WO2025028417A1 - Rolling bearing cage and rolling bearing - Google Patents
Rolling bearing cage and rolling bearing Download PDFInfo
- Publication number
- WO2025028417A1 WO2025028417A1 PCT/JP2024/026722 JP2024026722W WO2025028417A1 WO 2025028417 A1 WO2025028417 A1 WO 2025028417A1 JP 2024026722 W JP2024026722 W JP 2024026722W WO 2025028417 A1 WO2025028417 A1 WO 2025028417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cage
- rolling bearing
- roughness
- less
- rolling
- Prior art date
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 87
- 239000004519 grease Substances 0.000 claims description 18
- 239000002199 base oil Substances 0.000 claims description 10
- 239000004202 carbamide Substances 0.000 claims description 5
- 239000002562 thickening agent Substances 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000011342 resin composition Substances 0.000 claims description 4
- 230000003746 surface roughness Effects 0.000 abstract description 29
- 239000000314 lubricant Substances 0.000 abstract description 26
- 238000005461 lubrication Methods 0.000 abstract description 18
- 235000019592 roughness Nutrition 0.000 description 74
- 238000012360 testing method Methods 0.000 description 60
- 238000005259 measurement Methods 0.000 description 23
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 230000013011 mating Effects 0.000 description 13
- 239000003921 oil Substances 0.000 description 13
- 235000019587 texture Nutrition 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 241000274177 Juniperus sabina Species 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 210000000078 claw Anatomy 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 235000001520 savin Nutrition 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229920002302 Nylon 6,6 Polymers 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 238000005422 blasting Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920003189 Nylon 4,6 Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000010696 ester oil Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical group [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920006128 poly(nonamethylene terephthalamide) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- -1 urea compound Chemical class 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/41—Ball cages comb-shaped
Definitions
- the present invention relates to a retainer for a rolling bearing and a rolling bearing using the retainer.
- plastic cages are widely used as cages that hold the rolling elements so that they can roll freely.
- Plastic cages are superior to steel cages in terms of self-lubrication, low friction characteristics, and light weight.
- Polyamide resins such as polyamide 66 (PA66) resin and polyamide 46 (PA46) resin are generally used as synthetic resins for plastic cages, and these are reinforced by adding fibrous reinforcing materials such as glass fiber as needed.
- a plateau structure surface (a surface formed of a smooth surface and recesses, without any protrusions) with recesses such as grooves or holes as described in Patent Document 1 can retain lubricant in the recesses and is known as a method for improving sliding characteristics.
- the smooth surface of the plateau structure surface comes into contact with the mating surface, and even if lubricant is present in the recesses, it is removed from the smooth surface, making it more likely to cause an increase in the coefficient of friction and heat generation. For this reason, it is desirable for the area of contact with the rolling element to be as small as possible.
- Patent Documents 2 and 3 the surface roughness (arithmetic surface roughness Ra, maximum height Rt, etc.) of the inner surface of the pocket with which the rolling elements come into contact is specified so that the lubricant is retained in the recesses and a sufficient oil film is formed.
- the parameters used in these patent documents are parameters determined from a two-dimensional profile curve, and are insufficient to limit the area of contact with the mating surface to a small area.
- the present invention was made in consideration of these circumstances, and aims to provide a retainer for rolling bearings that can maintain a stable low-friction state even under harsh lubrication conditions by defining the surface roughness of the retainer using multiple roughness parameters, allowing an oil film to be maintained on the contact surface even with a small amount of lubricant, and a rolling bearing that uses said retainer.
- the aspect ratio Str is 0.80 or more. Furthermore, the arithmetic mean height Sa is 2.00 ⁇ m or more and 10.00 ⁇ m or less, and the protruding peak height Spk is 5.0 ⁇ m or more.
- a point where the rolling element and the contact surface can come into contact when the bearing rotates and a point 180° away from that point are set as the center point (0°) of the measurement range, and any location within a range of ⁇ 30° (measurement target area) is measured.
- the roughness parameters obtained from a roughness curve based on JIS B 0601 are characterized in that, for all contact surface values or their average values, the arithmetic mean roughness Ra is 3.00 ⁇ m or more and 10.00 ⁇ m or less, the average element length RSm is 0.10 mm or more and 0.40 mm or less, and the kurtosis Rku is 1.0 or more and 5.0 or less.
- the skewness Rsk calculated from the roughness curve on the surface of the pocket is between -1.00 and 1.00.
- the retainer is an injection molded body of a resin composition.
- the rolling bearing of the present invention is a rolling bearing having an inner ring, an outer ring, a plurality of rolling elements interposed between the inner and outer rings, a retainer that holds the rolling elements, and grease sealed in the space within the bearing, characterized in that the retainer is the rolling bearing retainer of the present invention.
- the rolling bearing of the present invention is equipped with the retainer of the present invention, so the bearing can achieve a longer life even under more severe lubrication conditions.
- Figure 1 is an axial cross-sectional view showing an outline of an angular contact ball bearing, which is an example of a rolling bearing of the present invention
- Figure 2 is a perspective view of a retainer (machined type) for the rolling bearing of Figure 1.
- the value A (Sa/10) + Str + (Spk/10) calculated from the arithmetic mean height Sa of the surface 6a, the aspect ratio Str of the surface texture, and the protruding peak height Spk is 1.20 or more.
- the value A obtained using the surface roughness parameters obtained from ISO25178 satisfies the above range.
- the value A calculated using the values of all surfaces 6a or the average value thereof falls within the above range.
- the aspect ratio Str of the surface texture is preferably 0.50 or more, and more preferably 0.80 or more.
- the protruding peak height Spk is obtained from the load curve of the surface, and is the average height of the protruding peaks that are higher than the core. More specifically, for the surface to be measured, the ratio of the load area (area of the area with height c or more) at a certain height c is defined as the load area ratio Smr(c), a curve (load curve) showing the height at which the load area ratio becomes 0% to 100% is graphed, a secant line is drawn along the load curve connecting two points where the difference between the load area ratios is 40%, and the end of the secant line is moved from the point where the load area ratio is 0%, and the position where the slope of the secant line is the gentlest is defined as the center of the load curve, and the straight line where the sum of squares of the deviation in the vertical axis direction from this center is the smallest is defined as the equivalent straight line, and the surface obtained by removing the area not included in the height range of the load area ratio of 0%
- the above-mentioned roughness parameters are particularly combined into a formula to evaluate a surface that can maintain a low friction state even under harsh lubrication conditions where only a small amount of lubricant is present.
- the value A (Sa/10) + Str + (Spk/10) calculated from the arithmetic mean height Sa, the aspect ratio Str of the surface properties, and the protruding peak height Spk is 1.20 or greater, the surface will have low friction even under harsh lubrication conditions where only a small amount of lubricant is present.
- the value A (Sa/10) + Str + (Spk/10) is preferably 1.30 or more, more preferably 1.50 or more, and may be 1.70 or more.
- the value A is, for example, 3.0 or less, and may be 2.5 or less.
- the various roughness parameters (Sa, Str, Spk) mentioned above are numerical values calculated in accordance with ISO 25178, and are calculated from data measured, for example, by a non-contact surface roughness measuring device (e.g., a laser microscope).
- a non-contact surface roughness measuring device e.g., a laser microscope.
- the roughness parameters of surface 6a are arithmetic mean roughness Ra of 3.00 ⁇ m or more and 10.00 ⁇ m or less, mean element length RSm of 0.10 mm or more and 0.40 mm or less, and kurtosis Rku of 1.0 or more and 5.0 or less.
- the arithmetic mean roughness Ra is the average of the absolute values of Z(x) over a reference length when the roughness curve is represented by Z(x). Because Ra is an average value, it is not easily affected by local scratches on the surface or dirt adhering thereto, and is therefore commonly used as an index of surface roughness.
- the arithmetic mean roughness Ra is a parameter in the height direction of the roughness curved surface.
- Other parameters such as maximum peak height Rp, maximum valley depth Rv, and maximum height Rt are also parameters in the height direction. These parameters in the height direction cannot determine the period of peaks and valleys, which is considered important for retaining lubricant.
- the average length of the elements RSm is defined as a parameter related to the horizontal direction.
- Kurtosis Rku is a value indicating the degree of sharpness of the probability density function of the roughness curve. As shown in FIG. 6, when the value of kurtosis Rku is 3, the probability density function is a normal distribution. When the kurtosis Rku is greater than 3, the probability density function is sharp, and the roughness curve has sharp tips of peaks and valleys. When the kurtosis Rku is less than 3, the probability density function is flat, and the tips of peaks and valleys are flattened, and the roughness curve has flat tips.
- skewness Rsk may be adopted from the viewpoint of controlling the shape of the contacting convex portion (ridge portion).
- the skewness Rsk is a value indicating the degree of asymmetry of the probability density function of the roughness curve. As shown in FIG. 7, when the value of the skewness Rsk is 0, the height distribution is symmetrical up and down. The smaller the skewness Rsk is than 0, the more the roughness curve is biased upward with respect to the average line, resulting in a shape with many valleys. In addition, in a shape with many valleys, the proportion of flat parts that come into contact with the counter surface tends to increase, and as a result, it becomes difficult for the lubricant to be interposed in the flat parts. Therefore, the skewness Rsk is preferably -1.0 or more. In this case, it is easier to suppress the increase in the friction coefficient and temperature. As a more preferable range, the skewness Rsk is -1.0 or more and 1.0 or less, and may be -1.0 or more and less than 0.
- Ra, RSm, Rku, Rsk are values calculated in accordance with JIS B 0601, and are calculated from data measured, for example, by a contact surface roughness measuring instrument.
- Specific measurement conditions for Ra are a measurement length of 12.5 mm and a cutoff of 2.5 mm.
- the contact surface with which the rolling elements come into contact may have the above-mentioned roughness, or the entire surface may have the above-mentioned roughness.
- the guide surface that comes into contact with the raceway may have the above-mentioned roughness.
- the elements related to the three-dimensional surface roughness parameters of the first embodiment and the elements related to the roughness parameters of the second embodiment may be appropriately combined.
- the arithmetic mean roughness Ra may be 3.00 ⁇ m or more and 10.00 ⁇ m or less
- the average length RSm of the elements may be 0.10 mm or more and 0.40 mm or less
- the kurtosis Rku may be 1.0 or more and 5.0 or less.
- preferred configurations may be appropriately combined.
- the material of the retainer may be resin, and it is preferable that the resin material be injection moldable and have sufficient heat resistance and mechanical strength as a retainer material.
- a resin composition can be used in which a PA resin such as polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin, thermoplastic polyimide resin, polyamide-imide resin, PA66, PA46 resin, PA6T resin, or PA9T resin is used as the resin base material, and reinforcing fibers such as carbon fiber or glass fiber and other additives are blended.
- a PA resin such as polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin, thermoplastic polyimide resin, polyamide-imide resin, PA66, PA46 resin, PA6T resin, or PA9T resin is used as the resin base material, and reinforcing fibers such as carbon fiber or glass fiber and other additives are blended.
- both the inner ring 2 and the outer ring 3 are made of steel. Any material commonly used as a bearing material can be used for the steel.
- Any material commonly used as a bearing material can be used for the steel.
- high carbon chromium bearing steel (SUJ1, SUJ2, SUJ3, SUJ4, SUJ5, etc.; JIS G 4805), carburized steel (SCr420, SCM420, etc.; JIS G 4053), stainless steel (SUS440C, etc.; JIS G 4303), cold rolled steel, etc.
- the above steel materials or ceramic materials can be used for the balls 4.
- the surface roughness of the balls 4 is, for example, Ra of 0.1 ⁇ m or less.
- the rolling bearing of the present invention is lubricated with grease.
- the grease is sealed in the space inside the bearing and lubricates the raceway surfaces and the contact surfaces between the balls and the cage.
- the base oil that constitutes the grease can be any oil that is normally used in rolling bearings, such as mineral oil or synthetic oil, without any particular restrictions.
- the thickener that constitutes the grease can also be any oil that is normally used in rolling bearings, such as metal soap or urea compound, without any particular restrictions.
- the grease is preferably a grease containing a base oil and a urea-based thickener.
- the base oil is preferably a synthetic oil such as ether oil or ester oil.
- the kinematic viscosity of the base oil at 40°C is not particularly limited, but a base oil with a relatively low viscosity is preferable in terms of the roughness of the cage, for example, 10 mm2 /s or more and less than 50 mm2 /s, and preferably 10 mm2 /s or more and less than 30 mm2 /s.
- the value A (Sa/10) + Str + (Spk/10) calculated from the three-dimensional surface roughness parameters of the surface 10a of the pocket 10 in the crown-type cage 8 is 1.20 or more.
- the surface roughness of the 10a of the pocket 10 has the above-mentioned multiple roughness parameters, and the contents described using FIG. 3 can also be applied to this cage 8.
- One aspect of the present invention is based on the fact that "(Sa/10) + Str + (Spk/10)", calculated from the arithmetic mean height Sa of the surface of the pocket of the cage for rolling bearings, the aspect ratio Str of the surface texture, and the protruding peak height Spk, shows a high correlation with the coefficient of friction. Therefore, by using this as an index, it is possible to evaluate the friction characteristics of the surface of the pocket of the cage for rolling bearings.
- “evaluating the friction characteristics” means judging the degree of friction (for example, the coefficient of friction) when sliding against the rolling element.
- the value A shows a high correlation with the coefficient of friction, as shown in the test example described later (see Figure 10). Specifically, the larger the value A, the smaller the coefficient of friction tends to be. Therefore, in the above evaluation method, the friction characteristics can be evaluated based on the magnitude of the calculated value A. For example, by comparing the value A with a predetermined threshold, if the value A is equal to or greater than the predetermined threshold, the cage can be determined to have low friction, and if the value A is less than the predetermined threshold, the cage can be determined not to have low friction.
- the predetermined threshold is not particularly limited, but can be set to, for example, 1.20.
- Test specimens were prepared by cutting out an injection-molded body (composition: glass fiber reinforced polyamide 66) into a size of 10 mm x 15 mm and a thickness of 4 mm. The sliding surfaces of the test specimens were roughened by shot blasting and filing to obtain test specimens for Test Examples A1 to A6. Note that the test specimens for Test Examples A7 to A8 were not roughened, and the sliding surfaces were left as injection-molded surfaces.
- composition composition: glass fiber reinforced polyamide 66
- test examples A7 and A8 are equivalent to the roughness of retainers obtained by general injection molding.
- At least four pockets out of all pockets are targeted, and in one pocket, one point where the abutting surface of the rolling element and cage pocket can come into contact when the bearing rotates, and a point 180 degrees away from that point are set as the center point (0°) of the measurement range, and any point within a range of ⁇ 30° is measured.
- pockets out of all pockets e.g. pockets located at 0 degrees, 90 degrees, 180 degrees, and 270 degrees in the cage circumferential direction
- one point where the abutting surface of the rolling element and cage pocket can come into contact when the bearing rotates, and a point 180 degrees away from that point are set as the center point (0°) of the measurement range, and any point within a range of ⁇ 30° is measured.
- Savant wear test A Savant wear tester 21 shown in FIG. 9 was used.
- a cylindrical mating member 25 was attached to the rotating shaft, and a test piece 24 was fixed.
- a small amount of grease (0.02 g) was applied to the contact portion between the test piece 24 and the cylindrical mating member 25, and no grease was supplied thereafter to simulate a state of insufficient supply of lubricant during high-speed rotation of the bearing.
- the cylindrical mating member 25 was brought into rotating contact with the test piece 24 while a load was applied from above in the drawing by a weight 23.
- the frictional force generated when the cylindrical mating member 25 was rotated was detected by a load cell 22.
- the friction coefficient was measured 60 minutes after the start of the test.
- test examples A1 to A6 had a lower coefficient of friction compared to test examples A7 and A8, which have injection molded surfaces. Specifically, the coefficient of friction for test examples A1 to A6 was less than 0.20, while the coefficient of friction for test examples A7 to A8 was 0.20 or more. Furthermore, compared to test examples A5 to A6 (file processing), the coefficient of friction for test examples A1 to A4 (shot blast processing) was less than 0.15, indicating lower friction. Test examples A5 to A6 had an aspect ratio Str of less than 0.3, while test examples A1 to A4 had an aspect ratio Str of 0.80 or more, indicating high isotropy, and it is believed that this difference affected the low friction.
- Test specimens were prepared by cutting out an injection-molded body (composition: glass fiber reinforced polyamide 66) into a size of 10 mm x 15 mm and a thickness of 4 mm. The sliding surfaces of the test specimens were roughened by file processing to obtain test specimens for Test Examples B1 to B2 and Test Example B3.
- composition glass fiber reinforced polyamide 66
- a plurality of roughness parameters (Ra, RSm, Rku, Rsk) of the sliding surface of each test piece obtained above were measured by a stylus surface roughness measuring instrument.
- Each roughness parameter is a value calculated in accordance with JIS B 0601, and is measured using a contact or non-contact surface roughness meter.
- the cutoff value varies depending on the surface roughness, and is a value determined based on JIS B 0601.
- the measurement results are shown in Table 1 below.
- the surface roughness of the test example B3 is equivalent to the roughness of a cage obtained by general injection molding.
- test examples B1 and B2 had lower friction coefficients during the test, and the variation in friction coefficient was also smaller. Specifically, the friction coefficients of test examples B1 and B2 remained below 0.3 until 20 hours had passed from the start of the test. In this way, when the contact surface has the surface roughness defined in one embodiment of the present invention, it is possible to reduce the friction coefficient during sliding.
- Test Example B2 had a smaller friction coefficient value, and the friction coefficient of Test Example B2 was less than 0.2 until 20 hours had passed from the start of the test.
- Test Example B2 had a larger arithmetic mean roughness Ra than Test Example B1, and this difference is thought to have influenced the experimental results. For example, by setting Ra to 5.00 ⁇ m or more, it is expected that friction will be reduced even further.
- the rolling bearing retainer of the present invention allows an oil film to be maintained on the contact surface even with a small amount of lubricant by defining the surface of the pocket face with a value A determined, for example, from multiple three-dimensional surface roughness parameters, and is able to maintain a stable low-friction state even under harsh lubrication conditions, making it particularly suitable for use in the field of rolling bearings that rotate at high speeds.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
本発明は、転がり軸受用保持器、および該保持器を用いた転がり軸受に関する。 The present invention relates to a retainer for a rolling bearing and a rolling bearing using the retainer.
転がり軸受において、転動体を転動自在に保持する保持器として樹脂製保持器が広く用いられている。樹脂製保持器は、自己潤滑性、低摩擦特性、軽量などの点で鉄製保持器よりも優れている。樹脂製保持器の合成樹脂としては、ポリアミド66(PA66)樹脂、ポリアミド46(PA46)樹脂などのポリアミド樹脂が一般に用いられており、必要に応じてこれらにガラス繊維などの繊維状補強材を含有させ強化したものが用いられている。 In rolling bearings, plastic cages are widely used as cages that hold the rolling elements so that they can roll freely. Plastic cages are superior to steel cages in terms of self-lubrication, low friction characteristics, and light weight. Polyamide resins such as polyamide 66 (PA66) resin and polyamide 46 (PA46) resin are generally used as synthetic resins for plastic cages, and these are reinforced by adding fibrous reinforcing materials such as glass fiber as needed.
近年、電気自動車や工作機など高速環境下で使用される転がり軸受の需要が高まっている。また従来、高速回転下ではエアオイル潤滑が用いられることが多いが、供給設備のメンテナンスコストがかかるため、グリース潤滑の需要が高まっている。しかし、グリース潤滑の場合、高速回転時にグリースが接触面から跳ね除けられやすく、転動体と保持器との間で潤滑不足が生じやすい。そして、潤滑不足が生じると、接触面での過度な昇温や摩耗によって軸受の寿命低下に繋がる。 In recent years, there has been an increasing demand for rolling bearings used in high-speed environments, such as in electric vehicles and machine tools. Traditionally, air-oil lubrication has been used frequently under high-speed rotation, but the demand for grease lubrication is growing due to the high maintenance costs of the supply equipment. However, with grease lubrication, the grease is easily repelled from the contact surface during high-speed rotation, which can easily lead to insufficient lubrication between the rolling elements and the cage. Insufficient lubrication can lead to excessive heating and wear on the contact surface, shortening the lifespan of the bearing.
このような過酷な潤滑条件下での対策として、例えば、特許文献1のように、保持器に形成されたポケットの内周面に溝または孔を形成したものや、特許文献2および3のように、保持器において転動体が当接するポケットの内面を粗面化したものが知られている。これらは、保持器の形状によって潤滑剤を保持することを目的としている。
Measures to deal with such harsh lubrication conditions include, for example, forming grooves or holes on the inner circumferential surface of pockets formed in the cage, as in
特許文献1に記載される溝または孔のような凹部を有するプラトー構造表面(凸部が無く平滑面と凹部で形成される表面)は、凹部で潤滑剤を保持でき、摺動特性を向上させる方法として知られている。しかし、境界潤滑など2面が接触するような、より過酷な接触条件になった場合、プラトー構造表面では平滑面で相手面と接触することになり、凹部に潤滑剤が存在していても平滑面からは除かれるため、摩擦係数の上昇や発熱が生じやすくなる。そのため、転動体と接触する面積は、なるべく小さいことが望ましい。
A plateau structure surface (a surface formed of a smooth surface and recesses, without any protrusions) with recesses such as grooves or holes as described in
また、特許文献2および3では、転動体が当接するポケットの内面の表面粗さ(算術表面粗さRaや最大高さRtなど)を規定して、凹部に潤滑剤を保持させて十分な油膜が形成されるようにしている。しかしながら、これら特許文献で用いられるパラメータは二次元の輪郭曲線から定められるパラメータであり、相手面と接触する面積を小さく制限するには不十分である。
In addition, in
本発明はこのような事情に鑑みてなされたものであり、保持器の表面粗さを複数の粗さパラメータで規定することで、少量の潤滑剤でも接触面に油膜を維持できるようにし、過酷な潤滑条件下でも安定して低摩擦状態を維持可能な転がり軸受用保持器、および該保持器を用いた転がり軸受を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a retainer for rolling bearings that can maintain a stable low-friction state even under harsh lubrication conditions by defining the surface roughness of the retainer using multiple roughness parameters, allowing an oil film to be maintained on the contact surface even with a small amount of lubricant, and a rolling bearing that uses said retainer.
本発明者らは、転がり軸受用保持器の一形態として、転がり軸受用保持器のポケットの面における三次元表面粗さパラメータに着目して鋭意検討を行ったところ、当該面の算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められる「(Sa/10)+Str+(Spk/10)」が、摩擦係数と高い相関性を示すこと、更には、その値Aを規定することで、低摩擦状態を管理できることを見出した。本発明はこのような知見に基づくものである。 The inventors conducted extensive research focusing on the three-dimensional surface roughness parameters of the pocket surfaces of a rolling bearing retainer as one form of retainer for rolling bearings, and discovered that "(Sa/10) + Str + (Spk/10)" calculated from the arithmetic mean height Sa of the surface, the aspect ratio Str of the surface properties, and the protruding peak height Spk shows a high correlation with the coefficient of friction, and furthermore, that by specifying this value A, it is possible to manage a low-friction state. The present invention is based on such findings.
本発明の転がり軸受用保持器は、樹脂製の転がり軸受用保持器であって、上記保持器に転動体を保持する複数のポケットが形成されており、上記ポケットの面において算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められるA=(Sa/10)+Str+(Spk/10)の値が1.20以上であることを特徴とする。 The roller bearing retainer of the present invention is a resin roller bearing retainer, in which a number of pockets are formed to hold the rolling elements, and the value of A = (Sa/10) + Str + (Spk/10), calculated from the arithmetic mean height Sa of the pocket surface, the aspect ratio Str of the surface texture, and the protruding peak height Spk, is 1.20 or greater.
上記保持器は一形態として、転動体とすべり接触する当接面において、粗さ曲線の測定方向が転動体回転方向に対し垂直になるように任意の1つまたは複数の(例えば全ての)ポケットの当接面を測定した際、ISO25178から求められる面粗さパラメータについて、測定した全ての当接面の値またはその平均値において、算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められるA=(Sa/10)+Str+(Spk/10)の値が1.20以上であることを特徴とする。 In one embodiment, the above-mentioned cage is characterized in that when the contact surface of any one or more (e.g. all) pockets in the contact surface that comes into sliding contact with the rolling element is measured so that the measurement direction of the roughness curve is perpendicular to the direction of rotation of the rolling element, the surface roughness parameters calculated from ISO25178 have a value of A = (Sa/10) + Str + (Spk/10) calculated from the arithmetic mean height Sa, the aspect ratio Str of the surface characteristics, and the protruding peak height Spk, of 1.20 or more for all the measured contact surface values or their average values.
具体的には、任意の1つまたは複数の(例えば全ての)ポケットの当接面において、軸受回転時に転動体と保持器が接触しうる1点と、その1点を起点として180°離れた点をそれぞれ測定範囲の中心点(0°)とし、±30°の範囲(測定対象領域)における任意の箇所を測定した際、測定した全ての当接面の値またはその平均値において、ISO25178から求められる算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められるA=(Sa/10)+Str+(Spk/10)の値が1.20以上であることを特徴とする。 Specifically, on the contact surface of any one or multiple (e.g. all) pockets, a point where the rolling element and cage can come into contact when the bearing rotates and a point 180° away from that point are set as the center point (0°) of the measurement range, and when any location within a range of ±30° (measurement target area) is measured, the value of A = (Sa/10) + Str + (Spk/10), calculated from the arithmetic mean height Sa calculated from ISO25178, the aspect ratio Str of the surface texture, and the protruding peak height Spk, for all the measured values of the contact surfaces or their average value, is characterized by being 1.20 or more.
上記アスペクト比Strが0.80以上であることを特徴とする。さらに、上記算術平均高さSaが2.00μm以上10.00μm以下であり、上記突出山部高さSpkが5.0μm以上であることを特徴とする The aspect ratio Str is 0.80 or more. Furthermore, the arithmetic mean height Sa is 2.00 μm or more and 10.00 μm or less, and the protruding peak height Spk is 5.0 μm or more.
また、本発明の転がり軸受用保持器は、樹脂製の転がり軸受用保持器であって、上記保持器に転動体を保持する複数のポケットが形成されており、上記ポケットの面において算術平均粗さRaが3.00μm以上10.00μm以下であり、要素の平均長さRSmが0.10mm以上0.40mm以下であり、クルトシスRkuが1.0以上5.0以下であることを特徴とする。 The roller bearing retainer of the present invention is a resin roller bearing retainer, and is characterized in that a plurality of pockets for retaining rolling elements are formed in the retainer, and the arithmetic mean roughness Ra of the pocket surfaces is 3.00 μm or more and 10.00 μm or less, the mean element length RSm is 0.10 mm or more and 0.40 mm or less, and the kurtosis Rku is 1.0 or more and 5.0 or less.
上記保持器は一形態として、転動体とすべり接触する当接面において、粗さ曲線の測定方向が転動体回転方向に対し垂直になるように任意の1つまたは複数の(例えば全ての)ポケットの当接面を測定した際、JIS B 0601に基づいて粗さ曲線から求められる粗さパラメータについて、測定した全ての当接面の値またはその平均値において、算術平均粗さRaが3.00μm以上10.00μm以下であり、要素の平均長さRSmが0.10mm以上0.40mm以下であり、クルトシスRkuが1.0以上5.0以下であることを特徴とする。
具体的には、任意の1つまたは複数の(例えば全ての)ポケットの当接面において、軸受回転時に転動体と当接面が接触しうる1点と、その1点を起点として180°離れた点をそれぞれ測定範囲の中心点(0°)とし、±30°の範囲(測定対象領域)における任意の箇所を測定した際、JIS B 0601に基づいて粗さ曲線から求められる粗さパラメータについて、全ての当接面の値またはその平均値において、算術平均粗さRaが3.00μm以上10.00μm以下であり、要素の平均長さRSmが0.10mm以上0.40mm以下であり、クルトシスRkuが1.0以上5.0以下であることを特徴とする。
In one embodiment, the above-mentioned cage is characterized in that, when the contact surfaces of any one or more (for example, all) pockets in the contact surface that comes into sliding contact with the rolling element are measured so that the measurement direction of the roughness curve is perpendicular to the rotation direction of the rolling element, roughness parameters calculated from the roughness curve based on JIS B 0601 have an arithmetic mean roughness Ra of 3.00 μm or more and 10.00 μm or less, an average element length RSm of 0.10 mm or more and 0.40 mm or less, and a kurtosis Rku of 1.0 or more and 5.0 or less for all measured values of the contact surfaces.
Specifically, on the contact surfaces of any one or more (for example, all) pockets, a point where the rolling element and the contact surface can come into contact when the bearing rotates and a point 180° away from that point are set as the center point (0°) of the measurement range, and any location within a range of ±30° (measurement target area) is measured.The roughness parameters obtained from a roughness curve based on JIS B 0601 are characterized in that, for all contact surface values or their average values, the arithmetic mean roughness Ra is 3.00 μm or more and 10.00 μm or less, the average element length RSm is 0.10 mm or more and 0.40 mm or less, and the kurtosis Rku is 1.0 or more and 5.0 or less.
上記ポケットの面における粗さ曲線から求められるスキューネスRskが-1.00以上1.00以下であることを特徴とする。 The skewness Rsk calculated from the roughness curve on the surface of the pocket is between -1.00 and 1.00.
クルトシスRkuが3.0超え5.0以下であることを特徴とする。 Characterized by a kurtosis Rku greater than 3.0 and less than 5.0.
上記保持器が樹脂組成物の射出成形体であることを特徴とする。 The retainer is an injection molded body of a resin composition.
本発明の転がり軸受は、内輪および外輪と、この内・外輪間に介在する複数の転動体と、この転動体を保持する保持器と、軸受内空間に封入されるグリースとを有する転がり軸受であって、上記保持器が本発明の転がり軸受用保持器であることを特徴とする。 The rolling bearing of the present invention is a rolling bearing having an inner ring, an outer ring, a plurality of rolling elements interposed between the inner and outer rings, a retainer that holds the rolling elements, and grease sealed in the space within the bearing, characterized in that the retainer is the rolling bearing retainer of the present invention.
上記グリースは基油とウレア系増ちょう剤を含み、上記基油の40℃における動粘度が10mm2/s以上30mm2/s未満であることを特徴とする。 The grease contains a base oil and a urea-based thickener, and is characterized in that the kinematic viscosity of the base oil at 40° C. is 10 mm 2 /s or more and less than 30 mm 2 /s.
本発明の転がり軸受用保持器は、ポケットの面において粗面を有し、該粗面は粗さ曲線から求められる複数の三次元表面粗さパラメータから求められる値Aで定義される。具体的には、算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められるA=(Sa/10)+Str+(Spk/10)を1.20以上とすることで、潤滑剤を保持しやすくなり、潤滑剤の供給量が少ない場合でも接触面に油膜を維持でき、相手面との接触面積が小さくなり、摩擦係数および温度上昇が抑制されることで、より過酷な潤滑条件下でも安定して低摩擦状態を維持可能な保持器となる。 The cage for rolling bearings of the present invention has a rough surface on the surface of the pocket, and the rough surface is defined by a value A calculated from a plurality of three-dimensional surface roughness parameters obtained from a roughness curve. Specifically, by setting A = (Sa/10) + Str + (Spk/10), calculated from the arithmetic mean height Sa, the aspect ratio of the surface texture Str, and the protruding peak height Spk, to 1.20 or more, it becomes easier to retain lubricant, an oil film can be maintained on the contact surface even when the amount of lubricant supplied is small, the contact area with the mating surface is reduced, and the friction coefficient and temperature rise are suppressed, resulting in a cage that can stably maintain a low friction state even under harsher lubrication conditions.
また、本発明の転がり軸受用保持器は、転動体と接触するポケットの面に粗面を有し、該粗面は粗さ曲線から求められる複数の粗さパラメータで定義される。具体的には、算術平均粗さRaを3.00μm以上10.00μm以下とすることで、潤滑剤を保持しやすくなり、潤滑剤の供給量が少ない場合でも接触面に油膜を維持できる構成とし、その上で、要素の平均長さRSmを0.10mm以上0.40mm以下とし、クルトシスRkuを1.0以上5.0以下とすることで、相手面との接触面積が小さくなり、摩擦係数および温度上昇が抑制されることで、より過酷な潤滑条件下でも安定して低摩擦状態を維持可能な保持器となる。 The cage for rolling bearings of the present invention has a rough surface on the surface of the pocket that comes into contact with the rolling elements, and the rough surface is defined by a plurality of roughness parameters obtained from a roughness curve. Specifically, by setting the arithmetic mean roughness Ra to 3.00 μm or more and 10.00 μm or less, it becomes easier to retain the lubricant, and an oil film can be maintained on the contact surface even when the amount of lubricant supplied is small. Furthermore, by setting the average length RSm of the elements to 0.10 mm or more and 0.40 mm or less, and the kurtosis Rku to 1.0 or more and 5.0 or less, the contact area with the mating surface is reduced, and the friction coefficient and temperature rise are suppressed, resulting in a cage that can stably maintain a low friction state even under harsher lubrication conditions.
さらに、スキューネスRskが-1.00以上1.00以下であるので、高さ分布の偏りを抑制し、相手面との接触面積を小さく維持しやすく、摩擦係数および温度上昇の抑制に一層寄与できる。 Furthermore, since the skewness Rsk is between -1.00 and 1.00, it is possible to suppress the bias in the height distribution and to easily maintain a small contact area with the mating surface, which further contributes to suppressing the friction coefficient and temperature rise.
また、クルトシスRkuが3.0超え5.0以下であるので、粗さ曲線の山谷の平坦部が少なくなり、相手面との接触面積をより小さくできる。 In addition, since the kurtosis Rku is greater than 3.0 and less than or equal to 5.0, the number of flat areas in the peaks and valleys of the roughness curve is reduced, making it possible to reduce the contact area with the opposing surface.
本発明の転がり軸受は、本発明の保持器を備えるので、より過酷な潤滑条件下でも軸受の長寿命化を実現できる。 The rolling bearing of the present invention is equipped with the retainer of the present invention, so the bearing can achieve a longer life even under more severe lubrication conditions.
本発明の転がり軸受用保持器および転がり軸受を図1および図2に基づいて説明する。図1は、本発明の転がり軸受の一例であるアンギュラ玉軸受の概略を示す軸方向断面図であり、図2は図1の転がり軸受における保持器(もみ抜き型)の斜視図である。 The rolling bearing retainer and rolling bearing of the present invention will be described with reference to Figures 1 and 2. Figure 1 is an axial cross-sectional view showing an outline of an angular contact ball bearing, which is an example of a rolling bearing of the present invention, and Figure 2 is a perspective view of a retainer (machined type) for the rolling bearing of Figure 1.
図1に示すように、アンギュラ玉軸受1は、内輪2、外輪3と、内輪2と外輪3との間に介在する複数の玉(転動体)4と、この玉4を周方向に一定間隔で保持する保持器5とを備えている。内輪2および外輪3と、玉4とは径方向中心線に対して所定の角度θ(接触角)を有して接触しており、ラジアル荷重と一方向のアキシアル荷重を負荷できる。また、内・外輪の軸方向両端開口部はシール部材(図示省略)によってシールされ、少なくとも玉4の周囲にグリースGが封入される。内輪2、外輪3および玉4は鉄系金属材料からなり、グリースGが玉4との軌道面に介在して潤滑される。
As shown in FIG. 1, an angular ball bearing 1 comprises an
図1において、保持器5は、外輪案内方式であり、該保持器の外周面の一部に外輪3に案内される外輪案内部を有している。なお、保持器の案内方式は、外輪案内方式に限らず、内輪案内方式でも、転動体案内方式でもよい。
In FIG. 1, the
図2に示すように、保持器5は、もみ抜き型の樹脂製の保持器であり、円環状の保持器本体に玉を保持するポケット6が周方向に一定間隔で複数設けられている。周方向に隣接するポケット6の間には柱部7が形成される。
As shown in FIG. 2, the
例えば、保持器5は、樹脂組成物を用いて射出成形によって得られる。ポケット6は、例えばスライドコアを有する金型によって射出成形段階で形成されてもよく、また、素形材を成形した後、切削加工にて形成してもよい。
For example, the
[第1実施形態]
本発明の第1実施形態において、保持器5は、ポケット6の面(具体的には玉と接触する当接面)6aが、複数の三次元表面粗さパラメータで規定された粗面となっている。
[First embodiment]
In the first embodiment of the present invention, the surface 6a of the
上記粗面は、例えば、金型から転写して形成してもよく、成形後にショットブラスト加工、やすり加工などの機械加工によって形成してもよい。例えば、等方性を示す加工面としやすいことからショットブラスト加工が好ましい。 The rough surface may be formed, for example, by transferring from a mold, or may be formed after molding by mechanical processing such as shot blasting or filing. For example, shot blasting is preferred because it is easy to create a processed surface that exhibits isotropy.
第1実施形態において、面6aの算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められる値A=(Sa/10)+Str+(Spk/10)は1.20以上となっている。 In the first embodiment, the value A = (Sa/10) + Str + (Spk/10) calculated from the arithmetic mean height Sa of the surface 6a, the aspect ratio Str of the surface texture, and the protruding peak height Spk is 1.20 or more.
上記値Aが規定される面6aについて具体的に図3を用いて説明する。面6aは玉4と接触する部分であり、例えば玉4とすべり接触する部分である。この場合、例えば、面6aの玉4とすべり接触する部分において、粗さ曲線の測定方向が転動体回転方向に対し垂直になるように面6aを測定した際、ISO25178から求められる面粗さパラメータを用いて求められる値Aが上記範囲を満たす。より具体的には、面6aにおいて、軸受回転時(図3では玉4の公転方向(X方向))に玉4と面6aが接触しうる1点と、その1点を起点として180°離れた点をそれぞれ測定範囲の中心点(0°)とし、±30°の範囲(図3では領域R)における任意の箇所を、粗さ曲線の測定方向が転動体回転方向に対し垂直になるように測定した際、ISO25178から求められる面粗さパラメータを用いて求められる値Aが、上記範囲を満たすことが好ましい。例えば、全ての面6aの値またはその平均値を用いて求められる値Aが、上記範囲を満たすことが好ましい。
The surface 6a for which the above value A is defined will be specifically described with reference to FIG. 3. The surface 6a is a portion that comes into contact with the
なお、図3では、1つのポケットの面6aについて説明したが、保持器において少なくとも1つのポケットの面6aから求められる値Aが上記範囲を満たしていればよく、例えば、少なくとも4つのポケット(保持器周方向において、0度、90度、180度、270度の位置に位置するポケット)の面から求められる値Aが上記範囲を満たしていてもよく、保持器の全てのポケットの面から求められる値Aが上記範囲を満たしていてもよい。 Note that while FIG. 3 describes the surface 6a of one pocket, it is sufficient that the value A obtained from the surface 6a of at least one pocket in the retainer satisfies the above range. For example, the value A obtained from the surfaces of at least four pockets (pockets located at positions of 0 degrees, 90 degrees, 180 degrees, and 270 degrees in the circumferential direction of the retainer) may satisfy the above range, or the value A obtained from the surfaces of all pockets in the retainer may satisfy the above range.
以下、値Aに関する各粗さパラメータについて説明する。 The following describes each roughness parameter related to value A.
[算術平均高さSa]
算術平均高さSaは、算術平均粗さRaを三次元に拡張したパラメータであり、平均面からの高低差の平均値である。平均値であるため、表面の局所的なキズや付着したごみなどの影響を受けにくいため、表面粗さの指標として一般的に用いられており、面を評価するためRaに比べ測定位置によるばらつきが小さく表面の評価に好ましい。
[Arithmetic mean height Sa]
The arithmetic mean height Sa is a parameter that expands the arithmetic mean roughness Ra into three dimensions, and is the average value of the height difference from the average surface. Because it is an average value, it is not easily affected by local scratches on the surface or dust attached thereto, and is therefore generally used as an index of surface roughness. Since it evaluates the surface, it has less variation depending on the measurement position compared to Ra, and is therefore preferable for evaluating the surface.
表面の算術平均高さSaが小さい場合(例えばSa1.00μm以下)に比べて、表面の算術平均高さSaを大きくする(例えばSa2.00μm以上)ことで、凹部に潤滑剤が保持され、十分な油膜が形成されやすくなる。算術平均高さSaは、2.00μm以上10.00μm以下が好ましく、より好ましくは4.00μm以上である。一方、算術平均高さSaが大きくなると、例えば高速回転時において回転精度に影響を及ぼす可能性があることから、Saは8.00μm以下が好ましく、6.00μm未満であってもよい。 Compared to when the arithmetic mean height Sa of the surface is small (e.g., Sa 1.00 μm or less), by increasing the arithmetic mean height Sa of the surface (e.g., Sa 2.00 μm or more), the lubricant is retained in the recesses, making it easier to form a sufficient oil film. The arithmetic mean height Sa is preferably 2.00 μm or more and 10.00 μm or less, and more preferably 4.00 μm or more. On the other hand, if the arithmetic mean height Sa is large, it may affect the rotation accuracy, for example, during high-speed rotation, so Sa is preferably 8.00 μm or less, and may be less than 6.00 μm.
[表面性状のアスペクト比Str]
表面性状のアスペクト比Strは、表面の自己相関が最も早く特定の値へ減衰する方向の距離と、最も遅く減衰する方向の距離の比であり、表面性状の等方性、異方性を表したパラメータである。表面性状のアスペクト比Strは0~1の範囲で値をとり、Str>0.5で強い等方性表面を示し、Str<0.3で強い異方性表面を示す。表面性状のアスペクト比Strが0.5以上の等方性表面であれば、接触面の潤滑剤が特定の方向に偏ることなく濡れ広がりやすくなるため、接触面の広い範囲に潤滑剤を供給しやすくなる。
[Surface texture aspect ratio Str]
The aspect ratio Str of the surface texture is the ratio of the distance in the direction in which the autocorrelation of the surface decays to a specific value the fastest to the distance in the direction in which it decays the slowest, and is a parameter that represents the isotropy or anisotropy of the surface texture. The aspect ratio Str of the surface texture ranges from 0 to 1, with Str>0.5 indicating a strongly isotropic surface and Str<0.3 indicating a strongly anisotropic surface. If the aspect ratio Str of the surface texture is 0.5 or more, the lubricant on the contact surface tends to wet and spread without being biased in a specific direction, making it easier to supply the lubricant over a wide area of the contact surface.
表面性状のアスペクト比Strは0.50以上が好ましく、より好ましくは0.80以上である。 The aspect ratio Str of the surface texture is preferably 0.50 or more, and more preferably 0.80 or more.
[突出山部高さSpk]
突出山部高さSpkは表面の負荷曲線から求められ、コア部より高い部分である突出山部の平均高さである。より具体的には、測定する表面について、ある高さcにおける負荷面積(高さがc以上の領域の面積)の割合を負荷面積率Smr(c)とし、その負荷面積率が、0%から100%となる高さを表した曲線(負荷曲線)をグラフ化して、負荷曲線に沿って負荷面積率の差が40%となる2点を結んで引いた割線を、割線の端が負荷面積率0%の地点から移動させていき、割線の傾斜が最も緩くなる位置を負荷曲線の中央部分とし、この中央部分に対して、縦軸方向の偏差の二乗和が最小になる直線を等価直線と規定し、等価直線の負荷面積率0%から100%の高さの範囲に含まれない領域を取り除いた表面のことをコア部とし、このコア部から上に突出した部分を突出山部と規定し、その平均高さを求める。突出山部高さSpkが小さいと初期の段階で突出山部が摩耗し、接触面が平坦化することで接触面積が大きくなり、接触面には潤滑剤が流入しにくくなる。
[Protruding peak height Spk]
The protruding peak height Spk is obtained from the load curve of the surface, and is the average height of the protruding peaks that are higher than the core. More specifically, for the surface to be measured, the ratio of the load area (area of the area with height c or more) at a certain height c is defined as the load area ratio Smr(c), a curve (load curve) showing the height at which the load area ratio becomes 0% to 100% is graphed, a secant line is drawn along the load curve connecting two points where the difference between the load area ratios is 40%, and the end of the secant line is moved from the point where the load area ratio is 0%, and the position where the slope of the secant line is the gentlest is defined as the center of the load curve, and the straight line where the sum of squares of the deviation in the vertical axis direction from this center is the smallest is defined as the equivalent straight line, and the surface obtained by removing the area not included in the height range of the load area ratio of 0% to 100% of the equivalent straight line is defined as the core, and the part protruding above this core is defined as the protruding peak, and its average height is determined. If the protruding peak height Spk is small, the protruding peak will wear away at an early stage, causing the contact surface to become flattened, increasing the contact area, and making it difficult for the lubricant to flow to the contact surface.
突出山部高さSpkは、例えば2.00μm以上であり、4.00μm以上が好ましく、5.00μm以上であってもよい。このような範囲に設定することにより、接触面積を小さくし、潤滑剤が流入しやすい表面となる。また、突出山部高さSpkは、例えば15.00μm以下であり、10.00μm以下であってもよい。 The protruding peak height Spk is, for example, 2.00 μm or more, preferably 4.00 μm or more, and may be 5.00 μm or more. By setting it in such a range, the contact area is reduced, resulting in a surface into which the lubricant can easily flow. Furthermore, the protruding peak height Spk is, for example, 15.00 μm or less, and may be 10.00 μm or less.
一般に、表面性状は単一の粗さパラメータを用いて評価されることが多い。しかし、複数のパラメータを用いて評価することが好ましく、第1実施形態では、特に上述した粗さパラメータを数式として組み合わせることで少量の潤滑剤しか存在しない過酷な潤滑条件下でも低摩擦状態を維持可能な表面を評価できる。具体的には算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められる値A=(Sa/10)+Str+(Spk/10)が1.20以上であることにより、少量の潤滑剤しか存在しない過酷な潤滑条件下でも低摩擦な表面となる。 In general, surface properties are often evaluated using a single roughness parameter. However, it is preferable to evaluate using multiple parameters, and in the first embodiment, the above-mentioned roughness parameters are particularly combined into a formula to evaluate a surface that can maintain a low friction state even under harsh lubrication conditions where only a small amount of lubricant is present. Specifically, when the value A = (Sa/10) + Str + (Spk/10) calculated from the arithmetic mean height Sa, the aspect ratio Str of the surface properties, and the protruding peak height Spk is 1.20 or greater, the surface will have low friction even under harsh lubrication conditions where only a small amount of lubricant is present.
値A=(Sa/10)+Str+(Spk/10)は、1.30以上が好ましく、1.50以上がより好ましく、1.70以上であってもよい。一方、上記値Aが大きくなり過ぎると表面が粗くなる傾向があり、回転精度などに影響を及ぼす可能性があることから、値Aは例えば3.0以下であり、2.5以下であってもよい。 The value A = (Sa/10) + Str + (Spk/10) is preferably 1.30 or more, more preferably 1.50 or more, and may be 1.70 or more. On the other hand, if the value A is too large, the surface tends to become rough, which may affect the rotation accuracy, etc., so the value A is, for example, 3.0 or less, and may be 2.5 or less.
上述した各種粗さパラメータ(Sa、Str、Spk)は、ISO25178に準拠して算出される数値であり、例えば非接触式表面粗さ測定機(例えばレーザー顕微鏡)により測定されるデータから算出される。 The various roughness parameters (Sa, Str, Spk) mentioned above are numerical values calculated in accordance with ISO 25178, and are calculated from data measured, for example, by a non-contact surface roughness measuring device (e.g., a laser microscope).
以上のように、第1実施形態の保持器では、ポケットの面の粗さについて算術平均高さSa、等方性や異方性を示すStr、および、接触する突出山部の形状に関わるパラメータSpkを数式として組み合わせて規定することで、後述の試験例で示すように、過酷な潤滑条件下であっても、低摩擦状態を維持することができる。 As described above, in the cage of the first embodiment, the arithmetic mean height Sa of the roughness of the pocket surface, Str indicating isotropy or anisotropy, and the parameter Spk related to the shape of the contacting protruding ridge are combined and defined as a formula, so that a low friction state can be maintained even under harsh lubrication conditions, as shown in the test example described below.
[第2実施形態]
本発明の第2実施形態において、保持器5(図2参照)は、ポケット6の面(具体的には玉と接触する当接面)6aが、複数の粗さパラメータで規定された粗面となっている。なお、この粗面は、例えば、金型から転写して形成してもよく、成形後にショット加工などの機械加工によって形成してもよい。
[Second embodiment]
In the second embodiment of the present invention, the cage 5 (see FIG. 2) has a
第2実施形態において、面6aの粗さパラメータは、算術平均粗さRaが3.00μm以上10.00μm以下であり、要素の平均長さRSmが0.10mm以上0.40mm以下であり、クルトシスRkuが1.0以上5.0以下となっている。 In the second embodiment, the roughness parameters of surface 6a are arithmetic mean roughness Ra of 3.00 μm or more and 10.00 μm or less, mean element length RSm of 0.10 mm or more and 0.40 mm or less, and kurtosis Rku of 1.0 or more and 5.0 or less.
上記の粗さパラメータが規定される面6aについて具体的に図3を用いて説明する。面6aは玉4と接触する部分であり、例えば玉4とすべり接触する部分である。この場合、例えば、面6aの玉4とすべり接触する部分において、粗さ曲線の測定方向が転動体回転方向に対し垂直になるように面6aを測定した際、JIS B 0601に基づいて粗さ曲線から求められる粗さパラメータについて、上記範囲を満たす。より具体的には、面6aにおいて、軸受回転時(図3では玉4の公転方向(X方向))に玉4と面6aが接触しうる1点と、その1点を起点として180°離れた点をそれぞれ測定範囲の中心点(0°)とし、±30°の範囲(図3では領域R)における任意の箇所を測定した際、JIS B 0601に基づいて粗さ曲線から求められる粗さパラメータについて、上記範囲を満たすことが好ましい。例えば、全ての面6aの値またはその平均値において、上記粗さパラメータを満たすことが好ましい。
The surface 6a for which the above-mentioned roughness parameters are defined will be specifically described with reference to FIG. 3. The surface 6a is a portion that comes into contact with the
なお、図3では、1つのポケットの面6aについて説明したが、保持器において少なくとも1つのポケットの面6aにおいて上記粗さパラメータを具備していればよく、例えば、少なくとも4つのポケット(保持器周方向において、0度、90度、180度、270度の位置に位置するポケット)の面において上記粗さパラメータを具備していてもよく、保持器の全てのポケットの面において上記粗さパラメータを具備していてもよい。 Note that in FIG. 3, the surface 6a of one pocket is described, but it is sufficient that the surface 6a of at least one pocket in the cage has the above-mentioned roughness parameters. For example, the surfaces of at least four pockets (pockets located at positions of 0 degrees, 90 degrees, 180 degrees, and 270 degrees in the circumferential direction of the cage) may have the above-mentioned roughness parameters, or the surfaces of all pockets in the cage may have the above-mentioned roughness parameters.
以下、各粗さパラメータについて説明する。 The roughness parameters are explained below.
[算術平均粗さRa]
算術平均粗さRaは、粗さ曲線がZ(x)で表されるとき、基準長さにおけるZ(x)の絶対値の平均値である。Raは平均値であるため、表面の局所的なキズや付着したごみなどの影響を受けにくいため、表面粗さの指標として一般的に用いられている。
[Arithmetic mean roughness Ra]
The arithmetic mean roughness Ra is the average of the absolute values of Z(x) over a reference length when the roughness curve is represented by Z(x). Because Ra is an average value, it is not easily affected by local scratches on the surface or dirt adhering thereto, and is therefore commonly used as an index of surface roughness.
図4に示すように、表面のRaが小さい場合(例えばRa1.00μm以下)に比べて、表面のRaを大きくする(例えばRa3.00μm以上)ことで、凹部に潤滑剤が保持され、十分な油膜が形成されやすくなる。算術平均粗さRaは、算術平均粗さRaが3.00μm以上10.00μm以下であり、好ましくは4.00μm以上であり、より好ましくは5.00μm以上である。一方、Raが大きくなると、例えば高速回転時において回転精度に影響を及ぼす可能性があることから、Raは8.00μm以下が好ましく、6.00μm未満であってもよい。 As shown in Figure 4, by increasing the surface Ra (e.g., Ra 3.00 μm or more), the lubricant is retained in the recesses and a sufficient oil film is more likely to be formed than when the surface Ra is small (e.g., Ra 1.00 μm or less). The arithmetic mean roughness Ra is 3.00 μm or more and 10.00 μm or less, preferably 4.00 μm or more, and more preferably 5.00 μm or more. On the other hand, if the Ra is large, it may affect the rotation accuracy, for example, during high-speed rotation, so Ra is preferably 8.00 μm or less, and may be less than 6.00 μm.
ここで、算術平均粗さRaは、粗さ曲面の高さ方向のパラメータである。また、その他の、最大山高さRpや、最大谷深さRv、最大高さRtなども高さ方向のパラメータである。これらの高さ方向のパラメータでは、潤滑剤の保持に重要と考えられる山谷の周期を定めることができない。接触面に潤滑剤を保持させるためには、接触面に山谷が多く存在することが好ましい。この点、第2実施形態では、横方向に関わるパラメータとして、要素の平均長さRSmを定めている。 Here, the arithmetic mean roughness Ra is a parameter in the height direction of the roughness curved surface. Other parameters such as maximum peak height Rp, maximum valley depth Rv, and maximum height Rt are also parameters in the height direction. These parameters in the height direction cannot determine the period of peaks and valleys, which is considered important for retaining lubricant. In order to retain lubricant on the contact surface, it is preferable for there to be many peaks and valleys on the contact surface. In this regard, in the second embodiment, the average length of the elements RSm is defined as a parameter related to the horizontal direction.
[要素の平均長さRSm]
要素の平均長さRSmは、基準長さにおける要素の長さの平均値を表したものである。図5に示すように、要素の長さは、山谷1組の長さである。表面のRSmが大きい場合(例えばRSm0.50mm以上)の場合に比べて、表面のRSmを小さくする(例えばRSm0.40mm以下)ことで、粗さの周期が短くなり、結果として相手面に対する接触面積を小さくすることができる。
[Average element length RSm]
The average element length RSm represents the average value of the element length in the reference length. As shown in Fig. 5, the element length is the length of one set of peaks and valleys. By making the surface RSm small (e.g., RSm 0.40 mm or less) compared to when the surface RSm is large (e.g., RSm 0.50 mm or more), the roughness period becomes shorter, and as a result, the contact area with the mating surface can be reduced.
要素の平均長さRSmは、要素の平均長さRSmが0.10mm以上0.40mm以下であり、好ましくは0.30mm以下であり、0.20mm以下であってもよい。 The average length RSm of the elements is 0.10 mm or more and 0.40 mm or less, preferably 0.30 mm or less, and may be 0.20 mm or less.
さらに、第2実施形態では、相手面との接触の観点から、接触する凸部(山部)の形状が重要と考え、そのパラメータとしてクルトシスRkuを定めている。 Furthermore, in the second embodiment, the shape of the contacting convex portion (ridge portion) is considered important from the viewpoint of contact with the opposing surface, and kurtosis Rku is defined as the parameter.
[クルトシスRku]
クルトシスRkuは、粗さ曲線の確率密度関数の鋭さの度合いを示す数値である。図6に示すように、クルトシスRkuの値が3であると、確率密度関数は正規分布となる。クルトシスRkuが3より大きいと、確率密度関数は尖った形となり、粗さ曲線は山部と谷部の先端形状が尖った形となる。クルトシスRkuが3より小さいと、確率密度関数はつぶれた形となり、粗さ曲線は山部と谷部の先端がつぶれて平坦な形となる。ここで、クルトシスRkuが小さすぎると、相手面と接触する山部の先端は平坦となり、潤滑剤が介在しにくい接触面となり、摩擦係数および温度が上昇しやすくなる。逆に、クルトシスRkuが大きすぎると、相手面と接触する面積が小さくなりすぎ、応力集中によって早期に摩耗が生じ平坦化するおそれがある。
[Kurtosis Rku]
Kurtosis Rku is a value indicating the degree of sharpness of the probability density function of the roughness curve. As shown in FIG. 6, when the value of kurtosis Rku is 3, the probability density function is a normal distribution. When the kurtosis Rku is greater than 3, the probability density function is sharp, and the roughness curve has sharp tips of peaks and valleys. When the kurtosis Rku is less than 3, the probability density function is flat, and the tips of peaks and valleys are flattened, and the roughness curve has flat tips. Here, when the kurtosis Rku is too small, the tips of the peaks that contact the mating surface are flat, resulting in a contact surface that is difficult for lubricant to intervene, and the friction coefficient and temperature are likely to increase. On the other hand, when the kurtosis Rku is too large, the area of contact with the mating surface becomes too small, and there is a risk of early wear and flattening due to stress concentration.
クルトシスRkuは1.0以上5.0以下であり、クルトシスRkuが3に近いほどバランスが良く、潤滑剤が介在しやすい面となる。好ましくは、クルトシスRkuは3.0超え5.0以下である。これにより、山部が尖った形が大くなり、相手面との接触面積をより小さくできる。 Kurtosis Rku is between 1.0 and 5.0, and the closer to 3 the kurtosis Rku is, the better the balance is, and the easier it is for the lubricant to penetrate the surface. Preferably, kurtosis Rku is between 3.0 and 5.0. This increases the sharpness of the peaks, making it possible to reduce the contact area with the opposing surface.
また、ポケット面の粗さに関して、更に他の粗さパラメータを設定してもよい。接触する凸部(山部)の形状を制御するという観点で、例えばスキューネスRskを採用することができる。 Furthermore, other roughness parameters may be set regarding the roughness of the pocket surface. For example, skewness Rsk may be adopted from the viewpoint of controlling the shape of the contacting convex portion (ridge portion).
[スキューネスRsk]
スキューネスRskは、粗さ曲線の確率密度関数の非対称性の度合いを示す数値である。図7に示すように、スキューネスRskの値が0であると、高さ分布が上下に対称となる。スキューネスRskが0より小さいほど、粗さ曲線は平均線に対して上側に偏り、谷部が多く存在する形状となる。なお、谷部が多い形状では、相手面と接触する平坦部の割合が多くなりやすく、その結果、平坦部において潤滑剤が介在しにくくなる。そのため、スキューネスRskは-1.0以上が好ましい。この場合、摩擦係数および温度の上昇を一層抑制しやすくなる。さらに好ましい範囲としては、スキューネスRskは-1.0以上1.0以下であり、-1.0以上0未満であってもよい。
[Skewness Rsk]
The skewness Rsk is a value indicating the degree of asymmetry of the probability density function of the roughness curve. As shown in FIG. 7, when the value of the skewness Rsk is 0, the height distribution is symmetrical up and down. The smaller the skewness Rsk is than 0, the more the roughness curve is biased upward with respect to the average line, resulting in a shape with many valleys. In addition, in a shape with many valleys, the proportion of flat parts that come into contact with the counter surface tends to increase, and as a result, it becomes difficult for the lubricant to be interposed in the flat parts. Therefore, the skewness Rsk is preferably -1.0 or more. In this case, it is easier to suppress the increase in the friction coefficient and temperature. As a more preferable range, the skewness Rsk is -1.0 or more and 1.0 or less, and may be -1.0 or more and less than 0.
上述した各種粗さパラメータ(Ra、RSm、Rku、Rsk)は、JIS B 0601に準拠して算出される数値であり、例えば接触式表面粗さ測定機により測定されるデータから算出される。Raの具体的な測定条件としては、測定長さ12.5mm、カットオフ2.5mmである。 The above-mentioned roughness parameters (Ra, RSm, Rku, Rsk) are values calculated in accordance with JIS B 0601, and are calculated from data measured, for example, by a contact surface roughness measuring instrument. Specific measurement conditions for Ra are a measurement length of 12.5 mm and a cutoff of 2.5 mm.
以上のように、第2実施形態の保持器では、ポケットの面の粗さについて算術平均粗さRaに加えて、横方向に関わるパラメータ(RSm)、および、接触する山部の形状に関わるパラメータ(Rku)を組み合わせて規定することで、後述の試験例で示すように、過酷な潤滑条件下であっても、低摩擦状態を維持することができる。 As described above, in the cage of the second embodiment, the roughness of the pocket surface is specified by combining the arithmetic mean roughness Ra, a parameter related to the lateral direction (RSm), and a parameter related to the shape of the contacting ridges (Rku), making it possible to maintain a low friction state even under severe lubrication conditions, as shown in the test example described below.
なお、第1実施形態および第2実施形態のポケットの面において、転動体が接触する当接面(例えば図3参照)が上述した粗さを有していてもよく、全面が上述した粗さを有していてもよい。また、ポケットの面に加えて、軌道輪と接触する案内面が上述した粗さを有していてもよい。 In the pocket surfaces of the first and second embodiments, the contact surface with which the rolling elements come into contact (see, for example, FIG. 3) may have the above-mentioned roughness, or the entire surface may have the above-mentioned roughness. In addition to the pocket surface, the guide surface that comes into contact with the raceway may have the above-mentioned roughness.
また、第1実施形態の三次元表面粗さパラメータに関する要素と、第2実施形態の粗さパラメータに関する要素を適宜組み合わせてもよい。例えば、保持器において、ポケットの面の算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められる値A=(Sa/10)+Str+(Spk/10)は1.20以上となっており、かつ、算術平均粗さRaが3.00μm以上10.00μm以下であり、要素の平均長さRSmが0.10mm以上0.40mm以下であり、クルトシスRkuが1.0以上5.0以下となっていてもよい。さらに、好ましい構成を適宜組み合わせてもよい。 Furthermore, the elements related to the three-dimensional surface roughness parameters of the first embodiment and the elements related to the roughness parameters of the second embodiment may be appropriately combined. For example, in the cage, the value A = (Sa/10) + Str + (Spk/10) calculated from the arithmetic mean height Sa of the pocket surface, the aspect ratio Str of the surface texture, and the protruding peak height Spk may be 1.20 or more, and the arithmetic mean roughness Ra may be 3.00 μm or more and 10.00 μm or less, the average length RSm of the elements may be 0.10 mm or more and 0.40 mm or less, and the kurtosis Rku may be 1.0 or more and 5.0 or less. Furthermore, preferred configurations may be appropriately combined.
本発明において、保持器の材質は樹脂製であればよく、樹脂材としては、射出成形が可能であり、保持器材料として十分な耐熱性や機械的強度を有するものが好ましい。例えば、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンサルフィド(PPS)樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、PA66、PA46樹脂、PA6T樹脂、PA9T樹脂などのPA樹脂を樹脂母材とし、炭素繊維、ガラス繊維などの強化繊維と、他の添加剤を配合した樹脂組成物を使用できる。 In the present invention, the material of the retainer may be resin, and it is preferable that the resin material be injection moldable and have sufficient heat resistance and mechanical strength as a retainer material. For example, a resin composition can be used in which a PA resin such as polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin, thermoplastic polyimide resin, polyamide-imide resin, PA66, PA46 resin, PA6T resin, or PA9T resin is used as the resin base material, and reinforcing fibers such as carbon fiber or glass fiber and other additives are blended.
図1に戻り、アンギュラ玉軸受1において、内輪2および外輪3はいずれも鋼材からなっている。上記鋼材には、軸受材料として一般的に用いられる任意の材料を用いることができる。例えば、高炭素クロム軸受鋼(SUJ1、SUJ2、SUJ3、SUJ4、SUJ5など;JIS G 4805)、浸炭鋼(SCr420、SCM420など;JIS G 4053)、ステンレス鋼(SUS440Cなど;JIS G 4303)、冷間圧延鋼などを用いることができる。また、玉4には、上記の鋼材やセラミックス材料を用いることができる。玉4の表面粗さは、例えば、Raが0.1μm以下である。
Returning to FIG. 1, in the angular
本発明の転がり軸受は、グリースで潤滑される。グリースは軸受内空間に封入され、軌道面や玉と保持器の接触面などに介在して潤滑がなされる。グリースを構成する基油としては、鉱油や合成油など、通常、転がり軸受に用いられるものであれば特に制限なく用いることができる。また、グリースを構成する増ちょう剤としても、金属石けんやウレア化合物など、通常、転がり軸受に用いられるものであれば特に制限なく用いることができる。 The rolling bearing of the present invention is lubricated with grease. The grease is sealed in the space inside the bearing and lubricates the raceway surfaces and the contact surfaces between the balls and the cage. The base oil that constitutes the grease can be any oil that is normally used in rolling bearings, such as mineral oil or synthetic oil, without any particular restrictions. The thickener that constitutes the grease can also be any oil that is normally used in rolling bearings, such as metal soap or urea compound, without any particular restrictions.
グリースとして、好ましくは基油とウレア系増ちょう剤を含むグリースである。この場合、基油はエーテル油やエステル油などの合成油が好ましい。基油の40℃における動粘度は特に限定されないが、比較的低粘度の基油の方が、保持器の粗さの関係から好ましく、例えば10mm2/s以上50mm2/s未満であり、10mm2/s以上30mm2/s未満が好ましい。 The grease is preferably a grease containing a base oil and a urea-based thickener. In this case, the base oil is preferably a synthetic oil such as ether oil or ester oil. The kinematic viscosity of the base oil at 40°C is not particularly limited, but a base oil with a relatively low viscosity is preferable in terms of the roughness of the cage, for example, 10 mm2 /s or more and less than 50 mm2 /s, and preferably 10 mm2 /s or more and less than 30 mm2 /s.
図1では、本発明の転がり軸受としてアンギュラ玉軸受を例に説明したが、本発明を適用できる軸受形式はこれに限定されず、他の玉軸受、円すいころ軸受、円筒ころ軸受、自動調心ころ軸受、針状ころ軸受などにも適用できる。 In Figure 1, an angular contact ball bearing is used as an example of the rolling bearing of the present invention, but the bearing type to which the present invention can be applied is not limited to this, and the present invention can also be applied to other ball bearings, tapered roller bearings, cylindrical roller bearings, spherical roller bearings, needle roller bearings, etc.
本発明の転がり軸受用保持器の他の例として、冠型保持器を図8に基づいて説明する。図8は、冠型保持器の部分拡大斜視図である。図8に示すように、保持器8は、環状の保持器本体の上面に周方向に一定ピッチをおいて対向一対の保持爪9を形成し、その対向する各保持爪9を相互に接近する方向にわん曲させるとともに、その保持爪9間に転動体としての玉を保持するポケット10を形成したものである。また、隣接するポケット10における相互に隣接する保持爪9の背面相互間に、保持爪9の立ち上がり基準面となる平坦部11が形成される。冠型の保持器8においても、第1実施形態では、ポケット10の面10aの各三次元表面粗さパラメータから求められる値A=(Sa/10)+Str+(Spk/10)が1.20以上となっている。また、第2実施形態では、ポケット10の10aの表面粗さが上述した複数の粗さパラメータを具備しており、この保持器8についても図3を用いて説明した内容を適用できる。
As another example of the cage for rolling bearings of the present invention, a crown-type cage will be described with reference to FIG. 8. FIG. 8 is a partially enlarged perspective view of the crown-type cage. As shown in FIG. 8, the
本発明の転がり軸受用保持器は、少量の潤滑剤でも安定して低摩擦状態を維持できるので、特に、高速回転する転がり軸受に用いることができる。具体的には、工作機械主軸用スピンドル装置に使用される軸受や、モータに使用される転がり軸受に用いることができる。高速回転用の軸受として、例えばdm・n値が80×104~300×104の回転域で使用される。 The cage for a rolling bearing of the present invention can maintain a stable low-friction state even with a small amount of lubricant, and therefore can be used particularly for rolling bearings that rotate at high speeds. Specifically, it can be used for bearings used in spindle devices for machine tool main shafts and rolling bearings used in motors. As a bearing for high speed rotation, it is used in a rotation range where the dm·n value is, for example, 80×10 4 to 300×10 4 .
本発明の一形態は、転がり軸受用保持器のポケットにおける面の算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められる「(Sa/10)+Str+(Spk/10)」が、摩擦係数と高い相関性を示すことに基づくものである。そのため、これを指標に用いることで、転がり軸受用保持器のポケットの面における摩擦特性を評価することができる。ここで、「摩擦特性を評価する」とは、転動体と摺動する際の摩擦の程度の優劣(例えば摩擦係数)を判断することである。 One aspect of the present invention is based on the fact that "(Sa/10) + Str + (Spk/10)", calculated from the arithmetic mean height Sa of the surface of the pocket of the cage for rolling bearings, the aspect ratio Str of the surface texture, and the protruding peak height Spk, shows a high correlation with the coefficient of friction. Therefore, by using this as an index, it is possible to evaluate the friction characteristics of the surface of the pocket of the cage for rolling bearings. Here, "evaluating the friction characteristics" means judging the degree of friction (for example, the coefficient of friction) when sliding against the rolling element.
具体的には、上記評価方法は、転動体を保持する複数のポケットが形成された樹脂製の転がり軸受用保持器において、上記転動体との摩擦特性を評価する方法であって、上記ポケットの面において算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められるA=(Sa/10)+Str+(Spk/10)の値に基づいて、上記ポケットの面における摩擦特性を評価することを特徴とする。 Specifically, the evaluation method is a method for evaluating the frictional characteristics between rolling elements and a resin rolling bearing cage having multiple pockets formed therein for holding the rolling elements, and is characterized in that the frictional characteristics on the surface of the pocket are evaluated based on the value A = (Sa/10) + Str + (Spk/10) calculated from the arithmetic mean height Sa on the surface of the pocket, the aspect ratio Str of the surface quality, and the protruding peak height Spk.
上記値Aは、後述の試験例(図10参照)で示すように摩擦係数と高い相関を示す。具体的には、値Aが大きくなるほど、摩擦係数は小さくなる傾向がある。そのため、上記評価方法では、算出された値Aの大小によって摩擦特性を評価することができる。例えば、値Aを所定の閾値と比較して、値Aが所定の閾値以上の場合に、その保持器は低摩擦性であると判断し、値Aが所定の閾値未満の場合に、その保持器は低摩擦性でないと判断することができる。所定の閾値は、特に限定されないが、例えば1.20に設定できる。 The value A shows a high correlation with the coefficient of friction, as shown in the test example described later (see Figure 10). Specifically, the larger the value A, the smaller the coefficient of friction tends to be. Therefore, in the above evaluation method, the friction characteristics can be evaluated based on the magnitude of the calculated value A. For example, by comparing the value A with a predetermined threshold, if the value A is equal to or greater than the predetermined threshold, the cage can be determined to have low friction, and if the value A is less than the predetermined threshold, the cage can be determined not to have low friction. The predetermined threshold is not particularly limited, but can be set to, for example, 1.20.
また、複数の保持器間において、それぞれから求められる値Aの大小を比較することで、最も低摩擦性の保持器を選定することもできる。 In addition, by comparing the magnitude of the value A obtained from multiple cages, it is possible to select the cage with the lowest friction.
以下、本発明の実施例について説明する。図9に示すサバン式摩耗試験機を用いて、表面粗さの異なる試験片の摩擦係数をそれぞれ評価した。 The following describes examples of the present invention. The friction coefficients of test pieces with different surface roughnesses were evaluated using a Saban abrasion tester as shown in Figure 9.
[試験例A1~A8]
(1)試験片の作製
射出成形された成形体(組成:ガラス繊維強化ポリアミド66)を10mm×15mm、厚さ4mmに切り出し、試験片を作製した。試験片の摺動面をショットブラスト加工およびやすり加工によって粗面化して、試験例A1~A6の試験片をそれぞれ得た。なお、試験例A7~A8の試験片は粗面化せず、摺動面は射出成形面のままとした。
[Test Examples A1 to A8]
(1) Preparation of test specimens Test specimens were prepared by cutting out an injection-molded body (composition: glass fiber reinforced polyamide 66) into a size of 10 mm x 15 mm and a thickness of 4 mm. The sliding surfaces of the test specimens were roughened by shot blasting and filing to obtain test specimens for Test Examples A1 to A6. Note that the test specimens for Test Examples A7 to A8 were not roughened, and the sliding surfaces were left as injection-molded surfaces.
(2)粗さパラメータの測定
上記で得た各試験片の摺動面の複数の粗さパラメータ(Sa、Str、Spk)をレーザーテック社製のレーザー顕微鏡OPTELICS HYBRIDにより下記に示す測定条件でそれぞれ測定した。
・測定範囲 :870μm×870μm
・レンズ倍率:50倍
(2) Measurement of Roughness Parameters A plurality of roughness parameters (Sa, Str, Spk) of the sliding surface of each of the test pieces obtained above were measured under the measurement conditions shown below using a laser microscope OPTELICS HYBRID manufactured by Lasertec Corporation.
Measurement range: 870 μm x 870 μm
Lens magnification: 50x
測定結果を下記の表1に示す。なお、試験例A7およびA8の表面粗さは、一般的な射出成形で得られる保持器の粗さと同等である。 The measurement results are shown in Table 1 below. Note that the surface roughness of test examples A7 and A8 is equivalent to the roughness of retainers obtained by general injection molding.
保持器の粗さを測定する場合、例えば、全てのポケットにおける少なくとも4つのポケット(例:保持器周方向において0度、90度、180度、270度の位置に位置するポケット)を対象とし、1つのポケットにおいて、軸受回転時に転動体と保持器のポケットの当接面が接触しうる1点と、その1点を起点として180°離れた点をそれぞれ測定範囲の中心点(0°)とし、±30°の範囲における任意の箇所を測定する。なお、後述する試験例Bも同様である。 When measuring the roughness of the cage, for example, at least four pockets out of all pockets (e.g. pockets located at 0 degrees, 90 degrees, 180 degrees, and 270 degrees in the cage circumferential direction) are targeted, and in one pocket, one point where the abutting surface of the rolling element and cage pocket can come into contact when the bearing rotates, and a point 180 degrees away from that point are set as the center point (0°) of the measurement range, and any point within a range of ±30° is measured. The same applies to test example B described below.
(3)サバン式摩耗試験
図9に示すサバン式摩耗試験機21を用いた。回転軸に円筒状相手材25を取り付け、試験片24を固定した。試験片24と円筒状相手材25の接触部に、グリースを少量(0.02g)付着させ、以後無供給とすることで軸受における高速回転時の潤滑剤の供給不足状態を模擬した。円筒状相手材25は、おもり23によって図面上方から荷重が印加されながら試験片24に回転接触させる。円筒状相手材25を回転させたときに発生する摩擦力をロードセル22によって検出した。摩擦係数は、試験開始後60分経過後の値を測定した。
<試験条件>
相手材 :SUJ2製円筒 Φ40mm×10mm、算術平均粗さRa0.01μm
グリース:基油(エステル油;40℃における動粘度22mm2/s、増ちょう剤(ウレア系)
相対速度:4.2m/s
荷重 :15N(面圧60MPa)
(3) Savant wear test A
<Test conditions>
Counterpart material: SUJ2 cylinder Φ40mm x 10mm, arithmetic mean roughness Ra 0.01μm
Grease: Base oil (ester oil; kinematic viscosity at 40°C: 22 mm2 /s, thickener (urea-based)
Relative speed: 4.2 m/s
Load: 15N (surface pressure 60MPa)
各試験例について、サバン式摩耗試験による摩擦係数を図10に示す。図10は、各試験例について、値Aおよび摩擦係数の関係をプロットしたグラフである。図10に示すように、値Aと摩擦係数との間には高い相関がみられ(相関係数-0.91)、値A=(Sa/10)+Str+(Spk/10)が大きいほど、より摩擦係数が低い結果となった。一方で、各三次元表面粗さパラメータ(Sa、Str、Spk)と摩擦係数との間には値Aほど強い相関は見られなかった。 The friction coefficient for each test example, measured by the Savin abrasion test, is shown in Figure 10. Figure 10 is a graph plotting the relationship between value A and the friction coefficient for each test example. As shown in Figure 10, a high correlation was observed between value A and the friction coefficient (correlation coefficient -0.91), and the larger the value A = (Sa/10) + Str + (Spk/10), the lower the friction coefficient. On the other hand, no correlation as strong as that with value A was observed between each three-dimensional surface roughness parameter (Sa, Str, Spk) and the friction coefficient.
図10に示すように、射出成形面である試験例A7およびA8と比較して、試験例A1~A6は摩擦係数が低い結果になった。具体的には、試験例A1~A6の摩擦係数は0.20未満であるのに対して、試験例A7~A8の摩擦係数は0.20以上であった。さらに、試験例A5~A6(やすり加工)に比べて、試験例A1~A4(ショットブラスト加工)の摩擦係数は0.15未満であり、より低摩擦性を示した。試験例A5~A6は、アスペクト比Strが0.3未満であるのに対して、試験例A1~A4は、アスペクト比Strが0.80以上と高い等方性を示しており、この違いが低摩擦性に影響したものと考えられる。 As shown in Figure 10, test examples A1 to A6 had a lower coefficient of friction compared to test examples A7 and A8, which have injection molded surfaces. Specifically, the coefficient of friction for test examples A1 to A6 was less than 0.20, while the coefficient of friction for test examples A7 to A8 was 0.20 or more. Furthermore, compared to test examples A5 to A6 (file processing), the coefficient of friction for test examples A1 to A4 (shot blast processing) was less than 0.15, indicating lower friction. Test examples A5 to A6 had an aspect ratio Str of less than 0.3, while test examples A1 to A4 had an aspect ratio Str of 0.80 or more, indicating high isotropy, and it is believed that this difference affected the low friction.
このように、他部材と摺動する面を本発明で定めた表面粗さから規定される値Aが大きい場合、摺動時の摩擦係数を低くすることが可能である。 In this way, when the value A defined by the surface roughness defined in this invention for the surface that slides against another member is large, it is possible to reduce the coefficient of friction during sliding.
[試験例B1~B3]
(1)試験片の作製
射出成形された成形体(組成:ガラス繊維強化ポリアミド66)を10mm×15mm、厚さ4mmに切り出し、試験片を作製した。試験片の摺動面をやすり加工によって粗面化して、試験例B1~B2および試験例B3の試験片をそれぞれ得た。
[Test Examples B1 to B3]
(1) Preparation of test specimens Test specimens were prepared by cutting out an injection-molded body (composition: glass fiber reinforced polyamide 66) into a size of 10 mm x 15 mm and a thickness of 4 mm. The sliding surfaces of the test specimens were roughened by file processing to obtain test specimens for Test Examples B1 to B2 and Test Example B3.
(2)粗さパラメータの測定
上記で得た各試験片の摺動面の複数の粗さパラメータ(Ra、RSm、Rku、Rsk)を触針式表面粗さ測定機によりそれぞれ測定した。各粗さパラメータはJIS B 0601に準拠して算出される値であり、接触式または非接触式の表面粗さ計などを用いて測定される。具体的な測定条件としては、カットオフ値λc=0.8mmまたはλc=2.5mmであり、カットオフ値に等しい基準長さを1区間とし5区間の平均値を測定値とした。カットオフ値は表面粗さによって変わり、JIS B 0601に基づき決定される値である。測定結果を下記の表1に示す。なお、試験例B3の表面粗さは、一般的な射出成形で得られる保持器の粗さと同等である。
(2) Measurement of Roughness Parameters A plurality of roughness parameters (Ra, RSm, Rku, Rsk) of the sliding surface of each test piece obtained above were measured by a stylus surface roughness measuring instrument. Each roughness parameter is a value calculated in accordance with JIS B 0601, and is measured using a contact or non-contact surface roughness meter. Specific measurement conditions are a cutoff value λc = 0.8 mm or λc = 2.5 mm, and a reference length equal to the cutoff value is defined as one section, and the average value of five sections is taken as the measured value. The cutoff value varies depending on the surface roughness, and is a value determined based on JIS B 0601. The measurement results are shown in Table 1 below. The surface roughness of the test example B3 is equivalent to the roughness of a cage obtained by general injection molding.
(3)サバン式摩耗試験
図9に示すサバン式摩耗試験機21を用い、上述した試験例A1~A8と同様の試験条件で試験を実施した。
(3) Savin Abrasion Test Using a
サバン式摩耗試験による摩擦係数の時間推移を図11に示す。図11に示すように、試験例B3と比較して、試験例B1および試験例B2では、試験時の摩擦係数が低く、摩擦係数のばらつきも小さい結果となった。具体的には、試験開始から20時間を経過するまで、試験例B1および試験例B2の摩擦係数は0.3未満を維持した。このように、接触面を本発明の一形態で定めた表面粗さとした場合、摺動時の摩擦係数を低くすることが可能である。 The change in friction coefficient over time in the Savin wear test is shown in Figure 11. As shown in Figure 11, compared to test example B3, test examples B1 and B2 had lower friction coefficients during the test, and the variation in friction coefficient was also smaller. Specifically, the friction coefficients of test examples B1 and B2 remained below 0.3 until 20 hours had passed from the start of the test. In this way, when the contact surface has the surface roughness defined in one embodiment of the present invention, it is possible to reduce the friction coefficient during sliding.
さらに、試験例B1に比べて、試験例B2では、摩擦係数の値がより小さく、試験開始から20時間を経過するまで、試験例B2の摩擦係数が0.2未満であった。例えば、試験例B2は、試験例B1よりも算術平均粗さRaが大きく、この違いが実験結果に影響したと考えられる。例えば、Raを5.00μm以上とすることでより低摩擦化に期待できる。 Furthermore, compared to Test Example B1, Test Example B2 had a smaller friction coefficient value, and the friction coefficient of Test Example B2 was less than 0.2 until 20 hours had passed from the start of the test. For example, Test Example B2 had a larger arithmetic mean roughness Ra than Test Example B1, and this difference is thought to have influenced the experimental results. For example, by setting Ra to 5.00 μm or more, it is expected that friction will be reduced even further.
本発明の転がり軸受用保持器は、ポケットの面の表面を、例えば複数の三次元表面粗さパラメータから定められる値Aで規定することで、少量の潤滑剤でも接触面に油膜を維持できるようにし、過酷な潤滑条件下でも安定して低摩擦状態を維持可能であるので、特に高速回転する転がり軸受の分野で使用できる。 The rolling bearing retainer of the present invention allows an oil film to be maintained on the contact surface even with a small amount of lubricant by defining the surface of the pocket face with a value A determined, for example, from multiple three-dimensional surface roughness parameters, and is able to maintain a stable low-friction state even under harsh lubrication conditions, making it particularly suitable for use in the field of rolling bearings that rotate at high speeds.
1 アンギュラ玉軸受(転がり軸受)
2 内輪
3 外輪
4 玉(転動体)
5 保持器
6 ポケット
6a 面
7 柱部
8 保持器
9 保持爪
10 ポケット
10a 面
11 平坦部
21 サバン式摩耗試験機
22 ロードセル
23 おもり
24 試験片
25 円筒状相手材
1. Angular ball bearing (rolling bearing)
2
Reference Signs List 5: retainer 6: pocket 6a surface 7: column portion 8: retainer 9: retaining claw 10: pocket 10a surface 11: flat portion 21: Savin type wear tester 22: load cell 23: weight 24: test piece 25: cylindrical mating member
Claims (9)
前記保持器に転動体を保持する複数のポケットが形成されており、前記ポケットの面において算術平均高さSaと、表面性状のアスペクト比Strと、突出山部高さSpkと、から求められるA=(Sa/10)+Str+(Spk/10)の値が1.20以上であることを特徴とする転がり軸受用保持器。 A resin-made rolling bearing retainer,
a retainer for a rolling bearing, characterized in that a plurality of pockets for retaining rolling elements are formed in the retainer, and a value of A=(Sa/10)+Str+(Spk/10) calculated from an arithmetic mean height Sa of the pocket surface, an aspect ratio Str of the surface texture, and a protruding ridge height Spk is 1.20 or more.
前記保持器が請求項1記載の転がり軸受用保持器であることを特徴とする転がり軸受。 A rolling bearing having an inner ring, an outer ring, a plurality of rolling elements interposed between the inner and outer rings, a cage that holds the rolling elements, and grease sealed in a space within the bearing,
2. A rolling bearing, wherein the cage is the cage for a rolling bearing according to claim 1.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-126625 | 2023-08-02 | ||
JP2023126625A JP2025022232A (en) | 2023-08-02 | 2023-08-02 | Rolling bearing retainer and rolling bearing |
JP2023223559A JP7657285B1 (en) | 2023-12-28 | 2023-12-28 | Rolling bearing retainer and rolling bearing |
JP2023-223559 | 2023-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025028417A1 true WO2025028417A1 (en) | 2025-02-06 |
Family
ID=94395299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/026722 WO2025028417A1 (en) | 2023-08-02 | 2024-07-25 | Rolling bearing cage and rolling bearing |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025028417A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016102514A (en) * | 2014-11-27 | 2016-06-02 | 日本精工株式会社 | Rolling bearing |
JP2021032355A (en) * | 2019-08-26 | 2021-03-01 | 日本精工株式会社 | Tapered roller bearing |
JP7120447B2 (en) * | 2019-03-25 | 2022-08-17 | 日本精工株式会社 | tapered roller bearing |
-
2024
- 2024-07-25 WO PCT/JP2024/026722 patent/WO2025028417A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016102514A (en) * | 2014-11-27 | 2016-06-02 | 日本精工株式会社 | Rolling bearing |
JP7120447B2 (en) * | 2019-03-25 | 2022-08-17 | 日本精工株式会社 | tapered roller bearing |
JP2021032355A (en) * | 2019-08-26 | 2021-03-01 | 日本精工株式会社 | Tapered roller bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11586787B2 (en) | Friction design method and surface roughness control method for sliding member and production method for sliding mechanism | |
JP5604896B2 (en) | Angular contact ball bearings | |
US7938585B2 (en) | Radial antifriction bearing, especially single-row grooved antifriction bearing | |
JP2014095469A (en) | Rolling bearing | |
US8118493B2 (en) | Tapered roller bearing | |
KR102647465B1 (en) | conical roller bearings | |
JPWO2012063499A1 (en) | Actuator and manufacturing method thereof | |
JP5342978B2 (en) | Plain bearing | |
JP7657285B1 (en) | Rolling bearing retainer and rolling bearing | |
WO2025028417A1 (en) | Rolling bearing cage and rolling bearing | |
JP2009138863A (en) | Retainer for bearings | |
JP2016145644A (en) | Roller bearing cage, rolling bearing, and method for manufacturing rolling bearing cage | |
JP2016145644A5 (en) | ||
JP2025022232A (en) | Rolling bearing retainer and rolling bearing | |
JP6686482B2 (en) | Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method | |
JP2004183783A (en) | Rolling bearing | |
JP2013100839A (en) | Roll bearing | |
JP2003074561A (en) | Rolling bearing for high-speed rotation | |
JP5623852B2 (en) | Plain bearing | |
JP2013036608A (en) | Snap cage and rolling bearing | |
JP2006308080A (en) | Rolling bearing | |
Zhao et al. | Influence of Chief Vein on Tribological Behavior of Vein-Bionic Textured Rolling Element Bearings Under Starved Lubrication. | |
JP2008093833A (en) | Mold for crown shape holder, manufacturing method of crown shape holder and rolling ball bearing | |
Simkulet et al. | Analysis of the damage causes of high speed bearing failure | |
WO2024122246A1 (en) | Linear motion guide unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24849071 Country of ref document: EP Kind code of ref document: A1 |