WO2025031944A1 - Regenerative parallel-flow vertical shaft furnace - Google Patents
Regenerative parallel-flow vertical shaft furnace Download PDFInfo
- Publication number
- WO2025031944A1 WO2025031944A1 PCT/EP2024/071895 EP2024071895W WO2025031944A1 WO 2025031944 A1 WO2025031944 A1 WO 2025031944A1 EP 2024071895 W EP2024071895 W EP 2024071895W WO 2025031944 A1 WO2025031944 A1 WO 2025031944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- oven according
- collector element
- hat
- tubular
- Prior art date
Links
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims abstract description 37
- 230000001681 protective effect Effects 0.000 claims abstract description 28
- 239000011435 rock Substances 0.000 claims abstract description 26
- 238000000605 extraction Methods 0.000 claims abstract description 11
- 229910001748 carbonate mineral Inorganic materials 0.000 claims abstract description 7
- 238000010411 cooking Methods 0.000 claims description 22
- 125000006850 spacer group Chemical group 0.000 claims description 20
- 238000001354 calcination Methods 0.000 claims description 14
- 239000012809 cooling fluid Substances 0.000 claims description 13
- 239000000446 fuel Substances 0.000 claims description 13
- 230000001590 oxidative effect Effects 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 238000005057 refrigeration Methods 0.000 claims description 8
- 238000011068 loading method Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000007800 oxidant agent Substances 0.000 claims description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 6
- 239000011707 mineral Substances 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000010304 firing Methods 0.000 abstract description 4
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 14
- 101100067094 Mus musculus Foxl2 gene Proteins 0.000 description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 6
- 235000011941 Tilia x europaea Nutrition 0.000 description 6
- 239000004571 lime Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/02—Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/005—Shaft or like vertical or substantially vertical furnaces wherein no smelting of the charge occurs, e.g. calcining or sintering furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories or equipment specially adapted for furnaces of these types
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories or equipment specially adapted for furnaces of these types
- F27B1/22—Arrangements of heat-exchange apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/10—Arrangements for using waste heat
Definitions
- the present invention relates to a regenerative parallel flow vertical straight furnace for the calcination of carbonate mineral rock.
- PFRK Parallel Flow Regenerative Kiln
- the classic “PFRK” furnace is a straight furnace with a double vertical tank where a fuel is injected alternately into one tank then into another for approximately 10 to 15’ with a stop period between cycles of approximately T to 2’ to reverse the air and fuel circuits. This is the “inversion” period.
- the two tanks are connected by a connecting flue. When one tank is in combustion (firing mode), the hot combustion fumes pass through the connecting flue (transfer path for gas) and give up part of their heat to the mineral rock to be calcined to preheat it in the other tank called in regeneration or preheating mode.
- the tanks of the PFRK furnace are either cylindrical or rectangular. In some cases, there are three tanks, two in preheating and one in firing.
- carbonate mineral rock is understood to mean in particular calcined limestone, dolomitic rock and/or magnesite. respectively in quicklime, quickdolomite and/or magnesia.
- the calcination equation for limestone into lime is as follows:
- This very common calcination process also has the disadvantage of providing for combustion of fuel in the presence of air and cooling of the calcined product by air.
- Attempts have already been made to extract from the vat in firing mode the cooling air that has been heated in contact with the decarbonated calcined material produced.
- a central tubular collector element has been provided that stands vertically in the bottom of the vat and has at its top several collection openings. This central collector element generally communicates with a draft element external to the vat so as to allow, at a level below the connecting flue, an extraction from the furnace of heated cooling air (see WO2022/1 1 1817 and WO2022/2291 19).
- this central collector element must be able to withstand the pressure of a bed of material of at least 12 m, regularly 20 m high and that it must therefore have a very robust structure. It must also withstand possible force imbalances due to a non-uniform descent of this bed of material, with the possibility of local blockages.
- the central collector element must therefore inevitably have minimal dimensions, which represents a major drawback, in particular for small furnaces that produce less than 400 tonnes per day, as is the case for most PFRK furnaces in Europe. Indeed, the presence of a bulky central collector element has the consequence of prejudicing the downward flow of the calcined material produced.
- the lower part of the circular tanks of these small conventional furnaces in which the cooling of the calcined material takes place, usually has the shape of an inverted truncated cone, that is to say a truncated cone whose upper base has a larger area than the base. lower.
- the presence of a bulky central collector element is quite detrimental given the narrowness of the lower part of the tank at its lower level.
- the central collector element carries, at its top, a hat-shaped element which thus protects the collection opening from unwanted penetration of fines (see DE102023102447).
- this element at the top of the central collector element further increases the weight that it must support in the lower part of the tank concerned and therefore requires the presence of an extremely robust and therefore even more bulky central collector element.
- Such a structure is not adaptable in an existing small-sized furnace where the lower part of the tank narrows more and more towards the bottom.
- a vertical straight furnace with regenerative parallel flows comprising at least two tanks interconnected by a gas transfer path, each of said tanks comprising, in the in-service or out-of-service position,
- each tank further comprises a protective element in the form of a hat which is fixed in the tank in an independent position of the aforementioned central tubular collector element by covering and surrounding the upper end thereof up to a level lower than said at least one collection opening, so as to leave, between this upper end and the cap, a free passage for collection of the heated cooling air through said at least one collection opening.
- the load of the descending bed of material is supported solely by the hat-shaped protective element.
- This arrangement relieves the central tubular collector element, which can then be made in a lighter and therefore less bulky form in the narrowest area of the lower part of the tank.
- it can have the form of a simple cylindrical tube.
- the hat-shaped protective element creates a vacuum below it, through which the heated cooling air can pass freely inside the central collector element to exit the furnace at the bottom and not mix with the gas stream from the calcination that exits the furnace at the top.
- This arrangement is therefore particularly robust, simple and particularly adaptable in a small furnace where the air outlet remains proportionally large.
- the furnace according to the invention comprises a system for reversing the operation of the tanks, arranged so that each tank operates, in production mode, alternately in cooking mode and in preheating mode, one tank being in cooking mode for a predetermined period of time while at least one other tank is in preheating mode, and vice versa, this inversion system controlling for this purpose said positions in service and out of service.
- the inversion system synchronously controls all the changes necessary to switch from one mode to the other, for example by opening the carbonate mineral rock loading inlet in the tank when it is in cooking mode and closing it when it switches to preheating mode.
- the inversion system therefore controls not only numerous valves and flaps, but also the operation of the loading and unloading equipment or that of various suction, pumping or injection elements.
- said at least one cooling air introduction inlet is thus controlled in the operating position in all the oven tanks or only in the tank in cooking mode.
- production mode it is meant that the furnace is in its normal operation during which it continuously produces calcined material. This mode therefore does not concern the phases of starting the furnace, stopping it or maintenance in the event of a malfunction.
- the tubular central collector element has, at its upper end, a single opening oriented axially upwards and an upper part of the protective element in the form of a hat is arranged above and at a distance from this single opening, flaring downwards to a cylindrical lower part which extends coaxially and at a distance from the aforementioned upper end of the tubular central collector element.
- the protective element facilitates the flow of the decarbonated calcined material away from the tubular central collector element, which makes it possible to avoid blockages of said collection opening as much as possible.
- the protective element is conical in its upper part and cylindrical in its lower part.
- several support spacers preferably 3 or 4 spacers, arranged between the outer wall of the tank and the hat-shaped protective element support the latter above the central tubular collector element.
- the hat-shaped protective element is traversed by at least one cooling circuit which is supplied with cold cooling fluid, for example cold air, from at least one inlet duct traversing at least one said support spacer, a heated cooling fluid being evacuated from said at least one cooling circuit by at least one outlet duct traversing at least one said support spacer.
- cold cooling fluid for example cold air
- the cooling fluid is supplied via the spacers which are cooled in turn. This is a simple and robust system to construct and manage, in particular in a small furnace. dimension where the air outlet section remains proportionally large.
- the tubular central collector element is, in a lower part, fixed to the external wall of the tank by several beams, preferably four beams, arranged horizontally.
- the hat-shaped protective element is supported centrally above the upper end of the tubular central collector element by vertical uprights supported by said horizontal beams.
- the hat-shaped protective element is traversed by at least one other cooling circuit which is supplied with cold cooling fluid, for example cold air, from at least one supply duct traversing at least one aforementioned beam and one aforementioned upright, a heated cooling fluid being evacuated from said at least one other cooling circuit by at least one evacuation duct traversing at least one aforementioned upright and one aforementioned beam.
- cold cooling fluid for example cold air
- the tubular central collector element is traversed by at least one refrigeration fluid circuit which is supplied with cold refrigeration fluid, for example cold air, from outside the furnace, a heated refrigeration fluid being evacuated from this circuit to the outside of the furnace.
- the tubular central collector element and the hat-shaped protective element are thus cooled by independent circuits.
- Each of these circuits can be short, which increases their efficiency compared to a circuit which should be used for cooling both elements. Indeed, in the latter case, the cooling of the element in hat shape occurs unfavorably at the end of the circuit, while it is the element which is subjected to the highest thermal conditions, of the order of 900 to 1000°C, or even up to 1200°C.
- each tank is further provided with an annular collector which communicates with it via several doors located on the periphery of the tank and with an external extraction device for extracting heated cooling air from the furnace.
- annular collector which communicates with it via several doors located on the periphery of the tank and with an external extraction device for extracting heated cooling air from the furnace.
- the above-mentioned means of cooking the carbonated mineral rock during descent are elements for injecting a fuel and an oxidant into the tank in cooking mode which, through combustion, make it possible to reach a calcination temperature of said rock.
- the fuel may commonly be a fluid fuel, such as natural gas, or a solid fuel, such as coal or lignite powder, and the oxidant may be air. It is also very advantageous to envisage an oxidant formed from a mixture of CO2 and dioxygen.
- the furnace according to the invention has only a few structural modifications made to the interior of the lower part of the furnace vats.
- Existing and/or new furnaces can therefore be easily adapted to implement a calcination process during which the introduced cooling air can be extracted from the vats in a particularly efficient manner, without causing extreme deterioration in the flow and discharge of the calcined material produced.
- Figure 1 schematically represents a PFRK oven according to the invention.
- Figures 2 and 3 show partially broken views of the lower part in the shape of an inverted truncated cone of a tank of a PFRK furnace according to the invention.
- Figure 4 shows a partially broken view of the lower part in the shape of an inverted truncated cone of a tank of another PFRK furnace according to the invention.
- the PFRK furnace illustrated is a straight double-shaft furnace 1, 2 where the fuel is injected alternately into one tank 1 and then into another 2 for about 12’ with a stopping period between cycles of 30 seconds to 2’ to reverse the circuits. This is the “inversion” period.
- the two tanks have a circular section and are provided with peripheral channels 13, 13’ which are interconnected by a connecting flue 3.
- the tanks are divided in height into three zones, the preheating zone A where the carbonate rock is preheated before calcination, the calcination zone B where the carbonate rock is fired and the cooling zone C where the calcined material is cooled.
- the tank with circular section here has a part in the shape of an inverted truncated cone 38.
- a fuel supply device in the form of lances 4 injects a fuel 9 into the tank, which, in this case, is natural gas.
- the carbonate rock loaded at the top of the tank by an inlet 5 in the open position, gradually descends into it.
- An oxidant is introduced at the top of the tank by a supply opening 6, which allows combustion of the fuel at the outlet of the lances 4 and decarbonation of the carbonate rock into calcined material 10.
- the gas stream 1 1 formed by the combustion and decarbonation descends in co-current with the calcined material and, via the peripheral channel 13, passes into the connecting flue 3.
- Cooling air is, through a supply duct 7, introduced at the bottom of the tank, in counter-current to the calcined material, to cool it.
- the calcined material is discharged through the outlet 8 into an unloading equipment 26.
- the furnace comprises a schematically represented reversing system 12 which controls the operation of the tanks in a synchronized manner, during the reversal time of the tanks, and this directly or remotely. It controls the commissioning or decommissioning of all the elements of the furnace so that, in production mode, each tank operates alternately in cooking mode and in preheating mode. In some cases there are three tanks, two for preheating and one for combustion.
- a separation member 17 is provided on the discharge duct 14, capable of taking a portion of the gaseous effluent discharged from the furnace and introducing it into a recirculation circuit 18.
- the portion of gaseous effluent taken is advantageously treated in a treatment unit 19, where it can for example be filtered, cooled and/or dried.
- Dioxygen is supplied to the recirculation circuit 18 via the supply duct 20.
- This circuit 18 then conducts the oxidizing mixture formed from the recirculated fraction of gaseous effluent and O2 concentrated at the top of each of the tanks to the supply opening 6. In certain cases, it is also possible to supply this oxidizing mixture to the flue 3 or to the peripheral channels 13, 13', as shown in FIG. 1.
- the operation of the PFRK furnace of Figure 1 is as follows.
- the separation member 17 is in continuous operation, as are the treatment unit 19 and the oxygen supply 20.
- the inversion system 12 closes the exhaust duct 14 at the top of the tank in cooking mode. On the other hand, it opens, at the top of this tank, the supply opening 6 to allow the introduction of the oxidizing mixture, while it is closed at the top of the tank in preheating mode.
- the oven illustrated in Figure 1 comprises according to the invention, at the bottom of each tank, a central tubular collector element 21 having, at its lower end, at least one extraction outlet 22 and, at its upper end located at a level lower than the flue 3, a collection opening 24 oriented axially upwards.
- a central tubular collector element 21 having, at its lower end, at least one extraction outlet 22 and, at its upper end located at a level lower than the flue 3, a collection opening 24 oriented axially upwards.
- this hot air extracted from the furnace is transferred, using a draft fan 23, to a heat exchanger 16 mounted on the recirculation circuit 18, so as to preheat the portion taken from the gaseous effluent leaving the furnace, preferably before mixing it with concentrated dioxygen.
- Each tank further comprises a hat-shaped protective element 25 which, fixed in the tank in a position independent of the tubular central collector element 21, covers the upper end thereof by surrounding it up to a level below the collection opening 24.
- a hat-shaped protective element 25 which, fixed in the tank in a position independent of the tubular central collector element 21, covers the upper end thereof by surrounding it up to a level below the collection opening 24.
- an upper part of the hat-shaped protective element 25 is arranged above and at a distance from the collection opening 24, widening downwards in a conical manner to a cylindrical lower part which extends coaxially and at a distance from the upper end of the tubular central collector element 21. This arrangement thus leaves, between the upper end of the collector element 21 and the hat 25, a free passage for collecting the heated cooling air through the opening 24 of the tubular central collector element.
- the hat-shaped protective element 25 is supported centrally in the tank by several support spacers 27, here 4 spacers.
- the lower part in the form of an inverted truncated cone 38 is, in this example, formed of two successive truncated cone stages separated by a shoulder of the outer wall 28 on which these spacers are fixed, which makes it possible to produce with the cap 25 a very robust structure which is capable of receiving the load of the carbonate rock and the calcined material during descent.
- the tubular central collector element 21 can thus be designed in the form of a lighter structure which does not become cumbersome for the descent of the calcined material which takes place between the spacers 27.
- the central collector element 21 is fixed in the tank by four beams 34 arranged horizontally in a cross at the bottom of the tank.
- a cooling fluid for example air
- this circuit is supplied with cold cooling fluid along the arrow F1 from an inlet duct 30 running through each of the support spacers 27.
- the cooling fluid heated during its passage in the circuit 29 is discharged from the latter along the arrow F2 by an outlet duct 31 running through each support spacer 27.
- the hat-shaped protective element which is in contact with materials having a very high temperature, is thus cooled by a short, particularly effective cooling circuit.
- the spacers have an upward covering in the form of a double-sloped roof 32 so as to facilitate the descent of the calcined material.
- the spacer in the refractory, has an upper wall having a substantially flat shape.
- a flat shape of the upper wall of the spacer at the refractory makes it possible to better support the weight of the furnace.
- the spacer has an upper wall having a substantially flat shape when the spacer connects to the refractory at a pillar.
- the cooling air heated in contact with the calcined material during descent is collected in the passage left free between the cap 25 and the tubular collector element 21, and this by following the path F3.
- This air has a very high temperature and it is therefore preferable to provide, in order to protect the tubular wall of the collector element 21, a refrigeration circuit 33 which runs through this tubular wall as shown schematically.
- This circuit 33 is supplied with refrigeration fluid, for example cold air, from outside the tank, then the heated fluid is evacuated therefrom.
- the arrangement, provided according to the invention, between the hat-shaped protective element 25 and the central collector element 21, makes it possible to collect the cooling air which is heated by contact with the calcined material and which rises in the center of the tank.
- the tank can also be provided, at a level below the connecting flue 3 and the peripheral channels 13 and 13', with a collector ring 35 which communicates with the outside with a draw-off element, for example the draft fan 23, and opens into the tank through several peripheral doors 36 so as to allow a extraction from the furnace of the heated cooling air which rises around the periphery of the tank.
- the hat-shaped protective element 25 is, in another manner, supported in the tank independently of the tubular collector element 21.
- the hat-shaped protective element 25 is supported centrally above the upper end of the tubular central collector element 21 by vertical uprights 37 supported by the horizontal beams 34.
- the hat-shaped protective element is traversed by at least one cooling circuit 29 which is supplied with cold fluid, for example cold air, from at least one supply duct traversing, according to arrow F4, a beam 34 and a vertical upright 37.
- the heated cooling fluid is evacuated from the cooling circuit by at least one evacuation duct traversing a vertical upright 37 and a beam 34, according to arrow F5.
- the inlet opening 6 for the oxidant can be used, in a shared manner, as a gaseous effluent outlet depending on whether the tank is used in cooking mode or in preheating mode.
- the opening 6 In cooking mode, the opening 6 is connected to the recirculation duct 18 and in preheating mode to the evacuation duct 14.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Furnace Details (AREA)
Abstract
Description
Four droit vertical à flux parallèles régénératif Regenerative parallel flow vertical straight furnace
La présente invention se rapporte à un four droit vertical à flux parallèles régénératif destiné à la calcination de roche minérale carbonatée. The present invention relates to a regenerative parallel flow vertical straight furnace for the calcination of carbonate mineral rock.
Le four droit vertical à flux parallèles régénératif ou four à chaux régénératif dit « PFRK » (Parallel Flow Regenerative Kiln ) a une efficacité énergétique de 85% à 90% ; c’est la plus élevée du secteur chaux, voire de tout le secteur de l’industrie énergivore : ciment, acier, verre... Environ 60% de la chaux en Europe sont produits dans ce type de four. Cette proportion est amenée à augmenter en Europe et dans le monde, en tenant compte des feuilles de route pour la transition énergétique et écologique. The vertical parallel flow regenerative straight kiln or regenerative lime kiln called "PFRK" (Parallel Flow Regenerative Kiln) has an energy efficiency of 85% to 90%; this is the highest in the lime sector, or even in the entire energy-intensive industry sector: cement, steel, glass, etc. Around 60% of lime in Europe is produced in this type of kiln. This proportion is set to increase in Europe and worldwide, taking into account the roadmaps for the energy and ecological transition.
Le four « PFRK » classique est un four droit à double cuve verticale où un combustible est injecté alternativement dans une cuve puis dans une autre pendant environ 10 à 15’ avec une période d’arrêt entre cycles d'environ T à 2’ pour inverser les circuits d’air et de combustibles. C’est la période d’« inversion ». Les deux cuves sont reliées par un carneau de liaison. Lorsqu’une cuve est en combustion (mode cuisson), les fumées de combustion chaudes traversent le carneau de liaison (voie de transfert pour gaz) et cèdent une partie de leur chaleur à la roche minérale à calciner pour la préchauffer dans l’autre cuve dite en mode régénération ou préchauffage. Les cuves du four PFRK sont soit cylindriques soit rectangulaires. Dans certains cas, il y a trois cuves, deux en préchauffage et une en cuisson. The classic “PFRK” furnace is a straight furnace with a double vertical tank where a fuel is injected alternately into one tank then into another for approximately 10 to 15’ with a stop period between cycles of approximately T to 2’ to reverse the air and fuel circuits. This is the “inversion” period. The two tanks are connected by a connecting flue. When one tank is in combustion (firing mode), the hot combustion fumes pass through the connecting flue (transfer path for gas) and give up part of their heat to the mineral rock to be calcined to preheat it in the other tank called in regeneration or preheating mode. The tanks of the PFRK furnace are either cylindrical or rectangular. In some cases, there are three tanks, two in preheating and one in firing.
Par roche minérale carbonatée, au sens de la présente invention, on entend en particulier de la roche calcaire, de la roche dolomitique et/ou de la magnésite qui se calcinent respectivement en chaux vive, en dolomie vive et /ou en magnésie. L’équation de calcination du calcaire en chaux est la suivante : For the purposes of the present invention, carbonate mineral rock is understood to mean in particular calcined limestone, dolomitic rock and/or magnesite. respectively in quicklime, quickdolomite and/or magnesia. The calcination equation for limestone into lime is as follows:
CaCCh (solide) + chaleur -> CaO (solide)+ CO2 (gaz)CaCCh (solid) + heat -> CaO (solid) + CO2 (gas)
C’est une réaction endothermique réversible et la chaux se recombine avec le CO2 à la première occasion en dessous de 900°C, avec un équilibre et une cinétique plus ou moins rapide en fonction de la température et de la concentration ambiante du CO2. It is a reversible endothermic reaction and the lime recombines with the CO2 at the first opportunity below 900°C, with equilibrium and kinetics more or less rapid depending on the temperature and the ambient concentration of CO2.
Au cours de ce processus, la roche calcaire ou dolomitique de départ dégage donc un important volume de CO2 pendant sa calcination en chaux ou dolomie. De plus, pour réaliser cette calcination, il faut atteindre des températures élevées et pour ce faire on procède couramment à la combustion de combustibles, régulièrement fossiles, ce qui, à son tour, provoque un dégagement important de CO2. Globalement, les procédés de calcination présentent l’inconvénient de participer activement à l’augmentation de l’effet de serre. During this process, the initial limestone or dolomite rock therefore releases a significant volume of CO2 during its calcination into lime or dolomite. In addition, to achieve this calcination, high temperatures must be reached and to do this, fuels, often fossil fuels, are commonly burned, which in turn causes a significant release of CO2. Overall, calcination processes have the disadvantage of actively contributing to the increase in the greenhouse effect.
Ce procédé de calcination tout à fait courant présente aussi l’inconvénient de prévoir une combustion de combustible en présence d’air et le refroidissement du produit calciné par de l’air. Il en résulte un dégagement au haut du four d’un effluent gazeux présentant un taux élevé d’azote diatomique, et un taux comparativement faible de CO2 (concentration en volume de l’ordre de 20% à 30% sur gaz sec), qu’il est coûteux de capturer en raison de la forte présence de diazote provenant de l’air utilisé. Des tentatives ont déjà été mises en œuvre pour extraire de la cuve en mode cuisson l’air de refroidissement qui a été chauffé au contact de la matière calcinée décarbonatée produite. Dans le cas des cuves circulaires on a prévu un élément collecteur central de forme tubulaire qui se dresse verticalement dans le fond de la cuve et qui présente à son sommet plusieurs ouvertures de récolte. Cet élément collecteur central communique généralement avec un élément de tirage extérieur à la cuve de manière à permettre, à un niveau inférieur au carneau de liaison, une extraction hors du four d’air de refroidissement chauffé (voir WO2022/1 1 1817 et WO2022/2291 19). This very common calcination process also has the disadvantage of providing for combustion of fuel in the presence of air and cooling of the calcined product by air. This results in the release at the top of the furnace of a gaseous effluent having a high level of diatomic nitrogen, and a comparatively low level of CO2 (volume concentration of the order of 20% to 30% on dry gas), which is expensive to capture due to the high presence of dinitrogen coming from the air used. Attempts have already been made to extract from the vat in firing mode the cooling air that has been heated in contact with the decarbonated calcined material produced. In the case of circular vats, a central tubular collector element has been provided that stands vertically in the bottom of the vat and has at its top several collection openings. This central collector element generally communicates with a draft element external to the vat so as to allow, at a level below the connecting flue, an extraction from the furnace of heated cooling air (see WO2022/1 1 1817 and WO2022/2291 19).
Il faut noter que cet élément collecteur central doit être capable de supporter la pression d’un lit de matière d’au moins 12 m, régulièrement de 20 m de haut et qu’il doit donc présenter une structure très robuste. Il doit aussi résister à d’éventuels déséquilibres de forces dus à une descente non uniforme de ce lit de matière, avec possibilité de blocages locaux. L’élément collecteur central doit donc inévitablement présenter des dimensions minimales, ce qui représente un inconvénient majeur, en particulier pour les fours de petite dimension qui produisent moins de 400 tonnes par jour, comme c’est le cas de la plupart des fours PFRK en Europe. En effet la présence d’un élément collecteur central encombrant a pour conséquence de préjudicier l’écoulement vers le bas de la matière calcinée produite. En outre, la partie basse des cuves circulaires de ces petits fours usuels, dans laquelle est produite le refroidissement de la matière calcinée, présente habituellement une forme de tronc de cône inversé, c’est-à-dire de tronc de cône dont la base supérieure présente une aire de plus grande dimension que la base inférieure. Dans cette configuration, la présence d’un élément collecteur central encombrant est tout à fait préjudiciable étant donné l’étroitesse de la partie basse de la cuve à son niveau inférieur. It should be noted that this central collector element must be able to withstand the pressure of a bed of material of at least 12 m, regularly 20 m high and that it must therefore have a very robust structure. It must also withstand possible force imbalances due to a non-uniform descent of this bed of material, with the possibility of local blockages. The central collector element must therefore inevitably have minimal dimensions, which represents a major drawback, in particular for small furnaces that produce less than 400 tonnes per day, as is the case for most PFRK furnaces in Europe. Indeed, the presence of a bulky central collector element has the consequence of prejudicing the downward flow of the calcined material produced. Furthermore, the lower part of the circular tanks of these small conventional furnaces, in which the cooling of the calcined material takes place, usually has the shape of an inverted truncated cone, that is to say a truncated cone whose upper base has a larger area than the base. lower. In this configuration, the presence of a bulky central collector element is quite detrimental given the narrowness of the lower part of the tank at its lower level.
Par ailleurs ces éléments collecteurs centraux connus de la technique antérieure présentent l’inconvénient de ne pas permettre d’éviter d’une manière efficace une pénétration des fines de la matière calcinée produite par leurs ouvertures de récolte. Furthermore, these central collector elements known from the prior art have the disadvantage of not being able to effectively prevent the penetration of fines from the calcined material produced through their collection openings.
Dans le but de résoudre ce problème particulier, on a déjà prévu que l’élément collecteur central porte, à son sommet, un élément en forme de chapeau qui protège ainsi l’ouverture de récolte d’une pénétration non souhaitée de fines (voir DE102023102447). Malheureusement l’ajout de cet élément au sommet de l’élément collecteur central augmente encore le poids que celui-ci doit supporter dans la partie basse de la cuve concernée et donc nécessite la présence d’un élément collecteur central extrêmement robuste et de ce fait encore plus encombrant. Une telle structure n’est pas adaptable dans un four existant de petite dimension où la partie basse de la cuve se rétrécit de plus en plus vers le bas. In order to solve this particular problem, it has already been provided that the central collector element carries, at its top, a hat-shaped element which thus protects the collection opening from unwanted penetration of fines (see DE102023102447). Unfortunately, the addition of this element at the top of the central collector element further increases the weight that it must support in the lower part of the tank concerned and therefore requires the presence of an extremely robust and therefore even more bulky central collector element. Such a structure is not adaptable in an existing small-sized furnace where the lower part of the tank narrows more and more towards the bottom.
La présente invention a pour but de réduire de manière significative les inconvénients et risques structurels présentés par les éléments collecteurs centraux de l’état de la technique, tout en conservant leur modèle fonctionnel et donc l’efficacité de l’extraction de l’air de refroidissement chauffé au centre de la cuve circulaire du four qui est en mode cuisson. Il est aussi souhaitable que ces éléments collecteurs centraux soient adaptables dans les fours existants de petite dimension. Pour résoudre ces problèmes, il est prévu, suivant l’invention, un four droit vertical à flux parallèles régénératif, comprenant au moins deux cuves interconnectées par une voie de transfert pour gaz, chacune desdites cuves comportant, en position en service ou hors service, The present invention aims to significantly reduce the structural drawbacks and risks presented by the central collector elements of the state of the art, while retaining their functional model and therefore the efficiency of the extraction of the heated cooling air in the center of the circular tank of the oven which is in cooking mode. It is also desirable that these central collector elements are adaptable in existing small-sized ovens. To solve these problems, according to the invention, there is provided a vertical straight furnace with regenerative parallel flows, comprising at least two tanks interconnected by a gas transfer path, each of said tanks comprising, in the in-service or out-of-service position,
- au moins une entrée de chargement d’une roche minérale carbonatée, au haut de la cuve, - at least one loading inlet of a carbonate mineral rock, at the top of the tank,
- à un niveau supérieur à ladite voie de transfert pour gaz, des moyens de cuisson de ladite roche minérale carbonatée en cours de descente depuis ladite au moins une entrée de chargement destinés à produire une charge de matière calcinée décarbonatée, - at a level above said gas transfer path, means for cooking said carbonated mineral rock during descent from said at least one loading inlet intended to produce a charge of decarbonated calcined material,
- au moins une sortie de déchargement de la matière calcinée décarbonatée produite, au bas de la cuve, - at least one discharge outlet for the decarbonated calcined material produced, at the bottom of the tank,
- au moins un conduit d’évacuation d’effluent gazeuxau haut de la cuve, - at least one gas effluent discharge pipe at the top of the tank,
- à un niveau inférieur à ladite voie de transfert pour gaz, au moins une entrée d’introduction d’air de refroidissement au bas cette partie basse de la cuve pour refroidir en contre-courant la matière calcinée décarbonatée produite, et un élément collecteur central tubulaire présentant, à son extrémité haute, au moins une ouverture de récolte par où est collecté à l’intérieur de l’élément collecteur tubulaire central un air de refroidissement chauffé par la matière calcinée décarbonatée et, à son extrémité basse, au moins une sortie d’extraction permettant une récolte hors du four de cet air de refroidissement chauffé collecté, dans lequel chaque cuve comprend en outre un élément protecteur en forme de chapeau qui est fixé dans la cuve dans une position indépendante de l’élément collecteur central tubulaire susdit^en recouvrant et entourant l’extrémité haute de celui-ci jusqu’à un niveau inférieur à ladite au moins une ouverture de récolte, de façon à laisser, entre cette extrémité haute et le chapeau, un passage libre pour une collecte de l’air de refroidissement chauffé à travers ladite au moins une ouverture de récolte. - at a level below said gas transfer path, at least one cooling air inlet at the bottom of this lower part of the tank for counter-current cooling of the decarbonated calcined material produced, and a central tubular collector element having, at its upper end, at least one collection opening through which cooling air heated by the decarbonated calcined material is collected inside the central tubular collector element and, at its lower end, at least one extraction outlet allowing collection outside the furnace of this collected heated cooling air, in which each tank further comprises a protective element in the form of a hat which is fixed in the tank in an independent position of the aforementioned central tubular collector element by covering and surrounding the upper end thereof up to a level lower than said at least one collection opening, so as to leave, between this upper end and the cap, a free passage for collection of the heated cooling air through said at least one collection opening.
Dans un tel four, la charge du lit de matière en cours de descente est supportée uniquement par l’élément protecteur en forme de chapeau. Cet agencement décharge l’élément collecteur central tubulaire qui peut alors être réalisé sous une forme plus légère et de ce fait moins encombrante dans la zone la plus étroite de la partie basse de la cuve. Avantageusement il peut avoir la forme d’un simple tube cylindrique. Lorsque le four présente des cuves dont la partie basse est en forme de tronc de cône inversé, l’élément protecteur en forme de chapeau se situe dans la zone la plus large de cette partie basse, en préjudiciant ainsi le moins possible l’écoulement de la matière vers le bas. In such a furnace, the load of the descending bed of material is supported solely by the hat-shaped protective element. This arrangement relieves the central tubular collector element, which can then be made in a lighter and therefore less bulky form in the narrowest area of the lower part of the tank. Advantageously, it can have the form of a simple cylindrical tube. When the furnace has tanks whose lower part is in the shape of an inverted truncated cone, the hat-shaped protective element is located in the widest area of this lower part, thus impairing the flow of material downwards as little as possible.
En plus de sa fonction mécanique l’élément protecteur en forme de chapeau crée un vide en dessous de lui, vide par lequel l’air de refroidissement chauffé peut passer librement à l’intérieur de l’élément collecteur central pour sortir du four par le bas et ne pas se mélanger au courant gazeux issu de la calcination qui sort du four par le haut. Cet agencement est donc particulièrement robuste, simple et notamment adaptable dans un four de petite dimension où la sortie de l’air reste proportionnellement grande. In addition to its mechanical function, the hat-shaped protective element creates a vacuum below it, through which the heated cooling air can pass freely inside the central collector element to exit the furnace at the bottom and not mix with the gas stream from the calcination that exits the furnace at the top. This arrangement is therefore particularly robust, simple and particularly adaptable in a small furnace where the air outlet remains proportionally large.
D’une manière classique le four suivant l’invention comprend un système d’inversion du fonctionnement des cuves, agencé pour que chaque cuve fonctionne, en régime production, alternativement en mode cuisson et en mode préchauffage, une cuve étant en mode cuisson pendant une période de temps prédéterminée pendant qu'au moins une autre cuve est en mode préchauffage, et inversement, ce système d’inversion commandant dans ce but lesdites positions en service et hors service. In a conventional manner, the furnace according to the invention comprises a system for reversing the operation of the tanks, arranged so that each tank operates, in production mode, alternately in cooking mode and in preheating mode, one tank being in cooking mode for a predetermined period of time while at least one other tank is in preheating mode, and vice versa, this inversion system controlling for this purpose said positions in service and out of service.
Pendant le temps d’inversion le système d’inversion commande de manière synchronisée tous les changements nécessaires pour passer d’un mode à l’autre, par exemple en ouvrant l’entrée de chargement de roche minérale carbonatée dans la cuve lorsqu’elle est en mode cuisson et en la fermant lorsqu’elle passe en mode préchauffage. Le système d’inversion commande donc non seulement de nombreux clapets et vannes, mais aussi le fonctionnement des équipements de chargement et de déchargement ou encore celui de divers éléments d’aspiration, de pompage ou d’injection. During the inversion time, the inversion system synchronously controls all the changes necessary to switch from one mode to the other, for example by opening the carbonate mineral rock loading inlet in the tank when it is in cooking mode and closing it when it switches to preheating mode. The inversion system therefore controls not only numerous valves and flaps, but also the operation of the loading and unloading equipment or that of various suction, pumping or injection elements.
Selon les cas, ladite au moins une entrée d’introduction d’air de refroidissement est ainsi commandée en position en service dans toutes les cuves du four ou uniquement dans la cuve en mode cuisson. Depending on the case, said at least one cooling air introduction inlet is thus controlled in the operating position in all the oven tanks or only in the tank in cooking mode.
Par régime production, il faut entendre que le four est dans son service normal pendant lequel il produit de manière continue de la matière calcinée. Ce régime ne concerne donc pas les phases de démarrage du four, d’arrêt de celui-ci ou de maintenance en cas de dysfonctionnement. By production mode, it is meant that the furnace is in its normal operation during which it continuously produces calcined material. This mode therefore does not concern the phases of starting the furnace, stopping it or maintenance in the event of a malfunction.
Suivant une forme de réalisation de l’invention, l’élément collecteur central tubulaire présente, à son extrémité haute, une unique ouverture orientée axialement vers le haut et une partie supérieure de l’élément protecteur en forme de chapeau est agencée au-dessus et à distance de cette unique ouverture, en s’évasant vers le bas jusqu’à une partie inférieure cylindrique qui s’étend coaxialement et à distance de l’extrémité haute susdite de l’élément collecteur central tubulaire. Par la forme évasée vers le bas de sa partie haute l’élément protecteur facilite l’écoulement de la matière calcinée décarbonatée à l’écart de l’élément collecteur central tubulaire, ce qui permet d’éviter au maximum des blocages de ladite ouverture de récolte. Avantageusement l’élément protecteurest conique dans sa partie haute et cylindrique dans sa partie basse. According to one embodiment of the invention, the tubular central collector element has, at its upper end, a single opening oriented axially upwards and an upper part of the protective element in the form of a hat is arranged above and at a distance from this single opening, flaring downwards to a cylindrical lower part which extends coaxially and at a distance from the aforementioned upper end of the tubular central collector element. By the downwardly flared shape of its upper part, the protective element facilitates the flow of the decarbonated calcined material away from the tubular central collector element, which makes it possible to avoid blockages of said collection opening as much as possible. Advantageously, the protective element is conical in its upper part and cylindrical in its lower part.
Suivant une forme avantageuse de réalisation de l’invention, plusieurs entretoises de support, de préférence 3 ou 4 entretoises, agencées entre la paroi extérieure de la cuve et l’élément protecteur en forme de chapeau soutiennent celui-ci au-dessus de l’élément collecteur central tubulaire. According to an advantageous embodiment of the invention, several support spacers, preferably 3 or 4 spacers, arranged between the outer wall of the tank and the hat-shaped protective element support the latter above the central tubular collector element.
De préférence, l’élément protecteur en forme de chapeau est parcouru par au moins un circuit de refroidissement qui est alimenté en fluide de refroidissement froid, par exemple de l’air froid, depuis au moins un conduit d’entrée parcourant au moins une entretoise de support susdite, un fluide de refroidissement chauffé étant évacué dudit au moins un circuit de refroidissement par au moins un conduit de sortie parcourant au moins une entretoise de support susdite. Il n’y a pas de conduits qui relient l’élément collecteur central tubulaire à l’élément protecteur en forme de chapeau ce qui est particulièrement favorable pour le passage de l’air de refroidissement chauffé. D’autre part le fluide de refroidissement est fourni par l’intermédiaire des entretoises qui sont refroidies à leur tour. Il s’agit d’un système simple et robuste à construire et à gérer, en particulier dans un four de petite dimension où Io section de sortie de I’ air reste proportionnellement grande. Preferably, the hat-shaped protective element is traversed by at least one cooling circuit which is supplied with cold cooling fluid, for example cold air, from at least one inlet duct traversing at least one said support spacer, a heated cooling fluid being evacuated from said at least one cooling circuit by at least one outlet duct traversing at least one said support spacer. There are no ducts which connect the tubular central collector element to the hat-shaped protective element which is particularly favorable for the passage of the heated cooling air. On the other hand the cooling fluid is supplied via the spacers which are cooled in turn. This is a simple and robust system to construct and manage, in particular in a small furnace. dimension where the air outlet section remains proportionally large.
Suivant une forme de réalisation de l’invention, l’élément collecteur central tubulaire est, dans une partie basse, fixé à la paroi extérieure de la cuve par plusieurs poutres, de préférence quatre poutres, disposées horizontalement. Avantageusement, l’élément protecteur en forme de chapeau est soutenu centralement au-dessus de l’extrémité haute de l’élément collecteur central tubulaire par des montants verticaux supportés par lesdites poutres horizontales. According to one embodiment of the invention, the tubular central collector element is, in a lower part, fixed to the external wall of the tank by several beams, preferably four beams, arranged horizontally. Advantageously, the hat-shaped protective element is supported centrally above the upper end of the tubular central collector element by vertical uprights supported by said horizontal beams.
De préférence, dans ce cas, l’élément protecteur en forme de chapeau est parcouru par au moins un autre circuit de refroidissement qui est alimenté en fluide de refroidissement froid, par exemple de l’air froid, depuis au moins un conduit d’alimentation parcourant au moins une poutre susdite et un montant susdit, un fluide de refroidissement chauffé étant évacué dudit au moins un autre circuit de refroidissement par au moins un conduit d’évacuation parcourant au moins un montant susdit et une poutre susdite. Preferably, in this case, the hat-shaped protective element is traversed by at least one other cooling circuit which is supplied with cold cooling fluid, for example cold air, from at least one supply duct traversing at least one aforementioned beam and one aforementioned upright, a heated cooling fluid being evacuated from said at least one other cooling circuit by at least one evacuation duct traversing at least one aforementioned upright and one aforementioned beam.
Avantageusement, l’élément collecteur central tubulaire est parcouru par au moins un circuit de fluide de réfrigération qui est alimenté en fluide de réfrigération froid, par exemple de l’air froid, depuis l’extérieur du four, un fluide de réfrigération chauffé étant évacué de ce circuit à l’extérieur du four. L’élément collecteur central tubulaire et l’élément protecteur en forme de chapeau sont ainsi refroidis par des circuits indépendants. Chacun de ces circuits peut être court, ce qui augmente leur efficacité par rapport à un circuit qui devrait servir au refroidissement des deux éléments. En effet, dans ce dernier cas, le refroidissement de l’élément en forme de chapeau a lieu de façon défavorable en bout de circuif, alors que c’esf l’élément qui est soumis aux conditions thermiques les plus élevées, de l’ordre de 900 à 1000°C, voire même jusqu’à 1200°C. Advantageously, the tubular central collector element is traversed by at least one refrigeration fluid circuit which is supplied with cold refrigeration fluid, for example cold air, from outside the furnace, a heated refrigeration fluid being evacuated from this circuit to the outside of the furnace. The tubular central collector element and the hat-shaped protective element are thus cooled by independent circuits. Each of these circuits can be short, which increases their efficiency compared to a circuit which should be used for cooling both elements. Indeed, in the latter case, the cooling of the element in hat shape occurs unfavorably at the end of the circuit, while it is the element which is subjected to the highest thermal conditions, of the order of 900 to 1000°C, or even up to 1200°C.
Suivant une forme de réalisation de l’invention, chaque cuve est pourvue en outre d’un collecteur annulaire qui communique avec elle par plusieurs portes situées en périphérie de la cuve et avec un dispositif d’extraction externe pour extraire du four de l’air de refroidissement chauffé. De cette manière l’efficacité de l’extraction est augmentée, elle se passe à la fois au centre de la cuve et en périphérie de celle-ci. Le risque d’un échappement de fines de la matière calcinée décarbonatée vers ladite au moins une ouverture de récolte de l’élément collecteur central, avec blocage potentiel de celle-ci, est ainsi fortement réduit. According to one embodiment of the invention, each tank is further provided with an annular collector which communicates with it via several doors located on the periphery of the tank and with an external extraction device for extracting heated cooling air from the furnace. In this way, the efficiency of the extraction is increased, it takes place both in the center of the tank and on the periphery thereof. The risk of an escape of fines from the decarbonated calcined material towards said at least one collection opening of the central collector element, with potential blockage thereof, is thus greatly reduced.
Les moyens de cuisson susdits de la roche minérale carbonatée en cours de descente sont des éléments d’injection dans la cuve en mode cuisson d’un combustible et d’un comburant qui par combustion permettent d’atteindre une température de calcination de ladite roche. Dans un four classique le combustible pourra être de manière courante un combustible fluide, tel que du gaz naturel, ou un combustible solide, tel que de la poudre de charbon ou de lignite, et le comburant pourra être de l’air. On peut envisager aussi très avantageusement un comburant formé d’un mélange de CO2 et de dioxygène. The above-mentioned means of cooking the carbonated mineral rock during descent are elements for injecting a fuel and an oxidant into the tank in cooking mode which, through combustion, make it possible to reach a calcination temperature of said rock. In a conventional furnace, the fuel may commonly be a fluid fuel, such as natural gas, or a solid fuel, such as coal or lignite powder, and the oxidant may be air. It is also very advantageous to envisage an oxidant formed from a mixture of CO2 and dioxygen.
Comme moyens de cuisson de la roche minérale carbonatée en cours de descente on peut aussi envisager des éléments d’injection dans la cuve en mode cuisson d’un gaz ou mélange gazeux porté, à l’extérieur de cette cuve, à une température de calcination de ladite roche. On peut envisager pour ce foire des dispositifs électriques, par exemple faisant intervenir des torches à plasma. As means of cooking the carbonate mineral rock during descent, it is also possible to envisage elements for injecting into the tank in cooking mode a gas or gas mixture brought, outside this tank, to a calcination temperature of said rock. It is possible to envisage for this fair electrical devices, for example involving plasma torches.
Comme on peut le constater le four selon l’invention ne présente que quelques modifications structurelles apportées à l’intérieur de la partie basse des cuves du four. Des fours existants et/ou nouveaux peuvent donc être aisément aménagés pour mettre en oeuvre un procédé de calcination pendant lequel on peut, de manière particulièrement efficace, extraire des cuves l’air de refroidissement introduit, sans provoquer une détérioration extrême de l’écoulement et du déchargement de la matière calcinée produite.. As can be seen, the furnace according to the invention has only a few structural modifications made to the interior of the lower part of the furnace vats. Existing and/or new furnaces can therefore be easily adapted to implement a calcination process during which the introduced cooling air can be extracted from the vats in a particularly efficient manner, without causing extreme deterioration in the flow and discharge of the calcined material produced.
D’autres détails et particularités du four selon l’invention sont indiqués dans les revendications annexées. Further details and features of the oven according to the invention are indicated in the appended claims.
D’autres particularités de l’invention ressortiront également de la description donnée ci-après, à titre non limitatif et en faisant référence aux dessins annexés. Other features of the invention will also emerge from the description given below, without limitation and with reference to the attached drawings.
La figure 1 représente de manière schématique un four PFRK suivant l’invention. Figure 1 schematically represents a PFRK oven according to the invention.
Les figures 2 et 3 représentent des vues partiellement brisées de la partie basse en forme de tronc de cône inversé d’une cuve d’un four PFRK suivant l’invention. Figures 2 and 3 show partially broken views of the lower part in the shape of an inverted truncated cone of a tank of a PFRK furnace according to the invention.
La figure 4 représente une vue partiellement brisée de la partie basse en forme de tronc de cône inversé d’une cuve d’un autre four PFRK suivant l’invention. Figure 4 shows a partially broken view of the lower part in the shape of an inverted truncated cone of a tank of another PFRK furnace according to the invention.
Sur les figures, les éléments identiques ou analogues portent les mêmes références. D’une manière conventionnelle la cuve illustrée à gauche sur la figure 1 est en mode cuisson et la cuve illustrée à droite en mode préchauffage. Pour ne pas encombrer les dessins des éléments standards, comme par exemple les équipements de chargement ou déchargement, ils ne sont pas représentés ou ils le sont de manière très schématique. In the figures, identical or similar elements bear the same references. Conventionally, the tank illustrated on the left in Figure 1 is in cooking mode and the tank shown on the right in preheating mode. In order not to clutter the drawings with standard elements, such as loading or unloading equipment, they are not shown or are shown very schematically.
Comme on peut le voir à la figure 1 , le four PFRK illustré est un four droit à double cuve 1 , 2 où le combustible est injecté alternativement dans une cuve 1 puis dans une autre 2 pendant environ 12’ avec une période d’arrêt entre cycles de 30 secondes à 2’ pour inverser les circuits. C’est la période d’« inversion ». Les deux cuves ont une section circulaire et sont pourvues de canaux périphériques 13, 13’ qui sont interconnectés par un carneau de liaison 3. Les cuves sont divisées en hauteur en trois zones, la zone de préchauffage A où la roche carbonatée est préchauffée avant calcination, la zone de calcination B où a lieu la cuisson de la roche carbonatée et la zone de refroidissement C où a lieu le refroidissement de la matière calcinée. Dans cette dernière zone, la cuve à section circulaire présente ici une partie en forme de tronc de cône inversé 38. As can be seen in Figure 1, the PFRK furnace illustrated is a straight double-shaft furnace 1, 2 where the fuel is injected alternately into one tank 1 and then into another 2 for about 12’ with a stopping period between cycles of 30 seconds to 2’ to reverse the circuits. This is the “inversion” period. The two tanks have a circular section and are provided with peripheral channels 13, 13’ which are interconnected by a connecting flue 3. The tanks are divided in height into three zones, the preheating zone A where the carbonate rock is preheated before calcination, the calcination zone B where the carbonate rock is fired and the cooling zone C where the calcined material is cooled. In this last zone, the tank with circular section here has a part in the shape of an inverted truncated cone 38.
Dans l’exemple illustré, lorsqu’une cuve est en mode cuisson, ici la cuve 1 , un dispositif d’alimentation en combustible en forme de lances 4 injecte dans la cuve un combustible 9, qui, dans ce cas, est du gaz naturel. La roche carbonatée, chargée au haut de la cuve par une entrée 5 en position ouverte, descend progressivement dans celle-ci. Un comburant est introduit au haut de la cuve par une ouverture d’amenée 6, ce qui permet une combustion du combustible à la sortie des lances 4 et une décarbonatation de la roche carbonatée en matière calcinée 10. Le courant gazeux 1 1 formé par la combustion et la décarbonatation descend en co-courant de la matière calcinée et, par l’intermédiaire du canal périphérique 13, passe dans le carneau de liaison 3. De l’air de refroidissement est, par un conduit d 'amenée 7, introduit au bas de la cuve, en contre-courant de la matière calcinée, pour la refroidir. La matière calcinée est déchargée par la sortie 8 dans un équipement de déchargement 26. In the illustrated example, when a tank is in cooking mode, here the tank 1, a fuel supply device in the form of lances 4 injects a fuel 9 into the tank, which, in this case, is natural gas. The carbonate rock, loaded at the top of the tank by an inlet 5 in the open position, gradually descends into it. An oxidant is introduced at the top of the tank by a supply opening 6, which allows combustion of the fuel at the outlet of the lances 4 and decarbonation of the carbonate rock into calcined material 10. The gas stream 1 1 formed by the combustion and decarbonation descends in co-current with the calcined material and, via the peripheral channel 13, passes into the connecting flue 3. Cooling air is, through a supply duct 7, introduced at the bottom of the tank, in counter-current to the calcined material, to cool it. The calcined material is discharged through the outlet 8 into an unloading equipment 26.
Lorsqu’une cuve est en mode préchauffage, ici la cuve 2, le dispositif d’alimentation en combustible est fermé et les lances 4 sont donc hors service. Il en est de même de l’entrée 5 pour la roche carbonatée et de l’ouverture 6 pour l’amenée du comburant. Par contre, le conduit d’amenée 7 pour l’air de refroidissement et la sortie 8 pour la matière calcinée restent en position d’ouverture. Le courant gazeux 1 1 , en provenance du carneau de liaison 3, parvient dans la cuve 2 par le canal périphérique 13’. Ce courant gazeux 1 1 progresse jusqu’au haut de la cuve où il est évacué du four par un conduit d’évacuation 14 et transféré vers une cheminée 15, en passant avantageusement par un ventilateur de tirage et une unité de filtration non représentés. Dans la cuve en mode cuisson 1 , ce conduit d’évacuation 14 est fermé. When a tank is in preheating mode, here tank 2, the fuel supply device is closed and the lances 4 are therefore out of service. The same applies to the inlet 5 for the carbonate rock and the opening 6 for the supply of the oxidant. On the other hand, the supply duct 7 for the cooling air and the outlet 8 for the calcined material remain in the open position. The gas stream 1 1 , coming from the connecting flue 3, reaches the tank 2 via the peripheral channel 13'. This gas stream 1 1 progresses to the top of the tank where it is evacuated from the furnace by an evacuation duct 14 and transferred to a chimney 15, advantageously passing through a draft fan and a filtration unit not shown. In the tank in cooking mode 1 , this evacuation duct 14 is closed.
Le four comprend un système d’inversion 12 représenté de manière schématique qui commande de façon synchronisée le fonctionnement des cuves, pendant le temps d’inversion des cuves, et cela de manière directe ou à distance. Il commande la mise en service ou hors service de tous les éléments du four de façon que, en régime production, chaque cuve fonctionne alternativement en mode cuisson et en mode préchauffage. Dans certains cas, il y a trois cuves, deux en préchauffage et une en combustion. The furnace comprises a schematically represented reversing system 12 which controls the operation of the tanks in a synchronized manner, during the reversal time of the tanks, and this directly or remotely. It controls the commissioning or decommissioning of all the elements of the furnace so that, in production mode, each tank operates alternately in cooking mode and in preheating mode. In some cases there are three tanks, two for preheating and one for combustion.
Dans le four illustré sur la figure 1 , on a prévu, sur le conduit d’évacuation 14, un organe de séparation 17, capable de prélever une partie de l’effluent gazeux évacué du four et de l’introduire dans un circuit de recirculation 18. Dans ce circuit la partie d’effluent gazeux prélevée est avantageusement traitée dans une unité de traitement 19, où elle peut par exemple être filtrée, refroidie et/ou séchée. Du dioxygène est amené au circuit de recirculation 18 par le conduit d 'amenée 20. Ce circuit 18 conduit ensuite le mélange comburant formé de la fraction recirculée d’effluent gazeux et de O2 concentré au sommet de chacune des cuves à l’ouverture d’amenée 6. Dans certains cas, il est aussi possible d’amener ce mélange comburant au carneau 3 ou aux canaux périphériques 13, 13’, comme représenté sur la figure 1 . In the furnace illustrated in FIG. 1, a separation member 17 is provided on the discharge duct 14, capable of taking a portion of the gaseous effluent discharged from the furnace and introducing it into a recirculation circuit 18. In this circuit, the portion of gaseous effluent taken is advantageously treated in a treatment unit 19, where it can for example be filtered, cooled and/or dried. Dioxygen is supplied to the recirculation circuit 18 via the supply duct 20. This circuit 18 then conducts the oxidizing mixture formed from the recirculated fraction of gaseous effluent and O2 concentrated at the top of each of the tanks to the supply opening 6. In certain cases, it is also possible to supply this oxidizing mixture to the flue 3 or to the peripheral channels 13, 13', as shown in FIG. 1.
Le fonctionnement du four PFRK de la figure 1 est le suivant. L’organe de séparation 17 est en service en continu, de même que l’unité de traitement 19 et l’amenée d’oxygène 20. Comme on l’a déjà vu, le système d’inversion 12 ferme le conduit d’évacuation 14 au haut de la cuve en mode cuisson. Il ouvre par contre, au sommet de cette cuve, l’ouverture d’amenée 6 pour permettre l’introduction du mélange comburant, tandis qu’elle est fermée au sommet de la cuve en mode préchauffage. The operation of the PFRK furnace of Figure 1 is as follows. The separation member 17 is in continuous operation, as are the treatment unit 19 and the oxygen supply 20. As already seen, the inversion system 12 closes the exhaust duct 14 at the top of the tank in cooking mode. On the other hand, it opens, at the top of this tank, the supply opening 6 to allow the introduction of the oxidizing mixture, while it is closed at the top of the tank in preheating mode.
Le four illustré sur la figure 1 comprend suivant l’invention, au bas de chaque cuve, un élément collecteur central tubulaire 21 présentant, à son extrémité basse, au moins une sortie d’extraction 22 et, à son extrémité haute située à un niveau inférieur au carneau 3, une ouverture de récolte 24 orientée axialement vers le haut. Par cette ouverture, l’air de refroidissement chauffé au contact de la matière calcinée décarbonatée est collecté à l’intérieur de l’élément collecteur tubulaire central 21 , de manière à permettre son extraction hors du four. Dans l’exemple illustré, cet air chaud extrait du four est transféré, à l’aide d’un ventilateurde tirage 23, à un échangeurde chaleur 16 monté sur le circuit de recirculation 18, de manière à préchauffer la partie prélevée de l’effluent gazeux sortant du four, de préférence avant son mélange avec du dioxygène concentré. The oven illustrated in Figure 1 comprises according to the invention, at the bottom of each tank, a central tubular collector element 21 having, at its lower end, at least one extraction outlet 22 and, at its upper end located at a level lower than the flue 3, a collection opening 24 oriented axially upwards. Through this opening, the cooling air heated in contact with the decarbonated calcined material is collected inside the central tubular collector element 21, so as to allow its extraction from the furnace. In the example illustrated, this hot air extracted from the furnace is transferred, using a draft fan 23, to a heat exchanger 16 mounted on the recirculation circuit 18, so as to preheat the portion taken from the gaseous effluent leaving the furnace, preferably before mixing it with concentrated dioxygen.
Chaque cuve comprend en outre un élément protecteur en forme de chapeau 25 qui, fixé dans la cuve dans une position indépendante de l’élément collecteur central tubulaire 21 , recouvre l’extrémité haute de celui-ci en l’entourant jusqu’à un niveau inférieur à l’ouverture de récolte 24. Dans l’exemple illustré une partie supérieure de l’élément protecteur en forme de chapeau 25 est agencée au-dessus et à distance de l’ouverture de récolte 24, en s’évasant vers le bas de manière conique jusqu’à une partie inférieure cylindrique qui s’étend coaxialement et à distance de l’extrémité haute de l’élément collecteur central tubulaire 21 . Cet agencement laisse ainsi, entre l’extrémité haute de l’élément collecteur 21 et le chapeau 25, un passage libre pour une collecte de l’air de refroidissement chauffé à travers l’ouverture 24 de l’élément collecteur central tubulaire. Each tank further comprises a hat-shaped protective element 25 which, fixed in the tank in a position independent of the tubular central collector element 21, covers the upper end thereof by surrounding it up to a level below the collection opening 24. In the illustrated example an upper part of the hat-shaped protective element 25 is arranged above and at a distance from the collection opening 24, widening downwards in a conical manner to a cylindrical lower part which extends coaxially and at a distance from the upper end of the tubular central collector element 21. This arrangement thus leaves, between the upper end of the collector element 21 and the hat 25, a free passage for collecting the heated cooling air through the opening 24 of the tubular central collector element.
Ainsi qu’il est représenté sur les figures 1 à 3, l’élément protecteur en forme de chapeau 25 est supporté centralement dans la cuve par plusieurs entretoises de support 27, ici 4 entretoises. Ainsi qu’il ressort en particulier de la figure 2, la partie basse en forme de tronc de cône inversé 38 est, dans cet exemple, formée de deux étages tronconiques successifs séparés par un épaulement de la paroi extérieure 28 sur lequel ces entretoises sont fixées ce qui permet de réaliser avec le chapeau 25 une structure très robuste qui est capable de recevoir la charge de la roche carbonatée et de la matière calcinée en cours de descente. Ainsi que cela ressort en particulier de la figure 3, l’élément collecteur central tubulaire 21 peut ainsi être conçu sous la forme d’une structure plus légère qui ne devient pas encombrante pour la descente de la matière calcinée qui a lieu entre les entretoises 27. Dans l’exemple illustré, l’élément collecteur central 21 est fixé dans la cuve par quatre poutres 34 disposées horizontalement en croix en fond de cuve. As shown in Figures 1 to 3, the hat-shaped protective element 25 is supported centrally in the tank by several support spacers 27, here 4 spacers. As can be seen in particular from Figure 2, the lower part in the form of an inverted truncated cone 38 is, in this example, formed of two successive truncated cone stages separated by a shoulder of the outer wall 28 on which these spacers are fixed, which makes it possible to produce with the cap 25 a very robust structure which is capable of receiving the load of the carbonate rock and the calcined material during descent. As is particularly apparent from FIG. 3, the tubular central collector element 21 can thus be designed in the form of a lighter structure which does not become cumbersome for the descent of the calcined material which takes place between the spacers 27. In the example illustrated, the central collector element 21 is fixed in the tank by four beams 34 arranged horizontally in a cross at the bottom of the tank.
Etant donné la température élevée de la matière calcinée en cours de descente, il est avantageux de refroidir l’élément de recouvrement en forme de chapeau 25 par un circuit de refroidissement 29 représenté de manière schématique, dans lequel circule un fluide de refroidissement, par exemple de l’air (voir en particulier la figure 2). Dans l’exemple illustré ce circuit est alimenté en fluide de refroidissement froid suivant la flèche Fl depuis un conduit d’entrée 30 parcourant chacune des entretoises de support 27. Le fluide de refroidissement chauffé pendant son parcours dans le circuit 29 est évacué de celui-ci suivant la flèche F2 par un conduit de sortie 31 parcourant chaque entretoise de support 27. L’élément protecteur en forme de chapeau, qui est en contact avec des matières présentant une température très élevée, est ainsi refroidi par un circuit de refroidissement court, particulièrement efficace. Given the high temperature of the calcined material during descent, it is advantageous to cool the hat-shaped covering element 25 by a schematically illustrated cooling circuit 29, in which a cooling fluid, for example air, circulates (see in particular FIG. 2). In the illustrated example, this circuit is supplied with cold cooling fluid along the arrow F1 from an inlet duct 30 running through each of the support spacers 27. The cooling fluid heated during its passage in the circuit 29 is discharged from the latter along the arrow F2 by an outlet duct 31 running through each support spacer 27. The hat-shaped protective element, which is in contact with materials having a very high temperature, is thus cooled by a short, particularly effective cooling circuit.
Avantageusement, les entretoises présentent vers le haut un recouvrement en forme de toit à double pente 32 de façon à faciliter la descente de la matière calcinée. De préférence, dans le réfractaire, l’ entretoise présente une paroi supérieure ayant une forme substantiellement plate. En effet, une forme plate de la paroi supérieure de l’entretoise au niveau du réfractaire permet de mieux supporter le poids du four. De manière préférée, l’entretoise présente une paroi supérieure ayant une forme substantiellement plate lorsque l’entretoise se connecte au réfractaire au niveau d’un pilier. Advantageously, the spacers have an upward covering in the form of a double-sloped roof 32 so as to facilitate the descent of the calcined material. Preferably, in the refractory, the spacer has an upper wall having a substantially flat shape. Indeed, a flat shape of the upper wall of the spacer at the refractory makes it possible to better support the weight of the furnace. Preferably, the spacer has an upper wall having a substantially flat shape when the spacer connects to the refractory at a pillar.
Ainsi qu’il ressort en particulier de la figure 3, l’air de refroidissement chauffé au contact de la matière calcinée en cours de descente est récolté dans le passage laissé libre entre le chapeau 25 et l’élément collecteur tubulaire 21 , et cela en suivant le parcours F3. Cet air présente une température très élevée et il est donc préférable de prévoir, pour protéger la paroi tubulaire de l’élément collecteur 21 , un circuit de réfrigération 33 qui parcourt cette paroi tubulaire ainsi que représenté de manière schématique. Ce circuit 33 est alimenté en fluide de réfrigération, par exemple en air froid, depuis l’extérieur de la cuve, puis le fluide chauffé en est évacué. As can be seen in particular from FIG. 3, the cooling air heated in contact with the calcined material during descent is collected in the passage left free between the cap 25 and the tubular collector element 21, and this by following the path F3. This air has a very high temperature and it is therefore preferable to provide, in order to protect the tubular wall of the collector element 21, a refrigeration circuit 33 which runs through this tubular wall as shown schematically. This circuit 33 is supplied with refrigeration fluid, for example cold air, from outside the tank, then the heated fluid is evacuated therefrom.
Comme on vient de le voir ci-dessus, l’agencement, prévu suivant l’invention, entre l’élément protecteur en forme de chapeau 25 et l’élément collecteur central 21 , permet de récolter l’air de refroidissement qui est chauffé par contact avec la matière calcinée et qui est ascendant au centre de la cuve. Ainsi qu’il est illustré en particulier sur la figure 3, la cuve peut être aussi pourvue, à un niveau inférieur au carneau de liaison 3 et aux canaux périphériques 13 et 13’, d’un anneau collecteur 35 qui communique à l’extérieur avec un élément de soutirage, par exemple le ventilateur de tirage 23, et débouche dans la cuve par plusieurs portes périphériques 36 de manière à permettre une extraction hors du four de l’air de refroidissement chauffé qui est ascendant en périphérie de la cuve. As has just been seen above, the arrangement, provided according to the invention, between the hat-shaped protective element 25 and the central collector element 21, makes it possible to collect the cooling air which is heated by contact with the calcined material and which rises in the center of the tank. As illustrated in particular in FIG. 3, the tank can also be provided, at a level below the connecting flue 3 and the peripheral channels 13 and 13', with a collector ring 35 which communicates with the outside with a draw-off element, for example the draft fan 23, and opens into the tank through several peripheral doors 36 so as to allow a extraction from the furnace of the heated cooling air which rises around the periphery of the tank.
On peut imaginer que l’élément protecteur en forme de chapeau 25 soit, d’une autre manière, soutenu dans la cuve indépendamment de l’élément collecteur tubulaire 21. Par exemple ainsi qu’il est représenté sur la figure 4, l’élément protecteur en forme de chapeau 25 est soutenu centralement au- dessus de l’extrémité haute de l’élément collecteur central tubulaire 21 par des montants verticaux 37 supportés par les poutres horizontales 34. It is conceivable that the hat-shaped protective element 25 is, in another manner, supported in the tank independently of the tubular collector element 21. For example, as shown in FIG. 4, the hat-shaped protective element 25 is supported centrally above the upper end of the tubular central collector element 21 by vertical uprights 37 supported by the horizontal beams 34.
Dans ce cas, l’élément protecteur en forme de chapeau est parcouru par au moins un circuit de refroidissement 29 qui est alimenté en fluide froid, par exemple de l’air froid, depuis au moins un conduit d’alimentation parcourant, suivant la flèche F4, une poutre 34 et un montant vertical 37. Le fluide de refroidissement chauffé est évacué du circuit de refroidissement par au moins un conduit d’évacuation parcourant un montant vertical 37 et une poutre 34, suivant la flèche F5. In this case, the hat-shaped protective element is traversed by at least one cooling circuit 29 which is supplied with cold fluid, for example cold air, from at least one supply duct traversing, according to arrow F4, a beam 34 and a vertical upright 37. The heated cooling fluid is evacuated from the cooling circuit by at least one evacuation duct traversing a vertical upright 37 and a beam 34, according to arrow F5.
Il doit être entendu que le four suivant l’invention n’est en aucune façon limitée aux exemples décrits ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre des revendications qui suivent. It should be understood that the oven according to the invention is in no way limited to the examples described above and that many modifications can be made thereto without departing from the scope of the claims which follow.
On peut par exemple prévoir que l’ouverture d’entrée 6 pour le comburant puisse être utilisée, de manière partagée, en sortie d’effluent gazeux en fonction de la mise en oeuvre de la cuve en mode cuisson ou en mode préchauffage. En mode cuisson l’ouverture 6 est reliée au conduit de recirculation 18 et en mode préchauffage au conduit d’évacuation 14. On peut aussi envisager la présence d’un réservoir tampon de CÛ2en parallèle du four, pour permettre un recyclage de CO2 durant la période d’inversion où le four est stoppé durant un court instant pour l’inversion du fonctionnement des cuves, permettre une alimentation de l’aval de l’installation ( unité de concentration, purification du CO2 par exemple) sans subir l’arrêt de débit gazeux du four, et compenser les différents petits arrêts journaliers du four pour défaut, petites pannes, en assurant une alimentation de l’aval durant ces arrêts courts. For example, it may be provided that the inlet opening 6 for the oxidant can be used, in a shared manner, as a gaseous effluent outlet depending on whether the tank is used in cooking mode or in preheating mode. In cooking mode, the opening 6 is connected to the recirculation duct 18 and in preheating mode to the evacuation duct 14. It is also possible to consider the presence of a CO2 buffer tank in parallel with the furnace, to allow CO2 recycling during the inversion period where the furnace is stopped for a short time to reverse the operation of the tanks, to allow a supply from the downstream of the installation (concentration unit, CO2 purification for example) without having to stop the gas flow from the furnace, and to compensate for the various small daily shutdowns of the furnace due to faults, small breakdowns, by ensuring a supply from the downstream during these short shutdowns.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23190297.4A EP4506644A1 (en) | 2023-08-08 | 2023-08-08 | Regenerative parallel flow vertical shaft furnace |
EP23190297.4 | 2023-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025031944A1 true WO2025031944A1 (en) | 2025-02-13 |
Family
ID=87567497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2024/071895 WO2025031944A1 (en) | 2023-08-08 | 2024-08-01 | Regenerative parallel-flow vertical shaft furnace |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4506644A1 (en) |
WO (1) | WO2025031944A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013108410B3 (en) * | 2013-08-05 | 2014-11-06 | Maerz Ofenbau Ag | Process for burning and cooling carbonate rocks in a DC regenerative lime shaft furnace and a DC regenerative lime shaft furnace |
WO2022111817A1 (en) | 2020-11-27 | 2022-06-02 | S.A. Lhoist Recherche Et Developpement | Method for calcining mineral rock in a parallel-flow regenerative kiln, and kiln used |
WO2022229119A1 (en) | 2021-04-27 | 2022-11-03 | Maerz Ofenbau Ag | Kiln and method for burning carbonate rock |
DE102023102447A1 (en) | 2023-02-01 | 2023-07-06 | Maerz Ofenbau Ag | Co-current counter-current regenerative shaft kiln and method for firing carbonate rock |
-
2023
- 2023-08-08 EP EP23190297.4A patent/EP4506644A1/en active Pending
-
2024
- 2024-08-01 WO PCT/EP2024/071895 patent/WO2025031944A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013108410B3 (en) * | 2013-08-05 | 2014-11-06 | Maerz Ofenbau Ag | Process for burning and cooling carbonate rocks in a DC regenerative lime shaft furnace and a DC regenerative lime shaft furnace |
WO2022111817A1 (en) | 2020-11-27 | 2022-06-02 | S.A. Lhoist Recherche Et Developpement | Method for calcining mineral rock in a parallel-flow regenerative kiln, and kiln used |
WO2022229119A1 (en) | 2021-04-27 | 2022-11-03 | Maerz Ofenbau Ag | Kiln and method for burning carbonate rock |
DE102023102447A1 (en) | 2023-02-01 | 2023-07-06 | Maerz Ofenbau Ag | Co-current counter-current regenerative shaft kiln and method for firing carbonate rock |
Also Published As
Publication number | Publication date |
---|---|
EP4506644A1 (en) | 2025-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0033285B1 (en) | Device for mixing carbonated liquids and solid particles with turbulance | |
EP4324799B1 (en) | Method for calcining mineral rock in a vertical right furnace with regenerative parallel flow and furnace used | |
FR2483258A1 (en) | PROCESS FOR REMOVING SOLID WASTE | |
WO1981003629A1 (en) | Method and device for the treatment of wet product | |
EA026320B1 (en) | Method of operating regenerative heaters in blast furnace plant | |
WO2006042923A2 (en) | Installation and method for the calcination of a mineral load containing a hydraulic binder | |
EP0033688B1 (en) | Process and apparatus for cement clinker production | |
WO2025031944A1 (en) | Regenerative parallel-flow vertical shaft furnace | |
EP0485255B1 (en) | Process and apparatus for the production of a solid fuel from combustible wastes | |
EA039940B1 (en) | Device with an annular spouted fluidized bed and operating method therefor | |
WO2022111817A1 (en) | Method for calcining mineral rock in a parallel-flow regenerative kiln, and kiln used | |
BE1016102A3 (en) | Method and device for reducing gas production, especially the reduction ore. | |
WO1998044297A1 (en) | Incinerator and method for incinerating liquid, pasty and solid waste | |
BE1028191B1 (en) | Lime or dolomite calcination process and annular upright furnace implemented | |
LU100035B1 (en) | Shaft Furnace Plant With Full Recovery Pressure Equalizing System | |
BE505574A (en) | ||
BE561834A (en) | ||
BE524578A (en) | ||
BE418200A (en) | ||
FR2616427A1 (en) | Process and plant for roasting pulverulent materials intended especially for the manufacture of cement clinker | |
BE834689A (en) | METHOD AND APPARATUS FOR MAKING IRON FROM ORE | |
WO1991003526A1 (en) | Device and method for producing charcoal | |
CA3238184A1 (en) | Loop combustion plant and method comprising a cyclone air reactor | |
WO2014202909A2 (en) | Shaft kiln for manufacturing clinker | |
BE517525A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24748107 Country of ref document: EP Kind code of ref document: A1 |