WO2025028069A1 - Electrolytic capacitor and production method for electrolytic capacitor - Google Patents
Electrolytic capacitor and production method for electrolytic capacitor Download PDFInfo
- Publication number
- WO2025028069A1 WO2025028069A1 PCT/JP2024/022729 JP2024022729W WO2025028069A1 WO 2025028069 A1 WO2025028069 A1 WO 2025028069A1 JP 2024022729 W JP2024022729 W JP 2024022729W WO 2025028069 A1 WO2025028069 A1 WO 2025028069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive polymer
- polymer layer
- layer
- electrolytic capacitor
- laminate
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 124
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 196
- 239000007788 liquid Substances 0.000 claims abstract description 171
- 239000011888 foil Substances 0.000 claims abstract description 149
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 49
- 239000004327 boric acid Substances 0.000 claims abstract description 47
- -1 boric acid compound Chemical class 0.000 claims abstract description 47
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229920000642 polymer Polymers 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 59
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 58
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 43
- 150000001875 compounds Chemical class 0.000 claims description 31
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 24
- 238000004132 cross linking Methods 0.000 claims description 21
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 235000011187 glycerol Nutrition 0.000 claims description 11
- 238000005470 impregnation Methods 0.000 claims description 11
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 10
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 7
- 150000001642 boronic acid derivatives Chemical class 0.000 abstract description 3
- 230000000717 retained effect Effects 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 70
- 238000000576 coating method Methods 0.000 description 70
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- 150000002894 organic compounds Chemical class 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000002253 acid Substances 0.000 description 18
- 239000002019 doping agent Substances 0.000 description 16
- 150000005846 sugar alcohols Polymers 0.000 description 14
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 14
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 12
- 229910052719 titanium Inorganic materials 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 239000003125 aqueous solvent Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 9
- 238000007789 sealing Methods 0.000 description 9
- 239000000811 xylitol Substances 0.000 description 9
- 235000010447 xylitol Nutrition 0.000 description 9
- 229960002675 xylitol Drugs 0.000 description 9
- 229930195725 Mannitol Natural products 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 239000000594 mannitol Substances 0.000 description 8
- 235000010355 mannitol Nutrition 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 7
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 7
- 239000003586 protic polar solvent Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 5
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 5
- 150000002334 glycols Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000007784 solid electrolyte Substances 0.000 description 5
- 239000000600 sorbitol Substances 0.000 description 5
- 235000010356 sorbitol Nutrition 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical group CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 150000002763 monocarboxylic acids Chemical class 0.000 description 4
- 229920001515 polyalkylene glycol Polymers 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 150000002314 glycerols Chemical class 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RGHNJXZEOKUKBD-NRXMZTRTSA-N (2r,3r,4r,5s)-2,3,4,5,6-pentahydroxyhexanoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-NRXMZTRTSA-N 0.000 description 2
- GLDQAMYCGOIJDV-UHFFFAOYSA-N 2,3-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 125000000320 amidine group Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- UIAFKZKHHVMJGS-UHFFFAOYSA-N beta-resorcylic acid Natural products OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- UFDHBDMSHIXOKF-UHFFFAOYSA-N cyclohexene-1,2-dicarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 2
- GNVRJGIVDSQCOP-UHFFFAOYSA-N n-ethyl-n-methylethanamine Chemical compound CCN(C)CC GNVRJGIVDSQCOP-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000414 polyfuran Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- JIQFWTXMZHSPAA-ODZAUARKSA-N (z)-but-2-enedioic acid;n,n-dimethylmethanamine Chemical compound CN(C)C.OC(=O)\C=C/C(O)=O JIQFWTXMZHSPAA-ODZAUARKSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- KYRYHBRYSSBWLU-UHFFFAOYSA-N 1,2,3,4-tetramethylimidazolidine Chemical compound CC1CN(C)C(C)N1C KYRYHBRYSSBWLU-UHFFFAOYSA-N 0.000 description 1
- QDRFNXRYFUFFLV-UHFFFAOYSA-N 1,2,3-trimethylimidazolidine Chemical compound CC1N(C)CCN1C QDRFNXRYFUFFLV-UHFFFAOYSA-N 0.000 description 1
- HJSYENHCQNNLAS-UHFFFAOYSA-N 1,2,4-trimethyl-4,5-dihydroimidazole Chemical compound CC1CN(C)C(C)=N1 HJSYENHCQNNLAS-UHFFFAOYSA-N 0.000 description 1
- QEIHVTKMBYEXPZ-UHFFFAOYSA-N 1,2-dimethyl-4,5-dihydroimidazole Chemical compound CN1CCN=C1C QEIHVTKMBYEXPZ-UHFFFAOYSA-N 0.000 description 1
- ZFDWWDZLRKHULH-UHFFFAOYSA-N 1,2-dimethyl-5,6-dihydro-4h-pyrimidine Chemical compound CN1CCCN=C1C ZFDWWDZLRKHULH-UHFFFAOYSA-N 0.000 description 1
- DSPUBTKMQXMJCI-UHFFFAOYSA-N 1,3-dimethylbenzimidazol-3-ium Chemical compound C1=CC=C2N(C)C=[N+](C)C2=C1 DSPUBTKMQXMJCI-UHFFFAOYSA-N 0.000 description 1
- HVVRUQBMAZRKPJ-UHFFFAOYSA-N 1,3-dimethylimidazolium Chemical compound CN1C=C[N+](C)=C1 HVVRUQBMAZRKPJ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- JIFXKZJGKSXAGZ-UHFFFAOYSA-N 1-ethyl-2,3-dimethylimidazolidine Chemical compound CCN1CCN(C)C1C JIFXKZJGKSXAGZ-UHFFFAOYSA-N 0.000 description 1
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- FGYADSCZTQOAFK-UHFFFAOYSA-N 1-methylbenzimidazole Chemical compound C1=CC=C2N(C)C=NC2=C1 FGYADSCZTQOAFK-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 1
- BQNDPALRJDCXOY-UHFFFAOYSA-N 2,3-dibutylbutanedioic acid Chemical compound CCCCC(C(O)=O)C(C(O)=O)CCCC BQNDPALRJDCXOY-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OWCLRJQYKBAMOL-UHFFFAOYSA-N 2-butyloctanedioic acid Chemical compound CCCCC(C(O)=O)CCCCCC(O)=O OWCLRJQYKBAMOL-UHFFFAOYSA-N 0.000 description 1
- CZIVODQAFDKLLR-UHFFFAOYSA-N 2-dodecyl-1,3-dimethylimidazolidine Chemical compound CCCCCCCCCCCCC1N(C)CCN1C CZIVODQAFDKLLR-UHFFFAOYSA-N 0.000 description 1
- NDROOFGCAQAACL-UHFFFAOYSA-N 2-dodecyl-1-methyl-4,5-dihydroimidazole Chemical compound CCCCCCCCCCCCC1=NCCN1C NDROOFGCAQAACL-UHFFFAOYSA-N 0.000 description 1
- LLTLVSUMJNRKPD-UHFFFAOYSA-N 2-ethyl-1,3,4-trimethylimidazolidine Chemical compound CCC1N(C)CC(C)N1C LLTLVSUMJNRKPD-UHFFFAOYSA-N 0.000 description 1
- KWEIPWPXMKCFDH-UHFFFAOYSA-N 2-ethyl-1,3-dimethylimidazolidin-1-ium;phthalate Chemical compound CCC1N(C)CC[NH+]1C.CCC1N(C)CC[NH+]1C.[O-]C(=O)C1=CC=CC=C1C([O-])=O KWEIPWPXMKCFDH-UHFFFAOYSA-N 0.000 description 1
- LRZVCQMHMOPSLT-UHFFFAOYSA-N 2-ethyl-1,4-dimethyl-4,5-dihydroimidazole Chemical compound CCC1=NC(C)CN1C LRZVCQMHMOPSLT-UHFFFAOYSA-N 0.000 description 1
- XMWVQAXQVZXGGP-UHFFFAOYSA-N 2-ethyl-1-methyl-4,5-dihydroimidazole Chemical compound CCC1=NCCN1C XMWVQAXQVZXGGP-UHFFFAOYSA-N 0.000 description 1
- SHTANHZPDWEAAR-UHFFFAOYSA-N 2-heptyl-1,3-dimethylimidazolidine Chemical compound CCCCCCCC1N(C)CCN1C SHTANHZPDWEAAR-UHFFFAOYSA-N 0.000 description 1
- NFTHHHNYDXPVHJ-UHFFFAOYSA-N 2-heptyl-1-methyl-4,5-dihydroimidazole Chemical compound CCCCCCCC1=NCCN1C NFTHHHNYDXPVHJ-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 239000004805 Cyclohexane-1,2-dicarboxylic acid Substances 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 125000005619 boric acid group Chemical group 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- PQZTVWVYCLIIJY-UHFFFAOYSA-N diethyl(propyl)amine Chemical compound CCCN(CC)CC PQZTVWVYCLIIJY-UHFFFAOYSA-N 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- ULWOJODHECIZAU-UHFFFAOYSA-N n,n-diethylpropan-2-amine Chemical compound CCN(CC)C(C)C ULWOJODHECIZAU-UHFFFAOYSA-N 0.000 description 1
- HCZWNJMKAQGNDP-UHFFFAOYSA-N n,n-dimethylethanamine;phthalic acid Chemical compound CCN(C)C.OC(=O)C1=CC=CC=C1C(O)=O HCZWNJMKAQGNDP-UHFFFAOYSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- VMOWKUTXPNPTEN-UHFFFAOYSA-N n,n-dimethylpropan-2-amine Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 description 1
- CYQYCASVINMDFD-UHFFFAOYSA-N n,n-ditert-butyl-2-methylpropan-2-amine Chemical compound CC(C)(C)N(C(C)(C)C)C(C)(C)C CYQYCASVINMDFD-UHFFFAOYSA-N 0.000 description 1
- PPHQUIPUBYPZLD-UHFFFAOYSA-N n-ethyl-n-methylaniline Chemical compound CCN(C)C1=CC=CC=C1 PPHQUIPUBYPZLD-UHFFFAOYSA-N 0.000 description 1
- SMBYUOXUISCLCF-UHFFFAOYSA-N n-ethyl-n-methylpropan-1-amine Chemical compound CCCN(C)CC SMBYUOXUISCLCF-UHFFFAOYSA-N 0.000 description 1
- UTLDDSNRFHWERZ-UHFFFAOYSA-N n-ethyl-n-methylpropan-2-amine Chemical compound CCN(C)C(C)C UTLDDSNRFHWERZ-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229940059574 pentaerithrityl Drugs 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- PBOROENWALOVKZ-UHFFFAOYSA-N phthalate;1,2,3,4-tetramethylimidazolidin-1-ium Chemical compound CC1C[NH+](C)C(C)N1C.CC1C[NH+](C)C(C)N1C.[O-]C(=O)C1=CC=CC=C1C([O-])=O PBOROENWALOVKZ-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- PNGLEYLFMHGIQO-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methoxyanilino)-2-hydroxypropane-1-sulfonate;dihydrate Chemical compound O.O.[Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(OC)=C1 PNGLEYLFMHGIQO-UHFFFAOYSA-M 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- FOZHTJJTSSSURD-UHFFFAOYSA-J titanium(4+);dicarbonate Chemical compound [Ti+4].[O-]C([O-])=O.[O-]C([O-])=O FOZHTJJTSSSURD-UHFFFAOYSA-J 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/028—Organic semiconducting electrolytes, e.g. TCNQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/055—Etched foil electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
Definitions
- This disclosure relates to electrolytic capacitors and methods for manufacturing electrolytic capacitors.
- a known electrolytic capacitor is one that includes a wound body of an anode foil, a separator, and a cathode foil.
- One example of such an electrolytic capacitor includes a conductive polymer layer disposed in the wound body.
- the conductive polymer layer can be formed by impregnating the wound body with a dispersion liquid that contains a conductive polymer.
- Various proposals have been made in the past regarding electrolytic capacitors that include a conductive polymer layer.
- Patent Document 1 (Patent No. 6911910) states in claim 1 that "an electrolytic capacitor is characterized in that a capacitor element is formed by winding an anode electrode foil and a cathode electrode foil with a separator interposed therebetween, and a solid electrolyte layer is formed using a conductive polymer compound dispersion containing conductive polymer particles and sorbitol or sorbitol and a polyhydric alcohol, the solid electrolyte layer containing 60 to 92 wt % of the sorbitol or sorbitol and a polyhydric alcohol, and the voids in the capacitor element in which the solid electrolyte layer is formed are filled with an electrolyte solution containing 10 wt % or more of ethylene glycol in a solvent.”
- Claim 1 of Patent Document 2 JP Patent Publication No. 2019-516241 describes a "capacitor including a processing element, the processing element including: an anode including a dielectric on a surface and an anode conductive polymer layer on the surface of the dielectric; a cathode including a cathode conductive polymer layer; a conductive separator between the anode and the cathode; an anode lead in electrical contact with the anode; and a cathode lead in electrical contact with the cathode.”
- Claim 1 of Patent Document 3 describes a hybrid electrolytic capacitor comprising: a cathode having a cathode substrate made of a valve metal, an oxide layer made of an oxide of the valve metal provided on the surface of the cathode substrate, an inorganic conductive layer containing an inorganic conductive material provided on the surface of the oxide layer, and an organic conductive layer containing a conductive polymer provided on the surface of the inorganic conductive layer; an anode having an anode substrate made of a valve metal, and a dielectric layer made of an oxide of the valve metal constituting the anode substrate provided on the surface of the anode substrate; a solid electrolyte layer provided between the organic conductive layer of the cathode and the dielectric layer of the anode and containing conductive polymer particles in contact with them, and an electrolyte filled between the conductive polymer particles in the solid electrolyte layer.
- Patent No. 6911910 Special Publication No. 2019-516241 International Publication No. 2021/125182
- the laminate includes an anode foil having a dielectric layer on a surface thereof, a cathode foil, a separator, a first conductive polymer layer held by the separator, and a second conductive polymer layer formed on the dielectric layer.
- the first conductive polymer layer contains a first conductive polymer, a polyvinyl alcohol-based polymer, and a boric acid-based compound.
- the second conductive polymer layer contains a second conductive polymer.
- the boric acid-based compound is at least one boric acid-based compound selected from the group consisting of boric acid and boric acid compounds. At least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked.
- the manufacturing method includes a preparation step of preparing an anode foil having a dielectric layer on its surface, a first polymer layer formation step of forming a first conductive polymer layer containing a first conductive polymer and a polyvinyl alcohol-based polymer in the voids of a separator, a second polymer layer formation step of forming a second conductive polymer layer on the surface of the dielectric layer, a laminate formation step of forming a laminate containing the first conductive polymer layer and the second conductive polymer layer by stacking the anode foil, the cathode foil, and the separator so that the separator is disposed between the anode foil and the cathode foil, an impregnation step of impregnating the laminate with a liquid component containing at least one boric acid-based compound selected from the group consisting of boric acid and boric acid compounds, and a crosslinking step of heating the laminate impregnated
- an electrolytic capacitor containing a liquid component and a conductive polymer layer and having a low ESR can be obtained.
- FIG. 1 is a side view illustrating a schematic diagram of an example of an electrolytic capacitor according to an embodiment of the present disclosure.
- FIG. 2 is an exploded perspective view illustrating a schematic diagram of an example of a capacitor element according to an embodiment of the present disclosure.
- the dispersion liquid containing the conductive polymer has a high viscosity, even if the dispersion liquid is impregnated into the wound body, it may not be possible to form a sufficient conductive polymer layer inside the wound body. Insufficient formation of the conductive polymer layer can cause an increase in equivalent series resistance (ESR).
- ESR equivalent series resistance
- This disclosure provides an electrolytic capacitor that contains a liquid component and a conductive polymer layer and can reduce the ESR.
- the manufacturing method according to this embodiment may be referred to as "manufacturing method (M)" below.
- the manufacturing method (M) includes a preparation step, a polymer layer forming step (a first polymer layer forming step, a second polymer layer forming step), a laminate forming step, an impregnation step, and a crosslinking step, in this order.
- the first polymer layer forming step and the second polymer layer forming step may be performed in any order, and either may be performed first. These steps will be described later.
- the polyvinyl alcohol polymer contained in the conductive polymer layer is cross-linked with a boric acid compound. This improves the adhesion between the anode foil and the separator and between the cathode foil and the separator, thereby reducing the ESR of the electrolytic capacitor. Furthermore, the retention of electrolyte in the conductive polymer layer is improved, improving the repairability of the dielectric layer and increasing the voltage resistance of the electrolytic capacitor. Furthermore, loss of electrolyte due to volatilization can be suppressed during long-term use, making it possible to extend the life of the electrolytic capacitor.
- the preparation step is a step of preparing an anode foil having a dielectric layer on its surface.
- the anode foil having a dielectric layer on its surface may be a commercially available product, or may be formed by forming a dielectric layer on the surface of a metal foil (anode foil).
- the dielectric layer may be formed by a known method. For example, the dielectric layer may be formed by oxidizing the surface of the metal foil (anode foil).
- the first polymer layer forming step is a step of forming a first conductive polymer layer containing a first conductive polymer and a polyvinyl alcohol-based polymer in the voids of the separator.
- the first polymer layer forming step may include a first coating liquid applying step of applying a first coating liquid containing the first conductive polymer, a polyvinyl alcohol-based polymer, and a first liquid medium to the voids of the separator, and a first liquid medium removing step of removing at least a part of the first liquid medium from the first coating liquid to form a first conductive polymer layer in the voids of the separator.
- a polyvinyl alcohol polymer is a polymer containing -CH 2 CH(OH)- (hereinafter sometimes referred to as "vinyl alcohol unit") as a constituent unit.
- the proportion of vinyl alcohol units in all constituent units may be 40 mol % or more, 60 mol % or more, or 80 mol % or more.
- Examples of constituent units other than vinyl alcohol units include vinyl acetate units.
- the total of vinyl alcohol units and vinyl acetate units in all constituent units may be 60 mol % or more, or 80 mol % or more.
- polyvinyl alcohol-based polymers examples include polyvinyl alcohol and derivatives of polyvinyl alcohol.
- the polyvinyl alcohol-based polymer may be a polymer obtained by saponifying a vinyl acetate polymer.
- the polyvinyl alcohol-based polymer may be a polymer obtained by saponifying a copolymer of vinyl acetate and another monomer.
- the weight average molecular weight of the polyvinyl alcohol polymer may be in the range of 500 to 3500 (e.g., in the range of 1000 to 2000).
- the concentration of the polyvinyl alcohol-based polymer in the first coating liquid may be in the range of 0.01% by mass to 3.0% by mass (e.g., in the range of 0.05% by mass to 0.5% by mass).
- the ratio Wp/Wc of the mass Wp of the polyvinyl alcohol-based polymer to the mass Wc of the first conductive polymer may be 0.01 or more, and may be in the range of 0.01 to 3.0 (e.g., in the range of 0.05 to 0.5).
- the ratio (Wp/Wc) of the mass Wp of the polyvinyl alcohol-based polymer to the mass Wc of the first conductive polymer may be 0.01 or more, and may be in the range of 0.01 to 3.0 (e.g., in the range of 0.05 to 0.5).
- the second polymer layer forming step is a step of forming a second conductive polymer layer on the surface of the dielectric layer.
- the second polymer layer forming step may include a second coating liquid applying step of applying a second coating liquid containing a second conductive polymer and a second liquid medium to the surface of the dielectric layer (the dielectric layer on the surface of the anode foil), and a second liquid medium removing step of removing at least a part of the second liquid medium from the second coating liquid to form a second conductive polymer layer on the surface of the dielectric layer.
- the second coating liquid may or may not contain a polyvinyl alcohol-based polymer.
- the first conductive polymer and the second conductive polymer may be the same or different.
- the first liquid medium and the second liquid medium may be the same or different.
- the first coating liquid and the second coating liquid may be the same or different.
- the conductive polymers may be dispersed in the coating liquid (first coating liquid, second coating liquid) in the form of particles. Examples of conductive polymers will be described later.
- the ratio (Wp/Wc) of the mass Wp of the polyvinyl alcohol-based polymer to the mass Wc of the first conductive polymer may be 0.01 or more, 0.05 or more, or 0.1 or more, and may be 3.0 or less, or 0.5 or less.
- the liquid medium (first liquid medium, second liquid medium) is not particularly limited, and any liquid medium that can be used to form a polymer layer can be used.
- liquid media include water, organic solvents (e.g., alcohol), and mixtures thereof.
- the liquid medium may contain water and an organic compound that does not boil at 100°C at 1 atmosphere (101,325 Pa).
- organic compound may be referred to as "organic compound (C).”
- Organic compound (C) may be one type of compound or may be composed of multiple types of compounds.
- the method of applying the coating liquid is not limited, and may be applied by a known method.
- a method using a coater may be used, the coating liquid may be sprayed, or the object to be coated may be immersed in the coating liquid.
- methods using a coater include gravure coating and die coating.
- the coating liquid is first applied to a transfer member (gravure roll, etc.), and then excess coating liquid is removed from the transfer member.
- the coating liquid applied to the transfer member is transferred to a specified member (anode foil, cathode foil, or separator), so that a layer of coating liquid with a uniform thickness can be applied to the member.
- the viscosity of the coating liquid may be, for example, 10 mPa ⁇ s or more (for example, 100 mPa ⁇ s or more) and 200 mPa ⁇ s or less.
- the coating liquid is easy to apply to the anode foil, cathode foil, and separator, and is easy to impregnate the separator.
- the viscosity of the coating liquid is measured at room temperature (20°C) using a vibration viscometer (e.g., VM-100A, manufactured by Sekonic Corporation).
- the method of removing at least a part of the liquid medium from the coating liquid is not particularly limited, and can be performed by heating or the like.
- heating may be performed so that the organic compound (C) remains in the polymer layer.
- the coating liquid contains an organic compound (C) and water (liquid medium)
- the heating temperature may be 100°C or higher, 120°C or higher, or 140°C or higher, and may be 200°C or lower, or 160°C or lower.
- the heating temperature may be in the range of 100°C to 200°C. There is no particular limit to the heating time, and it may be a time that allows a part of the liquid medium to be appropriately removed. An example of the heating time is in the range of 5 to 60 minutes.
- the organic compound (C) in the conductive polymer layer By leaving the organic compound (C) in the conductive polymer layer (first conductive polymer layer, second conductive polymer layer), it is possible to reduce the shrinkage of the conductive polymer layer when the liquid medium is removed from the coating liquid. As a result, in the subsequent impregnation step, the liquid component (e.g., electrolyte) can easily penetrate into the conductive polymer layer. As a result, the liquid component's function of forming a dielectric layer (oxide film) can be fully exerted, and leakage current is reduced.
- the liquid component e.g., electrolyte
- the water content in the coating liquid is 40 mass % or more (e.g., 50 mass % or more), and the liquid medium of the applied coating liquid is removed so that the mass of the organic compound (C) in the conductive polymer layer is greater than the mass of water in the conductive polymer layer. If the water content in the coating liquid is high, the conductive polymer layer is more easily impregnated with the electrolyte after the conductive polymer layer is formed.
- the laminate formation step is a step of forming a laminate including a first conductive polymer layer and a second conductive polymer layer by laminating an anode foil, a cathode foil, and a separator such that the separator is disposed between the anode foil and the cathode foil.
- the method for forming the laminate is not particularly limited, and the laminate may be formed by a known method.
- the laminate may be a wound body.
- the wound body may be formed by winding the anode foil, the cathode foil, and the separator so that the separator is disposed between the anode foil and the cathode foil.
- the anode foil, the cathode foil, and the separator are stacked in the radial direction of the wound body.
- the laminate may be formed by stacking flat anode foils, flat cathode foils, and flat separators in one direction.
- a laminate may be formed by stacking multiple anode foils, multiple cathode foils, and multiple separators in one direction.
- the anode foils and cathode foils are arranged alternately, and the separator is arranged between the anode foils and the cathode foils.
- the impregnation step is a step of impregnating the laminate with a liquid component containing at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds.
- the liquid component may be referred to as a "liquid component (LC)".
- the method of impregnating the laminate with the liquid component (LC) is not limited.
- the laminate may be impregnated with the liquid component (LC) by immersing at least a part of the laminate in the liquid component (LC).
- the liquid component (LC) may be an electrolyte solution.
- boric acid compounds include boric acid and borate salts.
- borate salts include ammonium salts of boric acid (such as ammonium borate), sodium salts of boric acid (such as sodium tetraborate), and potassium salts of boric acid.
- the boric acid compound may be at least one selected from the group consisting of boric acid, ammonium salts of boric acid, sodium salts of boric acid, and potassium salts of boric acid.
- the concentration of the boric acid compound in the liquid component (LC) may be in the range of 0.5% by mass to 5.0% by mass (e.g., in the range of 1.5% by mass to 3.5% by mass).
- the liquid component (LC) may further contain at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol condensates having a molecular weight of 250 or less, glycerin, ⁇ -butyrolactone, and sulfolane.
- the crosslinking step is a step of heating the laminate impregnated with the liquid component (LC) to a temperature of 85° C. or higher.
- the crosslinking step at least a part of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked by the at least one boric acid compound. That is, the crosslinking step is a step of crosslinking the polyvinyl alcohol-based polymer in the first conductive polymer layer by the boric acid compound by heating the laminate impregnated with the liquid component (LC) to a temperature of 85° C. or higher.
- the polyvinyl alcohol-based polymer in the second conductive polymer layer is also crosslinked by the boric acid compound.
- the above-mentioned effects can be obtained.
- the heating temperature of the laminate in the crosslinking step is 85°C or higher, and may be 100°C or higher, or 105°C or higher.
- the heating temperature may be 180°C or lower, 160°C or lower, or 135°C or lower.
- the heating time of the laminate in the crosslinking step varies depending on the heating temperature, but may be in the range of 30 to 180 minutes (for example, in the range of 60 to 90 minutes).
- the anode foil may be re-chemically formed by applying a voltage between the anode foil and the cathode foil.
- the anode foil may be re-chemically formed separately from the cross-linking process.
- a capacitor element is obtained. Thereafter, other processes are carried out as necessary. For example, a process of encapsulating the capacitor element impregnated with the liquid component (LC) in an exterior body may be carried out. Note that a crosslinking process may be carried out after the process of encapsulating the capacitor element impregnated with the liquid component (LC) in an exterior body.
- the manufacturing method (M) may include a liquid application step and a removal step in this order after the laminate formation step and before the impregnation step.
- the liquid application step is a step of impregnating the laminate with a liquid (hereinafter, sometimes referred to as "liquid (L)").
- the removal step is a step of removing at least a part of the liquid (L) impregnated in the laminate.
- the liquid (L) may be a liquid containing water as a main component and an organic compound (C) that does not boil at 100°C under 1 atmosphere.
- the removal step may be a step of removing a part of the liquid (L) impregnated in the laminate such that the mass of the organic compound (C) in the laminate is greater than the mass of water in the laminate.
- the liquid (L) may be a liquid containing an organic solvent.
- the liquid (L) used in the liquid application step may be a liquid obtained by removing the conductive polymer component from the second coating liquid used in the second polymer layer formation step.
- the impregnation of the liquid in the liquid application step may be performed by the method exemplified for the coating liquid application step in the polymer layer formation step.
- the removal of the liquid in the removal step may be performed by the method exemplified for the liquid medium removal step in the polymer layer formation step.
- the liquid application step is not essential.
- the cathode foil may have an inorganic layer on its surface, and the conductive polymer layer may be in close contact with the inorganic layer.
- the cathode foil is made of only a metal foil (e.g., aluminum foil), an oxide layer forms on the surface of the metal foil, and capacitance also occurs in the cathode foil.
- a metal foil e.g., aluminum foil
- capacitance also occurs in the cathode foil.
- the capacitance of the anode foil and the capacitance of the cathode foil are combined, which can cause a problem of a decrease in the capacitance of the entire capacitor.
- an inorganic layer etc. it is possible to prevent such a problem from occurring. In other words, by forming an inorganic layer, it is possible to draw out only the capacitance of the anode foil.
- the ESR will be high.
- Inorganic layers tend to repel water, so in the conventional method of forming a conductive polymer layer by impregnating a laminate (capacitor element) with an aqueous dispersion of a conductive polymer, the conductive polymer has difficulty entering between the inorganic layer of the cathode foil and the anode foil in the laminate, making it impossible to form a uniform conductive polymer layer on the separator placed between the cathode foil and anode foil, resulting in an increase in ESR.
- manufacturing method (M) a laminate (capacitor element) is formed using a separator on which a first conductive polymer layer has already been formed. This makes it possible to prevent the first conductive polymer from becoming unevenly distributed within the separator.
- the surface density of the conductive polymer layer may be 0.05 mg/cm 2 or more, 0.1 mg/cm 2 or more, or 0.3 mg/cm 2 or more, and may be 1.0 mg/cm 2 or less, or 0.5 mg/cm 2 or less.
- the surface density of the conductive polymer layer may be 0.05 mg/cm 2 or more and 1.0 mg/cm 2 or less. According to this configuration, an electrolytic capacitor with a particularly low ESR is obtained.
- the surface density means mass per unit area.
- the surface density of the second conductive polymer layer means the surface density of one second conductive polymer layer formed on one side of the anode foil.
- the surface density of the conductive polymer layer can be controlled by the concentration of the conductive polymer in the coating liquid or the amount of the coating liquid applied.
- the areal density of the first conductive polymer layer can be determined by the following method. First, five samples are prepared by cutting out a specified area from the separator before the first conductive polymer layer is formed, and the mass of the five samples is measured. In addition, five samples are prepared by cutting out the separator on which the first conductive polymer layer is formed, and the mass of the samples is measured. The areal density of the first conductive polymer layer is determined using the specified area and the difference between the total mass of the five samples after the first conductive polymer layer is formed and the total mass of the five samples before the first conductive polymer layer is formed. The areal density of the second conductive polymer layer can also be determined by a similar method.
- electrolytic capacitor The electrolytic capacitor according to this embodiment may be referred to as "electrolytic capacitor (E)" below.
- the electrolytic capacitor (E) may be manufactured by the manufacturing method (M) described above.
- the matters described for the manufacturing method (M) may be applied to the electrolytic capacitor (E), and therefore, duplicated explanations may be omitted.
- the matters described for the electrolytic capacitor (E) may also be applied to the manufacturing method (M).
- the electrolytic capacitor (E) includes a laminate and a liquid component impregnated in the laminate.
- the laminate includes an anode foil having a dielectric layer on its surface, a cathode foil, a separator, a first conductive polymer layer held by the separator, and a second conductive polymer layer formed on the dielectric layer.
- the first conductive polymer layer contains a first conductive polymer, a polyvinyl alcohol-based polymer, and a boric acid-based compound.
- the second conductive polymer layer contains a second conductive polymer.
- the boric acid-based compound is at least one boric acid-based compound selected from the group consisting of boric acid and boric acid compounds. At least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked.
- the electrolytic capacitor (E) provides the effects described in the manufacturing method (M).
- the configuration of the electrolytic capacitor (E) makes it possible to reduce the ESR.
- the ratio (Wp/Wc) of the mass Wp of the polyvinyl alcohol polymer to the mass Wc of the first conductive polymer may be within the range described above.
- the ratio (Wp/Wc) may be 0.2 or more.
- the cathode foil may have an inorganic layer on its surface. In that case, it is preferable that the first conductive polymer layer is in close contact with the inorganic layer.
- the liquid component (LC) of the electrolytic capacitor (E) may further contain at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol condensates having a molecular weight of 250 or less, glycerin, ⁇ -butyrolactone, and sulfolane.
- the laminate may be a wound body, or it may be a laminate other than a wound body.
- the term "conductive polymer component" may be used.
- the conductive polymer component is made of a conductive polymer.
- the conductive polymer component is made of a conductive polymer and a dopant.
- the coating liquids (first coating liquid, second coating liquid) used in the polymer layer forming step may contain a conductive polymer and water.
- the conductive polymer (conductive polymer component) may be contained in the coating liquid in the form of particles.
- the coating liquid may be an aqueous dispersion of the conductive polymer (conductive polymer component).
- the coating liquid may contain other components (e.g., organic compound (C)).
- the organic compound (C) may contain at least one selected from the group consisting of polyhydric alcohols, sulfolane, ⁇ -butyrolactone, and boric acid esters, or may be at least one of the above.
- the organic compound (C) may contain at least one selected from the group consisting of glycols, glycerins, sugar alcohols, sulfolane, ⁇ -butyrolactone, and boric acid esters, or may be at least one of the above.
- polyhydric alcohols examples include glycols, glycerins, and sugar alcohols.
- glycols include ethylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols (e.g., polyethylene glycol), polyoxyethylene polyoxypropylene glycol (ethylene oxide-propylene oxide copolymer), and the like.
- glycerins include glycerin and polyglycerin.
- sugar alcohols include mannitol, xylitol, sorbitol, erythritol, and pentaerythritol, and the like.
- Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and derivatives thereof.
- the derivatives include polymers having polypyrrole, polythiophene, polyfuran, polyaniline, and polyacetylene as the basic skeleton.
- a derivative of polythiophene includes poly(3,4-ethylenedioxythiophene).
- These conductive polymers may be used alone or in combination.
- the conductive polymer may also be a copolymer of two or more monomers.
- the weight-average molecular weight of the conductive polymer is not particularly limited and may be in the range of 1,000 to 100,000, for example.
- a preferred example of a conductive polymer is poly(3,4-ethylenedioxythiophene) (PEDOT).
- the conductive polymer may be doped with a dopant. From the viewpoint of suppressing dedoping from the conductive polymer, it is preferable to use a polymer dopant as the dopant.
- polymer dopants include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly(2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfonic acid, polyacrylic acid, and the like. These may be used alone or in combination of two or more. At least a portion of these may be added in the form of a salt.
- a preferred example of a dopant is polystyrene sulfonic acid (PSS).
- the dopant may be polystyrenesulfonic acid
- the conductive polymer may be poly(3,4-ethylenedioxythiophene). That is, the conductive polymer component may be poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonic acid.
- the pH of the coating liquid is preferably less than 7.0 in order to suppress dedoping of the dopant, and may be 6.0 or less or 5.0 or less.
- the pH of the coating liquid may be 1.0 or more, or 2.0 or more.
- the water content in the coating liquid may be 40% by mass or more, 50% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more.
- the water content may be 98% by mass or less, 95% by mass or less, 90% by mass or less, or 80% by mass or less.
- the content of the organic compound (C) in the coating liquid may be 1.0 mass% or more, 3.0 mass% or more, 5.0 mass% or more, or 10 mass% or more. It may be 30 mass% or less, 20 mass% or less, 15 mass% or less, or 10 mass% or less.
- the content of the conductive polymer component in the coating liquid may be 0.5 mass% or more, or 1.0 mass% or more, and may be 4.0 mass% or less, 3.0 mass% or less, or 2.0 mass% or less.
- the content may be in the range of 0.5 to 4.0 mass% or 1.0 to 4.0 mass%. In any of these ranges, the upper limit may be 3.0 mass% or 2.0 mass%.
- the content is preferably in the range of 1.0 to 3.0%.
- the mass of the dopant is included in the mass of the conductive polymer component.
- the mass of the dopant contained in the coating liquid there are no particular limitations on the mass of the dopant contained in the coating liquid, and it may be in the range of 0.1 to 5 times (e.g., 0.5 to 3 times) the mass of the conductive polymer contained in the coating liquid.
- the mass of the dopant contained in the coating liquid there are no particular limitations on the mass of the dopant contained in the coating liquid, and it may be in the range of 0.1 to 5 times (e.g., 0.5 to 3 times) the mass of the conductive polymer contained in the coating liquid.
- the water content: organic compound (C) content: conductive polymer component content may be 40-98:1.0-59.5:0.5-4.0, or the water content: organic compound (C) content: conductive polymer component content may be 69.5-98:1.0-30:0.5-4.0.
- liquid component (LC) examples of the liquid component (LC) used in the impregnation step include a non-aqueous solvent and an electrolytic solution.
- the electrolytic solution may be an electrolytic solution containing a non-aqueous solvent and a solute dissolved in the non-aqueous solvent.
- the liquid component (LC) may be a component that is liquid at room temperature (25° C.) or a component that is liquid at the temperature when the electrolytic capacitor is used.
- the non-aqueous solvent used in the liquid component (LC) may be an organic solvent, an ionic liquid, or a protic solvent.
- non-aqueous solvents include polyhydric alcohols such as ethylene glycol and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as ⁇ -butyrolactone ( ⁇ BL), amides such as N-methylacetamide, N,N-dimethylformamide, and N-methyl-2-pyrrolidone, esters such as methyl acetate, carbonate compounds such as propylene carbonate, ethers such as 1,4-dioxane, ketones such as methyl ethyl ketone, and formaldehyde.
- polyhydric alcohols such as ethylene glycol and propylene glycol
- cyclic sulfones such as sulfolane (SL)
- lactones such as ⁇ -butyrolactone ( ⁇ BL)
- a polymer solvent may be used as the non-aqueous solvent.
- polymer solvents include polyalkylene glycol, derivatives of polyalkylene glycol, and compounds in which at least one hydroxyl group in a polyhydric alcohol is replaced with polyalkylene glycol (including derivatives).
- examples of polymer solvents include polyethylene glycol (PEG), polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol sorbitol ether, polypropylene glycol, polypropylene glycol glyceryl ether, polypropylene glycol diglyceryl ether, polypropylene glycol sorbitol ether, and polybutylene glycol.
- polymer solvents further include ethylene glycol-propylene glycol copolymers, ethylene glycol-butylene glycol copolymers, and propylene glycol-butylene glycol copolymers.
- the non-aqueous solvent may be used alone or in a mixture of two or more.
- the liquid component (LC) may include a non-aqueous solvent and a base component (base) dissolved in the non-aqueous solvent.
- the liquid component (LC) may also include a non-aqueous solvent and a base component and/or an acid component (acid) dissolved in the non-aqueous solvent.
- polycarboxylic acids and monocarboxylic acids can be used as the acid component.
- the polycarboxylic acids include aliphatic polycarboxylic acids (saturated polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid; unsaturated polycarboxylic acids such as maleic acid, fumaric acid, itaconic acid), aromatic polycarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid), and alicyclic polycarboxylic acids (cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, etc.).
- saturated polycarboxylic acids such as ox
- Examples of the monocarboxylic acids include aliphatic monocarboxylic acids (1 to 30 carbon atoms) ([saturated monocarboxylic acids, such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, lauric acid, myristic acid, stearic acid, behenic acid]; [unsaturated monocarboxylic acids, such as acrylic acid, methacrylic acid, oleic acid]), aromatic monocarboxylic acids (such as benzoic acid, cinnamic acid, naphthoic acid), and oxycarboxylic acids (such as salicylic acid, mandelic acid, resorcylic acid).
- saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid
- maleic acid, phthalic acid, benzoic acid, pyromellitic acid, and resorcylic acid are thermally stable and are preferably used.
- Inorganic acids may be used as the acid component.
- inorganic acids include phosphoric acid, phosphorous acid, hypophosphorous acid, alkyl phosphate esters, boric acid, boric fluoride, tetrafluoroboric acid, hexafluorophosphoric acid, benzenesulfonic acid, and naphthalenesulfonic acid.
- composite compounds of organic acids and inorganic acids may be used as the acid component. Examples of such composite compounds include borodiglycolic acid, borodioxalic acid, and borodisalicylic acid.
- the base component may be a compound having an alkyl-substituted amidine group, such as an imidazole compound, a benzimidazole compound, or an alicyclic amidine compound (pyrimidine compound, imidazoline compound).
- an imidazole compound such as an imidazole compound, a benzimidazole compound, or an alicyclic amidine compound (pyrimidine compound, imidazoline compound).
- 1,8-diazabicyclo[5,4,0]undecene-7, 1,5-diazabicyclo[4,3,0]nonene-5 1,2-dimethylimidazolinium, 1,2,4-trimethylimidazoline, 1-methyl-2-ethyl-imidazoline, 1,4-dimethyl-2-ethylimidazoline, 1-methyl-2-heptyl imidazoline, 1-methyl-2-(3'heptyl)imidazoline, 1-methyl-2-dodecyl imidazoline, 1,2-di
- the base component may be a quaternary salt of a compound having an alkyl-substituted amidine group.
- base components include imidazole compounds, benzimidazole compounds, and alicyclic amidine compounds (pyrimidine compounds, imidazoline compounds) that are quaternized with an alkyl group or arylalkyl group having 1 to 11 carbon atoms.
- a tertiary amine may be used as the base component.
- tertiary amines include trialkylamines (trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, dimethyl-n-propylamine, dimethylisopropylamine, methylethyl-n-propylamine, methylethylisopropylamine, diethyl-n-propylamine, diethylisopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-tert-butylamine, etc.), and phenyl group-containing amines (dimethylphenylamine, methylethylphenylamine, diethylphenylamine, etc.).
- trialkylamines are preferred in terms of increasing electrical conductivity, and it is more preferred to include at least one selected from the group consisting of trimethylamine, dimethylethylamine, methyldiethylamine, and triethylamine.
- secondary amines such as dialkylamines, primary amines such as monoalkylamines, and ammonia may be used as the base component.
- the liquid component (LC) may contain a salt of an acid component and a base component.
- the salt may be an inorganic salt and/or an organic salt.
- An organic salt is a salt in which at least one of the anion and the cation contains an organic substance. Examples of organic salts that may be used include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, and mono 1,3-dimethyl-2-ethylimidazolinium phthalate.
- the pH of the liquid component (LC) may be less than 7.0 or less than 5.0, or may be greater than 1.0, or greater than 2.0.
- the pH may be greater than 1.0 and less than 7.0 (e.g., in the range of 2.0 to 5.0).
- the liquid component (LC) preferably contains a protic solvent.
- a protic solvent By using a protic solvent, it is possible to increase the adhesion of the conductive polymer layer.
- the liquid component (LC) may contain a solvent other than the protic solvent.
- the protic solvent may include at least one selected from the group consisting of glycols, glycerin, polyglycerin, and sugar alcohols, or may be at least one of the above.
- the protic solvent may be composed of only one type of compound, or may include multiple types of compounds.
- the organic compound (C) and the liquid component (LC) may contain the same compound.
- they may contain the same polyhydric alcohol, the same glycols (such as ethylene glycol), or the same sugar alcohol.
- the liquid (L) may be a liquid containing the organic compound (C) and water. In this case, it is preferable to impregnate the laminate with the liquid (L) and then remove water from the laminate under conditions in which the organic compound (C) remains in the laminate.
- the organic compound (C) may be at least one selected from the group consisting of mannitol, mannitol derivatives, xylitol, and xylitol derivatives.
- the liquid (L) may contain at least one substance (hereinafter, sometimes referred to as "substance X") selected from the group consisting of sugar, sugar alcohol, epoxy resin, and polyvinyl alcohol.
- substance X selected from the group consisting of sugar, sugar alcohol, epoxy resin, and polyvinyl alcohol.
- the sugar alcohol may include at least one selected from the group consisting of mannitol, mannitol derivatives, xylitol, and xylitol derivatives, or may be at least one of the above.
- the substance X may be at least one selected from the group consisting of mannitol, mannitol derivatives, xylitol, and xylitol derivatives. Mannitol, mannitol derivatives, xylitol, and xylitol derivatives have the effect of adhering the conductive polymer layer and the cathode foil.
- Examples of mannitol derivatives include compounds in which some of the hydroxyl groups of mannitol are esterified, compounds in which some of the hydroxyl groups of mannitol are etherified, and compounds in which some of the hydroxyl groups of mannitol are anionized to form a salt.
- Examples of xylitol derivatives include compounds in which some of the hydroxyl groups of xylitol are esterified, compounds in which some of the hydroxyl groups of xylitol are etherified, and compounds in which some of the hydroxyl groups of xylitol are anionized to form a salt.
- the organic solvent contained in the liquid (L) may contain at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol, or may be at least one of the organic solvents. By containing these in the liquid (L), the electrical conductivity of the conductive polymer layer can be increased.
- a preferred example of the liquid (L) is a liquid containing xylitol in at least one organic solvent selected from the group consisting of triethylene glycol and polyethylene glycol.
- anode foil examples include metal foils containing at least one of valve metals such as titanium, tantalum, aluminum, and niobium, and may be metal foils of valve metals (e.g., aluminum foils).
- the anode foil may contain the valve metal in the form of an alloy containing the valve metal or a compound containing the valve metal.
- the thickness of the anode foil may be 15 ⁇ m or more and 300 ⁇ m or less.
- the surface of the anode foil may be roughened by etching or the like.
- a dielectric layer is formed on the surface of the anode foil.
- the dielectric layer may be formed by subjecting the anode foil to a chemical conversion treatment.
- the dielectric layer may contain an oxide of a valve metal (e.g., aluminum oxide).
- the dielectric layer may be formed of any dielectric other than an oxide of a valve metal as long as it functions as a dielectric.
- a conductive polymer layer does not need to be formed on the end surface of the anode foil.
- a dielectric layer is formed on the end surface of the anode foil.
- the cathode foil includes a metal foil (e.g., aluminum foil).
- the metal constituting the metal foil may be a valve metal or an alloy containing a valve metal.
- the surface of the metal foil may be roughened by etching or the like.
- the thickness of the cathode foil may be 15 ⁇ m or more and 300 ⁇ m or less.
- a conductive polymer layer may be formed on the surface of the cathode foil by the above-mentioned method.
- the cathode foil may have an inorganic layer on its surface.
- the cathode foil having an inorganic layer on its surface may be a commercially available product, or may be formed by forming an inorganic layer on the surface of a metal foil (cathode foil).
- the inorganic layer may be formed by a known method.
- the inorganic layer may be formed by a vacuum deposition method or the like.
- the inorganic layer may be formed by applying a paste containing one selected from the group consisting of carbon (particularly a conductive carbon material), titanium, and nickel onto the metal foil (cathode foil) and then drying it.
- the amount of the inorganic layer may be in the range of 50 mg/m 2 to 300 mg/m 2 (for example, in the range of 70 mg/m 2 to 200 mg/m 2 ).
- Examples of carbon (particularly a conductive carbon material) contained in the inorganic layer include graphite, hard carbon, soft carbon, carbon black, and the like.
- the inorganic layer may be a layer formed by depositing titanium or a layer formed by particles of titanium oxide.
- the inorganic layer may be a carbon layer.
- the carbon layer may be a layer containing carbon, and may have a carbon content of 50 mass% or more. In this specification, the term "inorganic layer" may be replaced with "carbon layer.”
- the cathode foil may include a metal foil, an inorganic layer, and a titanium-containing layer disposed between the inorganic layer and the metal foil.
- An example of the cathode foil has a laminated structure of inorganic layer/titanium-containing layer/metal foil (e.g., aluminum foil)/titanium-containing layer/inorganic layer.
- the titanium-containing layer may contain at least one selected from the group consisting of titanium and titanium compounds. Examples of titanium compounds include titanium nitride, titanium oxide, titanium aluminum alloy, titanium carbonate, and the like.
- the method of forming the titanium-containing layer is not limited, and the layer may be formed by a known method.
- the titanium-containing layer may be formed by a physical vapor deposition method such as a vacuum deposition method or a sputtering method.
- the deposition amount of the titanium-containing layer may be in the range of 200 mg/m 2 to 500 mg/m 2 (e.g., in the range of 250 mg/m 2 to 400 mg/m 2 ).
- a porous sheet can be used for the separator.
- the porous sheet include woven fabric, nonwoven fabric, and microporous membrane.
- the thickness of the separator is not particularly limited and may be in the range of 10 to 300 ⁇ m.
- the material of the separator include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, vinylon, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, glass, and the like.
- the laminate and the liquid component (LC) are housed in an exterior body.
- the exterior body includes a case and/or a sealing resin.
- the sealing resin may include a thermosetting resin.
- the thermosetting resin include an epoxy resin, a phenolic resin, a silicone resin, a melamine resin, a urea resin, an alkyd resin, a polyurethane, a polyimide, an unsaturated polyester, and the like.
- the sealing resin may include a filler, a curing agent, a polymerization initiator, and/or a catalyst, and the like.
- FIG. 1 is a cross-sectional view showing an example of an electrolytic capacitor 100 according to this embodiment.
- FIG. 2 is a schematic diagram showing an exploded view of a portion of a capacitor element 10 included in the electrolytic capacitor 100.
- the electrolytic capacitor 100 comprises a capacitor element 10, a bottomed case 101 that houses the capacitor element 10, a sealing member 102 that closes the opening of the bottomed case 101, a seat plate 103 that covers the sealing member 102, lead wires 104A, 104B that extend from the sealing member 102 and pass through the seat plate 103, and lead tabs 105A, 105B that connect the lead wires to the electrodes of the capacitor element 10.
- the area near the open end of the bottomed case 101 is drawn inward, and the open end is curled so as to be crimped to the sealing member 102.
- Capacitor element 10 is, for example, a wound body as shown in FIG. 1.
- the wound body includes an anode foil 11 connected to lead tab 105A, a cathode foil 12 connected to lead tab 105B, and a separator 13.
- Capacitor element 10 (wound body) includes a conductive polymer layer (not shown).
- the conductive polymer layer may include an organic compound (C).
- Electrolytic capacitor 100 includes a liquid component (LC) (e.g., an electrolyte) impregnated in capacitor element 10.
- LC liquid component
- the anode foil 11 and the cathode foil 12 are wound with a separator 13 between them.
- the outermost circumference of the wound body is fixed with a stop tape 14. Note that Figure 2 shows the wound body in a partially unfolded state before the outermost circumference is fixed.
- An electrolytic capacitor may have at least one capacitor element, but may also have multiple capacitor elements.
- the number of capacitor elements included in an electrolytic capacitor may be determined according to the application.
- An electrolytic capacitor comprising a laminate and a liquid component impregnated in the laminate,
- the laminate comprises: an anode foil having a dielectric layer on a surface thereof; A cathode foil; A separator; a first conductive polymer layer supported by the separator; a second conductive polymer layer formed on the dielectric layer; the first conductive polymer layer contains a first conductive polymer, a polyvinyl alcohol-based polymer, and a boric acid-based compound; the second conductive polymer layer contains a second conductive polymer,
- the boric acid compound is at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds, At least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked.
- the cathode foil has an inorganic layer on a surface thereof,
- the electrolytic capacitor according to claim 1 or 2 wherein the first conductive polymer layer is in close contact with the inorganic layer.
- a method for manufacturing an electrolytic capacitor comprising the steps of: A preparation step of preparing an anode foil having a dielectric layer on a surface thereof; a first polymer layer forming step of forming a first conductive polymer layer containing a first conductive polymer and a polyvinyl alcohol-based polymer in voids of the separator; a second polymer layer forming step of forming a second conductive polymer layer on a surface of the dielectric layer; a laminate formation step of forming a laminate including the first conductive polymer layer and the second conductive polymer layer by stacking the anode foil, the cathode foil, and the separator such that the separator is disposed between the anode foil and the cathode foil; an impregnation step of impregnating the laminate with a liquid component containing at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds; A crosslinking step of heating the laminate impregnated with the liquid component to
- the cathode foil has an inorganic layer on a surface thereof, 8.
- Capacitor A1 An electrolytic capacitor (capacitor A1) was produced by the following method.
- a nonwoven fabric (thickness 50 ⁇ m) was prepared as a separator.
- the nonwoven fabric used was made of polyester fiber, aramid fiber, and cellulose.
- a conductive polymer layer A dispersion (commercially available) in which particles of polyethylenedioxythiophene (PEDOT) doped with polystyrene sulfonic acid (PSS) were dispersed in water was prepared. Polyvinyl alcohol and water were added to this dispersion to obtain a coating liquid. The concentration of the conductive polymer component in the coating liquid was 1.8% by mass, and the concentration of polyvinyl alcohol in the coating liquid was 0.6% by mass.
- PEDOT polyethylenedioxythiophene
- PSS polystyrene sulfonic acid
- the coating liquid was applied to one side of the anode foil (surface of the dielectric layer) using a gravure coater.
- a drying process was then performed to form a second conductive polymer layer on one side of the anode foil (surface of the dielectric layer).
- the drying process was performed by heating the anode foil with the coating liquid applied at 125°C for 5 minutes.
- a second conductive polymer layer was formed on the other side of the anode foil (surface of the dielectric layer) in the same manner.
- a first conductive polymer layer was formed on the separator by applying the coating liquid to the separator and then performing a drying process.
- Impregnation of liquid component o-phthalic acid and triethylamine (base component) were dissolved in ethylene glycol (solvent) at a total concentration of 25 mass%, and ammonium borate was further added to prepare an electrolyte (liquid component). The concentration of ammonium borate in the electrolyte was set to 2.5 mass%.
- the capacitor element was immersed in the electrolyte for 5 minutes in a reduced pressure atmosphere (40 kPa). This allowed the capacitor element (laminate) to be impregnated with the electrolyte.
- Capacitor Element Sealing and Crosslinking Process The capacitor element impregnated with the electrolytic solution was sealed to assemble an electrolytic capacitor as shown in FIG. 1. Then, the electrolytic capacitor including the capacitor element (laminate) was heated at 105° C. for 60 minutes while applying a voltage between the anode foil and the cathode foil. This process crosslinked the polyvinyl alcohol in the conductive polymer layer with ammonium borate. This process also reconstituted the anode foil. In this way, an electrolytic capacitor (capacitor A1) was produced.
- Capacitor C1 An electrolytic capacitor (capacitor C1) was produced in the same manner and under the same conditions as those for producing capacitor A1, except that polyvinyl alcohol was not added to the coating liquid for forming the conductive polymer layer.
- Capacitor C2 An electrolytic capacitor (capacitor C2) was produced in the same manner and under the same conditions as those for producing capacitor A1, except that ammonium borate was not added to the electrolyte.
- Capacitor C3 An electrolytic capacitor (capacitor C3) was produced in the same manner and under the same conditions as those for producing capacitor A1, except that polyvinyl alcohol was not added to the coating liquid for forming the conductive polymer layer, and ammonium borate was not added to the electrolytic solution.
- ESR equivalent series resistance
- withstand voltage high.
- Capacitor A1 is an electrolytic capacitor (E) according to the present disclosure manufactured by manufacturing method (M).
- Capacitors C1 to C3 are comparative examples. As shown in Table 1, capacitor A1 had a low ESR and a high withstand voltage.
- This disclosure can be used in electrolytic capacitors.
- Capacitor element 11 Anode foil 12: Cathode foil 13: Separator 100: Electrolytic capacitor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本開示は、電解コンデンサおよび電解コンデンサの製造方法に関する。 This disclosure relates to electrolytic capacitors and methods for manufacturing electrolytic capacitors.
電解コンデンサとして、陽極箔とセパレータと陰極箔との巻回体を含む電解コンデンサが知られている。そのような電解コンデンサの一例は、巻回体中に配置された導電性高分子層を含む。導電性高分子層は、導電性高分子を含有する分散液を巻回体に含浸させることによって形成することが可能である。導電性高分子層を含む電解コンデンサについて、従来から様々な提案がなされている。 A known electrolytic capacitor is one that includes a wound body of an anode foil, a separator, and a cathode foil. One example of such an electrolytic capacitor includes a conductive polymer layer disposed in the wound body. The conductive polymer layer can be formed by impregnating the wound body with a dispersion liquid that contains a conductive polymer. Various proposals have been made in the past regarding electrolytic capacitors that include a conductive polymer layer.
特許文献1(特許第6911910号)の請求項1には、「陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、導電性高分子の粒子と、ソルビトール又はソルビトール及び多価アルコールと、を含む導電性高分子化合物分散体を用いた固体電解質層であって前記ソルビトール又はソルビトール及び多価アルコールを60~92wt%含む前記固体電解質層を形成するとともに、該固体電解質層が形成されたコンデンサ素子内の空隙部に、エチレングリコールを溶媒中10wt%以上含む電解液を充填させたことを特徴とする電解コンデンサ。」が記載されている。 Patent Document 1 (Patent No. 6911910) states in claim 1 that "an electrolytic capacitor is characterized in that a capacitor element is formed by winding an anode electrode foil and a cathode electrode foil with a separator interposed therebetween, and a solid electrolyte layer is formed using a conductive polymer compound dispersion containing conductive polymer particles and sorbitol or sorbitol and a polyhydric alcohol, the solid electrolyte layer containing 60 to 92 wt % of the sorbitol or sorbitol and a polyhydric alcohol, and the voids in the capacitor element in which the solid electrolyte layer is formed are filled with an electrolyte solution containing 10 wt % or more of ethylene glycol in a solvent."
特許文献2(特表2019-516241号公報)の請求項1には、「加工要素を含み、前記加工要素は:表面に誘電体及び該誘電体の表面にアノード導電性ポリマ層を含むアノードと;カソード導電性ポリマ層を含むカソードと;前記アノードと前記カソードとの間の導電性セパレータと;前記アノードと電気的に接触するアノードリードと;前記カソードと電気的に接触するカソードリードと;を含むコンデンサ。」が記載されている。 Claim 1 of Patent Document 2 (JP Patent Publication No. 2019-516241) describes a "capacitor including a processing element, the processing element including: an anode including a dielectric on a surface and an anode conductive polymer layer on the surface of the dielectric; a cathode including a cathode conductive polymer layer; a conductive separator between the anode and the cathode; an anode lead in electrical contact with the anode; and a cathode lead in electrical contact with the cathode."
特許文献3(国際公開第2021/125182号)の請求項1には、「弁金属から成る陰極基体と、該陰極基体の表面に設けられた前記弁金属の酸化物から成る酸化物層と、該酸化物層の表面に設けられた無機導電性材料を含む無機導電層と、該無機導電層の表面に設けられた導電性高分子を含む有機導電層と、を有する陰極と、弁金属から成る陽極基体と、該陽極基体の表面に設けられた前記陽極基体を構成している弁金属の酸化物から成る誘電体層と、を有する陽極と、前記陰極の有機導電層と前記陽極の誘電体層との間に設けられてこれらと接触している導電性高分子の粒子を含む固体電解質層と、該固体電解質層における導電性高分子の粒子の間に充填されている電解液と、を有する複合電解質層とを備えたことを特徴とするハイブリッド型電解コンデンサ。」が記載されている。 Claim 1 of Patent Document 3 (WO 2021/125182) describes a hybrid electrolytic capacitor comprising: a cathode having a cathode substrate made of a valve metal, an oxide layer made of an oxide of the valve metal provided on the surface of the cathode substrate, an inorganic conductive layer containing an inorganic conductive material provided on the surface of the oxide layer, and an organic conductive layer containing a conductive polymer provided on the surface of the inorganic conductive layer; an anode having an anode substrate made of a valve metal, and a dielectric layer made of an oxide of the valve metal constituting the anode substrate provided on the surface of the anode substrate; a solid electrolyte layer provided between the organic conductive layer of the cathode and the dielectric layer of the anode and containing conductive polymer particles in contact with them, and an electrolyte filled between the conductive polymer particles in the solid electrolyte layer.
本開示の一局面は、積層体と、前記積層体に含浸された液状成分とを含む電解コンデンサに関する。前記積層体は、表面に誘電体層を有する陽極箔と、陰極箔と、セパレータと、前記セパレータに保持された第1の導電性高分子層と、前記誘電体層上に形成された第2の導電性高分子層と、を含む。前記第1の導電性高分子層は、第1の導電性高分子、ポリビニルアルコール系高分子、およびホウ酸系化合物を含有する。前記第2の導電性高分子層は、第2の導電性高分子を含有する。前記ホウ酸系化合物は、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物である。前記第1の導電性高分子層中の前記ポリビニルアルコール系高分子の少なくとも一部は架橋されている。 One aspect of the present disclosure relates to an electrolytic capacitor including a laminate and a liquid component impregnated in the laminate. The laminate includes an anode foil having a dielectric layer on a surface thereof, a cathode foil, a separator, a first conductive polymer layer held by the separator, and a second conductive polymer layer formed on the dielectric layer. The first conductive polymer layer contains a first conductive polymer, a polyvinyl alcohol-based polymer, and a boric acid-based compound. The second conductive polymer layer contains a second conductive polymer. The boric acid-based compound is at least one boric acid-based compound selected from the group consisting of boric acid and boric acid compounds. At least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked.
本開示の他の一局面は、電解コンデンサの製造方法関する。前記製造方法は、表面に誘電体層を有する陽極箔を準備する準備工程と、セパレータの空隙内に第1の導電性高分子とポリビニルアルコール系高分子とを含む第1の導電性高分子層を形成する第1高分子層形成工程と、前記誘電体層の表面に第2の導電性高分子層を形成する第2高分子層形成工程と、前記陽極箔と陰極箔と前記セパレータとを、前記陽極箔と前記陰極箔との間に前記セパレータが配置されるように積層することによって、前記第1の導電性高分子層と前記第2の導電性高分子層とを含む積層体を形成する積層体形成工程と、前記積層体に、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物を含有する液状成分を含浸させる含浸工程と、前記液状成分が含浸された前記積層体を85℃以上の温度に加熱する架橋工程と、を含む。前記架橋工程において、前記第1の導電性高分子層中の前記ポリビニルアルコール系高分子の少なくとも一部は前記少なくとも1種のホウ酸系化合物によって架橋される。 Another aspect of the present disclosure relates to a method for manufacturing an electrolytic capacitor. The manufacturing method includes a preparation step of preparing an anode foil having a dielectric layer on its surface, a first polymer layer formation step of forming a first conductive polymer layer containing a first conductive polymer and a polyvinyl alcohol-based polymer in the voids of a separator, a second polymer layer formation step of forming a second conductive polymer layer on the surface of the dielectric layer, a laminate formation step of forming a laminate containing the first conductive polymer layer and the second conductive polymer layer by stacking the anode foil, the cathode foil, and the separator so that the separator is disposed between the anode foil and the cathode foil, an impregnation step of impregnating the laminate with a liquid component containing at least one boric acid-based compound selected from the group consisting of boric acid and boric acid compounds, and a crosslinking step of heating the laminate impregnated with the liquid component to a temperature of 85° C. or higher. In the crosslinking step, at least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked by the at least one boric acid-based compound.
本開示によれば、液状成分と導電性高分子層とを含みESRが低い電解コンデンサが得られる。 According to the present disclosure, an electrolytic capacitor containing a liquid component and a conductive polymer layer and having a low ESR can be obtained.
以下に従来技術における問題について、簡単に説明する。 The following is a brief explanation of the problems with the conventional technology.
導電性高分子を含有する分散液は粘度が高いため、分散液を巻回体に含浸させても、巻回体の内部に充分な導電性高分子層を形成できない場合がある。導電性高分子層の不充分な形成は、等価直列抵抗(ESR)の増大の原因となりうる。 Since the dispersion liquid containing the conductive polymer has a high viscosity, even if the dispersion liquid is impregnated into the wound body, it may not be possible to form a sufficient conductive polymer layer inside the wound body. Insufficient formation of the conductive polymer layer can cause an increase in equivalent series resistance (ESR).
電解コンデンサのESRの低減が従来から求められている。本開示は、液状成分と導電性高分子層とを含みESRを低減できる電解コンデンサを提供する。 There has long been a need to reduce the ESR of electrolytic capacitors. This disclosure provides an electrolytic capacitor that contains a liquid component and a conductive polymer layer and can reduce the ESR.
以下では、本発明に係る実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示に係る発明を実施できる限り、他の数値や他の材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。 Below, examples of embodiments according to the present invention are described, but the present invention is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and other materials may be applied as long as the invention according to this disclosure can be implemented. In this specification, the expression "numerical value A to numerical value B" includes numerical value A and numerical value B and can be read as "numerical value A or more and numerical value B or less." In the following description, when numerical values for specific physical properties or conditions are exemplified as lower and upper limits, any of the exemplified lower limits can be arbitrarily combined with any of the exemplified upper limits, as long as the lower limit is not equal to or greater than the upper limit.
(電解コンデンサの製造方法)
本実施形態に係る製造方法を、以下では、「製造方法(M)」と称する場合がある。製造方法(M)は、準備工程、高分子層形成工程(第1高分子層形成工程、第2高分子層形成工程)、積層体形成工程、含浸工程、および架橋工程を、この順に含む。第1高分子層形成工程および第2高分子層形成工程の順序は任意であり、いずれを先に行ってもよい。それらの工程については後述する。
(Method of manufacturing electrolytic capacitor)
The manufacturing method according to this embodiment may be referred to as "manufacturing method (M)" below. The manufacturing method (M) includes a preparation step, a polymer layer forming step (a first polymer layer forming step, a second polymer layer forming step), a laminate forming step, an impregnation step, and a crosslinking step, in this order. The first polymer layer forming step and the second polymer layer forming step may be performed in any order, and either may be performed first. These steps will be described later.
後述するように、製造方法(M)では、導電性高分子層内に含有されるポリビニルアルコール系高分子をホウ酸系化合物によって架橋させる。これによって、陽極箔とセパレータとの間および陰極箔とセパレータとの間の密着性が向上するため、電解コンデンサのESRを低減できる。さらに、導電性高分子層における電解液の保持性も向上するため、誘電体層の修復性が向上し、電解コンデンサの耐電圧を高めることができる。さらに、長期使用において、電解液の揮発による電解液の消失を抑制できるため、電解コンデンサの長寿命化が可能である。 As described below, in manufacturing method (M), the polyvinyl alcohol polymer contained in the conductive polymer layer is cross-linked with a boric acid compound. This improves the adhesion between the anode foil and the separator and between the cathode foil and the separator, thereby reducing the ESR of the electrolytic capacitor. Furthermore, the retention of electrolyte in the conductive polymer layer is improved, improving the repairability of the dielectric layer and increasing the voltage resistance of the electrolytic capacitor. Furthermore, loss of electrolyte due to volatilization can be suppressed during long-term use, making it possible to extend the life of the electrolytic capacitor.
(準備工程)
準備工程は、表面に誘電体層を有する陽極箔を準備する工程である。表面に誘電体層を有する陽極箔は、市販されているものを用いてもよいし、金属箔(陽極箔)の表面に誘電体層を形成することによって形成してもよい。誘電体層は、公知の方法で形成してもよい。例えば、誘電体層は、金属箔(陽極箔)の表面を酸化することによって形成してもよい。
(Preparation process)
The preparation step is a step of preparing an anode foil having a dielectric layer on its surface. The anode foil having a dielectric layer on its surface may be a commercially available product, or may be formed by forming a dielectric layer on the surface of a metal foil (anode foil). The dielectric layer may be formed by a known method. For example, the dielectric layer may be formed by oxidizing the surface of the metal foil (anode foil).
(第1高分子層形成工程)
第1高分子層形成工程は、セパレータの空隙内に第1の導電性高分子とポリビニルアルコール系高分子とを含む第1の導電性高分子層を形成する工程である。第1高分子層形成工程は、セパレータの空隙内に、第1の導電性高分子と、ポリビニルアルコール系高分子と、第1の液媒体とを含有する第1の塗液を付与する第1塗液付与工程と、第1の塗液から第1の液媒体の少なくとも一部を除去することによって、セパレータの空隙内に第1の導電性高分子層を形成する第1液媒体除去工程と、を含んでもよい。
(First polymer layer formation step)
The first polymer layer forming step is a step of forming a first conductive polymer layer containing a first conductive polymer and a polyvinyl alcohol-based polymer in the voids of the separator. The first polymer layer forming step may include a first coating liquid applying step of applying a first coating liquid containing the first conductive polymer, a polyvinyl alcohol-based polymer, and a first liquid medium to the voids of the separator, and a first liquid medium removing step of removing at least a part of the first liquid medium from the first coating liquid to form a first conductive polymer layer in the voids of the separator.
ポリビニルアルコール系高分子は、-CH2CH(OH)-(以下では、「ビニルアルコール単位」と称する場合がある)を構成単位として含む高分子である。全構成単位に占めるビニルアルコール単位の割合は、40モル%以上、60モル%以上、または80モル%以上であってもよい。ビニルアルコール単位以外の構成単位の例には、酢酸ビニル単位などが含まれる。全構成単位に占めるビニルアルコール単位および酢酸ビニル単位の合計は、60モル%以上、または80モル%以上であってもよい。 A polyvinyl alcohol polymer is a polymer containing -CH 2 CH(OH)- (hereinafter sometimes referred to as "vinyl alcohol unit") as a constituent unit. The proportion of vinyl alcohol units in all constituent units may be 40 mol % or more, 60 mol % or more, or 80 mol % or more. Examples of constituent units other than vinyl alcohol units include vinyl acetate units. The total of vinyl alcohol units and vinyl acetate units in all constituent units may be 60 mol % or more, or 80 mol % or more.
ポリビニルアルコール系高分子の例には、ポリビニルアルコールおよびポリビニルアルコールの誘導体が含まれる。ポリビニルアルコール系高分子は、酢酸ビニルの重合体をけん化することによって得られる高分子であってもよい。あるいは、ポリビニルアルコール系高分子は、酢酸ビニルと他のモノマーとの共重合体をけん化することによって得られる重合体であってもよい。 Examples of polyvinyl alcohol-based polymers include polyvinyl alcohol and derivatives of polyvinyl alcohol. The polyvinyl alcohol-based polymer may be a polymer obtained by saponifying a vinyl acetate polymer. Alternatively, the polyvinyl alcohol-based polymer may be a polymer obtained by saponifying a copolymer of vinyl acetate and another monomer.
ポリビニルアルコール系高分子の重量平均分子量は、500~3500の範囲(例えば1000~2000の範囲)にあってもよい。 The weight average molecular weight of the polyvinyl alcohol polymer may be in the range of 500 to 3500 (e.g., in the range of 1000 to 2000).
第1の塗液におけるポリビニルアルコール系高分子の濃度は、0.01質量%~3.0質量%の範囲(例えば0.05質量%~0.5質量%の範囲)にあってもよい。第1の塗液において、第1の導電性高分子の質量Wcに対するポリビニルアルコール系高分子の質量Wpの比Wp/Wcは、0.01以上であってもよく、0.01~3.0の範囲(例えば0.05~0.5の範囲)にあってもよい。すなわち、第1の導電性高分子層において、第1の導電性高分子の質量Wcに対するポリビニルアルコール系高分子の質量Wpの比(Wp/Wc)は0.01以上であってもよく、0.01~3.0の範囲(例えば0.05~0.5の範囲)にあってもよい。 The concentration of the polyvinyl alcohol-based polymer in the first coating liquid may be in the range of 0.01% by mass to 3.0% by mass (e.g., in the range of 0.05% by mass to 0.5% by mass). In the first coating liquid, the ratio Wp/Wc of the mass Wp of the polyvinyl alcohol-based polymer to the mass Wc of the first conductive polymer may be 0.01 or more, and may be in the range of 0.01 to 3.0 (e.g., in the range of 0.05 to 0.5). That is, in the first conductive polymer layer, the ratio (Wp/Wc) of the mass Wp of the polyvinyl alcohol-based polymer to the mass Wc of the first conductive polymer may be 0.01 or more, and may be in the range of 0.01 to 3.0 (e.g., in the range of 0.05 to 0.5).
(第2高分子層形成工程)
第2高分子層形成工程は、誘電体層の表面に第2の導電性高分子層を形成する工程である。第2高分子層形成工程は、誘電体層(陽極箔の表面の誘電体層)の表面に、第2の導電性高分子と、第2の液媒体とを含有する第2の塗液を付与する第2塗液付与工程と、第2の塗液から第2の液媒体の少なくとも一部を除去することによって、誘電体層の表面に第2の導電性高分子層を形成する第2液媒体除去工程と、を含んでもよい。
(Second polymer layer formation step)
The second polymer layer forming step is a step of forming a second conductive polymer layer on the surface of the dielectric layer. The second polymer layer forming step may include a second coating liquid applying step of applying a second coating liquid containing a second conductive polymer and a second liquid medium to the surface of the dielectric layer (the dielectric layer on the surface of the anode foil), and a second liquid medium removing step of removing at least a part of the second liquid medium from the second coating liquid to form a second conductive polymer layer on the surface of the dielectric layer.
第2の塗液は、ポリビニルアルコール系高分子を含んでもよいし含まなくてもよい。第1の導電性高分子と第2の導電性高分子とは、同じであってもよいし異なってもよい。第1の液媒体と第2の液媒体とは、同じであってもよいし異なってもよい。第1の塗液と第2の塗液とは、同じであってもよいし異なってもよい。 The second coating liquid may or may not contain a polyvinyl alcohol-based polymer. The first conductive polymer and the second conductive polymer may be the same or different. The first liquid medium and the second liquid medium may be the same or different. The first coating liquid and the second coating liquid may be the same or different.
導電性高分子(第1の導電性高分子、第2の導電性高分子)は、粒子の状態で塗液(第1の塗液、第2の塗液)に分散されていてもよい。導電性高分子の例については後述する。 The conductive polymers (first conductive polymer, second conductive polymer) may be dispersed in the coating liquid (first coating liquid, second coating liquid) in the form of particles. Examples of conductive polymers will be described later.
第1の塗液において、第1の導電性高分子の質量Wcに対するポリビニルアルコール系高分子の質量Wpの比(Wp/Wc)は、0.01以上、0.05以上、または0.1以上であってもよく、3.0以下、または0.5以下であってもよい。比Wp/Wcを0.01以上とすることによって、塗液の安定性を維持しつつ、ホウ酸系化合物との反応で架橋されたポリビニルアルコール系高分子の量を充分な量とすることができる。 In the first coating liquid, the ratio (Wp/Wc) of the mass Wp of the polyvinyl alcohol-based polymer to the mass Wc of the first conductive polymer may be 0.01 or more, 0.05 or more, or 0.1 or more, and may be 3.0 or less, or 0.5 or less. By making the ratio Wp/Wc 0.01 or more, it is possible to obtain a sufficient amount of polyvinyl alcohol-based polymer crosslinked by reaction with the boric acid compound while maintaining the stability of the coating liquid.
液媒体(第1の液媒体、第2の液媒体)は特に限定されず、高分子層の形成に用いることが可能な液媒体を用いることができる。液媒体の例には、水、有機溶媒(例えばアルコール)、およびそれらの混合溶媒などが含まれる。 The liquid medium (first liquid medium, second liquid medium) is not particularly limited, and any liquid medium that can be used to form a polymer layer can be used. Examples of liquid media include water, organic solvents (e.g., alcohol), and mixtures thereof.
液媒体は、水と、1気圧(101325Pa)において100℃で沸騰しない有機化合物とを含有してもよい。当該有機化合物を以下では「有機化合物(C)」と称する場合がある。有機化合物(C)は、1種の化合物であってもよいし、複数種の化合物で構成されてもよい。 The liquid medium may contain water and an organic compound that does not boil at 100°C at 1 atmosphere (101,325 Pa). Hereinafter, the organic compound may be referred to as "organic compound (C)." Organic compound (C) may be one type of compound or may be composed of multiple types of compounds.
塗液(第1の塗液、第2の塗液)を付与する方法は限定されず、公知の方法で付与してもよい。例えば、コーターを用いた方法であってもよいし、塗液をスプレーしてもよいし、塗液中に被付与物を浸漬してもよい。コーターを用いる方法の例には、グラビアコーティング法やダイコーティング法などが含まれる。グラビアコーティング法の一例では、まず、塗液を転移用部材(グラビアロール等)に付着させ、その後、余分な塗液を転移用部材から除去する。次に、転移用部材に付着した塗液を所定の部材(陽極箔、陰極箔、またはセパレータ)に転移させることによって、均一な厚さの塗液の層を当該部材に付着させることができる。また、塗液の粘度は、例えば、10mPa・s以上(例えば100mPa・s以上)で200mPa・s以下であってもよい。この場合、塗液を陽極箔、陰極箔、セパレータに塗布し易く、セパレータに含浸させ易い。なお、塗液の粘度は、室温(20℃)で振動式粘度計(例えば、株式会社セコニック製、VM-100A)を用いて求められる。 The method of applying the coating liquid (first coating liquid, second coating liquid) is not limited, and may be applied by a known method. For example, a method using a coater may be used, the coating liquid may be sprayed, or the object to be coated may be immersed in the coating liquid. Examples of methods using a coater include gravure coating and die coating. In one example of the gravure coating method, the coating liquid is first applied to a transfer member (gravure roll, etc.), and then excess coating liquid is removed from the transfer member. Next, the coating liquid applied to the transfer member is transferred to a specified member (anode foil, cathode foil, or separator), so that a layer of coating liquid with a uniform thickness can be applied to the member. The viscosity of the coating liquid may be, for example, 10 mPa·s or more (for example, 100 mPa·s or more) and 200 mPa·s or less. In this case, the coating liquid is easy to apply to the anode foil, cathode foil, and separator, and is easy to impregnate the separator. The viscosity of the coating liquid is measured at room temperature (20°C) using a vibration viscometer (e.g., VM-100A, manufactured by Sekonic Corporation).
塗液から液媒体の少なくとも一部を除去する方法は特に限定されず、加熱などによって行うことができる。塗液が有機化合物(C)を含む場合、高分子層に有機化合物(C)が残存するように加熱を行ってもよい。例えば、塗液が有機化合物(C)と水(液媒体)とを含有する場合、有機化合物(C)が沸騰および分解しない温度で且つ100℃以上の温度で塗液を加熱することによって、塗液から水を除去する一方で有機化合物(C)を高分子層に残存させることが可能である。加熱温度は、100℃以上、120℃以上、または140℃以上であってもよく、200℃以下、または160℃以下であってもよい。加熱温度は100℃~200℃の範囲にあってもよい。加熱時間に特に限定はなく、液媒体の一部を適切に除去できる時間であればよい。一例の加熱時間は、5~60分間の範囲にある。 The method of removing at least a part of the liquid medium from the coating liquid is not particularly limited, and can be performed by heating or the like. When the coating liquid contains an organic compound (C), heating may be performed so that the organic compound (C) remains in the polymer layer. For example, when the coating liquid contains an organic compound (C) and water (liquid medium), it is possible to remove water from the coating liquid while leaving the organic compound (C) in the polymer layer by heating the coating liquid at a temperature at which the organic compound (C) does not boil or decompose and at a temperature of 100°C or higher. The heating temperature may be 100°C or higher, 120°C or higher, or 140°C or higher, and may be 200°C or lower, or 160°C or lower. The heating temperature may be in the range of 100°C to 200°C. There is no particular limit to the heating time, and it may be a time that allows a part of the liquid medium to be appropriately removed. An example of the heating time is in the range of 5 to 60 minutes.
導電性高分子層(第1の導電性高分子層、第2の導電性高分子層)に有機化合物(C)を残存させることによって、塗液から液媒体を除去したときの導電性高分子層の収縮を小さくすることができる。その結果、その後の含浸工程において、液状成分(例えば電解液)が導電性高分子層に浸透しやすくなる。その結果、液状成分が有する誘電体層(酸化皮膜)の形成機能が充分に発揮されやすくなり、漏れ電流が低下する。 By leaving the organic compound (C) in the conductive polymer layer (first conductive polymer layer, second conductive polymer layer), it is possible to reduce the shrinkage of the conductive polymer layer when the liquid medium is removed from the coating liquid. As a result, in the subsequent impregnation step, the liquid component (e.g., electrolyte) can easily penetrate into the conductive polymer layer. As a result, the liquid component's function of forming a dielectric layer (oxide film) can be fully exerted, and leakage current is reduced.
製造方法(M)の好ましい一例では、塗液における水の含有率が40質量%以上(例えば50質量%以上)であり、導電性高分子層中の水の質量よりも導電性高分子層中の有機化合物(C)の質量が大きくなるように、塗布された塗液の液媒体を除去する。塗液における水の含有率が高いと、導電性高分子層を形成した後、電解液が導電性高分子層に含浸されやすくなる。 In a preferred example of manufacturing method (M), the water content in the coating liquid is 40 mass % or more (e.g., 50 mass % or more), and the liquid medium of the applied coating liquid is removed so that the mass of the organic compound (C) in the conductive polymer layer is greater than the mass of water in the conductive polymer layer. If the water content in the coating liquid is high, the conductive polymer layer is more easily impregnated with the electrolyte after the conductive polymer layer is formed.
(積層体形成工程)
積層体形成工程は、陽極箔と陰極箔とセパレータとを、陽極箔と陰極箔との間にセパレータが配置されるように積層することによって、第1の導電性高分子層と第2の導電性高分子層とを含む積層体を形成する工程である。
(Laminate Forming Process)
The laminate formation step is a step of forming a laminate including a first conductive polymer layer and a second conductive polymer layer by laminating an anode foil, a cathode foil, and a separator such that the separator is disposed between the anode foil and the cathode foil.
積層体の形成方法は特に限定されず、公知の方法で積層体を形成してもよい。積層体は、巻回体であってもよい。その場合、積層体形成工程において、陽極箔と陰極箔とセパレータとを、陽極箔と陰極箔との間にセパレータが配置されるように巻回することによって巻回体を形成してもよい。巻回体において、陽極箔と陰極箔とセパレータとは、巻回体の径方向に積層されている。 The method for forming the laminate is not particularly limited, and the laminate may be formed by a known method. The laminate may be a wound body. In this case, in the laminate formation process, the wound body may be formed by winding the anode foil, the cathode foil, and the separator so that the separator is disposed between the anode foil and the cathode foil. In the wound body, the anode foil, the cathode foil, and the separator are stacked in the radial direction of the wound body.
積層体は、平らな陽極箔と平らな陰極箔と平らなセパレータとを一方向に積層することによって形成されてもよい。例えば、複数の陽極箔と複数の陰極箔と複数のセパレータとを一方向に積層して積層体を形成してもよい。当該積層体の典型的な例では、陽極箔と陰極箔とは交互に配置され、セパレータは陽極箔と陰極箔との間に配置される。 The laminate may be formed by stacking flat anode foils, flat cathode foils, and flat separators in one direction. For example, a laminate may be formed by stacking multiple anode foils, multiple cathode foils, and multiple separators in one direction. In a typical example of such a laminate, the anode foils and cathode foils are arranged alternately, and the separator is arranged between the anode foils and the cathode foils.
(含浸工程)
含浸工程は、積層体に、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物を含有する液状成分を含浸させる工程である。当該液状成分を、以下では、「液状成分(LC)」と称する場合がある。液状成分(LC)を積層体に含浸させる方法は限定されない。例えば、積層体の少なくとも一部を液状成分(LC)に浸漬することによって、積層体に液状成分(LC)を含浸させてもよい。液状成分(LC)は、電解液であってもよい。
(Impregnation process)
The impregnation step is a step of impregnating the laminate with a liquid component containing at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds. Hereinafter, the liquid component may be referred to as a "liquid component (LC)". The method of impregnating the laminate with the liquid component (LC) is not limited. For example, the laminate may be impregnated with the liquid component (LC) by immersing at least a part of the laminate in the liquid component (LC). The liquid component (LC) may be an electrolyte solution.
ホウ酸系化合物の例には、ホウ酸およびホウ酸塩が含まれる。ホウ酸塩の例には、ホウ酸のアンモニウム塩(ホウ酸アンモニウムなど)、ホウ酸のナトリウム塩(四ホウ酸ナトリウムなど)、およびホウ酸のカリウム塩などが含まれる。ホウ酸系化合物は、ホウ酸、ホウ酸のアンモニウム塩、ホウ酸のナトリウム塩、およびホウ酸のカリウム塩からなる群より選択される少なくとも1種であってもよい。 Examples of boric acid compounds include boric acid and borate salts. Examples of borate salts include ammonium salts of boric acid (such as ammonium borate), sodium salts of boric acid (such as sodium tetraborate), and potassium salts of boric acid. The boric acid compound may be at least one selected from the group consisting of boric acid, ammonium salts of boric acid, sodium salts of boric acid, and potassium salts of boric acid.
液状成分(LC)におけるホウ酸系化合物の濃度は、0.5質量%~5.0質量%の範囲(例えば1.5質量%~3.5質量%の範囲)にあってもよい。 The concentration of the boric acid compound in the liquid component (LC) may be in the range of 0.5% by mass to 5.0% by mass (e.g., in the range of 1.5% by mass to 3.5% by mass).
液状成分(LC)は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、分子量が250以下のエチレングリコール縮合物、グリセリン、γ-ブチロラクトン、およびスルホランからなる群より選択される少なくとも1種をさらに含有してもよい。液状成分(LC)がこれらの化合物を含有することによって、コンデンサの耐電圧を高めることができる。さらに、長期使用における電解液の揮発による電解液の消失を抑制でき、電解コンデンサの長寿命化が可能である。 The liquid component (LC) may further contain at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol condensates having a molecular weight of 250 or less, glycerin, γ-butyrolactone, and sulfolane. By containing these compounds in the liquid component (LC), the withstand voltage of the capacitor can be increased. Furthermore, loss of the electrolyte due to volatilization during long-term use can be suppressed, enabling the life of the electrolytic capacitor to be extended.
(架橋工程)
架橋工程は、液状成分(LC)が含浸された積層体を85℃以上の温度に加熱する工程である。架橋工程において、第1の導電性高分子層中のポリビニルアルコール系高分子の少なくとも一部は、上記少なくとも1種のホウ酸系化合物によって架橋される。すなわち、架橋工程は、液状成分(LC)が含浸された積層体を85℃以上の温度に加熱することによって、第1の導電性高分子層中のポリビニルアルコール系高分子をホウ酸系化合物によって架橋する工程である。第2の導電性高分子層がポリビニルアルコール系高分子を含有する場合、第2の導電性高分子層中のポリビニルアルコール系高分子もホウ酸系化合物によって架橋される。導電性高分子層中のポリビニルアルコール系高分子を架橋することによって、上述した効果が得られる。
(Crosslinking process)
The crosslinking step is a step of heating the laminate impregnated with the liquid component (LC) to a temperature of 85° C. or higher. In the crosslinking step, at least a part of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked by the at least one boric acid compound. That is, the crosslinking step is a step of crosslinking the polyvinyl alcohol-based polymer in the first conductive polymer layer by the boric acid compound by heating the laminate impregnated with the liquid component (LC) to a temperature of 85° C. or higher. When the second conductive polymer layer contains a polyvinyl alcohol-based polymer, the polyvinyl alcohol-based polymer in the second conductive polymer layer is also crosslinked by the boric acid compound. By crosslinking the polyvinyl alcohol-based polymer in the conductive polymer layer, the above-mentioned effects can be obtained.
架橋工程における積層体の加熱温度は、85℃以上であり、100℃以上、または105℃以上であってもよい。当該加熱温度は、180℃以下、160℃以下、または135℃以下であってもよい。架橋工程における積層体の加熱時間は、加熱温度によっても異なるが、30分~180分の範囲(例えば60分~90分の範囲)にあってもよい。 The heating temperature of the laminate in the crosslinking step is 85°C or higher, and may be 100°C or higher, or 105°C or higher. The heating temperature may be 180°C or lower, 160°C or lower, or 135°C or lower. The heating time of the laminate in the crosslinking step varies depending on the heating temperature, but may be in the range of 30 to 180 minutes (for example, in the range of 60 to 90 minutes).
架橋工程における積層体の加熱によって、陽極箔の表面の再酸化を促進させることが可能である。すなわち、陽極箔表面のうち酸化膜の形成が不充分な箇所の酸化を行うことができる。その結果、漏れ電流などを低減できる。また、架橋工程において、陽極箔と陰極箔との間に電圧を印加することによって、陽極箔の再化成を行ってもよい。あるいは、架橋工程とは別に、陽極箔の再化成を行ってもよい。 By heating the laminate in the cross-linking process, it is possible to promote re-oxidation of the anode foil surface. In other words, it is possible to oxidize the areas of the anode foil surface where the oxide film is insufficient. As a result, leakage currents and the like can be reduced. In addition, in the cross-linking process, the anode foil may be re-chemically formed by applying a voltage between the anode foil and the cathode foil. Alternatively, the anode foil may be re-chemically formed separately from the cross-linking process.
以上のようにして、コンデンサ素子が得られる。その後、必要に応じて他の工程が行われる。例えば、液状成分(LC)が含浸されたコンデンサ素子を外装体に封入する工程が行われてもよい。なお、液状成分(LC)が含浸されたコンデンサ素子を外装体に封入する工程の後に架橋工程が行われてもよい。 In this manner, a capacitor element is obtained. Thereafter, other processes are carried out as necessary. For example, a process of encapsulating the capacitor element impregnated with the liquid component (LC) in an exterior body may be carried out. Note that a crosslinking process may be carried out after the process of encapsulating the capacitor element impregnated with the liquid component (LC) in an exterior body.
製造方法(M)は、積層体形成工程の後であって含浸工程の前に、液体付与工程と除去工程とをこの順に含んでもよい。液体付与工程は、液体(以下では、「液体(L)」と称する場合がある)を積層体に含浸させる工程である。除去工程は、積層体に含浸された液体(L)の少なくとも一部を除去する工程である。液体(L)は、主成分である水と、1気圧において100℃で沸騰しない有機化合物(C)とを含む液体であってもよい。その場合、除去工程は、積層体中の水の質量よりも積層体中の有機化合物(C)の質量が大きくなるように、積層体に含浸された上記液体(L)の一部を除去する工程であってもよい。液体(L)は、有機溶媒を含む液体であってもよい。 The manufacturing method (M) may include a liquid application step and a removal step in this order after the laminate formation step and before the impregnation step. The liquid application step is a step of impregnating the laminate with a liquid (hereinafter, sometimes referred to as "liquid (L)"). The removal step is a step of removing at least a part of the liquid (L) impregnated in the laminate. The liquid (L) may be a liquid containing water as a main component and an organic compound (C) that does not boil at 100°C under 1 atmosphere. In that case, the removal step may be a step of removing a part of the liquid (L) impregnated in the laminate such that the mass of the organic compound (C) in the laminate is greater than the mass of water in the laminate. The liquid (L) may be a liquid containing an organic solvent.
液体付与工程に用いられる液体(L)には、第2高分子層形成工程で用いられる第2の塗液から導電性高分子成分を除いた液体を用いてもよい。液体付与工程における液体の含浸は、高分子層形成工程の塗液付与工程について例示した方法で行ってもよい。除去工程における液体の除去は、高分子層形成工程の液媒体除去工程について例示した方法で行ってもよい。液体付与工程と除去工程とを行うことによって、第1の導電性高分子層と第2の導電性高分子層との密着性、および、第1の導電性高分子層と陰極箔との密着性を高めることができる。なお、架橋工程により架橋されたポリビニルアルコール系高分子を含む導電性高分子層は充分な接着性を有しているため、第1の導電性高分子層と第2の導電性高分子層との密着性、および、第1の導電性高分子層と陰極箔との密着性を高めることができる。そのため、液体付与工程は必須ではない。 The liquid (L) used in the liquid application step may be a liquid obtained by removing the conductive polymer component from the second coating liquid used in the second polymer layer formation step. The impregnation of the liquid in the liquid application step may be performed by the method exemplified for the coating liquid application step in the polymer layer formation step. The removal of the liquid in the removal step may be performed by the method exemplified for the liquid medium removal step in the polymer layer formation step. By performing the liquid application step and the removal step, the adhesion between the first conductive polymer layer and the second conductive polymer layer, and the adhesion between the first conductive polymer layer and the cathode foil can be improved. In addition, since the conductive polymer layer containing the polyvinyl alcohol-based polymer crosslinked in the crosslinking step has sufficient adhesiveness, the adhesion between the first conductive polymer layer and the second conductive polymer layer, and the adhesion between the first conductive polymer layer and the cathode foil can be improved. Therefore, the liquid application step is not essential.
製造方法(M)で製造される電解コンデンサにおいて、陰極箔は、表面に無機層を有してもよく、導電性高分子層は無機層に密着していてもよい。 In the electrolytic capacitor manufactured by manufacturing method (M), the cathode foil may have an inorganic layer on its surface, and the conductive polymer layer may be in close contact with the inorganic layer.
陰極箔が金属箔(例えばアルミニウム箔)のみからなる場合、金属箔の表面に酸化層が形成され、陰極箔でも静電容量が発生する。その結果、陽極箔における静電容量と陰極箔における静電容量との合成容量化によって、コンデンサ全体の静電容量が低下するという問題が生じる場合がある。金属箔の表面を無機層などで覆うことによって、そのような問題が生じることを抑制できる。すなわち、無機層を形成することによって、陽極箔の容量のみを引き出すことができる。一方、導電性高分子層と無機層との密着性が低いと、ESRが高くなる。上記液体付与工程を行うことによって、第1の導電性高分子層と無機層との密着性を高めることが可能である。 If the cathode foil is made of only a metal foil (e.g., aluminum foil), an oxide layer forms on the surface of the metal foil, and capacitance also occurs in the cathode foil. As a result, the capacitance of the anode foil and the capacitance of the cathode foil are combined, which can cause a problem of a decrease in the capacitance of the entire capacitor. By covering the surface of the metal foil with an inorganic layer, etc., it is possible to prevent such a problem from occurring. In other words, by forming an inorganic layer, it is possible to draw out only the capacitance of the anode foil. On the other hand, if the adhesion between the conductive polymer layer and the inorganic layer is low, the ESR will be high. By performing the above liquid application process, it is possible to increase the adhesion between the first conductive polymer layer and the inorganic layer.
無機層は、水を弾きやすいため、導電性高分子の水分散液を積層体(コンデンサ素子)に含浸させることによって導電性高分子層を形成する従来の方法では、積層体における陰極箔の無機層と陽極箔との間に導電性高分子が入りにくくなるため、陰極箔と陽極箔との間に配置されたセパレータに均一に導電性高分子層を形成することができず、ESRの上昇をもたらす。製造方法(M)では、第1の導電性高分子層を予め形成したセパレータを用いて積層体(コンデンサ素子)を形成する。そのため、第1の導電性高分子がセパレータ内で偏ることを抑制できる。 Inorganic layers tend to repel water, so in the conventional method of forming a conductive polymer layer by impregnating a laminate (capacitor element) with an aqueous dispersion of a conductive polymer, the conductive polymer has difficulty entering between the inorganic layer of the cathode foil and the anode foil in the laminate, making it impossible to form a uniform conductive polymer layer on the separator placed between the cathode foil and anode foil, resulting in an increase in ESR. In manufacturing method (M), a laminate (capacitor element) is formed using a separator on which a first conductive polymer layer has already been formed. This makes it possible to prevent the first conductive polymer from becoming unevenly distributed within the separator.
導電性高分子層(第1の導電性高分子層、第2の導電性高分子層)の面密度は、0.05mg/cm2以上、0.1mg/cm2以上、または0.3mg/cm2以上であってもよく、1.0mg/cm2以下、または0.5mg/cm2以下であってもよい。例えば、導電性高分子層の面密度は、0.05mg/cm2以上で1.0mg/cm2以下であってもよい。この構成によれば、ESRが特に低い電解コンデンサが得られる。なお、面密度は、単位面積当たりの質量を意味する。なお、第2の導電性高分子層が陽極箔の両面に形成されている場合、第2の導電性高分子層の面密度は、陽極箔の片面に形成された1つの第2の導電性高分子層の面密度を意味する。導電性高分子層の面密度は、塗液中の導電性高分子の濃度や塗液の塗布量によって制御できる。 The surface density of the conductive polymer layer (first conductive polymer layer, second conductive polymer layer) may be 0.05 mg/cm 2 or more, 0.1 mg/cm 2 or more, or 0.3 mg/cm 2 or more, and may be 1.0 mg/cm 2 or less, or 0.5 mg/cm 2 or less. For example, the surface density of the conductive polymer layer may be 0.05 mg/cm 2 or more and 1.0 mg/cm 2 or less. According to this configuration, an electrolytic capacitor with a particularly low ESR is obtained. The surface density means mass per unit area. In addition, when the second conductive polymer layer is formed on both sides of the anode foil, the surface density of the second conductive polymer layer means the surface density of one second conductive polymer layer formed on one side of the anode foil. The surface density of the conductive polymer layer can be controlled by the concentration of the conductive polymer in the coating liquid or the amount of the coating liquid applied.
第1の導電性高分子層の面密度は、以下の方法で求めることができる。まず、第1の導電性高分子層を形成する前のセパレータを所定の面積で切り出したサンプルを5つ作製し、その5つのサンプルの質量を測定する。また、第1の導電性高分子層が形成されたセパレータを上記所定の面積で切り出したサンプルを5つ作製し、そのサンプルの質量を測定する。第1の導電性高分子層形成後の5つのサンプルの質量の合計と第1の導電性高分子層形成前の5つのサンプルの質量の合計との差と、上記所定の面積とを用いて、第1の導電性高分子層の面密度が求められる。第2の導電性高分子層の面密度も同様の方法で求めることができる。 The areal density of the first conductive polymer layer can be determined by the following method. First, five samples are prepared by cutting out a specified area from the separator before the first conductive polymer layer is formed, and the mass of the five samples is measured. In addition, five samples are prepared by cutting out the separator on which the first conductive polymer layer is formed, and the mass of the samples is measured. The areal density of the first conductive polymer layer is determined using the specified area and the difference between the total mass of the five samples after the first conductive polymer layer is formed and the total mass of the five samples before the first conductive polymer layer is formed. The areal density of the second conductive polymer layer can also be determined by a similar method.
(電解コンデンサ)
本実施形態に係る電解コンデンサを、以下では、「電解コンデンサ(E)」と称する場合がある。電解コンデンサ(E)は、上述した製造方法(M)によって製造することが可能である。製造方法(M)について説明した事項は、電解コンデンサ(E)に適用できるため、重複する説明を省略する場合がある。電解コンデンサ(E)について説明した事項を、製造方法(M)に適用してもよい。
(Electrolytic capacitor)
The electrolytic capacitor according to this embodiment may be referred to as "electrolytic capacitor (E)" below. The electrolytic capacitor (E) may be manufactured by the manufacturing method (M) described above. The matters described for the manufacturing method (M) may be applied to the electrolytic capacitor (E), and therefore, duplicated explanations may be omitted. The matters described for the electrolytic capacitor (E) may also be applied to the manufacturing method (M).
電解コンデンサ(E)は、積層体と、積層体に含浸された液状成分とを含む。積層体は、表面に誘電体層を有する陽極箔と、陰極箔と、セパレータと、セパレータに保持された第1の導電性高分子層と、誘電体層上に形成された第2の導電性高分子層と、を含む。第1の導電性高分子層は、第1の導電性高分子、ポリビニルアルコール系高分子、およびホウ酸系化合物を含有する。第2の導電性高分子層は、第2の導電性高分子を含有する。ホウ酸系化合物は、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物である。第1の導電性高分子層中のポリビニルアルコール系高分子の少なくとも一部は、架橋されている。 The electrolytic capacitor (E) includes a laminate and a liquid component impregnated in the laminate. The laminate includes an anode foil having a dielectric layer on its surface, a cathode foil, a separator, a first conductive polymer layer held by the separator, and a second conductive polymer layer formed on the dielectric layer. The first conductive polymer layer contains a first conductive polymer, a polyvinyl alcohol-based polymer, and a boric acid-based compound. The second conductive polymer layer contains a second conductive polymer. The boric acid-based compound is at least one boric acid-based compound selected from the group consisting of boric acid and boric acid compounds. At least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked.
電解コンデンサ(E)によれば、製造方法(M)で説明した効果が得られる。例えば、電解コンデンサ(E)の構成によれば、ESRを低減することが可能である。 The electrolytic capacitor (E) provides the effects described in the manufacturing method (M). For example, the configuration of the electrolytic capacitor (E) makes it possible to reduce the ESR.
電解コンデンサ(E)の第1の導電性高分子層において、第1の導電性高分子の質量Wcに対するポリビニルアルコール系高分子の質量Wpの比(Wp/Wc)は、上述した範囲にあってもよい。例えば、比(Wp/Wc)は、0.2以上であってもよい。 In the first conductive polymer layer of the electrolytic capacitor (E), the ratio (Wp/Wc) of the mass Wp of the polyvinyl alcohol polymer to the mass Wc of the first conductive polymer may be within the range described above. For example, the ratio (Wp/Wc) may be 0.2 or more.
電解コンデンサ(E)において、陰極箔は、表面に無機層を有してもよい。その場合、第1の導電性高分子層は無機層に密着していることが好ましい。 In the electrolytic capacitor (E), the cathode foil may have an inorganic layer on its surface. In that case, it is preferable that the first conductive polymer layer is in close contact with the inorganic layer.
電解コンデンサ(E)の液状成分(LC)は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、分子量が250以下のエチレングリコール縮合物、グリセリン、γ-ブチロラクトン、およびスルホランからなる群より選択される少なくとも1種をさらに含有してもよい。 The liquid component (LC) of the electrolytic capacitor (E) may further contain at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol condensates having a molecular weight of 250 or less, glycerin, γ-butyrolactone, and sulfolane.
上述したように、積層体は、巻回体であってもよいし、巻回体以外の積層体であってもよい。 As mentioned above, the laminate may be a wound body, or it may be a laminate other than a wound body.
以下では、製造方法(M)および電解コンデンサ(E)で用いられる材料および構成要素の例について説明する。ただし、製造方法(M)および電解コンデンサ(E)で用いられる材料および構成要素は、以下で説明する例に限定されない。 Below, examples of materials and components used in the manufacturing method (M) and electrolytic capacitor (E) are described. However, the materials and components used in the manufacturing method (M) and electrolytic capacitor (E) are not limited to the examples described below.
この明細書では、「導電性高分子成分」という用語を用いる場合がある。導電性高分子にドーパントがドープされていない場合、導電性高分子成分は、導電性高分子からなる。導電性高分子にドーパントがドープされている場合、導電性高分子成分は、導電性高分子とドーパントとからなる。 In this specification, the term "conductive polymer component" may be used. When the conductive polymer is not doped with a dopant, the conductive polymer component is made of a conductive polymer. When the conductive polymer is doped with a dopant, the conductive polymer component is made of a conductive polymer and a dopant.
(塗液(第1の塗液、第2の塗液))
高分子層形成工程で用いられる塗液(第1の塗液、第2の塗液)は、導電性高分子と水とを含有してもよい。導電性高分子(導電性高分子成分)は、粒子の状態で塗液に含有されていてもよい。塗液は、導電性高分子(導電性高分子成分)の水分散液であってもよい。
(Coating Fluids (First Coating Fluid, Second Coating Fluid))
The coating liquids (first coating liquid, second coating liquid) used in the polymer layer forming step may contain a conductive polymer and water. The conductive polymer (conductive polymer component) may be contained in the coating liquid in the form of particles. The coating liquid may be an aqueous dispersion of the conductive polymer (conductive polymer component).
塗液は、他の成分(例えば、有機化合物(C))を含んでもよい。有機化合物(C)は、多価アルコール、スルホラン、γ-ブチロラクトン、およびホウ酸エステルからなる群より選択される少なくとも1種を含んでもよく、当該少なくとも1種であってもよい。有機化合物(C)は、グリコール類、グリセリン類、糖アルコール、スルホラン、γ-ブチロラクトン、およびホウ酸エステルからなる群より選択される少なくとも1種を含んでもよく、当該少なくとも1種であってもよい。 The coating liquid may contain other components (e.g., organic compound (C)). The organic compound (C) may contain at least one selected from the group consisting of polyhydric alcohols, sulfolane, γ-butyrolactone, and boric acid esters, or may be at least one of the above. The organic compound (C) may contain at least one selected from the group consisting of glycols, glycerins, sugar alcohols, sulfolane, γ-butyrolactone, and boric acid esters, or may be at least one of the above.
多価アルコールの例には、グリコール類、グリセリン類、および糖アルコールが含まれる。グリコール類の例には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール(例えばポリエチレングリコール)、ポリオキシエチレンポリオキシプロピレングリコール(エチレンオキサイド・プロピレンオキサイド共重合体)などが含まれる。グリセリン類の例には、グリセリンおよびポリグリセリンなどが含まれる。糖アルコールの例には、マンニトール、キシリトール、ソルビトール、エリトリトール、およびペンタエリトリトールなどが含まれる。 Examples of polyhydric alcohols include glycols, glycerins, and sugar alcohols. Examples of glycols include ethylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols (e.g., polyethylene glycol), polyoxyethylene polyoxypropylene glycol (ethylene oxide-propylene oxide copolymer), and the like. Examples of glycerins include glycerin and polyglycerin. Examples of sugar alcohols include mannitol, xylitol, sorbitol, erythritol, and pentaerythritol, and the like.
導電性高分子の例には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、およびそれらの誘導体などが含まれる。当該誘導体には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、およびポリアセチレンを基本骨格とするポリマーが含まれる。例えば、ポリチオフェンの誘導体には、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。これらの導電性高分子は、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体であってもよい。導電性高分子の重量平均分子量は特に限定されず、例えば1000~100000の範囲にあってもよい。導電性高分子の好ましい一例は、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)である。 Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and derivatives thereof. The derivatives include polymers having polypyrrole, polythiophene, polyfuran, polyaniline, and polyacetylene as the basic skeleton. For example, a derivative of polythiophene includes poly(3,4-ethylenedioxythiophene). These conductive polymers may be used alone or in combination. The conductive polymer may also be a copolymer of two or more monomers. The weight-average molecular weight of the conductive polymer is not particularly limited and may be in the range of 1,000 to 100,000, for example. A preferred example of a conductive polymer is poly(3,4-ethylenedioxythiophene) (PEDOT).
導電性高分子にはドーパントがドープされてもよい。導電性高分子からの脱ドープを抑制する観点から、ドーパントとして、高分子ドーパントを用いることが好ましい。高分子ドーパントの例には、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などが含まれる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの少なくとも一部は、塩の形態で添加されてもよい。ドーパントの好ましい一例は、ポリスチレンスルホン酸(PSS)である。 The conductive polymer may be doped with a dopant. From the viewpoint of suppressing dedoping from the conductive polymer, it is preferable to use a polymer dopant as the dopant. Examples of polymer dopants include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly(2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfonic acid, polyacrylic acid, and the like. These may be used alone or in combination of two or more. At least a portion of these may be added in the form of a salt. A preferred example of a dopant is polystyrene sulfonic acid (PSS).
ドーパントはポリスチレンスルホン酸であってもよく、導電性高分子はポリ(3,4-エチレンジオキシチオフェン)であってもよい。すなわち、導電性高分子成分は、ポリスチレンスルホン酸がドープされたポリ(3,4-エチレンジオキシチオフェン)であってもよい。 The dopant may be polystyrenesulfonic acid, and the conductive polymer may be poly(3,4-ethylenedioxythiophene). That is, the conductive polymer component may be poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonic acid.
ドーパントがドープされた導電性高分子を用いる場合、ドーパントの脱ドープを抑制するために、塗液のpHは7.0未満であることが好ましく、6.0以下または5.0以下であってもよい。塗液のpHは、1.0以上、または2.0以上であってもよい。 When using a conductive polymer doped with a dopant, the pH of the coating liquid is preferably less than 7.0 in order to suppress dedoping of the dopant, and may be 6.0 or less or 5.0 or less. The pH of the coating liquid may be 1.0 or more, or 2.0 or more.
塗液における水の含有率は、40質量%以上、50質量%以上、80質量%以上、90質量%以上、または95質量%以上であってもよい。当該含有率は、98質量%以下、95質量%以下、90質量%以下、または80質量%以下であってもよい。 The water content in the coating liquid may be 40% by mass or more, 50% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more. The water content may be 98% by mass or less, 95% by mass or less, 90% by mass or less, or 80% by mass or less.
塗液における有機化合物(C)の含有率は、1.0質量%以上、3.0質量%以上、5.0質量%以上、または10質量%以上であってもよい。30質量%以下、20質量%以下、15質量%以下、または10質量%以下であってもよい。塗液における導電性高分子成分の含有率は、0.5質量%以上、または1.0質量%以上であってもよく、4.0質量%以下、3.0質量%以下、または2.0質量%以下であってもよい。当該含有率は、0.5~4.0質量%の範囲、1.0~4.0質量%の範囲であってもよい。これらの範囲のいずれかにおいて、上限を3.0質量%または2.0質量%としてもよい。塗液の物性とその経時的安定性が優れている点や、電解コンデンサのESRとコスト面とのバランスが良い点で、当該含有率は1.0~3.0%の範囲にあることが好ましい。なお、塗液がドーパントを含む場合、ドーパントの質量は、導電性高分子成分の質量に含まれる。 The content of the organic compound (C) in the coating liquid may be 1.0 mass% or more, 3.0 mass% or more, 5.0 mass% or more, or 10 mass% or more. It may be 30 mass% or less, 20 mass% or less, 15 mass% or less, or 10 mass% or less. The content of the conductive polymer component in the coating liquid may be 0.5 mass% or more, or 1.0 mass% or more, and may be 4.0 mass% or less, 3.0 mass% or less, or 2.0 mass% or less. The content may be in the range of 0.5 to 4.0 mass% or 1.0 to 4.0 mass%. In any of these ranges, the upper limit may be 3.0 mass% or 2.0 mass%. In terms of excellent physical properties and their stability over time of the coating liquid, and a good balance between the ESR of the electrolytic capacitor and the cost, the content is preferably in the range of 1.0 to 3.0%. In addition, when the coating liquid contains a dopant, the mass of the dopant is included in the mass of the conductive polymer component.
塗液に含まれるドーパントの質量に特に限定はなく、塗液に含まれる導電性高分子の質量の0.1~5倍の範囲(例えば0.5~3倍の範囲)にあってもよい。 There are no particular limitations on the mass of the dopant contained in the coating liquid, and it may be in the range of 0.1 to 5 times (e.g., 0.5 to 3 times) the mass of the conductive polymer contained in the coating liquid.
塗液に含まれるドーパントの質量に特に限定はなく、塗液に含まれる導電性高分子の質量の0.1~5倍の範囲(例えば0.5~3倍の範囲)にあってもよい。 There are no particular limitations on the mass of the dopant contained in the coating liquid, and it may be in the range of 0.1 to 5 times (e.g., 0.5 to 3 times) the mass of the conductive polymer contained in the coating liquid.
塗液において、水の含有率:有機化合物(C)の含有率:導電性高分子成分の含有率=40~98:1.0~59.5:0.5~4.0であってもよく、水の含有率:有機化合物(C)の含有率:導電性高分子成分の含有率=69.5~98:1.0~30:0.5~4.0であってもよい。 In the coating liquid, the water content: organic compound (C) content: conductive polymer component content may be 40-98:1.0-59.5:0.5-4.0, or the water content: organic compound (C) content: conductive polymer component content may be 69.5-98:1.0-30:0.5-4.0.
(液状成分(LC))
含浸工程で用いられる液状成分(LC)の例には、非水溶媒および電解液が含まれる。電解液には、非水溶媒と非水溶媒に溶解された溶質とを含む電解液を用いることができる。なお、この明細書において、液状成分(LC)は、室温(25℃)において液体状である成分であってもよいし、電解コンデンサの使用時の温度において液体状である成分であってもよい。
(Liquid component (LC))
Examples of the liquid component (LC) used in the impregnation step include a non-aqueous solvent and an electrolytic solution. The electrolytic solution may be an electrolytic solution containing a non-aqueous solvent and a solute dissolved in the non-aqueous solvent. In this specification, the liquid component (LC) may be a component that is liquid at room temperature (25° C.) or a component that is liquid at the temperature when the electrolytic capacitor is used.
液状成分(LC)に用いられる非水溶媒は、有機溶媒であってもよいし、イオン性液体であってもよいし、プロトン性溶媒であってもよい。非水溶媒の例には、エチレングリコール、プロピレングリコールなどの多価アルコール類、スルホラン(SL)などの環状スルホン類、γ-ブチロラクトン(γBL)などのラクトン類、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、酢酸メチルなどのエステル類、炭酸プロピレンなどのカーボネート化合物、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類、ホルムアルデヒドなどが含まれる。 The non-aqueous solvent used in the liquid component (LC) may be an organic solvent, an ionic liquid, or a protic solvent. Examples of non-aqueous solvents include polyhydric alcohols such as ethylene glycol and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as γ-butyrolactone (γBL), amides such as N-methylacetamide, N,N-dimethylformamide, and N-methyl-2-pyrrolidone, esters such as methyl acetate, carbonate compounds such as propylene carbonate, ethers such as 1,4-dioxane, ketones such as methyl ethyl ketone, and formaldehyde.
また、非水溶媒として、高分子系溶媒を用いてもよい。高分子系溶媒の例には、ポリアルキレングリコール、ポリアルキレングリコールの誘導体、多価アルコール中の水酸基の少なくとも1つがポリアルキレングリコール(誘導体を含む)に置換された化合物などが含まれる。具体的には、高分子系溶媒の例には、ポリエチレングリコール(PEG)、ポリエチレングリコールグリセリルエーテル、ポリエチレングリコールジグリセリルエーテル、ポリエチレングリコールソルビトールエーテル、ポリプロピレングリコール、ポリプロピレングリコールグリセリルエーテル、ポリプロピレングリコールジグリセリルエーテル、ポリプロピレングリコールソルビトールエーテル、ポリブチレングリコールなどが含まれる。高分子系溶媒の例には、さらに、エチレングリコール-プロピレングリコールの共重合体、エチレングリコール-ブチレングリコールの共重合体、プロピレングリコール-ブチレングリコールの共重合体などが含まれる。非水溶媒は、一種を単独で用いてもよいし、2種以上を混合して用いてもよい。 Furthermore, a polymer solvent may be used as the non-aqueous solvent. Examples of polymer solvents include polyalkylene glycol, derivatives of polyalkylene glycol, and compounds in which at least one hydroxyl group in a polyhydric alcohol is replaced with polyalkylene glycol (including derivatives). Specifically, examples of polymer solvents include polyethylene glycol (PEG), polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol sorbitol ether, polypropylene glycol, polypropylene glycol glyceryl ether, polypropylene glycol diglyceryl ether, polypropylene glycol sorbitol ether, and polybutylene glycol. Examples of polymer solvents further include ethylene glycol-propylene glycol copolymers, ethylene glycol-butylene glycol copolymers, and propylene glycol-butylene glycol copolymers. The non-aqueous solvent may be used alone or in a mixture of two or more.
液状成分(LC)は、非水溶媒と、非水溶媒に溶解された塩基成分(塩基)とを含んでもよい。また、液状成分(LC)は、非水溶媒と、非水溶媒に溶解された塩基成分および/または酸成分(酸)とを含んでもよい。 The liquid component (LC) may include a non-aqueous solvent and a base component (base) dissolved in the non-aqueous solvent. The liquid component (LC) may also include a non-aqueous solvent and a base component and/or an acid component (acid) dissolved in the non-aqueous solvent.
酸成分としては、ポリカルボン酸およびモノカルボン酸を用いることができる。上記ポリカルボン酸の例としては、脂肪族ポリカルボン酸([飽和ポリカルボン酸、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,6-デカンジカルボン酸、5,6-デカンジカルボン酸];[不飽和ポリカルボン酸、例えばマレイン酸、フマル酸、イタコン酸])、芳香族ポリカルボン酸(例えばフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸)、脂環式ポリカルボン酸(例えばシクロヘキサン-1,2-ジカルボン酸、シクロヘキセン-1,2-ジカルボン酸等)が挙げられる。 As the acid component, polycarboxylic acids and monocarboxylic acids can be used. Examples of the polycarboxylic acids include aliphatic polycarboxylic acids (saturated polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid; unsaturated polycarboxylic acids such as maleic acid, fumaric acid, itaconic acid), aromatic polycarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid), and alicyclic polycarboxylic acids (cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, etc.).
上記モノカルボン酸の例としては、脂肪族モノカルボン酸(炭素数1~30)([飽和モノカルボン酸、例えばギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、ラウリル酸、ミリスチン酸、ステアリン酸、ベヘン酸];[不飽和モノカルボン酸、例えばアクリル酸、メタクリル酸、オレイン酸])、芳香族モノカルボン酸(例えば安息香酸、ケイ皮酸、ナフトエ酸)、オキシカルボン酸(例えばサリチル酸、マンデル酸、レゾルシン酸)が挙げられる。 Examples of the monocarboxylic acids include aliphatic monocarboxylic acids (1 to 30 carbon atoms) ([saturated monocarboxylic acids, such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, lauric acid, myristic acid, stearic acid, behenic acid]; [unsaturated monocarboxylic acids, such as acrylic acid, methacrylic acid, oleic acid]), aromatic monocarboxylic acids (such as benzoic acid, cinnamic acid, naphthoic acid), and oxycarboxylic acids (such as salicylic acid, mandelic acid, resorcylic acid).
これらのなかでも、マレイン酸、フタル酸、安息香酸、ピロメリット酸、レゾルシン酸は、熱的に安定であり、好ましく用いられる。 Among these, maleic acid, phthalic acid, benzoic acid, pyromellitic acid, and resorcylic acid are thermally stable and are preferably used.
酸成分として無機酸を用いてもよい。代表的な無機酸の例としては、リン酸、亜リン酸、次亜リン酸、アルキル燐酸エステル、ホウ酸、ホウフッ酸、4フッ化ホウ酸、6フッ化リン酸、ベンゼンスルホン酸、ナフタレンスルホン酸などが挙げられる。また、酸成分として有機酸と無機酸との複合化合物を用いてもよい。そのような複合化合物の例としては、ボロジグリコール酸、ボロジ蓚酸、ボロジサリチル酸などが挙げられる。 Inorganic acids may be used as the acid component. Representative examples of inorganic acids include phosphoric acid, phosphorous acid, hypophosphorous acid, alkyl phosphate esters, boric acid, boric fluoride, tetrafluoroboric acid, hexafluorophosphoric acid, benzenesulfonic acid, and naphthalenesulfonic acid. In addition, composite compounds of organic acids and inorganic acids may be used as the acid component. Examples of such composite compounds include borodiglycolic acid, borodioxalic acid, and borodisalicylic acid.
塩基成分は、アルキル置換アミジン基を有する化合物であってもよく、例えば、イミダゾール化合物、ベンゾイミダゾール化合物、脂環式アミジン化合物(ピリミジン化合物、イミダゾリン化合物)などであってもよい。具体的には、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、1,2-ジメチルイミダゾリニウム、1,2,4-トリメチルイミダゾリン、1-メチル-2-エチル-イミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-(3’ヘプチル)イミダゾリン、1-メチル-2-ドデシルイミダゾリン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1-メチルイミダゾール、1-メチルベンゾイミダゾールが好ましい。これらを用いることによって、インピーダンス性能の優れたコンデンサが得られる。 The base component may be a compound having an alkyl-substituted amidine group, such as an imidazole compound, a benzimidazole compound, or an alicyclic amidine compound (pyrimidine compound, imidazoline compound). Specifically, 1,8-diazabicyclo[5,4,0]undecene-7, 1,5-diazabicyclo[4,3,0]nonene-5, 1,2-dimethylimidazolinium, 1,2,4-trimethylimidazoline, 1-methyl-2-ethyl-imidazoline, 1,4-dimethyl-2-ethylimidazoline, 1-methyl-2-heptyl imidazoline, 1-methyl-2-(3'heptyl)imidazoline, 1-methyl-2-dodecyl imidazoline, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole, or 1-methylbenzimidazole is preferred. By using these, a capacitor with excellent impedance performance can be obtained.
塩基成分として、アルキル置換アミジン基を有する化合物の4級塩を用いてもよい。そのような塩基成分の例としては、炭素数1~11のアルキル基またはアリールアルキル基で4級化された、イミダゾール化合物、ベンゾイミダゾール化合物、脂環式アミジン化合物(ピリミジン化合物、イミダゾリン化合物)が挙げられる。具体的には、1-メチル-1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1-メチル-1,5-ジアザビシクロ[4,3,0]ノネン-5、1,2,3-トリメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニウム、1,2-ジメチル-3-エチル-イミダゾリニウム、1,3,4-トリメチル-2-エチルイミダゾリニウム、1,3-ジメチル-2-ヘプチルイミダゾリニウム、1,3-ジメチル-2-(3’ヘプチル)イミダゾリニウム、1,3-ジメチル-2-ドデシルイミダゾリニウム、1,2,3-トリメチル-1,4,5,6-テトラヒドロピリミジウム、1,3-ジメチルイミダゾリウム、1-メチル-3-エチルイミダゾリウム、1,3-ジメチルベンゾイミダゾリウムが好ましい。これらを用いることによって、インピーダンス性能の優れたコンデンサが得られる。 The base component may be a quaternary salt of a compound having an alkyl-substituted amidine group. Examples of such base components include imidazole compounds, benzimidazole compounds, and alicyclic amidine compounds (pyrimidine compounds, imidazoline compounds) that are quaternized with an alkyl group or arylalkyl group having 1 to 11 carbon atoms. Specifically, 1-methyl-1,8-diazabicyclo[5,4,0]undecene-7, 1-methyl-1,5-diazabicyclo[4,3,0]nonene-5, 1,2,3-trimethylimidazolinium, 1,2,3,4-tetramethylimidazolinium, 1,2-dimethyl-3-ethyl-imidazolinium, 1,3,4-trimethyl-2-ethylimidazolinium, 1,3-dimethyl-2-heptylimidazolinium, 1,3-dimethyl-2-(3'heptyl)imidazolinium, 1,3-dimethyl-2-dodecylimidazolinium, 1,2,3-trimethyl-1,4,5,6-tetrahydropyrimidium, 1,3-dimethylimidazolium, 1-methyl-3-ethylimidazolium, and 1,3-dimethylbenzimidazolium are preferred. By using these, a capacitor with excellent impedance performance can be obtained.
また、塩基成分として三級アミンを用いてもよい。三級アミンの例としては、トリアルキルアミン類(トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミン、ジメチル-n-プロピルアミン、ジメチルイソプロピルアミン、メチルエチル-n-プロピルアミン、メチルエチルイソプロピルアミン、ジエチル-n-プロピルアミン、ジエチルイソプロピルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-tert-ブチルアミンなど)、フェニル基含有アミン(ジメチルフェニルアミン、メチルエチルフェニルアミン、ジエチルフェニルアミンなど)が挙げられる。なかでも、導電性が高くなる点で、トリアルキルアミン類が好ましく、トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミンからなる群より選択される少なくとも1種を含むことがより好ましい。また、塩基成分として、ジアルキルアミン類などの二級アミン、モノアルキルアミンなどの一級アミン、アンモニアを用いてもよい。 Also, a tertiary amine may be used as the base component. Examples of tertiary amines include trialkylamines (trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, dimethyl-n-propylamine, dimethylisopropylamine, methylethyl-n-propylamine, methylethylisopropylamine, diethyl-n-propylamine, diethylisopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-tert-butylamine, etc.), and phenyl group-containing amines (dimethylphenylamine, methylethylphenylamine, diethylphenylamine, etc.). Among these, trialkylamines are preferred in terms of increasing electrical conductivity, and it is more preferred to include at least one selected from the group consisting of trimethylamine, dimethylethylamine, methyldiethylamine, and triethylamine. Also, secondary amines such as dialkylamines, primary amines such as monoalkylamines, and ammonia may be used as the base component.
液状成分(LC)は、酸成分と塩基成分との塩を含有してもよい。塩は、無機塩および/または有機塩であってもよい。有機塩とは、アニオンおよびカチオンの少なくとも一方が有機物を含む塩である。有機塩としては、例えば、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどを用いてもよい。 The liquid component (LC) may contain a salt of an acid component and a base component. The salt may be an inorganic salt and/or an organic salt. An organic salt is a salt in which at least one of the anion and the cation contains an organic substance. Examples of organic salts that may be used include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, and mono 1,3-dimethyl-2-ethylimidazolinium phthalate.
ドーパントの脱ドープを抑制するために、液状成分(LC)のpHを、7.0未満または5.0以下としてもよく、1.0以上、または2.0以上としてもよい。当該pHは、1.0以上で7.0未満(例えば2.0~5.0の範囲)としてもよい。 To suppress de-doping of the dopant, the pH of the liquid component (LC) may be less than 7.0 or less than 5.0, or may be greater than 1.0, or greater than 2.0. The pH may be greater than 1.0 and less than 7.0 (e.g., in the range of 2.0 to 5.0).
液状成分(LC)は、プロトン性溶媒を含むことが好ましい。プロトン性溶媒を用いることによって、導電性高分子層の密着性を高めることが可能である。液状成分(LC)は、プロトン性溶媒に加えて、プロトン性溶媒以外の溶媒を含んでもよい。 The liquid component (LC) preferably contains a protic solvent. By using a protic solvent, it is possible to increase the adhesion of the conductive polymer layer. In addition to the protic solvent, the liquid component (LC) may contain a solvent other than the protic solvent.
プロトン性溶媒は、グリコール類、グリセリン、ポリグリセリン、および糖アルコールからなる群より選択される少なくも1種を含んでもよく、当該少なくとも1種であってもよい。プロトン性溶媒は、1種の化合物のみで構成されてもよいし、複数種の化合物を含んでもよい。 The protic solvent may include at least one selected from the group consisting of glycols, glycerin, polyglycerin, and sugar alcohols, or may be at least one of the above. The protic solvent may be composed of only one type of compound, or may include multiple types of compounds.
有機化合物(C)と液状成分(LC)とは、同じ化合物を含んでもよい。例えば、それらは、同じ多価アルコールを含んでもよく、同じグリコール類(エチレングリコールなど)を含んでもよく、同じ糖アルコールを含んでもよい。 The organic compound (C) and the liquid component (LC) may contain the same compound. For example, they may contain the same polyhydric alcohol, the same glycols (such as ethylene glycol), or the same sugar alcohol.
(液体(L))
液体(L)は、上述した有機化合物(C)と水とを含む液体であってもよい。その場合、液体(L)を積層体に含浸させた後、有機化合物(C)が積層体内に残存する条件で積層体から水を除去することが好ましい。有機化合物(C)は、マンニトール、マンニトール誘導体、キシリトール、およびキシリトール誘導体からなる群より選択される少なくとも1種であってもよい。
(Liquid (L))
The liquid (L) may be a liquid containing the organic compound (C) and water. In this case, it is preferable to impregnate the laminate with the liquid (L) and then remove water from the laminate under conditions in which the organic compound (C) remains in the laminate. The organic compound (C) may be at least one selected from the group consisting of mannitol, mannitol derivatives, xylitol, and xylitol derivatives.
液体(L)は、糖、糖アルコール、エポキシ樹脂、およびポリビニルアルコールからなる群より選択される少なくとも1種(以下では、「物質X」と称する場合がある)を含有してもよい。液体(L)が物質Xを含有することによって、導電性高分子層と陰極箔の密着性を向上させることができる。液体(L)における物質Xの含有率は、10質量%~70質量%の範囲(例えば30質量%~50質量%の範囲)にあってもよい。 The liquid (L) may contain at least one substance (hereinafter, sometimes referred to as "substance X") selected from the group consisting of sugar, sugar alcohol, epoxy resin, and polyvinyl alcohol. By containing substance X in the liquid (L), the adhesion between the conductive polymer layer and the cathode foil can be improved. The content of substance X in the liquid (L) may be in the range of 10% by mass to 70% by mass (for example, in the range of 30% by mass to 50% by mass).
糖アルコールは、マンニトール、マンニトール誘導体、キシリトール、およびキシリトール誘導体からなる群より選択される少なくとも1種を含んでもよく、当該少なくとも1種であってもよい。物質Xは、マンニトール、マンニトール誘導体、キシリトール、およびキシリトール誘導体からなる群より選択される少なくとも1種であってもよい。マンニトール、マンニトール誘導体、キシリトール、およびキシリトール誘導体は、導電性高分子層と陰極箔とを密着させる接着剤としての効果を有する。マンニトール誘導体の例には、マンニトールの水酸基の一部がエステル化された化合物、マンニトールの水酸基の一部がエーテル化された化合物、マンニトールの水酸基の一部がアニオン化して塩を形成している化合物などが含まれる。キシリトール誘導体の例には、キシリトールの水酸基の一部がエステル化された化合物、キシリトールの水酸基の一部がエーテル化された化合物、キシリトールの水酸基の一部がアニオン化して塩を形成している化合物などが含まれる。 The sugar alcohol may include at least one selected from the group consisting of mannitol, mannitol derivatives, xylitol, and xylitol derivatives, or may be at least one of the above. The substance X may be at least one selected from the group consisting of mannitol, mannitol derivatives, xylitol, and xylitol derivatives. Mannitol, mannitol derivatives, xylitol, and xylitol derivatives have the effect of adhering the conductive polymer layer and the cathode foil. Examples of mannitol derivatives include compounds in which some of the hydroxyl groups of mannitol are esterified, compounds in which some of the hydroxyl groups of mannitol are etherified, and compounds in which some of the hydroxyl groups of mannitol are anionized to form a salt. Examples of xylitol derivatives include compounds in which some of the hydroxyl groups of xylitol are esterified, compounds in which some of the hydroxyl groups of xylitol are etherified, and compounds in which some of the hydroxyl groups of xylitol are anionized to form a salt.
液体(L)に含有される有機溶媒は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、およびポリエチレングリコールからなる群より選択される少なくとも1種を含有してもよいし、当該少なくとも1種であってもよい。液体(L)がこれらを含有することによって、導電性高分子層の電導度を高くすることができる。 The organic solvent contained in the liquid (L) may contain at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol, or may be at least one of the organic solvents. By containing these in the liquid (L), the electrical conductivity of the conductive polymer layer can be increased.
液体(L)の好ましい一例は、トリエチレングリコールおよびポリエチレングリコールからなる群より選択される少なくとも1種の有機溶媒に、キシリトールを含有させた液体である。 A preferred example of the liquid (L) is a liquid containing xylitol in at least one organic solvent selected from the group consisting of triethylene glycol and polyethylene glycol.
(陽極箔)
陽極箔の例には、チタン、タンタル、アルミニウムおよびニオブ等の弁金属の少なくとも1種を含む金属箔が含まれ、弁金属の金属箔(例えばアルミニウム箔)であってもよい。陽極箔は、弁金属を含む合金または弁金属を含む化合物等の形態で弁金属を含んでいてもよい。陽極箔の厚さは、15μm以上で300μm以下であってもよい。陽極箔の表面は、エッチング等によって粗面化されていてもよい。
(anode foil)
Examples of the anode foil include metal foils containing at least one of valve metals such as titanium, tantalum, aluminum, and niobium, and may be metal foils of valve metals (e.g., aluminum foils). The anode foil may contain the valve metal in the form of an alloy containing the valve metal or a compound containing the valve metal. The thickness of the anode foil may be 15 μm or more and 300 μm or less. The surface of the anode foil may be roughened by etching or the like.
陽極箔の表面には、誘電体層が形成されている。誘電体層は、陽極箔を化成処理することによって形成してもよい。この場合、誘電体層は、弁金属の酸化物(例えば酸化アルミニウム)を含み得る。なお、誘電体層は、誘電体として機能するものであればよく、弁金属の酸化物以外の誘電体で形成されてもよい。 A dielectric layer is formed on the surface of the anode foil. The dielectric layer may be formed by subjecting the anode foil to a chemical conversion treatment. In this case, the dielectric layer may contain an oxide of a valve metal (e.g., aluminum oxide). Note that the dielectric layer may be formed of any dielectric other than an oxide of a valve metal as long as it functions as a dielectric.
電解コンデンサにおいて、陽極箔の端面には、導電性高分子層が形成されていなくてもよい。一方、陽極箔の端面には、誘電体層が形成されていることが望ましい。 In an electrolytic capacitor, a conductive polymer layer does not need to be formed on the end surface of the anode foil. However, it is preferable that a dielectric layer is formed on the end surface of the anode foil.
(陰極箔)
陰極箔は、金属箔(例えばアルミニウム箔)を含む。金属箔を構成する金属は、弁金属または弁金属を含む合金であってよい。金属箔の表面は、エッチングなどによって粗面化されていてもよい。陰極箔の厚さは、15μm以上で300μm以下であってもよい。陰極箔の表面には、上述した方法によって導電性高分子層が形成されていてもよい。
(cathode foil)
The cathode foil includes a metal foil (e.g., aluminum foil). The metal constituting the metal foil may be a valve metal or an alloy containing a valve metal. The surface of the metal foil may be roughened by etching or the like. The thickness of the cathode foil may be 15 μm or more and 300 μm or less. A conductive polymer layer may be formed on the surface of the cathode foil by the above-mentioned method.
上述したように、陰極箔は、表面に無機層を有してもよい。表面に無機層を有する陰極箔は、市販されているものを用いてもよいし、金属箔(陰極箔)の表面に無機層を形成することによって形成してもよい。無機層は、公知の方法で形成してもよい。例えば、無機層は、真空蒸着法などによって形成してもよい。あるいは、無機層は、カーボン(特に導電性炭素材料)、チタンおよびニッケルからなる群から選ばれる1つを含有するペーストを金属箔(陰極箔)の上に塗布した後に乾燥させることによって形成してもよい。無機層の付着量は、50mg/m2~300mg/m2の範囲(例えば70mg/m2~200mg/m2の範囲)にあってもよい。無機層に含まれるカーボン(特に導電性炭素材料)の例には、黒鉛、ハードカーボン、ソフトカーボン、カーボンブラックなどが含まれる。また、無機層がチタンを含む場合、チタンを蒸着した層であっても、酸化チタンの粒子により層を形成したものであってもよい。無機層はカーボン層であってもよい。カーボン層は、カーボンを含む層であり、カーボンの含有率が50質量%以上である層であってもよい。この明細書において、「無機層」を「カーボン層」に置き換えてもよい。 As described above, the cathode foil may have an inorganic layer on its surface. The cathode foil having an inorganic layer on its surface may be a commercially available product, or may be formed by forming an inorganic layer on the surface of a metal foil (cathode foil). The inorganic layer may be formed by a known method. For example, the inorganic layer may be formed by a vacuum deposition method or the like. Alternatively, the inorganic layer may be formed by applying a paste containing one selected from the group consisting of carbon (particularly a conductive carbon material), titanium, and nickel onto the metal foil (cathode foil) and then drying it. The amount of the inorganic layer may be in the range of 50 mg/m 2 to 300 mg/m 2 (for example, in the range of 70 mg/m 2 to 200 mg/m 2 ). Examples of carbon (particularly a conductive carbon material) contained in the inorganic layer include graphite, hard carbon, soft carbon, carbon black, and the like. In addition, when the inorganic layer contains titanium, it may be a layer formed by depositing titanium or a layer formed by particles of titanium oxide. The inorganic layer may be a carbon layer. The carbon layer may be a layer containing carbon, and may have a carbon content of 50 mass% or more. In this specification, the term "inorganic layer" may be replaced with "carbon layer."
陰極箔は、金属箔と、無機層と、無機層と金属箔との間に配置されたチタン含有層とを含んでもよい。一例の陰極箔は、無機層/チタン含有層/金属箔(例えばアルミニウム箔)/チタン含有層/無機層という積層構造を有する。チタン含有層は、チタンおよびチタン化合物からなる群より選択される少なくとも1種を含有してもよい。チタン化合物の例には、窒化チタン、チタン酸化物、チタンアルミニウム合金、チタンカーボネイトなどが含まれる。チタン含有層の形成方法は限定されず、公知の方法で形成してもよい。例えば、チタン含有層は、真空蒸着法やスパッタリング法といった物理的蒸着法などによって形成してもよい。チタン含有層の付着量は、200mg/m2~500mg/m2の範囲(例えば250mg/m2~400mg/m2の範囲)にあってもよい。 The cathode foil may include a metal foil, an inorganic layer, and a titanium-containing layer disposed between the inorganic layer and the metal foil. An example of the cathode foil has a laminated structure of inorganic layer/titanium-containing layer/metal foil (e.g., aluminum foil)/titanium-containing layer/inorganic layer. The titanium-containing layer may contain at least one selected from the group consisting of titanium and titanium compounds. Examples of titanium compounds include titanium nitride, titanium oxide, titanium aluminum alloy, titanium carbonate, and the like. The method of forming the titanium-containing layer is not limited, and the layer may be formed by a known method. For example, the titanium-containing layer may be formed by a physical vapor deposition method such as a vacuum deposition method or a sputtering method. The deposition amount of the titanium-containing layer may be in the range of 200 mg/m 2 to 500 mg/m 2 (e.g., in the range of 250 mg/m 2 to 400 mg/m 2 ).
(セパレータ)
セパレータには、多孔質のシートを用いることができる。多孔質のシートの例には、織布、不織布、および微多孔膜が含まれる。セパレータの厚さは特に限定されず、10~300μmの範囲にあってもよい。セパレータの材料の例には、セルロース、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ビニロン、ナイロン、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、レーヨン、およびガラスなどが含まれる。
(Separator)
A porous sheet can be used for the separator. Examples of the porous sheet include woven fabric, nonwoven fabric, and microporous membrane. The thickness of the separator is not particularly limited and may be in the range of 10 to 300 μm. Examples of the material of the separator include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, vinylon, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, glass, and the like.
(外装体)
積層体および液状成分(LC)は、外装体に収容される。外装体は、ケースおよび/または封止樹脂を含む。それらに限定はなく、公知のケースおよび封止樹脂を用いてもよい。封止樹脂は、熱硬化性樹脂を含んでもよい。熱硬化性樹脂の例には、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、ポリイミド、不飽和ポリエステルなどが含まれる。封止樹脂は、フィラー、硬化剤、重合開始剤、および/または触媒などを含んでもよい。
(Exterior body)
The laminate and the liquid component (LC) are housed in an exterior body. The exterior body includes a case and/or a sealing resin. There is no limitation thereto, and a known case and sealing resin may be used. The sealing resin may include a thermosetting resin. Examples of the thermosetting resin include an epoxy resin, a phenolic resin, a silicone resin, a melamine resin, a urea resin, an alkyd resin, a polyurethane, a polyimide, an unsaturated polyester, and the like. The sealing resin may include a filler, a curing agent, a polymerization initiator, and/or a catalyst, and the like.
以下では、本開示の一例について、図面を参照して具体的に説明する。以下で説明する一例の構成要素には、上述した構成要素を適用できる。また、以下で説明する一例の構成要素は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。また、以下で説明する一例において、本開示の電解コンデンサに必須ではない構成要素は省略してもよい。 Below, an example of the present disclosure will be specifically described with reference to the drawings. The components described above can be applied to the components of the example described below. Furthermore, the components of the example described below can be modified based on the above description. Furthermore, the matters described below may be applied to the above embodiment. Furthermore, in the example described below, components that are not essential to the electrolytic capacitor of the present disclosure may be omitted.
図1は、本実施形態に係る一例の電解コンデンサ100を模式的に示す断面図である。図2は、電解コンデンサ100に含まれるコンデンサ素子10の一部を展開した概略図である。
FIG. 1 is a cross-sectional view showing an example of an
電解コンデンサ100は、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース101と、有底ケース101の開口を塞ぐ封止部材102と、封止部材102を覆う座板103と、封止部材102から導出され、座板103を貫通するリード線104A、104Bと、リード線とコンデンサ素子10の電極とを接続するリードタブ105A、105Bとを備える。有底ケース101の開口端近傍は、内側に絞り加工されており、開口端は封止部材102にかしめるようにカール加工されている。
The
コンデンサ素子10は、例えば、図1に示すような巻回体である。巻回体は、リードタブ105Aと接続された陽極箔11と、リードタブ105Bと接続された陰極箔12と、セパレータ13とを備える。コンデンサ素子10(巻回体)は、導電性高分子層(図示せず)を含む。導電性高分子層は、有機化合物(C)を含んでもよい。電解コンデンサ100は、コンデンサ素子10に含浸された液状成分(LC)(例えば電解液)を含む。
陽極箔11および陰極箔12は、セパレータ13を介して巻回されている。巻回体の最外周は、巻止めテープ14により固定される。なお、図2は、巻回体の最外周を止める前の、一部が展開された状態を示している。
The
電解コンデンサは、少なくとも1つのコンデンサ素子を有していればよく、複数のコンデンサ素子を有していてもよい。電解コンデンサに含まれるコンデンサ素子の数は、用途に応じて決定すればよい。 An electrolytic capacitor may have at least one capacitor element, but may also have multiple capacitor elements. The number of capacitor elements included in an electrolytic capacitor may be determined according to the application.
(付記)
上記記載によって、以下の技術が開示される。
(Additional Note)
Based on the above description, the following techniques are disclosed.
(技術1)
積層体と、前記積層体に含浸された液状成分とを含む電解コンデンサであって、
前記積層体は、
表面に誘電体層を有する陽極箔と、
陰極箔と、
セパレータと、
前記セパレータに保持された第1の導電性高分子層と、
前記誘電体層上に形成された第2の導電性高分子層と、を含み、
前記第1の導電性高分子層は、第1の導電性高分子、ポリビニルアルコール系高分子、およびホウ酸系化合物を含有し、
前記第2の導電性高分子層は、第2の導電性高分子を含有し、
前記ホウ酸系化合物は、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物であり、
前記第1の導電性高分子層中の前記ポリビニルアルコール系高分子の少なくとも一部は架橋されている、電解コンデンサ。
(Technique 1)
An electrolytic capacitor comprising a laminate and a liquid component impregnated in the laminate,
The laminate comprises:
an anode foil having a dielectric layer on a surface thereof;
A cathode foil;
A separator;
a first conductive polymer layer supported by the separator;
a second conductive polymer layer formed on the dielectric layer;
the first conductive polymer layer contains a first conductive polymer, a polyvinyl alcohol-based polymer, and a boric acid-based compound;
the second conductive polymer layer contains a second conductive polymer,
The boric acid compound is at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds,
At least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked.
(技術2)
前記第1の導電性高分子層において、前記第1の導電性高分子の質量Wcに対する前記ポリビニルアルコール系高分子の質量Wpの比(Wp/Wc)は0.01以上である、技術1に記載の電解コンデンサ。
(Technique 2)
The electrolytic capacitor according to claim 1, wherein in the first conductive polymer layer, a ratio (Wp/Wc) of a mass Wp of the polyvinyl alcohol-based polymer to a mass Wc of the first conductive polymer is 0.01 or more.
(技術3)
前記陰極箔は、表面に無機層を有し、
前記第1の導電性高分子層は前記無機層に密着している、技術1または2に記載の電解コンデンサ。
(Technique 3)
The cathode foil has an inorganic layer on a surface thereof,
The electrolytic capacitor according to claim 1 or 2, wherein the first conductive polymer layer is in close contact with the inorganic layer.
(技術4)
前記液状成分は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、分子量が250以下のエチレングリコール縮合物、グリセリン、γ-ブチロラクトン、およびスルホランからなる群より選択される少なくとも1種をさらに含有する、技術1~3のいずれか1つに記載の電解コンデンサ。
(Technique 4)
The electrolytic capacitor according to any one of techniques 1 to 3, wherein the liquid component further contains at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, an ethylene glycol condensate having a molecular weight of 250 or less, glycerin, γ-butyrolactone, and sulfolane.
(技術5)
前記積層体は巻回体である、技術1~4のいずれか1つに記載の電解コンデンサ。
(Technique 5)
The electrolytic capacitor according to any one of Techniques 1 to 4, wherein the laminate is a wound body.
(技術6)
電解コンデンサの製造方法であって、
表面に誘電体層を有する陽極箔を準備する準備工程と、
セパレータの空隙内に第1の導電性高分子とポリビニルアルコール系高分子とを含む第1の導電性高分子層を形成する第1高分子層形成工程と、
前記誘電体層の表面に第2の導電性高分子層を形成する第2高分子層形成工程と、
前記陽極箔と陰極箔と前記セパレータとを、前記陽極箔と前記陰極箔との間に前記セパレータが配置されるように積層することによって、前記第1の導電性高分子層と前記第2の導電性高分子層とを含む積層体を形成する積層体形成工程と、
前記積層体に、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物を含有する液状成分を含浸させる含浸工程と、
前記液状成分が含浸された前記積層体を85℃以上の温度に加熱する架橋工程と、を含み、
前記架橋工程において、前記第1の導電性高分子層中の前記ポリビニルアルコール系高分子の少なくとも一部は前記少なくとも1種のホウ酸系化合物によって架橋される、電解コンデンサの製造方法。
(Technique 6)
A method for manufacturing an electrolytic capacitor, comprising the steps of:
A preparation step of preparing an anode foil having a dielectric layer on a surface thereof;
a first polymer layer forming step of forming a first conductive polymer layer containing a first conductive polymer and a polyvinyl alcohol-based polymer in voids of the separator;
a second polymer layer forming step of forming a second conductive polymer layer on a surface of the dielectric layer;
a laminate formation step of forming a laminate including the first conductive polymer layer and the second conductive polymer layer by stacking the anode foil, the cathode foil, and the separator such that the separator is disposed between the anode foil and the cathode foil;
an impregnation step of impregnating the laminate with a liquid component containing at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds;
A crosslinking step of heating the laminate impregnated with the liquid component to a temperature of 85° C. or higher,
In the crosslinking step, at least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked with the at least one boric acid-based compound.
(技術7)
前記第1の導電性高分子層において、前記第1の導電性高分子の質量Wcに対する前記ポリビニルアルコール系高分子の質量Wpの比(Wp/Wc)は0.01以上である、技術6に記載の電解コンデンサの製造方法。
(Technique 7)
7. The method for producing an electrolytic capacitor according to claim 6, wherein in the first conductive polymer layer, a ratio (Wp/Wc) of a mass Wp of the polyvinyl alcohol-based polymer to a mass Wc of the first conductive polymer is 0.01 or more.
(技術8)
前記陰極箔は、表面に無機層を有し、
前記第1の導電性高分子層が前記無機層に密着する、技術6または7に記載の電解コンデンサの製造方法。
(Technique 8)
The cathode foil has an inorganic layer on a surface thereof,
8. The method for producing an electrolytic capacitor according to claim 6 or 7, wherein the first conductive polymer layer is in close contact with the inorganic layer.
(技術9)
前記液状成分は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、分子量が250以下のエチレングリコール縮合物、グリセリン、γ-ブチロラクトン、およびスルホランからなる群より選択される少なくとも1種をさらに含有する、技術6~8のいずれか1つに記載の電解コンデンサの製造方法。
(Technique 9)
The method for producing an electrolytic capacitor according to any one of techniques 6 to 8, wherein the liquid component further contains at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, an ethylene glycol condensate having a molecular weight of 250 or less, glycerin, γ-butyrolactone, and sulfolane.
(技術10)
前記積層体は巻回体である、技術6~9のいずれか1つに記載の電解コンデンサの製造方法。
(Technique 10)
The method for producing an electrolytic capacitor according to any one of Techniques 6 to 9, wherein the laminate is a wound body.
以下、実施例に基づいて本開示をより詳細に説明するが、本開示は実施例に限定されない。この実施例では、以下の方法で複数の電解コンデンサを作製して評価した。 Below, the present disclosure will be described in more detail based on examples, but the present disclosure is not limited to the examples. In these examples, multiple electrolytic capacitors were produced and evaluated by the following method.
(コンデンサA1)
電解コンデンサ(コンデンサA1)を以下の方法で作製した。
(Capacitor A1)
An electrolytic capacitor (capacitor A1) was produced by the following method.
(a)構成部材の準備
アルミニウム箔(厚さ:100μm)にエッチング処理を行い、アルミニウム箔の表面を粗面化した。粗面化されたアルミニウム箔の表面を化成処理して誘電体層を形成した。このようにして、両面に誘電体層が形成された陽極箔を得た。陰極箔となるアルミニウム箔(厚さ:50μm)の両面にカーボン層を形成した。カーボン層は、真空蒸着法によって形成した。
(a) Preparation of components An aluminum foil (thickness: 100 μm) was etched to roughen the surface of the aluminum foil. The roughened surface of the aluminum foil was chemically treated to form a dielectric layer. In this way, an anode foil with a dielectric layer formed on both sides was obtained. A carbon layer was formed on both sides of an aluminum foil (thickness: 50 μm) that would become a cathode foil. The carbon layer was formed by vacuum deposition.
セパレータとして、不織布(厚さ50μm)を準備した。不織布には、ポリエステル繊維、アラミド繊維、およびセルロースで構成された不織布を用いた。 A nonwoven fabric (thickness 50 μm) was prepared as a separator. The nonwoven fabric used was made of polyester fiber, aramid fiber, and cellulose.
(b)導電性高分子層の形成
ポリスチレンスルホン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT)の粒子が水に分散された分散液(市販品)を準備した。この分散液に、ポリビニルアルコールと水とを加えて塗液を得た。塗液における導電性高分子成分の濃度は1.8質量%とし、塗液におけるポリビニルアルコールの濃度は0.6質量%とした。
(b) Formation of a conductive polymer layer A dispersion (commercially available) in which particles of polyethylenedioxythiophene (PEDOT) doped with polystyrene sulfonic acid (PSS) were dispersed in water was prepared. Polyvinyl alcohol and water were added to this dispersion to obtain a coating liquid. The concentration of the conductive polymer component in the coating liquid was 1.8% by mass, and the concentration of polyvinyl alcohol in the coating liquid was 0.6% by mass.
次に、グラビアコーターを用いて、陽極箔の一方の片面(誘電体層の表面)に塗液を塗布した。その後、乾燥処理を行って、陽極箔の一方の片面(誘電体層の表面)に第2の導電性高分子層を形成した。乾燥処理は、塗液が塗布された陽極箔を、125℃で5分間加熱することによって行った。次に、陽極箔の他方の片面(誘電体層の表面)にも、同様の方法で第2の導電性高分子層を形成した。セパレータに塗液を塗布した後に乾燥処理を行うことによって、セパレータに第1の導電性高分子層を形成した。 Next, the coating liquid was applied to one side of the anode foil (surface of the dielectric layer) using a gravure coater. A drying process was then performed to form a second conductive polymer layer on one side of the anode foil (surface of the dielectric layer). The drying process was performed by heating the anode foil with the coating liquid applied at 125°C for 5 minutes. Next, a second conductive polymer layer was formed on the other side of the anode foil (surface of the dielectric layer) in the same manner. A first conductive polymer layer was formed on the separator by applying the coating liquid to the separator and then performing a drying process.
(c)巻回体(積層体)の形成
陽極箔、陰極箔、およびセパレータをそれぞれ所定の大きさに切断した。陽極箔および陰極箔に、それぞれ陽極リードタブおよび陰極リードタブを接続した。次に、陽極箔と陰極箔とをセパレータを介して巻回した。その際、巻回体の外側表面の端部を巻止めテープで固定した。巻回体から突出する各リードタブの端部に、陽極リード線および陰極リード線をそれぞれ接続した。得られた巻回体に再度化成処理を行い、陽極箔の端面に誘電体層を形成した。このようにして、コンデンサ素子を得た。
(c) Formation of a wound body (laminate) The anode foil, cathode foil, and separator were each cut to a predetermined size. The anode lead tab and cathode lead tab were connected to the anode foil and cathode foil, respectively. Next, the anode foil and cathode foil were wound with the separator interposed therebetween. At that time, the ends of the outer surface of the wound body were fixed with a winding stop tape. The anode lead wire and cathode lead wire were connected to the ends of each lead tab protruding from the wound body, respectively. The obtained wound body was again subjected to a chemical conversion treatment to form a dielectric layer on the end surface of the anode foil. In this manner, a capacitor element was obtained.
(d)液状成分の含浸
エチレングリコール(溶媒)に、o-フタル酸、トリエチルアミン(塩基成分)を合計で25質量%の濃度で溶解させ、さらにホウ酸アンモニウムを添加することによって、電解液(液状成分)を調製した。電解液中のホウ酸アンモニウムの濃度は、2.5質量%とした。減圧雰囲気(40kPa)中で、電解液にコンデンサ素子を5分間浸漬した。これによって、コンデンサ素子(積層体)に電解液を含浸させた。
(d) Impregnation of liquid component o-phthalic acid and triethylamine (base component) were dissolved in ethylene glycol (solvent) at a total concentration of 25 mass%, and ammonium borate was further added to prepare an electrolyte (liquid component). The concentration of ammonium borate in the electrolyte was set to 2.5 mass%. The capacitor element was immersed in the electrolyte for 5 minutes in a reduced pressure atmosphere (40 kPa). This allowed the capacitor element (laminate) to be impregnated with the electrolyte.
(e)コンデンサ素子の封止および架橋工程
電解液を含浸させたコンデンサ素子を封止して、図1に示すような電解コンデンサを組み立てた。その後、陽極箔と陰極箔との間に電圧を印加しながら、105℃で60分間、コンデンサ素子(積層体)を含む電解コンデンサを加熱した。この処理によって、導電性高分子層中のポリビニルアルコールをホウ酸アンモニウムで架橋させた。また、この処理によって、陽極箔の再化成を行った。このようにして、電解コンデンサ(コンデンサA1)を作製した。
(e) Capacitor Element Sealing and Crosslinking Process The capacitor element impregnated with the electrolytic solution was sealed to assemble an electrolytic capacitor as shown in FIG. 1. Then, the electrolytic capacitor including the capacitor element (laminate) was heated at 105° C. for 60 minutes while applying a voltage between the anode foil and the cathode foil. This process crosslinked the polyvinyl alcohol in the conductive polymer layer with ammonium borate. This process also reconstituted the anode foil. In this way, an electrolytic capacitor (capacitor A1) was produced.
(コンデンサC1)
導電性高分子層を形成するための塗液にポリビニルアルコールを添加しなかったことを除いて、コンデンサA1の作製と同様の方法および条件で電解コンデンサ(コンデンサC1)を作製した。
(Capacitor C1)
An electrolytic capacitor (capacitor C1) was produced in the same manner and under the same conditions as those for producing capacitor A1, except that polyvinyl alcohol was not added to the coating liquid for forming the conductive polymer layer.
(コンデンサC2)
電解液にホウ酸アンモニウムを添加しなかったことを除いて、コンデンサA1の作製と同様の方法および条件で電解コンデンサ(コンデンサC2)を作製した。
(Capacitor C2)
An electrolytic capacitor (capacitor C2) was produced in the same manner and under the same conditions as those for producing capacitor A1, except that ammonium borate was not added to the electrolyte.
(コンデンサC3)
導電性高分子層を形成するための塗液にポリビニルアルコールを添加しなかったこと、および、電解液にホウ酸アンモニウムを添加しなかったことを除いて、コンデンサA1の作製と同様の方法および条件で電解コンデンサ(コンデンサC3)を作製した。
(Capacitor C3)
An electrolytic capacitor (capacitor C3) was produced in the same manner and under the same conditions as those for producing capacitor A1, except that polyvinyl alcohol was not added to the coating liquid for forming the conductive polymer layer, and ammonium borate was not added to the electrolytic solution.
(評価)
作製された電解コンデンサについて、等価直列抵抗(ESR)および耐電圧を測定した。評価結果を表1に示す。ESRは低いことが好ましく、耐電圧は高いことが好ましい。
(evaluation)
The equivalent series resistance (ESR) and withstand voltage of the produced electrolytic capacitor were measured. The evaluation results are shown in Table 1. It is preferable that the ESR is low and the withstand voltage is high.
コンデンサA1は、製造方法(M)で製造された本開示に係る電解コンデンサ(E)である。コンデンサC1~C3は、比較例である。表1に示すように、コンデンサA1は、ESRが低く、耐電圧が高かった。 Capacitor A1 is an electrolytic capacitor (E) according to the present disclosure manufactured by manufacturing method (M). Capacitors C1 to C3 are comparative examples. As shown in Table 1, capacitor A1 had a low ESR and a high withstand voltage.
本開示は、電解コンデンサに利用できる。 This disclosure can be used in electrolytic capacitors.
10 :コンデンサ素子
11 :陽極箔
12 :陰極箔
13 :セパレータ
100 :電解コンデンサ
10: Capacitor element 11: Anode foil 12: Cathode foil 13: Separator 100: Electrolytic capacitor
Claims (10)
前記積層体は、
表面に誘電体層を有する陽極箔と、
陰極箔と、
セパレータと、
前記セパレータに保持された第1の導電性高分子層と、
前記誘電体層上に形成された第2の導電性高分子層と、を含み、
前記第1の導電性高分子層は、第1の導電性高分子、ポリビニルアルコール系高分子、およびホウ酸系化合物を含有し、
前記第2の導電性高分子層は、第2の導電性高分子を含有し、
前記ホウ酸系化合物は、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物であり、
前記第1の導電性高分子層中の前記ポリビニルアルコール系高分子の少なくとも一部は架橋されている、電解コンデンサ。 An electrolytic capacitor comprising a laminate and a liquid component impregnated in the laminate,
The laminate comprises:
an anode foil having a dielectric layer on a surface thereof;
A cathode foil;
A separator;
a first conductive polymer layer supported by the separator;
a second conductive polymer layer formed on the dielectric layer;
the first conductive polymer layer contains a first conductive polymer, a polyvinyl alcohol-based polymer, and a boric acid-based compound;
the second conductive polymer layer contains a second conductive polymer,
The boric acid compound is at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds,
At least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked.
前記第1の導電性高分子層は前記無機層に密着している、請求項1に記載の電解コンデンサ。 The cathode foil has an inorganic layer on a surface thereof,
The electrolytic capacitor of claim 1 , wherein the first conductive polymer layer is in close contact with the inorganic layer.
表面に誘電体層を有する陽極箔を準備する準備工程と、
セパレータの空隙内に第1の導電性高分子とポリビニルアルコール系高分子とを含む第1の導電性高分子層を形成する第1高分子層形成工程と、
前記誘電体層の表面に第2の導電性高分子層を形成する第2高分子層形成工程と、
前記陽極箔と陰極箔と前記セパレータとを、前記陽極箔と前記陰極箔との間に前記セパレータが配置されるように積層することによって、前記第1の導電性高分子層と前記第2の導電性高分子層とを含む積層体を形成する積層体形成工程と、
前記積層体に、ホウ酸およびホウ酸化合物からなる群より選択される少なくとも1種のホウ酸系化合物を含有する液状成分を含浸させる含浸工程と、
前記液状成分が含浸された前記積層体を85℃以上の温度に加熱する架橋工程と、を含み、
前記架橋工程において、前記第1の導電性高分子層中の前記ポリビニルアルコール系高分子の少なくとも一部は前記少なくとも1種のホウ酸系化合物によって架橋される、電解コンデンサの製造方法。 A method for manufacturing an electrolytic capacitor, comprising the steps of:
A preparation step of preparing an anode foil having a dielectric layer on a surface thereof;
a first polymer layer forming step of forming a first conductive polymer layer containing a first conductive polymer and a polyvinyl alcohol-based polymer in voids of the separator;
a second polymer layer forming step of forming a second conductive polymer layer on a surface of the dielectric layer;
a laminate formation step of forming a laminate including the first conductive polymer layer and the second conductive polymer layer by stacking the anode foil, the cathode foil, and the separator such that the separator is disposed between the anode foil and the cathode foil;
an impregnation step of impregnating the laminate with a liquid component containing at least one boric acid compound selected from the group consisting of boric acid and boric acid compounds;
A crosslinking step of heating the laminate impregnated with the liquid component to a temperature of 85° C. or higher,
In the crosslinking step, at least a portion of the polyvinyl alcohol-based polymer in the first conductive polymer layer is crosslinked with the at least one boric acid-based compound.
前記第1の導電性高分子層が前記無機層に密着する、請求項6に記載の電解コンデンサの製造方法。 The cathode foil has an inorganic layer on a surface thereof,
The method for producing an electrolytic capacitor according to claim 6 , wherein the first conductive polymer layer is in close contact with the inorganic layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-123456 | 2023-07-28 | ||
JP2023123456 | 2023-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025028069A1 true WO2025028069A1 (en) | 2025-02-06 |
Family
ID=94394479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/022729 WO2025028069A1 (en) | 2023-07-28 | 2024-06-24 | Electrolytic capacitor and production method for electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025028069A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005294504A (en) * | 2004-03-31 | 2005-10-20 | Nippon Chemicon Corp | Process for manufacturing solid electrolytic capacitor |
WO2012137969A1 (en) * | 2011-04-08 | 2012-10-11 | Necトーキン株式会社 | Electrically conductive polymer solution, electrically conductive polymer material and process for production thereof, and solid electrolytic capacitor |
WO2020158783A1 (en) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | Conductive polymer dispersion liquid, electrolytic capacitor and method for producing electrolytic capacitor |
WO2021200776A1 (en) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor and production method therefor |
-
2024
- 2024-06-24 WO PCT/JP2024/022729 patent/WO2025028069A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005294504A (en) * | 2004-03-31 | 2005-10-20 | Nippon Chemicon Corp | Process for manufacturing solid electrolytic capacitor |
WO2012137969A1 (en) * | 2011-04-08 | 2012-10-11 | Necトーキン株式会社 | Electrically conductive polymer solution, electrically conductive polymer material and process for production thereof, and solid electrolytic capacitor |
WO2020158783A1 (en) * | 2019-01-31 | 2020-08-06 | パナソニックIpマネジメント株式会社 | Conductive polymer dispersion liquid, electrolytic capacitor and method for producing electrolytic capacitor |
WO2021200776A1 (en) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor and production method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110323067B (en) | Electrolytic capacitor and method for manufacturing the same | |
JP7607224B2 (en) | Electrolytic capacitors | |
CN111149183B (en) | Electrolytic capacitor | |
JP7689321B2 (en) | Electrolytic capacitor and its manufacturing method | |
US20220415580A1 (en) | Electrolytic capacitor and production method therefor | |
JP7641529B2 (en) | Electrolytic capacitor and its manufacturing method | |
WO2025028069A1 (en) | Electrolytic capacitor and production method for electrolytic capacitor | |
WO2024181212A1 (en) | Electrolytic capacitor and method for producing electrolytic capacitor | |
JP7681840B2 (en) | Electrolytic capacitor and its manufacturing method | |
US20250095923A1 (en) | Electrolytic capacitor and method for manufacturing electrolytic capacitor | |
WO2025028070A1 (en) | Electrolytic capacitor, production method for electrolytic capacitor, and sheet for electrolytic capacitor | |
WO2025028068A1 (en) | Electrolytic capacitor and production method for electrolytic capacitor | |
WO2022071223A1 (en) | Electrolytic capacitor and production method therefor | |
WO2025028067A1 (en) | Electrolytic capacitor and method for producing electrolytic capacitor | |
US20250104926A1 (en) | Electrolytic capacitor and method for producing electrolytic capacitor | |
US20250182976A1 (en) | Electrolytic capacitor and method for producing electrolytic capacitor | |
WO2025028057A1 (en) | Electrolytic capacitor and method for producing electrolytic capacitor | |
WO2025028056A1 (en) | Electrolytic capacitor and production method for electrolytic capacitor | |
WO2025028055A1 (en) | Electrolytic capacitor and method for producing electrolytic capacitor | |
WO2024181210A1 (en) | Electrolytic capacitor and production method therefor | |
US12183519B2 (en) | Electrolytic capacitor and production method therefor | |
JP2025111847A (en) | Electrolytic capacitor and its manufacturing method | |
WO2022210513A1 (en) | Method for manufacturing electrolytic capacitor | |
WO2024116845A1 (en) | Method for manufacturing electrolytic capacitor, electrolytic capacitor, first processing solution, and second processing solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24848730 Country of ref document: EP Kind code of ref document: A1 |