 위에 배치할 수 있다. 마찬가지로, 제 2 서포터(27)가 커넥터(29) 및 제 1 챔버의 베이스(231)에 의해 지지되도록 배치할 수 있다.The upper part of the second supporter (27) may be formed to protrude toward the inside of the second chamber (24). The connector (29) may support the second supporter (27) from below. Unlike the probe station device illustrated in FIG. 2, when assembling the probe station device (2) illustrated in FIG. 6, since each component is assembled by stacking it from the bottom, the assembly process may be simplified. For example, when assembling the probe station device (2) illustrated in FIG. 6, the first supporter (26) may be first placed inside the side wall (232) of the first chamber with the cover removed so as to be supported by the base (231) of the first chamber, and then the sample stage (21) may be placed on the first supporter (26). Similarly, the second supporter (27) may be placed so as to be supported by the connector (29) and the base (231) of the first chamber.
도 7 및 도 8은 일 실시예에 따른 제 2 챔버, 커넥터 및 제 2 서포터를 개략적으로 도시하는 평면도이다.FIGS. 7 and 8 are plan views schematically illustrating a second chamber, a connector, and a second supporter according to one embodiment.
도 7 및 도 8을 참조하면, 일 실시예에 따른 커넥터(49)는 복수 개로 마련될 수 있다. 커넥터(49)는, 제 2 챔버(44)의 내벽의 둘레를 따라 불연속적으로 형성될 수 있다. 제 2 서포터(47)는, 커넥터(49) 사이의 틈을 통과한 뒤 커넥터(49)에 나사 연결될 수 있다. 프로브스테이션 장치를 조립하는 과정에서, 제 2 챔버(44)와 제 2 서포터(47) 사이의 조립 순서에 상관없이, 제 2 서포터(47)는 제 2 챔버(44)에 연결될 수 있다. 예를 들어, 제 2 챔버(44)가 먼저 배치된 뒤 제 2 서포터(47)가 커넥터(49)에 연결되거나, 제 2 서포터(47)가 먼저 배치된 뒤 커넥터(49)가 제 2 서포터(47)에 연결될 수 있다. 마찬가지로, 프로브스테이션 장치를 분해하는 과정에서, 제 2 챔버(44)와 제 2 서포터(47) 간 분해 순서에 상관 없이 제 2 서포터(47)는 제 2 챔버(44)로부터 분리될 수 있다.Referring to FIGS. 7 and 8, a plurality of connectors (49) according to one embodiment may be provided. The connectors (49) may be formed discontinuously along the perimeter of the inner wall of the second chamber (44). The second supporter (47) may be screw-connected to the connector (49) after passing through the gap between the connectors (49). In the process of assembling the probe station device, the second supporter (47) may be connected to the second chamber (44) regardless of the assembly order between the second chamber (44) and the second supporter (47). For example, the second chamber (44) may be placed first and then the second supporter (47) may be connected to the connector (49), or the second supporter (47) may be placed first and then the connector (49) may be connected to the second supporter (47). Likewise, in the process of disassembling the probe station device, the second supporter (47) can be separated from the second chamber (44) regardless of the disassembly order between the second chamber (44) and the second supporter (47).
제 2 서포터(47)는, 제 1 챔버의 측벽에 의해 지지되는 서포터 바디(471)와, 서포터 바디(471)로부터 제 2 챔버(44)를 향해 연장 형성되는 복수 개의 서포터 돌기(472)를 포함할 수 있다. 예를 들어, 서포터 바디(471)는 중심이 관통된 링 형상을 가지며, 서포터 돌기(472)는 서포터 바디(471)로부터 원주 방향으로 돌출될 수 있다. The second supporter (47) may include a supporter body (471) supported by the side wall of the first chamber, and a plurality of supporter protrusions (472) formed to extend from the supporter body (471) toward the second chamber (44). For example, the supporter body (471) may have a ring shape with a through-hole in the center, and the supporter protrusions (472) may protrude circumferentially from the supporter body (471).
복수 개의 서포터 돌기(472) 각각은, 복수 개의 인접한 두 개의 커넥터(49) 사이를 통과할 수 있다. 이러한 구조로부터, 서포터 돌기(472)가 커넥터(49) 사이를 통과한 뒤 제 2 서포터(47)가 일 방향으로 회전하면, 서포터 돌기(472)는 z축 방향을 기준으로 커넥터(49)에 오버랩될 수 있다. 각각의 서포터 돌기(472)는 오버랩된 각각의 커넥터(49)에 나사로 연결될 수 있다.Each of the plurality of supporter protrusions (472) can pass between two adjacent connectors (49). From this structure, when the second supporter (47) rotates in one direction after the supporter protrusions (472) pass between the connectors (49), the supporter protrusions (472) can overlap the connectors (49) with respect to the z-axis direction. Each of the supporter protrusions (472) can be connected to each of the overlapped connectors (49) with a screw.
도 9는 일 실시예에 따른 제 1 서포터, 제 2 서포터 및 브릿지를 개략적으로 도시하는 평면도이다.FIG. 9 is a plan view schematically illustrating a first supporter, a second supporter, and a bridge according to one embodiment.
도 9를 참조하면, 일 실시예에 따른 프로브스테이션 장치는, 브릿지(85)를 더 포함할 수 있다. 브릿지(85)는, 제 1 서포터(86) 및 제 2서포터(87)를 연결할 수 있다. 제 1 서포터(86), 제 2 서포터(87) 및 브릿지(85)는, 서로 연결되어 일체형 구조를 가질 수 있다. 브릿지(85)는, 예를 들어, 제 1 서포터(86) 및 제 2 서포터(87)와 동일한 소재로 형성될 수 있다.Referring to FIG. 9, a probe station device according to one embodiment may further include a bridge (85). The bridge (85) may connect a first supporter (86) and a second supporter (87). The first supporter (86), the second supporter (87), and the bridge (85) may be connected to each other to have an integrated structure. The bridge (85) may be formed of, for example, the same material as the first supporter (86) and the second supporter (87).
브릿지(85)는, 샘플 스테이지를 중심으로 둘레를 따라 복수 개로 마련될 수 있다. 제 1 챔버의 측벽은, 각각의 브릿지(85)에 의해 지지되는 한편, 인접한 두 개의 브릿지(85)와, 제 1 서포터(86)와, 제 2 서포터(87)로 둘러싸인 홀(H)을 통과하도록 그 일부가 연장될 수 있다. 홀(H)을 통과한 제 1 챔버의 측벽은, 제 1 열전도 링크를 통해 냉동기 외벽에 연결될 수 있다.A plurality of bridges (85) may be provided around the sample stage. A portion of the side wall of the first chamber may be extended to pass through a hole (H) surrounded by two adjacent bridges (85), a first supporter (86), and a second supporter (87), while being supported by each bridge (85). The side wall of the first chamber passing through the hole (H) may be connected to the outer wall of the refrigerator through a first heat conduction link.
일 실시예에서, 홀(H)의 넓이는 브릿지(85)의 넓이보다 클 수 있다. 홀(H)의 넓이를 증가시키고 브릿지(85)의 넓이를 감소시킬수록, 제 2 서포터(87)로부터 제 1 서포터(86)로 열이 전도되는 양은 감소할 수 있다.In one embodiment, the width of the hole (H) may be greater than the width of the bridge (85). As the width of the hole (H) increases and the width of the bridge (85) decreases, the amount of heat conducted from the second supporter (87) to the first supporter (86) may decrease.
도 10은 일 실시예에 따른 프로브스테이션 장치를 개략적으로 도시하는 정면도이다.FIG. 10 is a front view schematically illustrating a probe station device according to one embodiment.
도 10을 참조하면, 일 실시예에 따른 프로브스테이션 장치(3)의 샘플 스테이지(31)는, 스테이지 서포터(36)를 통해 마운팅부(71)의 하중을 전달받을 수 있다. 스테이지 서포터(36)는 지면에 지지되는 마운팅부(71)에 연결된 상태에서, 샘플 스테이지(31)의 하부를 지지할 수 있다. 이러한 구조로부터, 샘플 스테이지(31)는 진동이 발생하는 냉동기와 물리적으로 분리된 상태에 있을 수 있다.Referring to FIG. 10, the sample stage (31) of the probe station device (3) according to one embodiment can receive the load of the mounting part (71) through the stage supporter (36). The stage supporter (36) can support the lower part of the sample stage (31) while being connected to the mounting part (71) supported on the ground. From this structure, the sample stage (31) can be physically separated from the refrigerator where vibration occurs.
일 실시예에서, 스테이지 서포터(36)는 복수 개의 프레임을 포함할 수 있다. 예를 들어, 스테이지 서포터(36)는, 마운팅부(71)의 상부에 의해 지지되고 상측을 향해 연장되는 제 1 프레임(361)과, 제 1 프레임(361)에 연결되고 상측을 향해 연장되는 제 2 프레임(362)과, 제 2 프레임(362)에 연결되고 상측을 향해 연장되고 샘플 스테이지(31)의 하부에 연결되는 제 3 프레임(363)을 포함할 수 있다.In one embodiment, the stage supporter (36) may include a plurality of frames. For example, the stage supporter (36) may include a first frame (361) supported by an upper portion of the mounting portion (71) and extending upwardly, a second frame (362) connected to the first frame (361) and extending upwardly, and a third frame (363) connected to the second frame (362), extending upwardly, and connected to a lower portion of the sample stage (31).
제 1 프레임(361)의 상부와 제 2 프레임(362)의 하부는 커플러(37)에 의해 결속되어, 서로에 대한 움직임이 제한될 수 있다. 마찬가지로, 제 2 프레임(362)의 상부와 제 3 프레임(363)의 하부도 커플러(37)에 의해 결속되어, 서로에 대한 움직임이 제한될 수 있다.The upper part of the first frame (361) and the lower part of the second frame (362) are connected by a coupler (37), so that their movement with respect to each other can be restricted. Similarly, the upper part of the second frame (362) and the lower part of the third frame (363) are also connected by a coupler (37), so that their movement with respect to each other can be restricted.
제 1 프레임(361)은 제 1 챔버(33) 및 제 2 챔버(34)를 관통할 수 있다. 제 1 프레임(361)과 제 2 챔버(34) 사이에는 챔버 실링 요소(38)가 배치되어, 외부로부터 제 2 챔버(34) 내부로 침입하는 열을 감소시킬 수 있다. 마찬가지로, 제 1 프레임(361)과 제 1 챔버(33) 사이에도 챔버 실링 요소(38)가 배치되어, 제 2 챔버(34)로부터 제 1 챔버(33) 내부로 침입하는 열을 감소시킬 수 있다.The first frame (361) can penetrate the first chamber (33) and the second chamber (34). A chamber sealing element (38) is arranged between the first frame (361) and the second chamber (34), so as to reduce heat penetrating from the outside into the second chamber (34). Similarly, a chamber sealing element (38) is arranged between the first frame (361) and the first chamber (33), so as to reduce heat penetrating from the second chamber (34) into the first chamber (33).
지면에 대해 샘플 스테이지(31)의 수평을 맞추기 위해, 제 1 프레임(361), 제 2 프레임(362), 제 3 프레임(363) 및 커플러(37)는 각각 복수 개로 마련될 수 있다.In order to level the sample stage (31) with respect to the ground, the first frame (361), the second frame (362), the third frame (363) and the coupler (37) may each be provided in multiple units.
CCR 제 2 단(322)은 샘플 스테이지(31)에 CCR 열전도 링크(73)를 이용하여 연결될 수 있다. CCR 열전도 링크(73)는 샘플 스테이지(31)의 온도를 극저온으로 냉각시킬 수 있다. 예를 들어, CCR 열전도 링크(73)는 두 개로 마련될 수 있다. 두 개의 CCR 열전도 링크(73)는 위상차를 발생시켜, 냉동기에서 발생하는 진동 파형의 진폭을 상쇄시킬 수 있다.The CCR second stage (322) can be connected to the sample stage (31) using a CCR heat conduction link (73). The CCR heat conduction link (73) can cool the temperature of the sample stage (31) to a cryogenic temperature. For example, two CCR heat conduction links (73) can be provided. The two CCR heat conduction links (73) can generate a phase difference to cancel out the amplitude of the vibration waveform generated in the refrigerator.
도 11은 일 실시예에 따른 마운팅부, 광학 테이블의 다리 및 스페이서를 개략적으로 도시하는 정면도이다.FIG. 11 is a front view schematically illustrating a mounting portion, an optical table leg, and a spacer according to one embodiment.
도 11을 참조하면, 일 실시예에 따른 프로브스테이션 장치는, 스페이서(77)를 이용하여 제 1 챔버의 측벽과 냉동기 외벽을 z축 방향으로 정렬시킬 수 있다. 제 1 챔버의 측벽(예: 도 2의 제 1 챔버(13)의 측벽(132))과 냉동기 외벽(예: 도 2의 냉동기 외벽(123))은 서로 이격되어 있으므로, 서로 정렬되지 않을 경우에 열 차단 효율이 감소하거나, 제 1 열 전도 링크 및 CCR 열전도 링크에 장력이 인가될 수 있다.Referring to FIG. 11, a probe station device according to one embodiment can align a side wall of a first chamber and an outer wall of a refrigerator in the z-axis direction by using a spacer (77). Since the side wall of the first chamber (e.g., the side wall (132) of the first chamber (13) of FIG. 2) and the outer wall of the refrigerator (e.g., the outer wall (123) of the refrigerator of FIG. 2) are spaced apart from each other, if they are not aligned with each other, the heat blocking efficiency may decrease or tension may be applied to the first heat conduction link and the CCR heat conduction link.
스페이서(77)는, 복수 개의 광학 테이블의 다리(예: 도 1의 광학 테이블의 다리(921) 및 도 10의 광학 테이블의 다리(721))의 중심에 마운팅부(예: 도 1의 마운팅부(91) 및 도 10의 마운팅부(71))가 배치되도록 보조할 수 있다. 예를 들어, 스페이서(77)는, 광학 테이블의 다리(721, 921)의 개수와 동일하게 마련되고, 각각의 스페이서(77)의 길이는 서로 동일할 수 있다.The spacer (77) can assist in arranging the mounting portion (e.g., the mounting portion (91) of FIG. 1 and the mounting portion (71) of FIG. 10) at the center of the legs of a plurality of optical tables (e.g., the legs (921) of the optical table of FIG. 1 and the legs (721) of the optical table of FIG. 10). For example, the spacers (77) can be provided in the same number as the legs (721, 921) of the optical table, and the lengths of each spacer (77) can be the same.
광학 테이블이 지면에 배치된 뒤, 복수 개의 스페이서(77)의 일단은 광학 테이블의 다리(721, 921)에 각각 연결될 수 있다. 스페이서(77)의 타단은 광학 테이블의 다리(721, 921)의 중심을 향해 놓일 수 있다. 이와 같은 상태에서, 마운팅부(71)는 스페이서(77)의 타단이 모이는 곳에 배치되고, 스페이서(77)의 타단은 마운팅부(71, 91)에 연결될 수 있다.After the optical table is placed on the ground, one end of a plurality of spacers (77) can be connected to each of the legs (721, 921) of the optical table. The other end of the spacer (77) can be placed toward the center of the leg (721, 921) of the optical table. In this state, the mounting portion (71) is placed where the other ends of the spacers (77) meet, and the other ends of the spacers (77) can be connected to the mounting portion (71, 91).
복수 개의 스페이서(77)의 타단이 모두 마운팅부(71, 91)에 연결된 상태에서, 마운팅부(71, 91)는 광학 테이블 다리(721, 921)의 중심에 배치될 수 있다. 한편, 제 1 챔버 및 제 2 챔버를 지지하는 광학 테이블의 상판에는 중심이 표시될 수 있으므로, 제 1 챔버의 측벽은 항상 광학 테이블의 중심에 배치될 수 있다. 마운팅부(71, 91)가 광학 테이블 다리(721, 921)의 중심에 배치된 상태에서, 제 1 챔버의 측벽(132)와 냉동기 외벽(123)은 서로 z축 방향으로 정렬될 수 있다.In a state where the other ends of the plurality of spacers (77) are all connected to the mounting portions (71, 91), the mounting portions (71, 91) can be arranged at the center of the optical table legs (721, 921). Meanwhile, since the center can be marked on the top plate of the optical table supporting the first chamber and the second chamber, the side wall of the first chamber can always be arranged at the center of the optical table. In a state where the mounting portions (71, 91) are arranged at the center of the optical table legs (721, 921), the side wall (132) of the first chamber and the outer wall (123) of the refrigerator can be aligned with each other in the z-axis direction.
일 실시예에서, 스페이서(77)는 광학 테이블의 다리(721, 921) 및 마운팅부(71, 91)에 각각 탈부착 가능하게 연결될 수 있다. 마운팅부(71, 91)를 지면에 배치한 뒤, 프로브스테이션 장치를 작동시키기 전에, 스페이서(77)는 프로브스테이션 장치로부터 제거될 수 있다.In one embodiment, the spacer (77) can be removably connected to the legs (721, 921) of the optical table and the mounting members (71, 91), respectively. After the mounting members (71, 91) are placed on the ground, the spacer (77) can be removed from the probe station device before operating the probe station device.
한편, 본 명세서의 도면에 도시된 바와 달리, 스페이서(77)는 복수 개의 마디로 형성될 수 있다. 하나의 스페이서(77)를 형성하는 복수 개의 마디 각각은, 서로에 대해 탈부착 가능하게 연결될 수 있다. 복수 개의 마디 사이의 결합 유무 및 결합 강도를 조절함으로써, 마운팅부(71, 91)로부터 광학 테이블의 다리(721, 921)에 전달되는 진동을 제어할 수 있다.Meanwhile, unlike what is shown in the drawings of this specification, the spacer (77) may be formed of a plurality of segments. Each of the plurality of segments forming one spacer (77) may be detachably connected to each other. By controlling the presence or absence of connection and the connection strength between the plurality of segments, the vibration transmitted from the mounting portion (71, 91) to the legs (721, 921) of the optical table may be controlled.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described with limited drawings as described above, those skilled in the art can apply various technical modifications and variations based on the above. For example, even if the described techniques are performed in a different order than the described method, and/or the components of the described system, structure, device, circuit, etc. are combined or combined in a different form than the described method, or are replaced or substituted by other components or equivalents, appropriate results can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are also included in the scope of the claims described below.
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2023-0104241 | 2023-08-09 | ||
KR1020230104241A KR102824089B1 (en) | 2023-08-09 | 2023-08-09 | Probestation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025033724A1 true WO2025033724A1 (en) | 2025-02-13 |
Family
ID=94534947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/009590 WO2025033724A1 (en) | 2023-08-09 | 2024-07-05 | Probe station device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102824089B1 (en) |
WO (1) | WO2025033724A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007298506A (en) * | 2006-04-06 | 2007-11-15 | National Institute Of Advanced Industrial & Technology | Sample cooling device |
KR101694993B1 (en) * | 2016-08-08 | 2017-01-11 | 한국기초과학지원연구원 | Apparatus and method for measuring thermal property of test piece using cryogenic refrigerator |
KR20200128358A (en) * | 2019-05-03 | 2020-11-12 | 어포어 오와이 | Testing device |
KR20210017442A (en) * | 2019-08-08 | 2021-02-17 | 세메스 주식회사 | Probe station |
KR20220106990A (en) * | 2019-11-19 | 2022-08-01 | 하이 프리시젼 디바이시즈 인코포레이티드 | Cryogenic Wafer Test System |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5047873B2 (en) | 2008-04-30 | 2012-10-10 | 中部電力株式会社 | Cryogenic equipment |
EP3734302A1 (en) * | 2019-05-03 | 2020-11-04 | Afore Oy | Cryogenic wafer prober with camera, window and shutter |
-
2023
- 2023-08-09 KR KR1020230104241A patent/KR102824089B1/en active Active
-
2024
- 2024-07-05 WO PCT/KR2024/009590 patent/WO2025033724A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007298506A (en) * | 2006-04-06 | 2007-11-15 | National Institute Of Advanced Industrial & Technology | Sample cooling device |
KR101694993B1 (en) * | 2016-08-08 | 2017-01-11 | 한국기초과학지원연구원 | Apparatus and method for measuring thermal property of test piece using cryogenic refrigerator |
KR20200128358A (en) * | 2019-05-03 | 2020-11-12 | 어포어 오와이 | Testing device |
KR20210017442A (en) * | 2019-08-08 | 2021-02-17 | 세메스 주식회사 | Probe station |
KR20220106990A (en) * | 2019-11-19 | 2022-08-01 | 하이 프리시젼 디바이시즈 인코포레이티드 | Cryogenic Wafer Test System |
Also Published As
Publication number | Publication date |
---|---|
KR20250023143A (en) | 2025-02-18 |
KR102824089B1 (en) | 2025-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020190004A1 (en) | Clamping device for antenna | |
WO2021010647A1 (en) | Clamping apparatus for antenna | |
WO2021080299A1 (en) | Antenna clamping device | |
WO2021118135A1 (en) | Device for driving a compressor and processes for mounting the device | |
WO2015102389A1 (en) | Device for detecting partial discharge of gas insulated switchgear | |
WO2019146832A1 (en) | Outdoor unit of air conditioner | |
WO2020050645A1 (en) | Probe card for electrical inspection, and probe head of probe card | |
WO2025033724A1 (en) | Probe station device | |
WO2016122106A1 (en) | Air circulating device below steam generator of nuclear reactor | |
WO2014069726A1 (en) | High magnetic field measurement system comprising extremely low temperature stage, and method for controlling same | |
EP2817871A1 (en) | Superconducting rotating electrical machine and manufacturing method for high temperature superconducting film thereof | |
WO2023229281A1 (en) | Test connector | |
WO2020159215A1 (en) | Outdoor unit of air conditioner | |
WO2023003407A1 (en) | Chamber structure for measuring antenna | |
WO2014065474A1 (en) | Vibration proof unit, and distribution board comprising same | |
WO2021172816A2 (en) | Connector for electrical connection | |
WO2022124857A1 (en) | Journal foil air bearing capable of preventing top foil sagging | |
WO2023096242A1 (en) | Probe card | |
WO2023136439A1 (en) | Test pin | |
WO2024237396A1 (en) | Cryogenic test apparatus | |
WO2020204446A1 (en) | Thermoelectric power generation module | |
WO2010016663A2 (en) | Flat plate folding type coil spring, pogo pin using the same, and manufacturing method thereof | |
WO2022059938A1 (en) | Temperature measurement device and energy storage device including same | |
WO2020153549A1 (en) | Device for evaluating vertical characteristics of superconducting coil and characteristic evaluation method using same | |
WO2021060831A1 (en) | Cooling apparatus for superconductor cooling container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24852080 Country of ref document: EP Kind code of ref document: A1 |