WO2025023649A1 - Double-sided chip for nucleic acid extraction for pcr test, cartridge comprising same, and nucleic acid extraction device using same - Google Patents
Double-sided chip for nucleic acid extraction for pcr test, cartridge comprising same, and nucleic acid extraction device using same Download PDFInfo
- Publication number
- WO2025023649A1 WO2025023649A1 PCT/KR2024/010464 KR2024010464W WO2025023649A1 WO 2025023649 A1 WO2025023649 A1 WO 2025023649A1 KR 2024010464 W KR2024010464 W KR 2024010464W WO 2025023649 A1 WO2025023649 A1 WO 2025023649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- nucleic acid
- washing liquid
- absorption
- absorption chamber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
Definitions
- the present invention relates to a double-sided chip for nucleic acid extraction for PCR testing, a cartridge containing the same, and a nucleic acid extraction device using the same.
- the present invention relates to a double-sided chip for nucleic acid extraction for PCR testing, a cartridge containing the same, and a nucleic acid extraction device using the same, which enables rapid and easy extraction of nucleic acids by moving a biological sample within a single chip, effectively removing foreign substances from the biological sample, and easily separating nucleic acids and buffers.
- PCR Polymerase Chain Reaction
- PCR is performed repeatedly through the following three steps.
- the three steps include: 1) a denaturing step in which a sample solution containing double-stranded DNA is heated to a specific temperature, for example, about 95°C, to separate the double-stranded DNA into single-stranded DNA; 2) an annealing step in which an oligonucleotide primer having a sequence complementary to a specific base sequence to be amplified is provided to the sample solution after the denaturing step, and the sample solution is cooled to a specific temperature, for example, 55°C, together with the separated single-stranded DNA, to bind the primer to the specific base sequence of the single-stranded DNA to form a partial DNA-primer complex; and 3) an extension (or amplification) step in which the sample solution is maintained at an active temperature of DNA polymerase, for example, 72°C, after the annealing step, to form double-stranded DNA based on the primer of the partial DNA-primer complex by DNA polymerase.
- RNA By repeating the above three steps several times, a target nucleic acid having a specific base sequence can be exponentially amplified.
- a step of reverse transcribing RNA into DNA can be performed in advance in steps 1) to 3).
- nucleic acids must be extracted from a biological sample.
- nucleic acid extraction technique there was a method of solubilizing a sample containing cells with SDS or proteinase K, and then denaturing and removing the proteins with phenol to purify the nucleic acids.
- the phenol extraction method requires many processing steps, so it takes a lot of time, and the nucleic acid extraction efficiency is greatly affected by the experience and skill of the researcher, so there was a problem that reliability was greatly reduced.
- kits using silica or glass fibers that specifically bind to nucleic acids have been used to solve this problem. Since the silica or glass fibers have a low binding ratio with proteins and cell metabolites, a relatively high concentration of nucleic acids can be obtained.
- This method has the advantage of being simple compared to the phenol method, but since it uses chaotropic reagents or ethanol that strongly inhibit enzymatic reactions such as polymerase chain reaction (PCR), these substances must be completely removed, and for this reason, the operation is very cumbersome and takes a long time.
- PCR polymerase chain reaction
- the conventional nucleic acid extraction method consists of the steps of 1) adding a cell lysis buffer to the cells to lyse the cells; 2) transferring the lysed cells of step 1 to a filter to fix the nucleic acids; 3) washing the filter of step 2; and 4) recovering the nucleic acids from the filter, and thus has the advantage of being able to extract nucleic acids with high reproducibility in a short period of time and steps.
- a centrifuge is used when transferring the lysed cells to the filter, washing the filter, or recovering the nucleic acids from the filter. The use of such a centrifuge has the effect of shortening the time, but has the problem of low portability and mobility and complicating the nucleic acid extraction process in the field.
- nucleic acid extraction methods using magnetic beads there are nucleic acid extraction methods using magnetic beads, nucleic acid extraction methods using syringes and filters, nucleic acid extraction methods using direct lysis buffer (DLB), and nucleic acid extraction methods using Trizol, but the nucleic acid extraction method using magnetic beads requires a magnet to fix the nucleic acid to the wall of the tube, and the use of a pump or valve (automated equipment) or multiple tips and pipettes (manual) to remove the solution.
- the nucleic acid extraction method using a syringe and filter has a problem that the filter is damaged if a certain amount of force is applied during the process of transferring the nucleic acid using the syringe, making it difficult to extract the nucleic acid.
- the nucleic acid extraction method using direct lysis buffer has a problem that the sensitivity greatly decreases due to dilution because the DLB (Direct lysis buffer) itself may contain PCR inhibitors, so it must be diluted by 1/10.
- the nucleic acid extraction method using Trizol has a problem that it uses harmful organic solvents such as phenol or chloroform.
- the present invention aims to provide a double-sided chip for nucleic acid extraction for PCR testing, which effectively removes foreign substances from a biological sample while moving the biological sample within a single chip without using additional equipment, and easily separates nucleic acids and buffers, thereby quickly and easily extracting nucleic acids, a cartridge including the chip, and a nucleic acid extraction device using the chip.
- a double-sided chip for nucleic acid extraction for PCR testing comprises: an input chamber into which a biological sample to be tested is input; an absorption chamber containing an absorbent that absorbs and removes an inhibitor that inhibits PCR performance from the sample; a nucleic acid chamber containing nucleic acids from which inhibitors have been removed by passing through the absorption chamber; and a body part including the input chamber, the absorption chamber, and the nucleic acid chamber so that the sample sequentially passes through the input chamber, the absorption chamber, and the nucleic acid chamber.
- the body portion is formed in a plate shape having a predetermined thickness and includes one side and an opposite side, and the absorption chamber is formed at a predetermined depth on either the one side or the opposite side.
- the injection chamber has an injection port provided at the top through which the sample is injected, an outlet provided at the bottom through which the sample is discharged, and includes an inclined guide part that guides the sample to gather toward the outlet.
- an air injection hole is formed in the injection chamber through which air is injected by an air pump, and that the sample is pushed and moved toward the absorption chamber by the air pressure provided through the air injection hole.
- the absorption chamber includes a first absorption chamber, a second absorption chamber, and a third absorption chamber that are connected in the vertical direction
- the first, second, and third absorption chambers include a resin to which the inhibitor is adsorbed, and a mesh-structured barrier film is provided between the first absorption chamber and the second absorption chamber, and between the second absorption chamber and the third absorption chamber, so that the sample passes through the first, second, and third absorption chambers sequentially, and the resin is preferably prevented from moving by the barrier film.
- the first absorption chamber, the second absorption chamber, or the third absorption chamber be filled with any one selected from among an anion exchange resin having a cathode, a chelating resin, or a cation exchange resin having a positive electrode that adsorbs the inhibitor.
- a washing liquid storage chamber be provided between the injection chamber and the absorption chamber to accommodate a washing liquid for washing the absorbent filled in the absorption chamber.
- the washing liquid storage chamber is filled with the washing liquid and includes a plurality of washing liquid flow paths arranged in parallel in one direction so that the washing liquid flows, and it is preferable that the washing liquid flows in a zigzag pattern along the washing liquid flow paths.
- the washing liquid flow path includes: a first storage unit configured with a plurality of first channels having a first length and storing the washing liquid; a second storage unit configured with a plurality of second channels shorter than the first length and storing the washing liquid, and provided below the first storage unit; and a third storage unit configured with a plurality of second channels shorter than the second length and storing the washing liquid, and provided below the second storage unit.
- washing liquid storage chamber and the absorption chamber are formed on the same surface of the plate-shaped body portion.
- the rear end of the absorption chamber includes a waste collection and nucleic acid separation chamber in which the washing liquid is collected and the nucleic acid is discharged; and it is preferable that the nucleic acid separated through the waste collection and nucleic acid separation chamber is collected in the nucleic acid chamber.
- a washing liquid storage chamber is provided between the injection chamber and the absorption chamber, which accommodates a washing liquid for washing the absorbent filled in the absorption chamber; and a waste collection and nucleic acid separation chamber is provided at the rear end of the absorption chamber, which collects the washing liquid and discharges the nucleic acid; and it is preferable that at least one of the washing liquid storage chamber, the absorption chamber, and the waste collection and nucleic acid separation chamber is formed on at least one of one surface of the body portion having a predetermined thickness and the other surface opposite thereto.
- washing liquid storage chamber and the absorption chamber are formed on one surface of the body portion, and the waste collection and nucleic acid separation chamber are formed on the other surface of the body portion.
- the body part further includes a tubular path forming a path through which a sample is transferred from the injection chamber to the nucleic acid chamber, and a valve for opening and closing the tubular path is provided.
- the tubular path includes a first tube path provided between the injection chamber and the washing liquid storage chamber; a second tube path provided between the washing liquid storage chamber and the absorption chamber; and a third tube path provided between the absorption chamber and the sink waste collection and nucleic acid separation chamber; and it is preferable that the valve simultaneously opens or closes the first, second, and third tube paths.
- a double-sided chip for nucleic acid extraction for PCR testing comprises: a plate-shaped body having a predetermined thickness; an absorption chamber formed on one surface of the body or the other surface opposite the one surface, and containing an absorbent that absorbs and removes an inhibitor that inhibits PCR performance from the sample; a waste collection and nucleic acid separation chamber formed on one surface of the body or the other surface opposite the one surface, and capturing a washing liquid that washes the absorption chamber, and passing through the absorption chamber to separate and discharge nucleic acids from which inhibitors have been removed.
- a cartridge including a double-sided chip comprises a plate-shaped body part including an absorption chamber for absorbing and removing an inhibitor that inhibits PCR performance from a sample; a front cover coupled to one side of the body part; and a rear cover coupled to the front cover with the body part interposed therebetween; characterized in that nucleic acid is separated from the sample as the sample passes through the absorption chamber.
- a nucleic acid extraction device using a cartridge comprises a plate-shaped body part including an absorption chamber for absorbing and removing an inhibitor that inhibits PCR performance from a sample; a front cover coupled to one side of the body part; and a rear cover coupled to the front cover with the body part interposed therebetween; a cartridge for separating nucleic acids from a sample as the sample passes through the absorption chamber; and
- It is characterized by including an insertion part into which the cartridge is inserted and mounted, and a mounting part including a door provided on the insertion part for opening and closing the insertion part.
- a double-sided chip for nucleic acid extraction for PCR testing according to an embodiment of the present invention, a cartridge including the same, and a nucleic acid extraction device using the same provide the effect of effectively removing foreign substances from a biological sample, easily separating nucleic acids and buffers, and quickly and easily extracting nucleic acids while moving the biological sample within a single chip without using additional equipment.
- the present invention simplifies the nucleic acid separation procedure by easily separating nucleic acids on a single chip without using additional equipment such as a centrifuge for nucleic acid separation, and improves user convenience by making it easy to carry and move to the field.
- Figure 1 is a perspective view of a double-sided chip for nucleic acid extraction according to one embodiment of the present invention.
- Figure 2 is a cross-sectional view of the main part of Figure 1.
- Figure 3 is a perspective view of Figure 1 from a different angle.
- Figure 4 is a perspective view of the opposite side of Figure 1.
- Figure 5 is a drawing showing the path along which the sample flows sequentially in the double-sided chip, indicated by numbers.
- Figure 6 is a drawing showing the chambers through which the sample passes in sequence.
- Figure 7 is a plan view of Figure 4.
- Figure 8 is a plan view of Figure 3.
- Figure 9 is a perspective view of Figure 1 from a different angle.
- Figure 10 is a drawing showing the nucleic acid extraction in a nucleic acid chamber.
- Figure 11 is a drawing showing a cartridge including a double-sided chip
- Figure 12 is an exploded perspective view of Figure 11.
- Figure 13 is a drawing showing a state in which a double-sided chip is attached to a rear cover.
- Figure 14 is a drawing showing a state where the valve closes the tubular path.
- Figure 15 is a drawing showing a state where the valve has opened the tubular path.
- Figure 16 is a drawing showing the valve rising by a pressure transmitting means.
- Figure 17 is a drawing showing the cap sliding to open and close the injection chamber and the bottom surface of the cap.
- Figure 18 is a perspective view of the cap.
- Fig. 19 is a front view of Fig. 19.
- Figure 20 is a drawing showing a cartridge mounted on a nucleic acid extraction device.
- Figure 21 is a drawing showing how a pump connection part is connected to a cartridge.
- the present invention relates to a double-sided chip for extracting nucleic acids for PCR tests, and relates to a chip and device for removing an inhibitor that interferes with PCR from a biological sample and separating and obtaining nucleic acids in order to perform PCR on the sample.
- the double-sided chip for extracting nucleic acids according to the present invention can be utilized not only in cases where extraction of nucleic acids is required for the purpose of diagnosing, treating, or preventing diseases, but also in various fields such as new drug development and detection of environmental hormones where extraction of nucleic acids from samples is required.
- PCR polymerase chain reaction
- PCR may use a reaction mixture containing a primer (forward primer, reverse primer), which is an oligonucleotide that can specifically hybridize to a target nucleic acid, a deoxynucleotide triphosphate mixture (dNTP mixture), and a divalent ion such as Mg2+.
- a primer forward primer, reverse primer
- dNTP mixture deoxynucleotide triphosphate mixture
- Mg2+ divalent ion
- the 'sample' refers to genetic material such as nucleic acid that is the target to be amplified or a biological solution containing such genetic material.
- the 'reaction reagent' may include fluorescent dyes, primers, etc. for detecting the target genetic material.
- the primer may be composed of a pair of primers of 15 to 30 bp in length that can bind to both ends of a specific region of the target gene.
- the DNA polymerase uses an enzyme that does not lose activity even at high temperatures of 90°C or higher.
- a double-sided chip (1000) for nucleic acid extraction which forms a path and a chamber on both sides of a body part (10) through which a biological sample flows, so that an inhibitory substance (hereinafter, referred to as an inhibitor) that inhibits PCR is adsorbed and removed while passing through the path and chamber, and only nucleic acids are collected and separated into a nucleic acid chamber (300).
- an inhibitory substance hereinafter, referred to as an inhibitor
- the body part (10) is formed in a plate shape having a predetermined thickness, and an injection chamber (100), an absorption chamber (200), a nucleic acid chamber (300), a washing solution storage chamber (400), and a weight collection and nucleic acid separation chamber (500) to be described later are provided in the body part (10).
- a biological sample to be tested is introduced into the injection chamber (100). Before dispensing the sample into the injection chamber, the sample is pretreated so that nucleic acids can be separated. The pretreatment is performed by injecting a predetermined dissolution buffer, for example, a lysis buffer, into the biological sample to destroy the cell wall and cause the nucleic acids to leak.
- a predetermined dissolution buffer for example, a lysis buffer
- the lysis buffer is a dissolution buffer used to destroy the cell wall.
- the sample to which the nucleic acids have been exposed is introduced into the injection chamber (100).
- the injection chamber (100) is formed on one side of the body part (10) and forms a space in the vertical direction, and is formed so that the width becomes narrower as it goes downward.
- An injection port (101) into which the sample is injected is provided on the upper side of the injection chamber (100), and an outlet port (102) through which the sample is discharged is provided on the lower side.
- an inclined guide portion (103) is formed to guide the sample to gather toward the outlet port (102).
- the sample injected into the injection chamber (100) moves to the washing liquid storage chamber (400) through the discharge port (102) formed at the bottom of the injection chamber (100) by air pressure injected from the top.
- the air is provided from a pump connected to the bottom of the body part (10), and the air provided by the pump is supplied to the upper side wall of the injection chamber (100).
- An air injection hole (104) into which air is injected by the pump is formed in the injection chamber (100).
- the sample can be pushed and moved toward the absorption chamber (200) by the air pressure provided to the air injection hole (104).
- the absorption chamber (200) is provided to absorb and remove inhibitors that inhibit PCR from the sample.
- the inhibitors include salts, proteins, and other intracellular chemicals contained in the sample, and act as factors that interfere with the amplification of nucleic acids by the substances when performing PCR, and are removed by the absorbent contained in the absorption chamber (200). Since the inhibitors contained in the sample are absorbed and removed by the absorbent, and only the nucleic acids can be discharged and collected downward, the nucleic acids can be separated simply and quickly.
- the present invention provides a new concept of a separation device that separates nucleic acids without going through the process of fixing nucleic acids using a predetermined adsorption filter or the like to separate nucleic acids from a conventional sample and then re-separating the nucleic acids from the adsorption filter.
- the absorption chamber (200) includes first, second, and third absorption chambers (210, 220, and 230).
- the first, second, and third absorption chambers (210, 220, and 230) are filled with spherical resin particles for absorbing an inhibitor.
- the spherical resin particles absorb the inhibitor.
- the first, second, and third absorption chambers (210, 220, and 230) are arranged in a vertical direction, and the sample passes through the first, second, and third absorption chambers (210, 220, and 230) sequentially.
- a mesh-structured barrier is formed at each boundary of the first, second, and third absorption chambers (210, 220, 230) to prevent the resin contained in one chamber from moving to another chamber.
- a fastening groove (203) into which the barrier is inserted is formed between the first absorption chamber (210) and the second absorption chamber (220) and between the second absorption chamber (220) and the third absorption chamber (230).
- a fastening groove (203) is also formed between the absorption chamber inlet (201) and the first absorption chamber (210) and between the third absorption chamber (230) and the absorption chamber outlet (202), so that a barrier is installed to prevent the resin from leaking.
- the above first, second, and third absorption chambers may be selected to include any one of a cathodic anion exchange resin, a positive cation exchange resin, and a chelate resin.
- the chelate resin has a weak anode and has a property of adsorbing (capturing) metal divalent ions.
- the anion exchange resin, chelate resin, and cation exchange resin are formed by including a spherical resin, and the inhibitor is adsorbed onto the spherical resin.
- the diameter of the spherical resin may be formed to be approximately 0.18 mm to 0.3 mm.
- the above absorption chamber (200) has three chambers, each of which has a polarity, so that an inhibitor having a polarity in the biological sample can be absorbed and removed in the first, second, and third absorption chambers (210, 220, and 230).
- the first absorption chamber (210) includes an anion exchange resin
- the second absorption chamber (220) includes a chelate resin
- the third absorption chamber (230) includes a cation exchange resin.
- the first, second, and third absorption chambers (210, 220, and 230) are arranged sequentially from top to bottom, so that the sample passes through the anion exchange resin, the chelate resin, and the cation exchange resin sequentially.
- the volumes of the anion exchange resin, the chelate resin, and the cation exchange resin can be prepared substantially as 1:1:1.
- the volume ratio of the anion exchange resin, the chelate resin, and the cation exchange resin is not limited to 1:1:1.
- the substances included in the biological sample are polar, so that they can be absorbed in each layer while passing through the first, second, and third absorption chambers (210, 220, and 230), and only the nucleic acid can flow downward.
- the anion exchange resin can include at least one of TMA (Trimethylamine), DMEA (Dimethylethanolamine), and Tertiary Amine
- the chelate resin can include at least one of a carboxyl group (-COOH), an iminodiacetate acid chelate, and the like.
- the cation exchange resin can include at least one of a sulfate group (-SO3H), a carboxyl group (-COOH), and a sulfonic acid group (-SO3H).
- An absorption chamber outlet (202) is formed at the lower side of the third absorption chamber, and an inhibitor is removed from the sample through the absorption chamber outlet (202) and the remaining nucleic acid is discharged downward.
- the sample moves inside the chip at a speed of 15 ⁇ l/sec or less, and as a result, the flow rate of the nucleic acid discharged through the absorption chamber outlet (202) becomes 15 ⁇ l per second or less.
- the flow rate per unit time of the nucleic acid discharged through the absorption chamber outlet (202) can be controlled by appropriately forming the cross-sectional area of the absorption chamber outlet (202) through which the nucleic acid passes.
- the discharge amount of the nucleic acid may increase.
- the speed at which the sample passes through the absorption chamber (200) relatively increases, it may not be possible to secure enough time for the inhibitor to be sufficiently adsorbed in the first, second, and third absorption chambers (210, 220, 230). Therefore, it was confirmed that the inhibitor could be sufficiently removed when the discharge flow rate of the nucleic acid was adjusted to 15 ⁇ l per second or less.
- the nucleic acid chamber (300) receives nucleic acids from which inhibitors have been removed by passing through the absorption chamber (200). As illustrated in FIGS. 1 and 2, according to the present embodiment, the nucleic acid chamber (300) has a space whose width narrows from the top to the bottom. As illustrated in FIG. 10, a nucleic acid chamber inlet (310) through which nucleic acids are introduced is formed in the nucleic acid chamber (300). The nucleic acids collected in the nucleic acid chamber (300) can be extracted by a device such as a pipette (330) through an extraction port (320) formed opposite the nucleic acid chamber inlet (310).
- a device such as a pipette (330) through an extraction port (320) formed opposite the nucleic acid chamber inlet (310).
- the sample passes through the injection chamber (100), the absorption chamber (200), and the nucleic acid chamber (300) sequentially, and the body part (10) is provided with the injection chamber (100), the absorption chamber (200), and the nucleic acid chamber (300), so that the process of separating and storing nucleic acids from the sample is possible in one body part (10).
- the washing liquid storage chamber (400) is a chamber provided between the injection chamber (100) and the absorption chamber (200), and accommodates a washing liquid for washing an absorbent filled in the absorption chamber (200).
- the absorption chamber (200) is filled with a polar resin, and each chamber is filled with a preservation buffer to maintain the polarity of the first, second, and third absorption chambers (210, 220, 230) forming the absorption chamber (200).
- the washing liquid is provided to wash the preservation buffer.
- the washing liquid storage chamber (400) is formed on one side of the body part (10) and is formed on the same side as the side on which the absorption chamber (200) is formed.
- the washing liquid stored in the washing liquid storage chamber (400) moves toward the absorption chamber (200) by the movement pressure of the sample and air, and the absorbent of the absorption chamber (200) is washed first.
- the washing liquid storage chamber (400) includes a plurality of washing liquid flow paths (440) arranged in parallel in one direction so that the washing liquid can flow.
- the washing liquid flows into the washing liquid storage chamber inlet (450) on the upper side, passes through the washing liquid flow path (440), and then moves to the absorption chamber (200) through the washing liquid storage chamber outlet (460).
- the washing liquid flows in a zigzag pattern from upper to lower along the washing liquid flow path (440).
- the washing liquid flow path (440) includes a first path (401), a second path (402), and a third path (403) having different lengths.
- the washing liquid storage chamber (440) includes a first storage section (410) formed of a plurality of first channels (401) having a first length to store the washing liquid, a second storage section (420) formed of a plurality of second channels (402) shorter than the first length to store the washing liquid and provided below the first storage section (410), and a third storage section (430) formed of a plurality of second channels (403) shorter than the second length to store the washing liquid and provided below the second storage section (430).
- the first, second, and third storage sections (410, 420, 430) are sequentially provided from the top to the bottom.
- the above first, second, and third storage units (410, 420, 430) are formed with a plurality of horizontal flow paths (401, 402, 403) in a zigzag manner, so that sufficient washing liquid can be stored.
- Waste collection and nucleic acid separation chamber (500) 4. Waste collection and nucleic acid separation chamber (500)
- the waste collection and nucleic acid separation chamber (500) is provided to collect the washing liquid discharged from the washing liquid storage chamber (400) at the rear end of the absorption chamber (200) and to separate and discharge the nucleic acid.
- the nucleic acid separated by the waste collection and nucleic acid separation chamber (500) is collected in the nucleic acid chamber (300).
- the waste collection and nucleic acid separation chamber (500) may be formed on one or the other surface of the body portion (10).
- At least one of the absorption chamber (200), the washing liquid storage chamber (400), and the waste collection and nucleic acid separation chamber (500) may be formed on at least one of one surface of the body part (10) having a predetermined thickness and the other surface opposite thereto. That is, at least one of the absorption chamber (200), the washing liquid storage chamber (400), and the waste collection and nucleic acid separation chamber (500) is formed on one surface of the body part (10) having a predetermined thickness, and the remainder of the absorption chamber (200), the washing liquid storage chamber (400), and the waste collection and nucleic acid separation chamber (500) that are not formed on the one surface may be formed on the other surface opposite thereto.
- the washing liquid storage chamber (400) and the absorption chamber (200) are formed on one surface of the body part (10), and the waste collection and nucleic acid separation chamber (500) is formed on the other surface of the body part (10).
- the absorption chamber (200) may be formed on one side or the other side of the body part (10), and the waste collection and nucleic acid separation chamber (500) may also be formed on one side or the other side of the body part (10). That is, in one embodiment, the absorption chamber (200) and the waste collection and nucleic acid separation chamber (500) may be formed on the same side of the body part (10).
- the waste collection and nucleic acid separation chamber (500) is provided to collect waste and separate nucleic acids by having the washing liquid passing through the absorption chamber (200) fill the waste chamber (510) and subsequently moving the nucleic acids flowing through the inflow path (570) through the nucleic acid separation path (530).
- the above waste collection and nucleic acid separation chamber (500) includes an inlet passage (570), a washing liquid collection passage (520), a nucleic acid separation passage (530), and a waste chamber (510).
- the above inflow path (570) extends from the upper side to the lower side and is a path through which washing liquid and nucleic acid flow. According to the present embodiment, the washing liquid first flows into the inflow path (570), and the nucleic acid flows in following the washing liquid.
- the inflow path (570) includes a curved path (560) having a predetermined curvature at its end.
- the washing liquid collection channel (520) is connected to extend downward from the end of the inflow channel (570) so that the washing liquid can flow.
- the washing liquid collection channel (520) is connected to a curved channel (560) provided at the end of the inflow channel (570) and extends downward.
- the nucleic acid separation channel (530) is extended in a different direction from the washing solution collection channel (520) at the end of the inflow channel (570), thereby forming a channel through which the nucleic acid flows.
- the nucleic acid separation channel (530) is extended upward in the opposite direction of the washing solution collection channel (520) while being connected to the curved channel (560).
- the nucleic acid separation channel (530) is provided with a resistance protrusion (590) protruding from the inner surface.
- the resistance protrusion (590) has the function of inducing the washing solution to move toward the washing solution collection channel (520) downward when the washing solution is initially introduced.
- a resistance portion (580) that generates resistance when the washing liquid flows is formed on the round inner surface where the inflow path (570) and the nucleic acid separation path (530) are connected to each other, that is, on the inner surface of the curved path (560).
- the resistance portion (580) may be formed as a protrusion that protrudes like a sawtooth shape on the inner surface that is satisfied from the end of the curved path (560) toward the nucleic acid separation path (530). The protrusions may be formed at a predetermined interval.
- the washing liquid flows toward the nucleic acid separation path (530) that extends downward by gravity, and at this time, the washing liquid collides with the resistance portion (580) while passing through the curved path (560), so that the washing liquid can be more easily guided and flow toward the lower waste chamber (510).
- the width (W2) of the washing solution collection channel (520) is formed wider than the width (W1) of the nucleic acid separation channel (530).
- the washing solution flows into the inflow channel (570), passes through the curved channel (560), and can flow more smoothly toward the wider washing solution collection channel (520) at the end of the curved channel (560).
- a washing solution induction channel (524) is formed in the washing solution collection channel (520) that has a narrower width than the width of the washing solution collection channel (520) and is sunken deeper than the bottom of the washing solution collection channel (520).
- the above washing liquid induction path (524) allows the washing liquid to easily flow downward from the end of the curved path (560) toward the waste chamber (510) by capillary phenomenon.
- the above-described waste chamber (510) is provided at an end of the washing liquid collection path (520) to provide a space in which the washing liquid is filled.
- the washing liquid flows in from the bottom of the waste chamber (510) and fills the space of the waste chamber (510).
- a support rib (501) that protrudes vertically from the bottom surface is formed on the inside of the waste chamber (510).
- a plurality of the support ribs (501) are provided.
- one side and the other side of the body part (10) are sealed by adhering a film.
- the support ribs (501) prevent the surface of the film from sinking into the space of the waste chamber (510) when sealing the other side of the body part (10) with the film.
- the support rib (501) ensures that the space of the waste chamber (510) can secure a space in which the washing liquid can be stored.
- a pressure-providing portion (540) is provided on the upper side of the waste chamber (510) so that the washing liquid is filled and the nucleic acid is no longer introduced into the waste chamber (510) by the pressure of the washing liquid.
- the pressure-providing portion (540) includes a microchannel (550) formed on the upper side of the waste chamber (510). The width of the microchannel (550) is narrower than that of the inflow channel (570), the curved channel (560), the waste collection channel (520), and the nucleic acid separation channel (530). A plurality of micro-spaces (541) are included on the microchannel (550).
- the internal pressure of the waste chamber (510) increases by the microchannel (550) and the microspace (541). Some of the washing liquid may penetrate into the microchannel (550) and the microspace (541).
- the microspace (541) is provided in case sufficient pressure is not applied to a portion of the microchannel (550) connected to the waste chamber (510), and even if the washing liquid penetrates through the microchannel (550) near the waste chamber (510), pressure is applied again by the remaining microchannel (550) and the microspace (541).
- microchannel (550) and microspace (541) prevent the pressure of the waste chamber (510) from increasing rapidly.
- the pressure providing unit (540) increases by the pressure providing unit (540), the washing liquid is no longer transported toward the waste chamber (510), so that the nucleic acid subsequently introduced through the inflow channel (570) can flow upward through the nucleic acid separation channel (530) due to the repulsive force.
- the washing liquid that washes away the absorbent of the absorption chamber (200) is collected and separated in the waste chamber (510), and only the nucleic acid can move to the nucleic acid chamber (300) through the nucleic acid separation channel (530).
- the double-sided chip (1000) may be manufactured and provided in the form of a cartridge (2000).
- a cartridge (2000) includes a body portion (10), a front cover (2100) and a rear cover (2200) which are respectively coupled to one side and the other side of the body portion (10).
- the body portion (100) is positioned between the front cover (2100) and the rear cover (2200), and separates nucleic acids from a sample as the sample passes through the absorption chamber (200).
- the above body part (10) is formed in a plate shape with a predetermined thickness and includes an injection chamber (100), an absorption chamber (200), a nucleic acid chamber (300), a washing liquid storage chamber (400), and a waste collection and nucleic acid separation chamber (500).
- an injection chamber 100
- an absorption chamber 200
- a nucleic acid chamber 300
- a washing liquid storage chamber 400
- a waste collection and nucleic acid separation chamber 500.
- the body part (10) further includes a tubular flow path (700) in addition to the flow path formed on the surface of the body part (10) so that a sample can be transferred from the injection chamber (100) to the nucleic acid chamber (300).
- a valve (600) for opening and closing the tubular flow path (700) is provided.
- the tubular flow path (700) is connected by having both ends inserted into the tube flow path connecting portion (13) provided in the body part (10).
- the above-described tube-shaped path (700) includes a first tube path provided between the injection chamber (100) and the washing liquid storage chamber (400), a second tube path provided between the washing liquid storage chamber (400) and the absorption chamber (200), and a third tube path provided between the absorption chamber (200) and the waste waste collection and nucleic acid separation chamber (500).
- the valve (600) simultaneously opens or closes the first, second, and third tube paths.
- the valve (600) is coupled to the body part (10) so as to be movable in the vertical direction.
- the pressure rib (610) formed in the valve (600) presses the tubular flow path (700) to maintain the flow path in a closed state. That is, the tubular flow path (700) is in a state in which the valve (600) is pressed in the first position as shown in FIGS. 14(a) and 14(b).
- the pressure rib (610) pressing the tubular flow path (700) moves upward, opening the tubular flow path (700) so that the sample can flow in one direction.
- a groove is formed in a rear cover (2200) coupled to one side of the body portion (10), and a valve exposure hole (2210) is formed on an upper side of the groove to expose the valve (600) so as to transmit a pressing force to move the valve upward.
- a pressing force transmission means (3600) provided in the nucleic acid extraction device (3000) transmits a force to move the valve (600) upward through the valve exposure hole (2210). As the valve (600) moves upward by the pressing force, the tubular flow path (700) is opened.
- a cap (2300) for opening and closing the injection port (101) of the injection chamber (100) is coupled to the upper side of the body part (10). As illustrated in FIG. 17, the gap (2300) is slidably coupled to the upper surface of the body part (10).
- the cap (2300) includes a guide projection (2370) that is inserted into and guided by a sliding groove (14) formed in the body part (10), and a sealing member (2330) that seals the edge of the injection port (101) at a position where the injection port (101) is closed.
- the cap (2300) is formed with a cut groove (2310) that faces each other and extends in the longitudinal direction.
- a catch (2320) is formed protrudingly in the cut groove (2310).
- a protrusion (15) is formed in the width direction on the upper surface of the body (10), and when the cap (2300) is slid to close the inlet (101), the cut groove (2310) is elastically deformed so that the catch (2320) can pass over the protrusion (15).
- a sealing member (2330) such as an O-ring that is coupled to the lower surface of the cap (2300) is placed on the edge of the inlet (101) to seal the inlet (101), and the protrusion (15) is maintained in a state of being caught by the catch (2320) so that the cap (2300) closes the inlet (101).
- the cap (2300) includes a handle (2340), a guide piece (2360) on which the guide projection (2370) is formed, and a position control projection (2350) that regulates the sliding range of the cap (2300).
- the guide piece (2360) extends downward from both ends of the cap (2300) and is coupled to the upper side of the body part (10), and the guide projection (2370) formed on the inner side of the guide piece (2360) is inserted into the sliding groove (14) of the body part (10).
- the position control projection (2350) is formed in the longitudinal direction on the upper surface of the cap (2300) so that its end can come into contact with the front cover (2100) or the rear cover (2200) to limit the movement range of the cap (2300).
- a nucleic acid extraction device (3000) that receives the cartridge and extracts nucleic acids is proposed.
- the extraction device (3000) includes a cartridge (2000) including the double-sided chip described above, and a mounting portion (3100) on which the cartridge (2000) is mounted. Since the configuration of the cartridge (2000) has been described above, a repetitive description will be omitted.
- the above-mentioned mounting portion (3100) may include an insertion portion (3200) into which the cartridge (2000) is inserted and mounted, a door (3300) for opening and closing the insertion portion (3200), a select bar (3400) for controlling the nucleic acid extraction device (3000), and a display portion (3500) for externally displaying whether the nucleic acid extraction device (3000) is operating.
- the insertion portion (3200) is provided so that two cartridges (2000) can be inserted.
- the number of cartridges (2000) that can be accommodated is not limited thereto.
- the above select bar (3400) can be implemented to enable selection of the on/off operation and operation time of the nucleic acid extraction device (3000).
- the display unit (3500) is provided on the upper surface of the mounting unit (3100) to visually check the operation progress status of the nucleic acid extraction device (3000).
- the select bar (3400) is provided in a knob type, and the nucleic acid extraction device (3000) programmed under predetermined conditions can be operated by rotating the select bar (3400).
- the mounting portion (3100) is provided with a pump connection portion (3700) for supplying air to the cartridge (2000).
- a docking portion (11) for receiving air pressure from an air pump is provided in the body portion (10) of the cartridge (2000), and a docking hole (2230) is provided to expose the docking portion (11) at the lower side when the front cover (2100) and the rear cover (2200) are coupled to each other.
- the upper portion of the pump connection portion (3700) is inserted into the docking portion (11), and a pump is connected to the lower portion.
- the present invention relates to a double-sided chip (1000), a cartridge (2000), and a nucleic acid extraction device (3000) for extracting nucleic acids.
- the present invention improves the nucleic acid extraction process to be simpler by removing inhibitory substances using an absorbent (resin type) in an absorption chamber (200) rather than the conventional concept of capturing and concentrating nucleic acids using a column method or magnetic beads and then extracting nucleic acids again from the beads, thereby dramatically speeding up and simplifying the nucleic acid extraction process.
- the nucleic acids can be automatically separated from a buffer (washing solution) in a waste collection and nucleic acid separation chamber (500) by using the difference in pressure.
- the cartridge (2000) is mounted on the nucleic acid extraction device (3000) to perform the nucleic acid extraction process. Air is supplied into the interior of the injection chamber (100) through the docking portion (11) of the cartridge (2000) from a pump connected to the nucleic acid extraction device (3000).
- 2 is connected to 3.
- the air flowing to 2 moves to 3 on the opposite side.
- the air moves from 3 to 4, moves to the opposite side again through 5, which is connected to 4, and rises to 6, and then is supplied to the injection chamber (100).
- the sample received in the injection chamber (100) is discharged to 7 by air pressure.
- the sample moves to 8 comes out to 9 on the opposite side, and moves from 9 to 10 along the tube-shaped path.
- the sample introduced to 10 comes out to 11 on the opposite side, flows into the washing liquid storage chamber (400), and then flows. At this time, the washing liquid stored in the washing liquid storage chamber (400) moves to No. 12 due to the movement pressure of the sample and is discharged to No.
- Nos. 13 and 14 are connected by a tube-shaped path.
- the washing liquid passing through No. 14 flows again into No. 15 on the opposite side and washes the resin contained in the first, second, and third absorption chambers (210, 220, 230) while passing through the absorption chamber (200).
- the washing liquid passing through the absorption chamber (200) is discharged to No. 16 and passes through Nos. 17 and 18.
- the washing liquid passes through Nos. 19 and 20 and flows into No. 21.
- Nos. 17 and 18 are connected by a tube-shaped path.
- the washing liquid introduced into No. 21 flows downward and enters the waste collection and nucleic acid separation chamber (500).
- the washing liquid first flows downward through the washing liquid collection channel (520) to fill the waste chamber (510), and when the waste chamber (510) is filled with the washing liquid, the nucleic acid (nucleic acid to which the inhibitor is adsorbed in the absorption chamber (200) and which is discharged from the absorption chamber (200)) flowing following the washing liquid flows toward No. 23 as pressure is applied by the narrow microchannel (550) of No. 22.
- the nucleic acid discharged through No. 23 exits through No. 24 on the opposite side and flows into the nucleic acid chamber (300) through No. 25 to be extracted.
- the user can capture the nucleic acid extracted through No. 26 using a pipette (330), etc.
- PCR cycle is defined as the following three steps as one cycle.
- the above three steps mean: 1) a denaturing step of heating a sample solution containing double-stranded DNA to a specific temperature, for example, about 95°C, to separate the double-stranded DNA into single-stranded DNA; 2) an annealing step of providing an oligonucleotide primer having a sequence complementary to a specific base sequence to be amplified in the sample solution after the denaturing step, and cooling the solution together with the separated single-stranded DNA to a specific temperature, for example, 55°C, to bind the primer to the specific base sequence of the single-stranded DNA to form a partial DNA-primer complex; and 3) an extension (or amplification) step of forming double-stranded DNA based on the primer of the partial DNA-primer complex by maintaining the sample solution at an active temperature of DNA polymerase, for example, 72°C, after the annealing step, by DNA polymerase.
- a specific temperature for example, about 95°C
- PCR exponentially amplifies target nucleic acids having a specific base sequence by repeating the above three steps several times to the extent that the detection of a specific base sequence is possible.
- CT value of 29.56 means that the average number of repetitions is 29.56.
- the sample prepared using the conventional dissolution buffer contained an inhibitor, so even if the above three steps for PCR were performed, the amplification of a specific base sequence was not achieved due to the inhibitor.
- Table 2 when the sample was passed through an anion exchange resin, a chelating resin, and a cation exchange resin and the three steps for PCR were repeated, it was confirmed that a specific base sequence was amplified to a detectable level.
- the absorption chamber was configured as a three-stage chamber with resin layers including an anion exchange resin, a chelating resin, and a cation exchange resin from the upper side to the lower side, it was confirmed that the number of PCR cycle repetitions for detecting a specific base sequence was the shortest. That is, when the absorption chamber is configured to sequentially pass through the three-stage resin layers, the amplification of a specific base sequence can be completed quickly.
- the absorption chamber (200) is sequentially arranged with first, second, and third absorption chambers (210, 220, 230) including a cathode-bearing anion exchange resin, a chelate resin, and a cathode-bearing cation exchange resin.
- the absorption chamber (200) may be formed by selecting at least one of the first, second, and third absorption chambers (210, 220, 230). That is, the absorption chamber may be formed by a combination of at least one, two, or three layers.
- the volume ratio of the anion exchange resin, the chelate resin, and the cation exchange resin formed of spherical resin particles included in the first, second, and third absorption chambers (210, 220, and 230) is substantially 1:1:1.
- the flow rate of the sample penetrating the inside of the absorption chamber is adjusted to 15 ⁇ l/sec or less.
- the flow rate of the sample penetrating the inside of the absorption chamber is adjusted to 15 ⁇ l/sec or less
- the flow rate of nucleic acid discharged to the lower part of the absorption chamber is adjusted to 15 ⁇ l per second or less, and the inhibitor can be sufficiently absorbed into the absorbent of the spherical particles while the sample passes through the first, second, and third absorption chambers (210, 220, and 230).
- the flow rate of the nucleic acid discharged exceeds 15 ⁇ l per second, the movement speed of the sample becomes fast, so that the inhibitor cannot be sufficiently absorbed.
- the amount of nucleic acid collected in the nucleic acid chamber (300) can be secured substantially the same as the amount of nucleic acid injected into the injection chamber (100).
- the inhibitor contained in the sample is removed and the flow rate substantially discharged to the lower part of the absorption chamber (200) is maintained at approximately 500 ⁇ l, and the inside is obtained in a state where the inhibitor is removed and only the nucleic acid is contained. This significantly improves the secured flow rate of the sample containing only the nucleic acid compared to the prior art.
- the double-sided chip for nucleic acid extraction for PCR testing, the cartridge including the same, and the nucleic acid extraction device according to the embodiment of the present invention effectively remove foreign substances from the biological sample while moving the biological sample within a single chip without using additional equipment, and easily separate the nucleic acid and buffer, thereby providing the effect of quickly and easily extracting the nucleic acid.
- the present invention excludes the use of additional equipment such as a centrifuge for nucleic acid separation, so that it is easy to carry and move to the site, and can improve the convenience of the user.
Landscapes
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
본 발명은 PCR 검사를 위한 핵산 추출용 양면칩, 이를 포함하는 카트리지, 및 이를 이용한 핵산추출장치에 관한 것으로, 단일한 칩 내에서 생물학적 시료를 이동시키면서, 상기 생물학적 시료로부터 이물질을 효과적으로 제거하고, 핵산과 버퍼를 용이하게 분리하여, 핵산을 신속하고 용이하게 추출해 낼 수 있도록 한 PCR 검사를 위한 핵산 추출용 양면칩, 이를 포함하는 카트리지, 및 이를 이용한 핵산추출장치에 관한 것이다.The present invention relates to a double-sided chip for nucleic acid extraction for PCR testing, a cartridge containing the same, and a nucleic acid extraction device using the same. The present invention relates to a double-sided chip for nucleic acid extraction for PCR testing, a cartridge containing the same, and a nucleic acid extraction device using the same, which enables rapid and easy extraction of nucleic acids by moving a biological sample within a single chip, effectively removing foreign substances from the biological sample, and easily separating nucleic acids and buffers.
중합효소 연쇄 반응(PCR: Polymerase Chain Reaction, 이하 PCR 이라 함)은, 검출을 원하는 특정 표적 유전물질을 증폭하는 방법으로서, 소량의 유전물질로부터 염기 순서가 동일한 유전물질을 많은 양으로 증폭하는 기술이다. PCR은, 인간의 핵산을 증폭하여 여러 종류의 유전질환을 진단하는 데 사용하거나, 세균이나 바이러스, 진균의 핵산에 적용하여 감염성 질환의 진단 등에 사용되고 있다. Polymerase Chain Reaction (PCR) is a method for amplifying specific target genetic material that is to be detected, and is a technology that amplifies a large amount of genetic material with the same base sequence from a small amount of genetic material. PCR is used to diagnose various types of genetic diseases by amplifying human nucleic acids, or to diagnose infectious diseases by applying it to nucleic acids of bacteria, viruses, and fungi.
일반적으로, PCR은 다음의 3단계가 반복적으로 수행된다. 상기 3단계는, 1) 이중 가닥의 DNA를 포함하는 샘플 용액을 특정 온도, 예를 들어 약 95℃로 가열하여 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 2) 상기 변성 단계 이후 샘플 용액에 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 단일 가닥의 DNA의 특정 염기 서열에 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 3) 상기 어닐링 단계 이후 샘플 용액을 DNA 중합효소의 활성온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장(또는 증폭) 단계(extension step)를 포함한다. 상기 3단계를 수차례 반복함으로써 특정 염기 서열을 갖는 타겟 핵산을 기하급수적으로 증폭할 수 있다. 다만, RNA의 경우는 상기 1) 내지 3) 단계에서 앞서 RNA를 DNA로 역전사하는 단계가 수행될 수 있다. In general, PCR is performed repeatedly through the following three steps. The three steps include: 1) a denaturing step in which a sample solution containing double-stranded DNA is heated to a specific temperature, for example, about 95°C, to separate the double-stranded DNA into single-stranded DNA; 2) an annealing step in which an oligonucleotide primer having a sequence complementary to a specific base sequence to be amplified is provided to the sample solution after the denaturing step, and the sample solution is cooled to a specific temperature, for example, 55°C, together with the separated single-stranded DNA, to bind the primer to the specific base sequence of the single-stranded DNA to form a partial DNA-primer complex; and 3) an extension (or amplification) step in which the sample solution is maintained at an active temperature of DNA polymerase, for example, 72°C, after the annealing step, to form double-stranded DNA based on the primer of the partial DNA-primer complex by DNA polymerase. By repeating the above three steps several times, a target nucleic acid having a specific base sequence can be exponentially amplified. However, in the case of RNA, a step of reverse transcribing RNA into DNA can be performed in advance in steps 1) to 3).
이러한 PCR을 수행하기 위해서는 생물학적 시료로부터 핵산을 추출하여야 한다. To perform this type of PCR, nucleic acids must be extracted from a biological sample.
종래 핵산 추출 기술의 일 예로서는 세포를 포함하는 시료를 SDS나 프로테이나아제(proteinase) K로 처리하여 가용화한 후 페놀로 단백질을 변성 제거하여 핵산을 정제하는 방법이 있었다. 그러나, 페놀 추출법은 많은 처리 단계를 수행해야 하기 때문에 많은 시간이 소요될 뿐만 아니라 핵산 추출 효율이 연구자의 경험과 노련성에 의해 크게 좌우되어 신뢰성이 크게 떨어지는 문제점이 있었다. 최근에는 이러한 문제를 해소하기 위해 핵산과 특이적으로 결합하는 실리카나 유리섬유를 이용하는 키트가 사용되기도 한다. 상기 실리카나 유리섬유는 단백질, 세포 대사 물질들과 결합 비율이 낮으므로 상대적으로 높은 농도의 핵산을 얻을 수 있다. 이와 같은 방법은 페놀법과 비교했을 때 간편하다는 장점은 있지만, 중합 효소 연쇄 반응(PCR) 등의 효소 반응을 강하게 저해시키는 카오트로픽 시약이나 에탄올을 이용하기 때문에 이들 물질을 완전히 제거해야 하며, 이를 이유로 조작이 매우 번거롭고 시간이 오래 걸리는 단점이 있다.As an example of a conventional nucleic acid extraction technique, there was a method of solubilizing a sample containing cells with SDS or proteinase K, and then denaturing and removing the proteins with phenol to purify the nucleic acids. However, the phenol extraction method requires many processing steps, so it takes a lot of time, and the nucleic acid extraction efficiency is greatly affected by the experience and skill of the researcher, so there was a problem that reliability was greatly reduced. Recently, kits using silica or glass fibers that specifically bind to nucleic acids have been used to solve this problem. Since the silica or glass fibers have a low binding ratio with proteins and cell metabolites, a relatively high concentration of nucleic acids can be obtained. This method has the advantage of being simple compared to the phenol method, but since it uses chaotropic reagents or ethanol that strongly inhibit enzymatic reactions such as polymerase chain reaction (PCR), these substances must be completely removed, and for this reason, the operation is very cumbersome and takes a long time.
또한, 대한민국 등록특허 10-0454869호에서는, 세포 용해 버퍼를 이용한 DNA 추출을 하기와 같은 방법으로 수행하였다. 1) 동물세포를 배양한 후 세포가 들어 있는 혼탁액을 원심분리하여 세포들을 회수하였다. 2) 상기 회수한 세포들에 세포 용해 버퍼를 300 ㎕ 첨가하였다. 3) 세포 용해 버퍼를 첨가한 후 70℃에서 5분간 방치하였다. 4) 상기 용해 단계에서 변성된 단백질 등이 엉켜있는 것을 풀어주어 필터에 잘 통과할 수 있도록 하기 위해 용해된 세포들을 2-3회 피펫팅(pipetting) 하였다. 5) 상기 용해된 세포들을 실리카(silica) 막으로 된 필터에 옮긴 후, 13,000 rpm에서 1분간 원심분리 하여 용액은 버리고 다시 한번 원심분리였다. 6) 상기 필터에 세척버퍼를 500 ㎕ 첨가하여 원심분리하였다. 효율을 높이기 위하여 용액을 버리고 다시 한 번 원심분리하여 완전히 세척 버퍼를 제거하여 주었다. 7) 상기 필터에 용출 버퍼를 200 ㎕ 첨가하여 원심분리 하였고 더 많은 양의 게놈 DNA를 얻기 위하여 용출된 용액을 다시 한번 필터에서 원심분리하였다. 8) 상기 추출한 DNA는 12% 아가로스젤에서 전기영동하여 EtBr로 염색한 후 관찰한다.In addition, in Korean Patent Registration No. 10-0454869, DNA extraction using a cell lysis buffer was performed as follows. 1) After culturing animal cells, the turbid solution containing the cells was centrifuged to recover the cells. 2) 300 ㎕ of cell lysis buffer was added to the recovered cells. 3) After adding the cell lysis buffer, it was left at 70℃ for 5 minutes. 4) In order to untangle denatured proteins, etc. in the lysis step so that they can pass through the filter easily, the lysed cells were pipetted 2-3 times. 5) After transferring the lysed cells to a filter made of silica membrane, centrifugation was performed at 13,000 rpm for 1 minute, the solution was discarded, and centrifugation was performed again. 6) 500 ㎕ of washing buffer was added to the filter and centrifugation was performed. To increase efficiency, the solution was discarded and centrifuged once more to completely remove the washing buffer. 7) 200 ㎕ of elution buffer was added to the filter and centrifuged, and the eluted solution was centrifuged once more in the filter to obtain a larger amount of genomic DNA. 8) The extracted DNA was observed after electrophoresis on a 12% agarose gel and stained with EtBr.
이와 같이 종래의 핵산 추출방법은, 1) 세포에 세포 용해 버퍼를 첨가하여 세포를 용해하는 단계; 2) 단계 1의 용해된 세포를 필터에 옮겨 핵산을 고정하는 단계; 3) 단계 2의 필터를 세척하는 단계; 및 4)필터로부터 핵산을 회수하는 단계로 구성되어 짧은 단계와 시간으로 재현성이 높게 핵산을 추출할 수 있는 장점이 있었다. 그러나 용해된 세포를 필터에 옮기거나 필터를 세척할 때 또는 필터에서 핵산을 회수할 때 각각 원심분리기를 사용하고 있다. 이러한 원심분리기의 사용은 시간을 단축하는 효과는 있으나 휴대성과 이동성이 떨어지고 현장에서의 핵산 추출과정을 복잡하게 하는 문제가 있다.Thus, the conventional nucleic acid extraction method consists of the steps of 1) adding a cell lysis buffer to the cells to lyse the cells; 2) transferring the lysed cells of step 1 to a filter to fix the nucleic acids; 3) washing the filter of step 2; and 4) recovering the nucleic acids from the filter, and thus has the advantage of being able to extract nucleic acids with high reproducibility in a short period of time and steps. However, a centrifuge is used when transferring the lysed cells to the filter, washing the filter, or recovering the nucleic acids from the filter. The use of such a centrifuge has the effect of shortening the time, but has the problem of low portability and mobility and complicating the nucleic acid extraction process in the field.
그밖에 마그넷 비드를 이용한 핵산 추출방법, 주사기와 필터를 이용한 핵산 추출방법, Direct lysis buffer(DLB)를 이용한 핵산 추출방법, Trizol을 이용한 핵산 추출방법 등도 있으나, 마그넷 비드를 이용한 핵산추출방법은 핵산을 튜브의 벽면에 고정하기 위해서 자석이 필요하고 용액을 제거하기 위해 펌프나 밸브(자동화기기) 또는 다수 개의 팁(tip)과 피펫(pipette)(수동)의 사용이 요구된다. 또한, 주사기와 필터를 이용한 핵산 추출방법은 주사기를 이용하여 핵산이 옮기는 과정에서 일정 강도 이상의 힘을 줄 경우 필터가 파손되어 핵산의 추출을 어렵게 하는 문제가 있다. Direct lysis buffer(DLB)를 이용한 핵산 추출방법은 DLB(Direct lysis buffer) 자체에 PCR 저해물질이 존재할 수 있기 때문에 반드시 1/10로 희석하여야 하므로 희석에 의한 민감도가 크게 떨어지는 문제가 있다. 또한, Trizol을 이용한 핵산 추출방법은 페놀이나 클로로포름 등 유해한 유기용매를 사용하는 문제가 있다.In addition, there are nucleic acid extraction methods using magnetic beads, nucleic acid extraction methods using syringes and filters, nucleic acid extraction methods using direct lysis buffer (DLB), and nucleic acid extraction methods using Trizol, but the nucleic acid extraction method using magnetic beads requires a magnet to fix the nucleic acid to the wall of the tube, and the use of a pump or valve (automated equipment) or multiple tips and pipettes (manual) to remove the solution. In addition, the nucleic acid extraction method using a syringe and filter has a problem that the filter is damaged if a certain amount of force is applied during the process of transferring the nucleic acid using the syringe, making it difficult to extract the nucleic acid. The nucleic acid extraction method using direct lysis buffer (DLB) has a problem that the sensitivity greatly decreases due to dilution because the DLB (Direct lysis buffer) itself may contain PCR inhibitors, so it must be diluted by 1/10. In addition, the nucleic acid extraction method using Trizol has a problem that it uses harmful organic solvents such as phenol or chloroform.
이에 생물학적 시료로부터 핵산을 추가적인 장비를 사용하지 않고 신속하고 간편하게 분리해 낼 수 있는 장치에 대한 요구가 있다. Accordingly, there is a need for a device that can quickly and easily isolate nucleic acids from biological samples without using additional equipment.
본 발명은, 추가적인 장비를 사용하지 않고 단일한 칩 내에서 생물학적 시료를 이동시키면서, 상기 생물학적 시료로부터 이물질을 효과적으로 제거하고, 핵산과 버퍼를 용이하게 분리하여, 핵산을 신속하고 용이하게 추출해 낼 수 있도록 한 PCR 검사를 위한 핵산 추출용 양면칩, 이를 포함하는 카트리지, 및 이를 이용한 핵산추출장치를 제공함을 그 목적으로 한다. The present invention aims to provide a double-sided chip for nucleic acid extraction for PCR testing, which effectively removes foreign substances from a biological sample while moving the biological sample within a single chip without using additional equipment, and easily separates nucleic acids and buffers, thereby quickly and easily extracting nucleic acids, a cartridge including the chip, and a nucleic acid extraction device using the chip.
본 발명의 일측면에 따른 PCR 검사를 위한 핵산 추출용 양면칩은, 검사 대상 생물학적 시료가 투입되는 투입챔버; 상기 시료로부터 PCR 수행을 저해하는 저해제를 흡수하여 제거하는 흡수제가 수용된 흡수챔버; 상기 흡수챔버를 통과하여 저해제가 제거된 핵산이 수용되는 핵산챔버; 및 상기 시료가 상기 투입챔버, 상기 흡수챔버, 및 상기 핵산챔버를 순차적으로 경유하도록, 상기 투입챔버, 상기 흡수챔버, 및 상기 핵산챔버를 함께 구비하는 바디부;를 포함하는 것을 특징으로 한다. A double-sided chip for nucleic acid extraction for PCR testing according to one aspect of the present invention comprises: an input chamber into which a biological sample to be tested is input; an absorption chamber containing an absorbent that absorbs and removes an inhibitor that inhibits PCR performance from the sample; a nucleic acid chamber containing nucleic acids from which inhibitors have been removed by passing through the absorption chamber; and a body part including the input chamber, the absorption chamber, and the nucleic acid chamber so that the sample sequentially passes through the input chamber, the absorption chamber, and the nucleic acid chamber.
또한, 상기 바디부는 소정의 두께를 갖는 판상으로 이루어져서 일면 및 그 반대편인 타면을 포함하고, 상기 흡수챔버는 상기 일면 또는 타면 중 어느 하나에 소정의 깊이로 형성되는 것이 바람직하다. In addition, it is preferable that the body portion is formed in a plate shape having a predetermined thickness and includes one side and an opposite side, and the absorption chamber is formed at a predetermined depth on either the one side or the opposite side.
또한, 상기 투입챔버는, 상측에 상기 시료가 투입되는 투입구가 마련되고, 하측에 상기 시료가 토출되는 토출구가 마련되며, 상기 토출구 측으로 상기 시료가 모여지도록 가이드하는 경사가이드부를 포함하는 것이 바람직하다. In addition, it is preferable that the injection chamber has an injection port provided at the top through which the sample is injected, an outlet provided at the bottom through which the sample is discharged, and includes an inclined guide part that guides the sample to gather toward the outlet.
또한, 상기 투입챔버에는 에어펌프에 의해 에어가 주입되는 에어투입공이 형성되고, 상기 에어투입공으로 제공된 에어압에 의해 상기 시료가 상기 흡수챔버 측으로 밀려서 이동하는 것이 바람직하다. In addition, it is preferable that an air injection hole is formed in the injection chamber through which air is injected by an air pump, and that the sample is pushed and moved toward the absorption chamber by the air pressure provided through the air injection hole.
또한, 상기 흡수챔버는, 상하 방향으로 연결되는 제1 흡수챔버, 제2 흡수챔버, 및 제3 흡수챔버를 포함하고, 상기 제1,2,3 흡수챔버에는 상기 저해제가 흡착되는 레진이 포함되며, 상기 제1 흡수챔버와 상기 제2 흡수챔버의 사이, 및 상기 제2 흡수챔버와 상기 제3 흡수챔버의 사이에는 메쉬구조의 차단막이 마련되어, 상기 시료는 상기 제1,2,3 흡수챔버를 순차적으로 통과하고, 상기 레진은 상기 차단막에 의해 이동이 방지되는 것이 바람직하다. In addition, the absorption chamber includes a first absorption chamber, a second absorption chamber, and a third absorption chamber that are connected in the vertical direction, and the first, second, and third absorption chambers include a resin to which the inhibitor is adsorbed, and a mesh-structured barrier film is provided between the first absorption chamber and the second absorption chamber, and between the second absorption chamber and the third absorption chamber, so that the sample passes through the first, second, and third absorption chambers sequentially, and the resin is preferably prevented from moving by the barrier film.
또한, 상기 제1 흡수챔버, 상기 제2 흡수챔버, 또는 상기 제3 흡수챔버에는 상기 저해제를 흡착하는 음극을 띠는 음이온교환수지, 킬레이트수지, 또는 양극을 띠는 양이온교환수지 중 선택된 어느 하나가 채워지는 것이 바람직하다. In addition, it is preferable that the first absorption chamber, the second absorption chamber, or the third absorption chamber be filled with any one selected from among an anion exchange resin having a cathode, a chelating resin, or a cation exchange resin having a positive electrode that adsorbs the inhibitor.
또한, 상기 투입챔버와 상기 흡수챔버의 사이에는 상기 흡수챔버에 채워진 흡수제를 워싱하는 워싱액이 수용되는 워싱액저장챔버가 마련되는 것이 바람직하다. In addition, it is preferable that a washing liquid storage chamber be provided between the injection chamber and the absorption chamber to accommodate a washing liquid for washing the absorbent filled in the absorption chamber.
또한, 상기 워싱액저장챔버는, 상기 워싱액이 채워지며, 상기 워싱액이 유동하도록 일방향으로 평행하게 배치되는 복수의 워싱액유동유로를 포함하고, 상기 워싱액은 상기 워싱액유동유로를 따라서 지그재그로 유동하는 것이 바람직하다. In addition, the washing liquid storage chamber is filled with the washing liquid and includes a plurality of washing liquid flow paths arranged in parallel in one direction so that the washing liquid flows, and it is preferable that the washing liquid flows in a zigzag pattern along the washing liquid flow paths.
또한, 상기 워싱액유동유로는, 제1 길이를 갖는 복수의 제1 유로로 이루어져 상기 워싱액이 저장되는 제1 저장부: 상기 제1 길이보다 짧은 복수의 제2 유로로 이루어져 상기 워싱액이 저장되며, 상기 제1 저장부의 하측에 마련되는 제2 저장부; 상기 제2 길이보다 짧은 복수의 제2 유로로 이루어져 상기 워싱액이 저장되며, 상기 제2 저장부의 하측에 마련되는 제3 저장부;를 포함하는 것이 바람직하다. In addition, it is preferable that the washing liquid flow path includes: a first storage unit configured with a plurality of first channels having a first length and storing the washing liquid; a second storage unit configured with a plurality of second channels shorter than the first length and storing the washing liquid, and provided below the first storage unit; and a third storage unit configured with a plurality of second channels shorter than the second length and storing the washing liquid, and provided below the second storage unit.
또한, 상기 워싱액저장챔버와 상기 흡수챔버는 판상인 상기 바디부의 동일한 면에 형성되는 것이 바람직하다. In addition, it is preferable that the washing liquid storage chamber and the absorption chamber are formed on the same surface of the plate-shaped body portion.
또한, 상기 흡수챔버의 후단에는 상기 워싱액이 포집되고, 상기 핵산을 토출시키는 웨이스트 수집 및 핵산분리 챔버;를 포함하고, 상기 웨이스트 수집 및 핵산분리 챔버를 통해 분리된 상기 핵산은 상기 핵산챔버에 수집되는 것이 바람직하다. In addition, the rear end of the absorption chamber includes a waste collection and nucleic acid separation chamber in which the washing liquid is collected and the nucleic acid is discharged; and it is preferable that the nucleic acid separated through the waste collection and nucleic acid separation chamber is collected in the nucleic acid chamber.
또한, 상기 투입챔버와 상기 흡수챔버의 사이에는 상기 흡수챔버에 채워된 흡수제를 워싱하는 워싱액이 수용되는 워싱액저장챔버; 상기 흡수챔버의 후단에는 상기 워싱액이 포집되고, 상기 핵산을 토출시키는 웨이스트 수집 및 핵산분리 챔버;를 포함하고, 상기 워싱액저장챔버, 상기 흡수챔버, 상기 웨이스트 수집 및 핵산분리 챔버 중 적어도 하나는 소정의 두께를 갖는 상기 바디부의 일면과 그 반대편인 타면 중 적어도 어느 하나에 형성되는 것이 바람직하다. In addition, a washing liquid storage chamber is provided between the injection chamber and the absorption chamber, which accommodates a washing liquid for washing the absorbent filled in the absorption chamber; and a waste collection and nucleic acid separation chamber is provided at the rear end of the absorption chamber, which collects the washing liquid and discharges the nucleic acid; and it is preferable that at least one of the washing liquid storage chamber, the absorption chamber, and the waste collection and nucleic acid separation chamber is formed on at least one of one surface of the body portion having a predetermined thickness and the other surface opposite thereto.
또한, 상기 워싱액저장챔버와 상기 흡수챔버는 상기 바디부의 일면에 형성되고, 상기 웨이스트 수집 및 핵산분리 챔버는 상기 바디부의 타면에 형성된 것이 바람직하다. In addition, it is preferable that the washing liquid storage chamber and the absorption chamber are formed on one surface of the body portion, and the waste collection and nucleic acid separation chamber are formed on the other surface of the body portion.
또한, 상기 바디부에는 상기 투입챔버로부터 상기 핵산챔버로 시료가 이송되는 유로를 형성하는 튜브형 유로를 더 포함하며, 상기 튜브형 유로를 개폐하는 밸브가 마련된 것이 바람직하다. In addition, it is preferable that the body part further includes a tubular path forming a path through which a sample is transferred from the injection chamber to the nucleic acid chamber, and a valve for opening and closing the tubular path is provided.
또한, 상기 튜브형 유로는, 상기 투입챔버와 상기 워싱액저장챔버 사이에 마련되는 제1 튜브유로; 상기 워싱액저장챔버와 상기 흡수챔버 사이에 마련되는 제2 튜브유로; 및 상기 흡수챔버와 싱기 웨이스트 웨이스트 수집 및 핵산분리 챔버 사이에 마련되는 제3 튜브유로;를 포함하며, 상기 밸브는 상기 제1,2,3 튜브유로를 동시에 개방하거나 폐쇄하는 것이 바람직하다. In addition, the tubular path includes a first tube path provided between the injection chamber and the washing liquid storage chamber; a second tube path provided between the washing liquid storage chamber and the absorption chamber; and a third tube path provided between the absorption chamber and the sink waste collection and nucleic acid separation chamber; and it is preferable that the valve simultaneously opens or closes the first, second, and third tube paths.
한편, 본 발명 다른 측면에 따른 PCR 검사를 위한 핵산 추출용 양면칩은, 소정의 두께를 갖는 판상의 바디부; 상기 바디부의 일면 또는 상기 일면의 반대면인 타면에 형성되며, 상기 시료로부터 PCR 수행을 저해하는 저해제를 흡수하여 제거하는 흡수제가 수용된 흡수챔버; 상기 바디부의 일면 또는 상기 일면의 반대면인 타면에 형성되며, 상기 흡수챔버를 워싱하는 워싱액이 포집되고, 상기 흡수챔버를 통과하여 저해제가 제거된 핵산을 분리하여 토출시키는 웨이스트 수집 및 핵산분리 챔버;를 포함하는 것을 특징으로 한다. Meanwhile, a double-sided chip for nucleic acid extraction for PCR testing according to another aspect of the present invention comprises: a plate-shaped body having a predetermined thickness; an absorption chamber formed on one surface of the body or the other surface opposite the one surface, and containing an absorbent that absorbs and removes an inhibitor that inhibits PCR performance from the sample; a waste collection and nucleic acid separation chamber formed on one surface of the body or the other surface opposite the one surface, and capturing a washing liquid that washes the absorption chamber, and passing through the absorption chamber to separate and discharge nucleic acids from which inhibitors have been removed.
한편, 본 발명의 또 다른 측면에 따른 양면칩을 포함하는 카트리지는, 시료로부터 PCR 수행을 저해하는 저해제를 흡수하여 제거하는 흡수챔버를 포함하는 판상의 바디부; 상기 바디부의 일측에 결합되는 전면커버; 및 상기 바디부를 사이에 두고 상기 전면커버와 결합하는 후면커버;를 포함하여서, 상기 시료가 상기 흡수챔버를 통과하면서 상기 시료로부터 핵산이 분리되는 것을 특징으로 한다. Meanwhile, a cartridge including a double-sided chip according to another aspect of the present invention comprises a plate-shaped body part including an absorption chamber for absorbing and removing an inhibitor that inhibits PCR performance from a sample; a front cover coupled to one side of the body part; and a rear cover coupled to the front cover with the body part interposed therebetween; characterized in that nucleic acid is separated from the sample as the sample passes through the absorption chamber.
한편, 본 발명의 또 다른 측면에 따른 카트리지를 이용한 핵산추출장치는, 시료로부터 PCR 수행을 저해하는 저해제를 흡수하여 제거하는 흡수챔버를 포함하는 판상의 바디부와; 상기 바디부의 일측에 결합되는 전면커버와; 및 상기 바디부를 사이에 두고 상기 전면커버와 결합하는 후면커버;를 포함하여서, 상기 시료가 상기 흡수챔버를 통과하면서 상기 시료로부터 핵산이 분리하는 카트리지; 및 Meanwhile, a nucleic acid extraction device using a cartridge according to another aspect of the present invention comprises a plate-shaped body part including an absorption chamber for absorbing and removing an inhibitor that inhibits PCR performance from a sample; a front cover coupled to one side of the body part; and a rear cover coupled to the front cover with the body part interposed therebetween; a cartridge for separating nucleic acids from a sample as the sample passes through the absorption chamber; and
상기 카트리지가 삽입되어 장착되는 삽입부와, 상기 삽입부에 마련되어 상기 삽입부를 개폐하는 도어를 포함하는 장착부;를 포함하는 것을 특징으로 한다.It is characterized by including an insertion part into which the cartridge is inserted and mounted, and a mounting part including a door provided on the insertion part for opening and closing the insertion part.
본 발명 실시예에 따른 PCR 검사를 위한 핵산 추출용 양면칩, 이를 포함하는 카트리지, 및 이를 이용한 핵산추출장치는, 추가적인 장비를 사용하지 않고 단일한 칩 내에서 생물학적 시료를 이동시키면서, 상기 생물학적 시료로부터 이물질을 효과적으로 제거하고, 핵산과 버퍼를 용이하게 분리하여, 핵산을 신속하고 용이하게 추출해 낼 수 있는 효과를 제공한다.A double-sided chip for nucleic acid extraction for PCR testing according to an embodiment of the present invention, a cartridge including the same, and a nucleic acid extraction device using the same provide the effect of effectively removing foreign substances from a biological sample, easily separating nucleic acids and buffers, and quickly and easily extracting nucleic acids while moving the biological sample within a single chip without using additional equipment.
또한, 본 발명은 핵산 분리를 위해서 원심분리기 등과 같은 추가적인 장비의 사용을 배제하고 하나의 칩에서 핵산을 용이하게 분리하여 핵산 분리 절차를 간소화하고, 현장으로의 휴대 및 이동이 간편하고, 사용자의 편리성을 향상시킨다. In addition, the present invention simplifies the nucleic acid separation procedure by easily separating nucleic acids on a single chip without using additional equipment such as a centrifuge for nucleic acid separation, and improves user convenience by making it easy to carry and move to the field.
도1은 본 발명 일 실시예에 따른 핵산 추출용 양면칩의 사시도,Figure 1 is a perspective view of a double-sided chip for nucleic acid extraction according to one embodiment of the present invention.
도2는 도1의 요부에 대한 단면도,Figure 2 is a cross-sectional view of the main part of Figure 1.
도3은 도1을 다른 각도에서 도시한 사시도,Figure 3 is a perspective view of Figure 1 from a different angle.
도4는 도1의 반대면에 대한 사시도,Figure 4 is a perspective view of the opposite side of Figure 1.
도5는 시료가 양면칩에서 순차적으로 유동하는 경로를 번호로 표기한 도면,Figure 5 is a drawing showing the path along which the sample flows sequentially in the double-sided chip, indicated by numbers.
도6은 시료가 경유하는 챔버를 순서대로 도시한 도면,Figure 6 is a drawing showing the chambers through which the sample passes in sequence.
도7은 도4의 평면도,Figure 7 is a plan view of Figure 4.
도8은 도3의 평면도,Figure 8 is a plan view of Figure 3.
도9는 도1을 다른 각도에서 도시한 사시도,Figure 9 is a perspective view of Figure 1 from a different angle.
도10은 핵산챔버에서 핵산추출 모습을 도시한 도면,Figure 10 is a drawing showing the nucleic acid extraction in a nucleic acid chamber.
도11은 양면칩을 포함하는 카트리지를 도시한 도면,Figure 11 is a drawing showing a cartridge including a double-sided chip;
도12는 도11의 분리사시도, Figure 12 is an exploded perspective view of Figure 11.
도13은 양면칩이 후면커버에 결합된 상태를 도시한 도면,Figure 13 is a drawing showing a state in which a double-sided chip is attached to a rear cover.
도14는 밸브가 튜브형 유로를 폐쇄한 상태를 도시한 도면,Figure 14 is a drawing showing a state where the valve closes the tubular path.
도15는 밸브가 튜브형 유로를 개방한 상태를 도시한 도면, Figure 15 is a drawing showing a state where the valve has opened the tubular path.
도16은 밸브가 가압력전달수단에 의해 상승하는 모습을 도시한 도면,Figure 16 is a drawing showing the valve rising by a pressure transmitting means.
도17은 캡이 슬라이딩되어 투입챔버를 개폐하는 모습과 캡의 저면을 도시한 도면, Figure 17 is a drawing showing the cap sliding to open and close the injection chamber and the bottom surface of the cap.
도18은 캡의 사시도,Figure 18 is a perspective view of the cap.
도19는 도19의 정면도,Fig. 19 is a front view of Fig. 19.
도20은 핵산추출장치에 카트리지가 장착된 모습을 도시한 도면,Figure 20 is a drawing showing a cartridge mounted on a nucleic acid extraction device.
도21은 카트리지에 펌프연결부가 연결되는 모습을 도시한 도면이다.Figure 21 is a drawing showing how a pump connection part is connected to a cartridge.
이하, 본 발명의 다양한 실시예가 첨부된 도면과 연관되어 기재된다. 본 발명의 다양한 실시예는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들이 도면에 예시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 본 발명의 다양한 실시예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 다양한 실시 예의 사상 및 기술 범위에 포함되는 모든 변경 및/또는 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용되었다.Hereinafter, various embodiments of the present invention will be described in connection with the accompanying drawings. Various embodiments of the present invention may have various modifications and various embodiments, and thus specific embodiments are illustrated in the drawings and detailed descriptions related thereto are described. However, this is not intended to limit various embodiments of the present invention to specific embodiments, but should be understood to include all modifications and/or equivalents or substitutes included in the spirit and technical scope of various embodiments of the present invention. In connection with the description of the drawings, similar reference numerals have been used for similar components.
본 발명의 다양한 실시예에서 사용될 수 있는 "포함한다" 또는 "포함할 수 있다" 등의 표현은 발명(disclosure)된 해당 기능, 동작 또는 구성요소 등의 존재를 가리키며, 추가적인 하나 이상의 기능, 동작 또는 구성요소 등을 제한하지 않는다. 또한, 본 발명의 다양한 실시예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Expressions such as "includes" or "may include", which may be used in various embodiments of the present invention, indicate the presence of the disclosed corresponding function, operation or component, etc., and do not limit one or more additional functions, operations or components, etc. In addition, in various embodiments of the present invention, it should be understood that terms such as "includes" or "has" are intended to specify the presence of a feature, number, step, operation, component, part or a combination thereof described in the specification, but do not exclude in advance the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts or combinations thereof.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되어 있을 수도 있지만, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재하지 않는 것으로 이해될 수 있어야 할 것이다.When it is said that a component is "connected" to another component, it should be understood that while said component may be directly connected to said other component, there may also be other new components between said component and said other component. Conversely, when it is said that a component is "directly connected" or "directly connected" to another component, it should be understood that no other new components exist between said component and said other component.
본 발명의 다양한 실시예에서 사용한 용어는 단지 특정일 실시예를 설명하기 위해 사용된 것으로, 본 발명의 다양한 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in the various embodiments of the present invention are only used to describe specific embodiments and are not intended to limit the various embodiments of the present invention. The singular expression includes the plural expression unless the context clearly indicates otherwise.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명의 다양한 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which various embodiments of the present invention belong.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명의 다양한 실시 예에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with their meaning in the context of the relevant technology, and will not be interpreted in an idealized or overly formal sense unless explicitly defined in various embodiments of the present invention.
본 발명은 PCR 검사를 위한 핵산 추출용 양면칩에 관한 것으로, 생물학적 시료에 대하여 PCR을 수행하기 위해서 상기 시료로부터 PCR을 방해하는 억제물질(저해제)를 제거하고 핵산을 분리하여 획득하는 칩과 장치와 관련된다. 물론, 본 발명에 따른 핵산 추출용 양면칩은, 질병의 진단, 치료, 또는 예방 목적으로 핵산의 추출이 필요한 경우 뿐만 아니라, 신약 개발, 환경 호르몬의 검출 등 다양한 분야에서 시료로부터 핵산의 추출이 필요한 경우에 활용될 수 있다. The present invention relates to a double-sided chip for extracting nucleic acids for PCR tests, and relates to a chip and device for removing an inhibitor that interferes with PCR from a biological sample and separating and obtaining nucleic acids in order to perform PCR on the sample. Of course, the double-sided chip for extracting nucleic acids according to the present invention can be utilized not only in cases where extraction of nucleic acids is required for the purpose of diagnosing, treating, or preventing diseases, but also in various fields such as new drug development and detection of environmental hormones where extraction of nucleic acids from samples is required.
먼저, 본 명세서에서 사용되는 용어 'PCR(polymerase chain reaction) 또는 중합효소 연쇄반응'은 열 안정성 DNA 중합효소를 이용하여 특정 표적 핵산 분자를 증폭하는 반응을 의미한다. PCR에는 DNA 중합효소 외에 표적 핵산 특이적으로 혼성화할 수 있는 올리고뉴클레오티드인 프라이머(포워드 프라이머, 리버스 프라이머), 디옥시뉴클레오티드트리포스페이트 혼합물(dNTP mixture), Mg2+ 등의 2가 이온을 포함하는 반응 혼합물이 사용될 수 있다. First, the term 'PCR (polymerase chain reaction) or polymerase chain reaction' used in this specification means a reaction that amplifies a specific target nucleic acid molecule using a heat-stable DNA polymerase. In addition to DNA polymerase, PCR may use a reaction mixture containing a primer (forward primer, reverse primer), which is an oligonucleotide that can specifically hybridize to a target nucleic acid, a deoxynucleotide triphosphate mixture (dNTP mixture), and a divalent ion such as Mg2+.
'프라이머(primer)'는 PCR 반응의 개시를 위해 사용되는 것으로, 주형 DNA에 상보적으로 혼성화는 올리고뉴클레오티드 또는 폴리뉴클레오티드를 의미한다. PCR반응을 위한 프라이머는 증폭되는 핵산분자의 유전자 코드 진행방향과 동일한 센스 가닥으로부터 선택되는 포워드 프라이머(또는 센스 프라이머) 및 상기 센스 가닥에 상보적인 안티센스 가닥으로부터 선택되는 리버스 프라이머(또는 안티센스 프라이머)의 쌍이 사용될 수 있다. A 'primer' is used to initiate a PCR reaction, and refers to an oligonucleotide or polynucleotide that hybridizes complementarily to template DNA. A primer for a PCR reaction may be a pair of a forward primer (or sense primer) selected from a sense strand identical to the direction of progression of the genetic code of a nucleic acid molecule to be amplified, and a reverse primer (or antisense primer) selected from an antisense strand complementary to the sense strand.
'시료'는 증폭하고자 하는 대상이 되는 핵산과 같은 유전물질 또는 이러한 유전물질이 포함된 생물학적 용액을 말한다. 그리고 '반응시약'은 상기 타깃이 되는 유전물질을 검출하기 위한 것으로 형광염료, 프라이머 등을 포함할 수 있다. 프라이머는 목표 유전자의 특정 부위 양끝에 결합할 수 있는 15~30bp 길이의 프라이머 한 쌍으로 이루어질 수 있다. 또한, DNA 중합효소는 90℃ 이상의 고온에서도 활성을 잃지 않는 효소를 사용한다. The 'sample' refers to genetic material such as nucleic acid that is the target to be amplified or a biological solution containing such genetic material. In addition, the 'reaction reagent' may include fluorescent dyes, primers, etc. for detecting the target genetic material. The primer may be composed of a pair of primers of 15 to 30 bp in length that can bind to both ends of a specific region of the target gene. In addition, the DNA polymerase uses an enzyme that does not lose activity even at high temperatures of 90°C or higher.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
본 발명의 일 실시예에 따른 핵산 추출용 양면칩(1000), 바디부(10)의 양면에 생물학적 시료가 흐르는 유로 및 챔버를 형성하여, 상기 유로 및 챔버를 통과하면서 PCR을 억제하는 억제물질(이하, 저해제(Inhibitor)라 함)를 흡착 및 제거하고 핵산만을 핵산챔버(300)로 수집하여 분리할 수 있도록 한 칩에 관한 것이다. 본 실시예에 따르면, 상기 바디부(10)는 소정의 두께를 갖는 판상으로 이루어지고, 후술투입챔버(100), 흡수챔버(200), 핵산챔버(300), 워싱액저장챔버(400), 및 웨이트수집 및 핵산분리 챔버(500)가 상기 바디부(10)에 마련된다. According to one embodiment of the present invention, a double-sided chip (1000) for nucleic acid extraction is provided, which forms a path and a chamber on both sides of a body part (10) through which a biological sample flows, so that an inhibitory substance (hereinafter, referred to as an inhibitor) that inhibits PCR is adsorbed and removed while passing through the path and chamber, and only nucleic acids are collected and separated into a nucleic acid chamber (300). According to this embodiment, the body part (10) is formed in a plate shape having a predetermined thickness, and an injection chamber (100), an absorption chamber (200), a nucleic acid chamber (300), a washing solution storage chamber (400), and a weight collection and nucleic acid separation chamber (500) to be described later are provided in the body part (10).
1. 투입챔버(100)1. Injection chamber (100)
투입챔버(100)에 검사대상이 되는 생물학적 시료가 투입된다. 상기 투입챔버에 검체를 분주하기 전에 상기 검체는 핵산이 분리될 수 있도록 전처리된다. 상기 전처리는, 생물학적 시료에 소정의 용해버퍼, 예컨대 Lysis buffer를 주입하여 세포벽을 파괴시켜서 핵산을 누출시킨다. 상기 Lysis buffer는 세포벽을 파괴하기 위해 사용되는 용해버퍼이다. 상기 핵산이 노출된 시료는 상기 투입챔버(100)로 투입된다. A biological sample to be tested is introduced into the injection chamber (100). Before dispensing the sample into the injection chamber, the sample is pretreated so that nucleic acids can be separated. The pretreatment is performed by injecting a predetermined dissolution buffer, for example, a lysis buffer, into the biological sample to destroy the cell wall and cause the nucleic acids to leak. The lysis buffer is a dissolution buffer used to destroy the cell wall. The sample to which the nucleic acids have been exposed is introduced into the injection chamber (100).
도1 및 도2에 도시된 바와 같이, 상기 투입챔버(100)는 바디부(10)의 일측에 형성되고 상하 방향으로 공간을 형성하며, 하방으로 갈수록 폭이 좁아지게 형성된다. 상기 투입챔버(100)의 상측에는 상기 시료가 투입되는 투입구(101)가 마련되고, 하측에는 상기 시료가 토출되는 토출구(102)가 마련된다. 본 실시예에 따르면, 상기 토출구(102) 측으로 상기 시료가 모여지도록 가이드하는 경사가이드부(103)가 형성된다.As shown in FIGS. 1 and 2, the injection chamber (100) is formed on one side of the body part (10) and forms a space in the vertical direction, and is formed so that the width becomes narrower as it goes downward. An injection port (101) into which the sample is injected is provided on the upper side of the injection chamber (100), and an outlet port (102) through which the sample is discharged is provided on the lower side. According to the present embodiment, an inclined guide portion (103) is formed to guide the sample to gather toward the outlet port (102).
본 실시예에 따르면, 상기 투입챔버(100)로 투입된 시료는 상측에서 주입되는 에어압에 의해 투입챔버(100)의 하방에 형성되는 토출구(102)를 통해 워싱액저장챔버(400)로 이동한다. 상기 에어는 상기 바디부(10)의 하측에 연결되는 펌프로부터 제공받으며, 펌프에 의한 제공되는 에어는 상기 투입챔버(100)의 상측 측벽으로 공급된다. 상기 투입챔버(100)에는 상기 펌프에 의한 에어가 주입되는 에어투입공(104)이 형성된다. 본 실시예에 의하면, 상기 에어투입공(104)으로 제공된 에어압에 의해 상기 시료는 흡수챔버(200) 측으로 밀려서 이동할 수 있다. According to the present embodiment, the sample injected into the injection chamber (100) moves to the washing liquid storage chamber (400) through the discharge port (102) formed at the bottom of the injection chamber (100) by air pressure injected from the top. The air is provided from a pump connected to the bottom of the body part (10), and the air provided by the pump is supplied to the upper side wall of the injection chamber (100). An air injection hole (104) into which air is injected by the pump is formed in the injection chamber (100). According to the present embodiment, the sample can be pushed and moved toward the absorption chamber (200) by the air pressure provided to the air injection hole (104).
2. 흡수챔버(200)2. Absorption chamber (200)
흡수챔버(200)는 시료로부터 PCR을 억제하는 저해제를 흡수하여 제거하기 위해 마련된다. 상기 저해제는, 상기 시료에 포함되는 염, 단백질, 및 기타 세포 내 화학물질을 포함하며, PCR 수행 시 상기 물질에 의해 핵산의 증폭을 방해하는 인자로 작용하며, 흡수챔버(200) 내에 수용된 흡수제에 의해 제거된다. 상기 흡수제에 의해 시료에 포함된 저해제가 흡착되어 제거되고 하방으로 핵산만이 토출되어 수집될 수 있으므로, 간편하고 신속하게 핵산을 분리해 낼 수 있다. 본 발명은 종래 시료로부터 핵산을 분리하기 위해서 소정의 흡착필터 등을 이용하여 핵산을 고정하고, 상기 흡착필터로부터 다시 핵산을 재분리하는 과정을 거치지 않고, 핵산을 분리해 내는 새로운 개념의 분리 장치를 제공한다.The absorption chamber (200) is provided to absorb and remove inhibitors that inhibit PCR from the sample. The inhibitors include salts, proteins, and other intracellular chemicals contained in the sample, and act as factors that interfere with the amplification of nucleic acids by the substances when performing PCR, and are removed by the absorbent contained in the absorption chamber (200). Since the inhibitors contained in the sample are absorbed and removed by the absorbent, and only the nucleic acids can be discharged and collected downward, the nucleic acids can be separated simply and quickly. The present invention provides a new concept of a separation device that separates nucleic acids without going through the process of fixing nucleic acids using a predetermined adsorption filter or the like to separate nucleic acids from a conventional sample and then re-separating the nucleic acids from the adsorption filter.
본 실시예에 따르면 흡수챔버(200)는 제1,2,3 흡수챔버(210,220,230)를 포함한다. 상기 제1,2,3 흡수챔버(210,220,230)에는 저해제를 흡수하기 위한 구형의 레진 입자가 채워진다. 상기 구형의 레진 입자는 저해제를 흡수한다. 본 실시예에 따르면, 상기 제1,2,3 흡수챔버(210,220,230)는 상하 방향으로 배치되고, 상기 시료는 상기 제1,2,3 흡수챔버(210,220,230)을 순차적으로 통과한다. According to the present embodiment, the absorption chamber (200) includes first, second, and third absorption chambers (210, 220, and 230). The first, second, and third absorption chambers (210, 220, and 230) are filled with spherical resin particles for absorbing an inhibitor. The spherical resin particles absorb the inhibitor. According to the present embodiment, the first, second, and third absorption chambers (210, 220, and 230) are arranged in a vertical direction, and the sample passes through the first, second, and third absorption chambers (210, 220, and 230) sequentially.
본 실시예에 따르면, 상기 제1,2,3 흡수챔버(210,220,230)의 각 경계부위에는 메쉬구조의 차단막이 형성되어 어느 하나의 챔버에 수용되어 있는 레진이 다른 챔버로 이동하는 것을 방지한다. 본 실시예에 따르면, 상기 제1 흡수챔버(210)와 제2 흡수챔버(220)의 사이 및 상기 제2 흡수챔버(220)와 제3 흡수챔버(230)의 사이에는 상기 차단막이 삽입되는 체결홈(203)이 형성된다. 또한, 본 실시예에 따르면, 흡수챔버유입구(201)과 상기 제1 흡수챔버(210)의 사이 및 상기 제3 흡수챔버(230)와 흡수챔버배출구(202) 사이에도 체결홈(203)이 형성되어 레진의 유출을 방지하는 차단막이 설치된다.According to the present embodiment, a mesh-structured barrier is formed at each boundary of the first, second, and third absorption chambers (210, 220, 230) to prevent the resin contained in one chamber from moving to another chamber. According to the present embodiment, a fastening groove (203) into which the barrier is inserted is formed between the first absorption chamber (210) and the second absorption chamber (220) and between the second absorption chamber (220) and the third absorption chamber (230). In addition, according to the present embodiment, a fastening groove (203) is also formed between the absorption chamber inlet (201) and the first absorption chamber (210) and between the third absorption chamber (230) and the absorption chamber outlet (202), so that a barrier is installed to prevent the resin from leaking.
상기 제1,2,3 흡수챔버(210,220,230)는 음극을 띠는 음이온교환수지, 양극을 띠는 양이온교환수지, 킬레이트수지 중 어느 하나를 포함하도록 선택될 수 있다. 상기 킬레이트수지는 약한 양극을 띠며, 금속 2가 이온을 흡착(capture)하는 성질을 갖는다. 또한, 상기 음이온교환수지, 킬레이트수지, 양이온교환수지는 구형의 레진을 포함하여 형성되며, 상기 구형 레진에 상기 저해제가 흡착된다. 상기 구형 레진의 직경은 대략 0.18mm 내지 0.3mm 정도로 형성될 수 있다.The above first, second, and third absorption chambers (210, 220, and 230) may be selected to include any one of a cathodic anion exchange resin, a positive cation exchange resin, and a chelate resin. The chelate resin has a weak anode and has a property of adsorbing (capturing) metal divalent ions. In addition, the anion exchange resin, chelate resin, and cation exchange resin are formed by including a spherical resin, and the inhibitor is adsorbed onto the spherical resin. The diameter of the spherical resin may be formed to be approximately 0.18 mm to 0.3 mm.
상기 흡수챔버(200)는 3개의 챔버가 각각 극성을 갖고 있어서, 상기 생물학적 시료에서 극성을 띠는 저해제가 상기 제1,2,3 흡수챔버(210,220,230)에 흡수되어 제거될 수 있다. 본 실시예에 따르면, 제1 흡수챔버(210)는 음이온교환수지를 포함하고, 제2 흡수챔버(220)는 킬레이트수지를 포함하며, 제3 흡수챔버(230)는 양이온교환수지를 포함한다. 상기한 바와 같이, 상기 제1,2,3 흡수챔버(210,220,230)는 상부로부터 하부로 순차적으로 배치되므로, 상기 시료는 음이온교환수지, 킬레이트수지, 및 양이온교환수지를 순차적으로 통과하게 된다. The above absorption chamber (200) has three chambers, each of which has a polarity, so that an inhibitor having a polarity in the biological sample can be absorbed and removed in the first, second, and third absorption chambers (210, 220, and 230). According to the present embodiment, the first absorption chamber (210) includes an anion exchange resin, the second absorption chamber (220) includes a chelate resin, and the third absorption chamber (230) includes a cation exchange resin. As described above, the first, second, and third absorption chambers (210, 220, and 230) are arranged sequentially from top to bottom, so that the sample passes through the anion exchange resin, the chelate resin, and the cation exchange resin sequentially.
본 실시예에 따르면, 상기 음이온교환수지, 킬레이트수지, 및 양이온교환수지의 부피는 실질적으로 1:1:1로 마련될 수 있다. 물론, 상기 음이온교환수지, 킬레이트수지, 및 양이온교환수지의 부피비는 1:1:1로 한정되는 것은 아니다. 상기 생물학적 시료에 포함되는 물질들은 극성을 띠고 있어서, 제1,2,3 흡수챔버(210,220,230)를 통과하면서 각 층에 흡수되고 핵산만이 하방으로 유동할 수 있다. 상기 음이온교환수지는 TMA(Trimethylamine), DMEA(Dimethylethanolamine), Tertiary Amine 등에서 적어도 하나를 포함할 수 있으며, 상기 킬레이트수지은 카르복실기(-COOH), 이미노디아세테이트산 킬레이트 등에서 적어도 하나를 포함할 수 있다. 그리고 상기 양이온교환수지는 황산기(-SO3H), 카르복실기(-COOH), 술폰산기(-SO3H) 등에서 적어도 하나를 포함할 수 있다. According to the present embodiment, the volumes of the anion exchange resin, the chelate resin, and the cation exchange resin can be prepared substantially as 1:1:1. Of course, the volume ratio of the anion exchange resin, the chelate resin, and the cation exchange resin is not limited to 1:1:1. The substances included in the biological sample are polar, so that they can be absorbed in each layer while passing through the first, second, and third absorption chambers (210, 220, and 230), and only the nucleic acid can flow downward. The anion exchange resin can include at least one of TMA (Trimethylamine), DMEA (Dimethylethanolamine), and Tertiary Amine, and the chelate resin can include at least one of a carboxyl group (-COOH), an iminodiacetate acid chelate, and the like. In addition, the cation exchange resin can include at least one of a sulfate group (-SO3H), a carboxyl group (-COOH), and a sulfonic acid group (-SO3H).
상기 제3 흡수챔버의 하측으로 흡수챔버배출구(202)가 형성되며, 상기 흡수챔버배출구(202)를 통해 시료로부터 저해제가 제거되고 남은 핵산이 하방으로 토출된다. 본 실시예에 따르면, 상기 시료는 상기 칩의 내부를 15㎕/sec 이하의 속도로 이동하며, 결과적으로 상기 흡수챔버배출구(202)를 통해서 토출되는 핵산의 유량은 초당 15㎕ 이하가 된다. 상기 흡수챔버배출구(202)를 통해 토출되는 핵산의 단위시간 당 유량은 상기 핵산이 관통하는 흡수챔버배출구(202)의 단면적을 적절하게 형성하여 조절될 수 있다. 상기 흡수챔버배출구(202)의 단면적이 상대적으로 커질수록 상기 핵산의 토출량은 많이질 수 있으나, 상기 시료가 흡수챔버(200)를 통과하는 속도가 상대적으로 증가하여 저해제가 제1,2,3 흡수챔버(210,220,230)에 충분히 흡착되는 시간을 확보하지 못할 수 있다. 따라서, 핵산의 토출 유량이 초당 15㎕ 이하로 조절될 때, 저해제가 충분히 제거될 수 있음을 확인하였다. An absorption chamber outlet (202) is formed at the lower side of the third absorption chamber, and an inhibitor is removed from the sample through the absorption chamber outlet (202) and the remaining nucleic acid is discharged downward. According to the present embodiment, the sample moves inside the chip at a speed of 15 μl/sec or less, and as a result, the flow rate of the nucleic acid discharged through the absorption chamber outlet (202) becomes 15 μl per second or less. The flow rate per unit time of the nucleic acid discharged through the absorption chamber outlet (202) can be controlled by appropriately forming the cross-sectional area of the absorption chamber outlet (202) through which the nucleic acid passes. As the cross-sectional area of the above absorption chamber outlet (202) becomes relatively larger, the discharge amount of the nucleic acid may increase. However, since the speed at which the sample passes through the absorption chamber (200) relatively increases, it may not be possible to secure enough time for the inhibitor to be sufficiently adsorbed in the first, second, and third absorption chambers (210, 220, 230). Therefore, it was confirmed that the inhibitor could be sufficiently removed when the discharge flow rate of the nucleic acid was adjusted to 15 μl per second or less.
3. 핵산챔버(300)3. Nucleic acid chamber (300)
핵산챔버(300)는 흡수챔버(200)를 통과하여 저해제가 제거된 핵산을 수용한다. 도1 및 도2에 도시된 바와 같이, 본 실시예에 따르면, 상기 핵산챔버(300)는 상측에서 하측으로 갈수록 폭이 좁아지는 공간을 가진다. 도10에 도시된 바와 같이 상기 핵산챔버(300)에는 핵산이 유입되는 핵산챔버유입구(310)가 형성된다. 핵산챔버(300)에 수집된 핵산은 상기 핵산챔버유입구(310)의 맞은편에 형성된 추출구(320)을 통해서 파이펫(330) 등의 기구를 통해 추출될 수 있다. The nucleic acid chamber (300) receives nucleic acids from which inhibitors have been removed by passing through the absorption chamber (200). As illustrated in FIGS. 1 and 2, according to the present embodiment, the nucleic acid chamber (300) has a space whose width narrows from the top to the bottom. As illustrated in FIG. 10, a nucleic acid chamber inlet (310) through which nucleic acids are introduced is formed in the nucleic acid chamber (300). The nucleic acids collected in the nucleic acid chamber (300) can be extracted by a device such as a pipette (330) through an extraction port (320) formed opposite the nucleic acid chamber inlet (310).
본 실시예에 따르면, 상기 시료는 투입챔버(100), 흡수챔버(200), 및 핵산챔버(300)를 순차적으로 경유하고, 상기 바디부(10)에는 상기 투입챔버(100), 흡수챔버(200), 및 핵산챔버(300)가 함께 구비됨으로써, 시료로부터 핵산을 분리 및 저장하는 과정이 하나의 바디부(10)에서 가능하도록 한다. According to the present embodiment, the sample passes through the injection chamber (100), the absorption chamber (200), and the nucleic acid chamber (300) sequentially, and the body part (10) is provided with the injection chamber (100), the absorption chamber (200), and the nucleic acid chamber (300), so that the process of separating and storing nucleic acids from the sample is possible in one body part (10).
4. 워싱액저장챔버(400)4. Washing fluid storage chamber (400)
상기 워싱액저장챔버(400)는, 상기 투입챔버(100)와 상기 흡수챔버(200) 사이에 마련되는 챔버로서, 흡수챔버(200)에 채워진 흡수제를 워싱하기 위한 워싱액이 수용된다. 상기 흡수챔버(200)에는 극성을 띠는 레진으로 충진되고, 상기 흡수챔버(200)를 이루는 제1,2,3 흡수챔버(210,220,230)의 극성을 유지하기 위해서 각 챔버는 보전버퍼로 채워진다. 상기 워싱액은 상기 보전버퍼를 워싱하기 위해서 마련된다. The washing liquid storage chamber (400) is a chamber provided between the injection chamber (100) and the absorption chamber (200), and accommodates a washing liquid for washing an absorbent filled in the absorption chamber (200). The absorption chamber (200) is filled with a polar resin, and each chamber is filled with a preservation buffer to maintain the polarity of the first, second, and third absorption chambers (210, 220, 230) forming the absorption chamber (200). The washing liquid is provided to wash the preservation buffer.
본 실시예에 따르면, 상기 워싱액저장챔버(400)는 상기 바디부(10)의 일면에 형성되며, 상기 흡수챔버(200)가 형성된 면과 동일한 면에 형성된다. 투입챔버(100)에 투입된 시료가 에어압에 의해 밀려나갈 때, 상기 워싱액저장챔버(400)에 저장되어 있던 워싱액이 시료 및 에어의 이동 압력에 의해 상기 흡수챔버(200) 측으로 이동하고, 상기 흡수챔버(200)의 흡수제를 우선 워싱하게 된다. According to the present embodiment, the washing liquid storage chamber (400) is formed on one side of the body part (10) and is formed on the same side as the side on which the absorption chamber (200) is formed. When the sample injected into the injection chamber (100) is pushed out by air pressure, the washing liquid stored in the washing liquid storage chamber (400) moves toward the absorption chamber (200) by the movement pressure of the sample and air, and the absorbent of the absorption chamber (200) is washed first.
도4에 도시된 바와 같이, 상기 워싱액저장챔버(400)는 상기 워싱액이 유동하도록 일방향으로 평행하게 배치되는 복수의 워싱액유동유로(440)를 포함한다. 도7에 도시된 바와 같이, 상기 워싱액은 상측의 워싱액저장챔버유입구(450)로 유입되어, 상기 워싱액유동유로(440)를 경유한 후, 워싱액저장챔버배출구(460)를 통해 흡수챔버(200)로 이동한다. 상기 워싱액은 상기 워싱액유동유로(440)를 따라서 상측에서 하측으로 지그재그로 유동한다. 본 실시예에 따르면, 상기 워싱액유동유로는(440)은 서로 다른 길이를 갖는 제1 유로(401), 제2 유로(402), 및 제3 유로(403)을 포함한다. As illustrated in FIG. 4, the washing liquid storage chamber (400) includes a plurality of washing liquid flow paths (440) arranged in parallel in one direction so that the washing liquid can flow. As illustrated in FIG. 7, the washing liquid flows into the washing liquid storage chamber inlet (450) on the upper side, passes through the washing liquid flow path (440), and then moves to the absorption chamber (200) through the washing liquid storage chamber outlet (460). The washing liquid flows in a zigzag pattern from upper to lower along the washing liquid flow path (440). According to the present embodiment, the washing liquid flow path (440) includes a first path (401), a second path (402), and a third path (403) having different lengths.
본 실시예에 따르면, 상기 워싱액저장챔버(440)는, 제1 길이를 갖는 복수의 제1 유로(401)로 이루어져 상기 워싱액이 저장되는 제1 저장부(410)와, 상기 제1 길이보다 짧은 복수의 제2 유로(402)로 이루어져 상기 워싱액이 저장되며, 상기 제1 저장부(410)의 하측에 마련되는 제2 저장부(420)와, 상기 제2 길이보다 짧은 복수의 제2 유로(403)로 이루어져 상기 워싱액이 저장되며, 상기 제2 저장부(430)의 하측에 마련되는 제3 저장부(430)를 포함한다. 본 실시예에 따르면, 상기 제1,2,3 저장부(410,420,430)는 상측에서 하측으로 순차적으로 마련된다. 상기 제1,2,3 저장부(410,420,430)는 각각 복수의 수평의 유로(401,402,403)를 지그재그 방식으로 형성되어 충분한 워싱액이 저장될 수 있도록 한다. According to the present embodiment, the washing liquid storage chamber (440) includes a first storage section (410) formed of a plurality of first channels (401) having a first length to store the washing liquid, a second storage section (420) formed of a plurality of second channels (402) shorter than the first length to store the washing liquid and provided below the first storage section (410), and a third storage section (430) formed of a plurality of second channels (403) shorter than the second length to store the washing liquid and provided below the second storage section (430). According to the present embodiment, the first, second, and third storage sections (410, 420, 430) are sequentially provided from the top to the bottom. The above first, second, and third storage units (410, 420, 430) are formed with a plurality of horizontal flow paths (401, 402, 403) in a zigzag manner, so that sufficient washing liquid can be stored.
5. 웨이스트수집 및 핵산분리 챔버(500)5. Waste collection and nucleic acid separation chamber (500)
웨이스트수집 및 핵산분리 챔버(500)는, 흡수챔버(200)의 후단에서 워싱액저장챔버(400)로부터 토출되는 워싱액을 포집하고, 핵산을 분리하여 토출시키기 위해서 마련된다. 상기 웨이스트수집 및 핵산분리 챔버(500)에 의해 분리된 핵산은 상기 핵산챔버(300)에 수집된다. 상기 웨이스트수집 및 핵산분리 챔버(500)는 상기 바디부(10)의 일면 또는 타면에 형성될 수 있다. The waste collection and nucleic acid separation chamber (500) is provided to collect the washing liquid discharged from the washing liquid storage chamber (400) at the rear end of the absorption chamber (200) and to separate and discharge the nucleic acid. The nucleic acid separated by the waste collection and nucleic acid separation chamber (500) is collected in the nucleic acid chamber (300). The waste collection and nucleic acid separation chamber (500) may be formed on one or the other surface of the body portion (10).
따라서, 본 발명에 따르면, 상기 상기 흡수챔버(200), 워싱액저장챔버(400), 및 상기 웨이스트 수집 및 핵산분리 챔버(500) 중 적어도 하나는 소정의 두께를 갖는 상기 바디부(10)의 일면과 그 반대편인 타면 중 적어도 어느 하나에 형성될 수 있다. 즉, 상기 흡수챔버(200), 상기 워싱액저장챔버(400), 상기 웨이스트 수집 및 핵산분리 챔버(500) 중 적어도 하나는 소정의 두께를 갖는 상기 바디부(10)의 일면에 형성되고, 상기 흡수챔버(200), 상기 워싱액저장챔버(400), 상기 웨이스트 수집 및 핵산분리 챔버(500) 중 상기 일면에 형성되지 않은 나머지는 상기 일면과 반대편인 타면에 형성될 수 있다. 본 실시예에 따르면, 상기 워싱액저장챔버(400)와 상기 흡수챔버(200)는 상기 바디부(10)의 일면에 형성되고, 상기 웨이스트수집 및 핵산분리 챔버(500)는 상기 바디부(10)의 타면에 형성된다. Therefore, according to the present invention, at least one of the absorption chamber (200), the washing liquid storage chamber (400), and the waste collection and nucleic acid separation chamber (500) may be formed on at least one of one surface of the body part (10) having a predetermined thickness and the other surface opposite thereto. That is, at least one of the absorption chamber (200), the washing liquid storage chamber (400), and the waste collection and nucleic acid separation chamber (500) is formed on one surface of the body part (10) having a predetermined thickness, and the remainder of the absorption chamber (200), the washing liquid storage chamber (400), and the waste collection and nucleic acid separation chamber (500) that are not formed on the one surface may be formed on the other surface opposite thereto. According to the present embodiment, the washing liquid storage chamber (400) and the absorption chamber (200) are formed on one surface of the body part (10), and the waste collection and nucleic acid separation chamber (500) is formed on the other surface of the body part (10).
다만, 상기 흡수챔버(200)는 상기 바디부(10)의 일면 또는 타면에 형성될 수 있고, 상기 웨이스트수집 및 핵산분리 챔버(500) 역시 상기 바디부(10)의 일면 또는 타면에 형성될 수 있다. 즉, 일 실시예에 있어서, 상기 흡수챔버(200)와 상기 웨이스트수집 및 핵산분리 챔버(500)는 상기 바디부(10)의 동일한 면에 형성될 수도 있다. However, the absorption chamber (200) may be formed on one side or the other side of the body part (10), and the waste collection and nucleic acid separation chamber (500) may also be formed on one side or the other side of the body part (10). That is, in one embodiment, the absorption chamber (200) and the waste collection and nucleic acid separation chamber (500) may be formed on the same side of the body part (10).
도8 및 도9를 참조하면, 상기 웨이스트수집 및 핵산분리 챔버(500)는, 상기 흡수챔버(200)를 경유한 상기 워싱액이 상기 웨이스트챔버(510)에 채워지고 후속하여 유입유로(570)를 통해 흐르는 상기 핵산은 상기 핵산분리유로(530)를 통해 분리되어 이동시킴으로써, 웨이스트를 수집하고 핵산을 분리하기 위해서 마련된다.Referring to FIGS. 8 and 9, the waste collection and nucleic acid separation chamber (500) is provided to collect waste and separate nucleic acids by having the washing liquid passing through the absorption chamber (200) fill the waste chamber (510) and subsequently moving the nucleic acids flowing through the inflow path (570) through the nucleic acid separation path (530).
상기 웨이스트수집 및 핵산분리 챔버(500)는 유입유로(570), 워싱액수집유로(520), 핵산분리유로(530) 및, 웨이스트챔버(510)를 포함한다. The above waste collection and nucleic acid separation chamber (500) includes an inlet passage (570), a washing liquid collection passage (520), a nucleic acid separation passage (530), and a waste chamber (510).
상기 유입유로(570)는 상측에서 하측으로 연장되며, 워싱액과 핵산이 유입되는 유로이다. 본 실시예에 따르면, 워싱액이 우선 상기 유입유로(570)에 유입되고, 상기 워싱액에 이어서 핵산이 흘러 들어온다. 상기 유입유로(570)는 그 단부에 소정의 곡률을 갖는 곡선유로(560)를 포함한다.The above inflow path (570) extends from the upper side to the lower side and is a path through which washing liquid and nucleic acid flow. According to the present embodiment, the washing liquid first flows into the inflow path (570), and the nucleic acid flows in following the washing liquid. The inflow path (570) includes a curved path (560) having a predetermined curvature at its end.
상기 워싱액수집유로(520)는 상기 유입유로(570)의 단부에서 하측으로 연장되어 상기 워싱액이 흐르도록 연결된다. 본 실시예에 따르면, 상기 워싱액수집유로(520)는 상기 유입유로(570)의 단부에 마련되는 곡선유로(560)와 연결되어 하방으로 연장된다. The washing liquid collection channel (520) is connected to extend downward from the end of the inflow channel (570) so that the washing liquid can flow. According to the present embodiment, the washing liquid collection channel (520) is connected to a curved channel (560) provided at the end of the inflow channel (570) and extends downward.
상기 핵산분리유로(530)는 상기 유입유로(570)의 단부에서 상기 워싱액수집유로(520)와 다른 방향으로 연결되어 연장되며, 상기 핵산이 흐르는 유로를 형성한다. 본 실시예에 따르면, 상기 핵산분리유로(530)는 상기 곡선유로(560)와 연결되면서 상기 워싱액수집유로(520)의 반대 방향인 상방으로 연장된다. 상기 핵산분리유로(530)에는 내주면으로부터 돌출되는 저항돌기(590)가 마련된다. 상기 저항돌기(590)는, 워싱액의 초기 유입시 상기 워싱액이 하방의 워싱액수집유로(520) 측으로 이동하도록 유도하는 작용을 한다. The nucleic acid separation channel (530) is extended in a different direction from the washing solution collection channel (520) at the end of the inflow channel (570), thereby forming a channel through which the nucleic acid flows. According to the present embodiment, the nucleic acid separation channel (530) is extended upward in the opposite direction of the washing solution collection channel (520) while being connected to the curved channel (560). The nucleic acid separation channel (530) is provided with a resistance protrusion (590) protruding from the inner surface. The resistance protrusion (590) has the function of inducing the washing solution to move toward the washing solution collection channel (520) downward when the washing solution is initially introduced.
본 실시예에 따르면, 상기 유입유로(570)와 상기 핵산분리유로(530)가 서로 연결되는 라운드진 내주면, 즉 상기 곡선유로(560)의 내주면에는 상기 워싱액의 유동시 저항을 발생시키는 저항부(580)가 형성된다. 본 실시예에 따르면, 상기 저항부(580)는 상기 곡선유로(560)의 단부에서 상기 핵산분리유로(530) 측으로 만족되는 내주면에 톱니 형상과 같이 돌출되는 돌출부로 이루어질 수 있다. 상기 돌출부는 일정 간격으로 이격 형성될 수 있다. 상기 워싱액은 중력에 의해 하방으로 연장되는 핵산분리유로(530)를 향하여 유동하는데, 이때 상기 워싱액은 상기 곡선유로(560)를 지나면서 상기 저항부(580)와 충돌하여 발생되는 저항에 의해, 상기 워싱액은 하방의 웨이스트챔버(510) 측으로 용이하게 더 잘 유도되어 흐를 수 있다. According to the present embodiment, a resistance portion (580) that generates resistance when the washing liquid flows is formed on the round inner surface where the inflow path (570) and the nucleic acid separation path (530) are connected to each other, that is, on the inner surface of the curved path (560). According to the present embodiment, the resistance portion (580) may be formed as a protrusion that protrudes like a sawtooth shape on the inner surface that is satisfied from the end of the curved path (560) toward the nucleic acid separation path (530). The protrusions may be formed at a predetermined interval. The washing liquid flows toward the nucleic acid separation path (530) that extends downward by gravity, and at this time, the washing liquid collides with the resistance portion (580) while passing through the curved path (560), so that the washing liquid can be more easily guided and flow toward the lower waste chamber (510).
또한, 본 실시예에 따르면, 도8에 도시된 바와 같이 상기 워싱액수집유로(520)의 폭(W2)은 상기 핵산분리유로(530)의 폭(W1)보다 넓게 형성된다. 상기 워싱액은 상기 유입유로(570)로 흘러들어와서 상기 곡선유로(560)을 지나고, 상기 곡선유로(560)의 단부에서 폭이 더 넓은 워싱액수집유로(520)로 측으로 더 원활하게 유동할 수 있다. 또한, 상기 워싱액수집유로(520)에는 상기 워싱액수집유로(520)의 폭보다 좁은 폭을 가지면서, 상기 워싱액수집유로(520)의 바닥보다 더 깊게 함몰되어 형성되는 워싱액유도유로(524)가 형성된다. 상기 워싱액유도유로(524)는 모세관현상에 의해 상기 워싱액이 곡선유로(560)의 단부에서 하방으로 웨이스트챔버(510) 측을 향하여 용이하게 흐르도록 한다.In addition, according to the present embodiment, as illustrated in FIG. 8, the width (W2) of the washing solution collection channel (520) is formed wider than the width (W1) of the nucleic acid separation channel (530). The washing solution flows into the inflow channel (570), passes through the curved channel (560), and can flow more smoothly toward the wider washing solution collection channel (520) at the end of the curved channel (560). In addition, a washing solution induction channel (524) is formed in the washing solution collection channel (520) that has a narrower width than the width of the washing solution collection channel (520) and is sunken deeper than the bottom of the washing solution collection channel (520). The above washing liquid induction path (524) allows the washing liquid to easily flow downward from the end of the curved path (560) toward the waste chamber (510) by capillary phenomenon.
상기 웨이스트챔버(510)는 상기 워싱액수집유로(520)의 단부에 마련되어 상기 워싱액이 채워지는 공간을 제공한다. 본 실시예에 따르면, 상기 워싱액은 상기 웨이스트챔버(510)의 하방에서 유입되어 웨이스트챔버(510)의 공간을 채운다. 본 실시예에 따르면, 도9에 도시된 바와 같이, 상기 웨이스트챔버(510)의 내측에는 바닥면으로부터 수직하게 돌출되는 지지리브(501)가 형성된다. 본 실시예에 따르면, 상기 지지리브(501)는 복수개 마련된다. 본 실시예에 따르면, 상기 바디부(10)의 일면 및 타면은 필림이 접착되어 밀봉된다. 상기 지지리브(501)는 상기 바디부(10)의 타면을 필림으로 밀봉할 때, 상기 필름의 표면이 상기 웨이스트챔버(510)의 공간 내부로 함몰되지 않도록 한다. 상기 필름이 상기 바디부(10)의 타면에 접착될 때, 상기 웨이스트챔버(510)의 공간으로 함몰되어 확보된 공간의 영역이 줄어들면 워싱액의 저장공간이 그만큼 감소하여 워싱액이 핵산과 함께 상기 핵산분리유로(530)를 통해 핵산과 함께 토출되는 문제를 야기할 수 있다. 따라서, 상기 지지리브(501)는 상기 웨이스트챔버(510)의 공간은 워싱액이 저장될 수 있는 공간을 확보할 수 있도록 한다. The above-described waste chamber (510) is provided at an end of the washing liquid collection path (520) to provide a space in which the washing liquid is filled. According to the present embodiment, the washing liquid flows in from the bottom of the waste chamber (510) and fills the space of the waste chamber (510). According to the present embodiment, as illustrated in FIG. 9, a support rib (501) that protrudes vertically from the bottom surface is formed on the inside of the waste chamber (510). According to the present embodiment, a plurality of the support ribs (501) are provided. According to the present embodiment, one side and the other side of the body part (10) are sealed by adhering a film. The support ribs (501) prevent the surface of the film from sinking into the space of the waste chamber (510) when sealing the other side of the body part (10) with the film. When the above film is adhered to the other surface of the body part (10), if the area of the space secured by sinking into the space of the waste chamber (510) is reduced, the storage space of the washing liquid is reduced accordingly, which may cause a problem in which the washing liquid is discharged together with the nucleic acid through the nucleic acid separation path (530). Therefore, the support rib (501) ensures that the space of the waste chamber (510) can secure a space in which the washing liquid can be stored.
본 실시예에 따르면, 상기 웨이스트챔버(510)의 상측에는 상기 워싱액이 채워져 상기 워싱액의 압력에 의해 더 이상 웨이스트챔버(510) 측으로 핵산이 유입되지 않도록 하는, 압력제공부(540)가 마련된다. 상기 압력제공부(540)는 상기 웨이스트챔버(510)의 상측에 형성되는 미세유로(550)를 포함한다. 상기 미세유로(550)의 폭은, 상기 유입유로(570), 곡선유로(560), 및 웨이스트수집유로(520), 핵산분리유로(530)보다 폭이 좁다. 상기 미세유로(550) 상에는 복수의 미세공간부(541)을 포함한다. According to the present embodiment, a pressure-providing portion (540) is provided on the upper side of the waste chamber (510) so that the washing liquid is filled and the nucleic acid is no longer introduced into the waste chamber (510) by the pressure of the washing liquid. The pressure-providing portion (540) includes a microchannel (550) formed on the upper side of the waste chamber (510). The width of the microchannel (550) is narrower than that of the inflow channel (570), the curved channel (560), the waste collection channel (520), and the nucleic acid separation channel (530). A plurality of micro-spaces (541) are included on the microchannel (550).
상기 웨이스트챔버(510)에 워싱액이 채워지면, 상기 미세유로(550) 및 미세공간부(541)에 의해 상기 웨이스트챔버(510)의 내부 압력이 증가한다. 상기 미세유로(550) 및 미세공간부(541)에는 워싱액이 일부 침투할 수 있다. 상기 미세공간부(541)는 상기 웨이스트챔버(510)와 연결되는 상기 미세유로(550)의 부분에서 충분한 압력이 걸리지 않는 경우를 대비한 것으로, 상기 웨이스트챔버(510) 인근의 미세유로(550)를 통하여 워싱액이 침투하더라도, 나머지 미세유로(550) 및 미세공간부(541)에 의해 재차 압력이 걸리도록 한다. When the washing liquid is filled in the waste chamber (510), the internal pressure of the waste chamber (510) increases by the microchannel (550) and the microspace (541). Some of the washing liquid may penetrate into the microchannel (550) and the microspace (541). The microspace (541) is provided in case sufficient pressure is not applied to a portion of the microchannel (550) connected to the waste chamber (510), and even if the washing liquid penetrates through the microchannel (550) near the waste chamber (510), pressure is applied again by the remaining microchannel (550) and the microspace (541).
또한, 상기 미세유로(550) 및 미세공간부(541)는 상기 웨이스트챔버(510)의 압력이 급격하게 증가하는 것을 방지한다. 상기 압력제공부(540)에 의해 압력이 증가하면 워싱액이 더 이상 상기 웨이스트챔버(510) 측으로 유체의 이송이 억제되므로, 그 반발력에 의해 후속하여 유입유로(570)를 통해 유입되는 핵산이 핵산분리유로(530)를 통해 상측으로 유동할 수 있도록 한다. 이러한 과정에 의해, 상기 흡수챔버(200)의 흡수제를 워싱한 워싱액을 웨이스트챔버(510)에 수집하여 분리하고, 핵산만이 핵산분리유로(530)를 통해 상기 핵산챔버(300)로 이동할 수 있도록 한다.In addition, the microchannel (550) and microspace (541) prevent the pressure of the waste chamber (510) from increasing rapidly. When the pressure increases by the pressure providing unit (540), the washing liquid is no longer transported toward the waste chamber (510), so that the nucleic acid subsequently introduced through the inflow channel (570) can flow upward through the nucleic acid separation channel (530) due to the repulsive force. Through this process, the washing liquid that washes away the absorbent of the absorption chamber (200) is collected and separated in the waste chamber (510), and only the nucleic acid can move to the nucleic acid chamber (300) through the nucleic acid separation channel (530).
한편, 본 발명의 다른 측면에 따르면, 상기 양면칩(1000)이 카트리지(2000) 형태로 제작되어 제공될 수 있다. Meanwhile, according to another aspect of the present invention, the double-sided chip (1000) may be manufactured and provided in the form of a cartridge (2000).
도11 및 도12에 도시된 바와 같이, 본 실시예에 따른 카트리지(2000)는, 바디부(10)와, 바디부(10)의 일측 및 타측에 각각 결합되는 전면커버(2100) 및 후면커버(2200)를 포함한다. 상기 바디부(100)는 상기 전면커버(2100)와 상기 후면커버(2200) 사이에 배치되며, 시료가 흡수챔버(200)를 통과하면서 상기 시료로부터 핵산을 분리해 낸다. As illustrated in FIGS. 11 and 12, a cartridge (2000) according to the present embodiment includes a body portion (10), a front cover (2100) and a rear cover (2200) which are respectively coupled to one side and the other side of the body portion (10). The body portion (100) is positioned between the front cover (2100) and the rear cover (2200), and separates nucleic acids from a sample as the sample passes through the absorption chamber (200).
상기 바디부(10)는, 소정의 두께를 갖는 판상형으로 이루어지고, 투입챔버(100), 흡수챔버(200), 핵산챔버(300), 워싱액저장챔버(400), 및 웨이스트수집 및 핵산분리 챔버(500)를 포함한다. 상기 바디부(10)의 형성되는 각 챔버에 대하여는 상술한 바 반복적인 설명은 생략한다. The above body part (10) is formed in a plate shape with a predetermined thickness and includes an injection chamber (100), an absorption chamber (200), a nucleic acid chamber (300), a washing liquid storage chamber (400), and a waste collection and nucleic acid separation chamber (500). A repetitive description of each chamber formed in the body part (10) is omitted as described above.
상기 바디부(10)에는 투입챔버(100)로부터 핵산챔버(300)로 시료가 이송될 수 있도록, 상기 바디부(10)의 표면에 형성되는 유로 이외에 튜브형 유로(700)를 더 포함한다. 본 실시예에 따르면, 상기 튜브형 유로(700)를 개폐하는 밸브(600)가 마련된다. 도12에 도시된 바와 같이, 상기 튜브형 유로(700)는, 상기 바디부(10)에 마련되는 튜브유로연결부(13)에 양단이 각각 삽입되어 체결된다. The body part (10) further includes a tubular flow path (700) in addition to the flow path formed on the surface of the body part (10) so that a sample can be transferred from the injection chamber (100) to the nucleic acid chamber (300). According to the present embodiment, a valve (600) for opening and closing the tubular flow path (700) is provided. As illustrated in FIG. 12, the tubular flow path (700) is connected by having both ends inserted into the tube flow path connecting portion (13) provided in the body part (10).
상기 튜브형 유로(700)는, 상기 투입챔버(100)와 상기 워싱액저장챔버(400) 사이에 마련되는 제1 튜브유로와, 상기 워싱액저장챔버(400)와 상기 흡수챔버(200) 사이에 마련되는 제2 튜브유로와, 상기 흡수챔버(200)와 상기 웨이스트 웨이스트 수집 및 핵산분리 챔버(500) 사이에 마련되는 제3 튜브유로를 포함한다. 그리고, 본 실시예에 따르면, 상기 밸브(600)는 상기 제1,2,3 튜브유로를 동시에 개방하거나 폐쇄한다. The above-described tube-shaped path (700) includes a first tube path provided between the injection chamber (100) and the washing liquid storage chamber (400), a second tube path provided between the washing liquid storage chamber (400) and the absorption chamber (200), and a third tube path provided between the absorption chamber (200) and the waste waste collection and nucleic acid separation chamber (500). In addition, according to the present embodiment, the valve (600) simultaneously opens or closes the first, second, and third tube paths.
도14 및 도15에 도시된 바와 같이, 상기 밸브(600)는 상기 바디부(10)에 상하 방향으로 이동 가능하게 결합된다. 도14(c)에 도시된 바와 같이, 상기 밸브(600)가 제1 위치에 있을 때, 상기 밸브(600)에 형성되는 가압리브(610)가 상기 튜브형 유로(700)를 눌러서 유로가 폐쇄된 상태를 유지한다. 즉, 튜브형 유로(700)는 밸브(600)가 제1 위치에서 도14(a) 및 도14(b)와 같이 눌려 있는 상태에 있다. 그리고, 도15와 같이, 상기 밸브(600)가 상기 제1 위치보다 높은 제2 위치로 이동하면, 상기 튜브형 유로(700)를 누르던 상기 가압리브(610)가 상방으로 이동하면서 튜브형 유로(700)가 개방되어 시료가 일방향으로 흘러갈 수 있는 상태가 된다. As shown in FIGS. 14 and 15, the valve (600) is coupled to the body part (10) so as to be movable in the vertical direction. As shown in FIG. 14(c), when the valve (600) is in the first position, the pressure rib (610) formed in the valve (600) presses the tubular flow path (700) to maintain the flow path in a closed state. That is, the tubular flow path (700) is in a state in which the valve (600) is pressed in the first position as shown in FIGS. 14(a) and 14(b). Then, as shown in FIG. 15, when the valve (600) moves to a second position higher than the first position, the pressure rib (610) pressing the tubular flow path (700) moves upward, opening the tubular flow path (700) so that the sample can flow in one direction.
상기 바디부(10)의 일측에 결합되는 후면커버(2200)에는 홈부가 형성되고, 상기 홈부의 상측에는 상기 밸브(600)가 상방으로 이동하는 가압력을 전달하도록, 상기 밸브를 노출시키는 밸브노출공(2210)이 형성된다. 도16에 도시된 바와 같이, 핵산추출장치(3000)에 카트리지(2000)를 삽입하고 핵산의 추출 동작을 수행하면, 상기 핵산추출장치(3000)에 마련되는 가압력전달수단(3600)은 상기 밸브노출공(2210)을 통해 상기 밸브(600)를 상방으로 이동시키는 힘을 전달한다. 상기 밸브(600)는 상기 가압력에 의해 상방으로 이동하면서 튜브형 유로(700)가 개방된다.A groove is formed in a rear cover (2200) coupled to one side of the body portion (10), and a valve exposure hole (2210) is formed on an upper side of the groove to expose the valve (600) so as to transmit a pressing force to move the valve upward. As illustrated in FIG. 16, when a cartridge (2000) is inserted into a nucleic acid extraction device (3000) and a nucleic acid extraction operation is performed, a pressing force transmission means (3600) provided in the nucleic acid extraction device (3000) transmits a force to move the valve (600) upward through the valve exposure hole (2210). As the valve (600) moves upward by the pressing force, the tubular flow path (700) is opened.
또한, 상기 바디부(10)의 상측에는 상기 투입챔버(100)의 투입구(101)를 개폐하는 캡(2300)이 결합된다. 도17에 도시된 바와 같이, 상기 갭(2300)은 상기 바디부(10)의 상면에 슬라이딩 가능하게 결합된다. 상기 캡(2300)은, 상기 바디부(10)에 형성된 슬라이딩홈(14)에 삽입되어 가이드되는 가이드돌기(2370)와, 상기 투입구(101)를 폐쇄한 위치에서 상기 투입구(101)의 가장자리를 실링하는 실링부재(2330)를 포함한다. In addition, a cap (2300) for opening and closing the injection port (101) of the injection chamber (100) is coupled to the upper side of the body part (10). As illustrated in FIG. 17, the gap (2300) is slidably coupled to the upper surface of the body part (10). The cap (2300) includes a guide projection (2370) that is inserted into and guided by a sliding groove (14) formed in the body part (10), and a sealing member (2330) that seals the edge of the injection port (101) at a position where the injection port (101) is closed.
도17 및 도18에 도시된 바와 같이, 상기 캡(2300)에는 길이 방향으로 서로 마주하여 연장되는 절개홈(2310)이 형성된다. 상기 절개홈(2310)에는 걸림부(2320)가 돌출 형성된다. 상기 바디부(10)의 상면에는 폭 방향으로 돌기부(15)가 형성되는데, 상기 캡(2300)이 상기 투입구(101)를 폐쇄하기 위해서 슬라이딩될 때, 상기 절개홈(2310)은 탄성 변형되면서 상기 걸림부(2320)가 상기 돌기부(15)를 지나갈 수 있다. 상기 캡(2320)이 상기 투입부(101)의 상측으로 이동하면 상기 캡(2300)의 저면에 결합되는 오링과 같은 실링부재(2330)가 상기 투입구(101)의 가장자리에 배치되면서 투입구(101)를 실링하고, 상기 돌기부(15)는 상기 걸림부(2320)에 의해 걸려 있는 상태를 유지하면서 상기 캡(2300)이 상기 투입구(101)를 폐쇄하게 된다. As shown in FIGS. 17 and 18, the cap (2300) is formed with a cut groove (2310) that faces each other and extends in the longitudinal direction. A catch (2320) is formed protrudingly in the cut groove (2310). A protrusion (15) is formed in the width direction on the upper surface of the body (10), and when the cap (2300) is slid to close the inlet (101), the cut groove (2310) is elastically deformed so that the catch (2320) can pass over the protrusion (15). When the cap (2320) moves to the upper side of the inlet (101), a sealing member (2330) such as an O-ring that is coupled to the lower surface of the cap (2300) is placed on the edge of the inlet (101) to seal the inlet (101), and the protrusion (15) is maintained in a state of being caught by the catch (2320) so that the cap (2300) closes the inlet (101).
도18에 도시된 바와 같이, 상기 캡(2300)은 손잡이(2340), 상기 가이드돌기(2370)이 형성되는 가이드편(2360), 그리고 상기 캡(2300)의 슬라이딩 범위를 규제하는 위치제어돌기(2350)을 포함한다. 도19에 도시된 바와 같이, 상기 가이드편(2360)은 상기 캡(2300)의 양단부에서 하방으로 연장되어 상기 바디부(10)의 상측에 결합되고, 상기 가이드편(2360)의 내측으로 형성되는 가이드돌기(2370)는 상기 바디부(10)의 슬라이딩홈(14)에 삽입된다. 상기 위치제어돌기(2350)는 상기 캡(2300)의 상면에 길이 방향으로 형성되어서, 그 단부가 상기 전면커버(2100) 또는 후면커버(2200)과 접촉되어 상기 캡(2300)의 이동 범위를 제한할 수 있다.As illustrated in FIG. 18, the cap (2300) includes a handle (2340), a guide piece (2360) on which the guide projection (2370) is formed, and a position control projection (2350) that regulates the sliding range of the cap (2300). As illustrated in FIG. 19, the guide piece (2360) extends downward from both ends of the cap (2300) and is coupled to the upper side of the body part (10), and the guide projection (2370) formed on the inner side of the guide piece (2360) is inserted into the sliding groove (14) of the body part (10). The position control projection (2350) is formed in the longitudinal direction on the upper surface of the cap (2300) so that its end can come into contact with the front cover (2100) or the rear cover (2200) to limit the movement range of the cap (2300).
한편, 본 발명의 다른 측면에 따르면, 상기 카트리지를 수용하여 핵산을 추출하는 핵산추출장치(3000)가 제안된다. 상기 추출장치(3000)는 상술한 양면칩을 포함하는 카트리지(2000)와, 상기 카트리지(2000)가 장착되는 장착부(3100)을 포함한다. 상기 카트리지(2000)의 구성은 상술하였으므로, 반복적인 설명은 생략한다. Meanwhile, according to another aspect of the present invention, a nucleic acid extraction device (3000) that receives the cartridge and extracts nucleic acids is proposed. The extraction device (3000) includes a cartridge (2000) including the double-sided chip described above, and a mounting portion (3100) on which the cartridge (2000) is mounted. Since the configuration of the cartridge (2000) has been described above, a repetitive description will be omitted.
상기 장착부(3100)는 상기 카트리지(2000)가 삽입되어 장착되는 삽입부(3200), 상기 삽입부(3200)를 개폐하는 도어(3300), 핵산추출장치(3000)를 제어하는 셀렉트바(3400), 및 상기 핵산추출장치(3000)의 동작여부 등을 외부에 표시하는 표시부(3500)을 포함할 수 있다. The above-mentioned mounting portion (3100) may include an insertion portion (3200) into which the cartridge (2000) is inserted and mounted, a door (3300) for opening and closing the insertion portion (3200), a select bar (3400) for controlling the nucleic acid extraction device (3000), and a display portion (3500) for externally displaying whether the nucleic acid extraction device (3000) is operating.
도20에 도시된 바와 같이, 본 실시예에 따르면, 상기 삽입부(3200)에는 2개의 카트리지(2000)가 삽입될 수 있도록 마련된다. 물론, 카트리지(2000)의 수용개수는 이에 한정되는 것은 아니다. As shown in Fig. 20, according to the present embodiment, the insertion portion (3200) is provided so that two cartridges (2000) can be inserted. Of course, the number of cartridges (2000) that can be accommodated is not limited thereto.
상기 셀렉트바(3400)는 핵산추출장치(3000)의 온/오프 동작 및 동작 시간 등의 선택을 가능하도록 구현될 수 있다. 상기 표시부(3500)는 상기 장착부((3100)의 상면에 마련되어 핵산추출장치(3000)의 동작 진행 상태 등을 시각적으로 확인할 수 있다. 본 실시예에 따르면, 상기 셀렉트바(3400)은 노브 타입으로 마련되고, 셀렉트바(3400)를 회전시켜서 소정의 조건으로 프로그램밍된 핵산추출장치(3000)를 작동시킬 수 있다.The above select bar (3400) can be implemented to enable selection of the on/off operation and operation time of the nucleic acid extraction device (3000). The display unit (3500) is provided on the upper surface of the mounting unit (3100) to visually check the operation progress status of the nucleic acid extraction device (3000). According to the present embodiment, the select bar (3400) is provided in a knob type, and the nucleic acid extraction device (3000) programmed under predetermined conditions can be operated by rotating the select bar (3400).
도21에 도시된 바와 같이, 상기 장착부(3100)에는 카트리지(2000)로 에어를 공급하기 위한 펌프연결부(3700)가 구비된다. 상기 카트리지(2000)의 바디부(10)에는 에어펌프의 에어압을 전달받기 위한 도킹부(11)가 마련되고, 상기 전면커버(2100)와 후면커버(2200)가 서로 결합되면서 하측에 상기 도킹부(11)를 노출시키는 도킹홀(2230)이 마련된다. 상기 카트리지(200)가 상기 삽입부(3200)에 삽입되어 장착되면, 도21에 도시된 바와 같이 상기 펌프연결부(3700)의 상부는 상기 도킹부(11)에 삽입되고, 하부로는 펌프가 연결된다. As illustrated in FIG. 21, the mounting portion (3100) is provided with a pump connection portion (3700) for supplying air to the cartridge (2000). A docking portion (11) for receiving air pressure from an air pump is provided in the body portion (10) of the cartridge (2000), and a docking hole (2230) is provided to expose the docking portion (11) at the lower side when the front cover (2100) and the rear cover (2200) are coupled to each other. When the cartridge (200) is inserted into the insertion portion (3200) and mounted, as illustrated in FIG. 21, the upper portion of the pump connection portion (3700) is inserted into the docking portion (11), and a pump is connected to the lower portion.
이하, 상기 구성에 따른 PCR 검사를 위한 핵산 추출용 양면칩의 작용 내지 효과를 실험결과에 근거하여 설명한다. Below, the function and effect of the double-sided chip for nucleic acid extraction for PCR testing according to the above configuration are explained based on experimental results.
본 발명은 핵산을 추출하기 위한 핵산추출용 양면칩(1000), 카트리지(2000), 및 핵산추출장치(3000)에 관한 것으로, 종래 column 방식이나 Magnetic bead를 이용하여 핵산을 포잡하여 농축하고, 비드로부터 핵산을 다시 추출하던 개념에서, 흡수챔버(200) 내의 흡수제(레진 형태)을 이용하여 억제물질을 제거하는 방식으로 핵산 추출 과정을 더욱 심플하게 개선하여 핵산 추출 과정을 획기적으로 신속하고 간소화시킨다. 그리고, 압력의 차이를 이용하여 웨이스트수집 및 핵산분리 챔버(500)에서 버퍼(워싱액)와 핵산을 자동으로 분리할 수 있다. The present invention relates to a double-sided chip (1000), a cartridge (2000), and a nucleic acid extraction device (3000) for extracting nucleic acids. The present invention improves the nucleic acid extraction process to be simpler by removing inhibitory substances using an absorbent (resin type) in an absorption chamber (200) rather than the conventional concept of capturing and concentrating nucleic acids using a column method or magnetic beads and then extracting nucleic acids again from the beads, thereby dramatically speeding up and simplifying the nucleic acid extraction process. In addition, the nucleic acids can be automatically separated from a buffer (washing solution) in a waste collection and nucleic acid separation chamber (500) by using the difference in pressure.
- 양면칩에서의 시료의 유동- Flow of sample in double-sided chips
투입챔버(100)에 시료가 투입된 후, 카트리지(2000)를 핵산추출장치(3000)에 장착하여 핵산 추출 과정이 수행시킨다. 핵산추출장치(3000)에 연결되는 펌프로부터 상기 카트리지(2000)의 도킹부(11)를 통해 상기 투입챔버(100)의 내부로 에어가 공급된다. After a sample is introduced into the injection chamber (100), the cartridge (2000) is mounted on the nucleic acid extraction device (3000) to perform the nucleic acid extraction process. Air is supplied into the interior of the injection chamber (100) through the docking portion (11) of the cartridge (2000) from a pump connected to the nucleic acid extraction device (3000).
도5 및 도6에 도시된 바와 같이, 에어는 0번으로 공급되어 1으로 나와서 2번으로 유동한다. 상기 2번은 3번과 연통된다. 2번으로 유동한 에어는 그 반대면의 3번으로 이동한다. 에어는 3번에서 4번으로 이동하고, 4번과 연통되는 5번을 통해 다시 반대면으로 이동하고, 6번까지 상승한 후 투입챔버(100)로 공급된다. 상기 투입챔버(100)에 수용되는 시료는 에어압에 의해 7번으로 토출된다. 시료는 8번까지 이동하고, 반대편의 9번으로 나오며, 튜브형 유로를 따라 9번에서 10번으로 이동한다. 10번으로 유입된 시료가 반대편의 11번으로 나오면서 워싱액저장챔버(400)로 유입되어 흐른다. 이때 상기 워싱액저장챔버(400)에 저장된 워싱액이 시료의 이동 압력에 의해 12번으로 이동하고, 반대편의 13번으로 토출된다. 상기 13번과 14번은 튜브형 유로에 의해 연결된다. 14번을 통과한 워싱액은 다시 반대면의 15번으로 유입되어 흡수챔버(200)를 통과하면서 제1,2,3 흡수챔버(210,220,230) 내에 포함된 레진을 워싱한다. 흡수챔버(200)를 통과한 워싱액은 16번으로 토출되고, 17 및 18번을 거친다. 이어서, 워싱액은 19번 및 20번을 지나서 21번으로 유입된다. 이때 17번 및 18번은 튜브형 유로에 의해 연결된다. As shown in FIGS. 5 and 6, air is supplied to 0, comes out to 1, and flows to 2. 2 is connected to 3. The air flowing to 2 moves to 3 on the opposite side. The air moves from 3 to 4, moves to the opposite side again through 5, which is connected to 4, and rises to 6, and then is supplied to the injection chamber (100). The sample received in the injection chamber (100) is discharged to 7 by air pressure. The sample moves to 8, comes out to 9 on the opposite side, and moves from 9 to 10 along the tube-shaped path. The sample introduced to 10 comes out to 11 on the opposite side, flows into the washing liquid storage chamber (400), and then flows. At this time, the washing liquid stored in the washing liquid storage chamber (400) moves to No. 12 due to the movement pressure of the sample and is discharged to No. 13 on the opposite side. Nos. 13 and 14 are connected by a tube-shaped path. The washing liquid passing through No. 14 flows again into No. 15 on the opposite side and washes the resin contained in the first, second, and third absorption chambers (210, 220, 230) while passing through the absorption chamber (200). The washing liquid passing through the absorption chamber (200) is discharged to No. 16 and passes through Nos. 17 and 18. Then, the washing liquid passes through Nos. 19 and 20 and flows into No. 21. At this time, Nos. 17 and 18 are connected by a tube-shaped path.
21번으로 유입된 워싱액이 하방으로 흐르면서 웨이스트수집 및 핵산분리 챔버(500)로 유입된다. 워싱액은 상술한 바와 같이 워싱액수집유로(520)를 통해 하방으로 먼저 흐르면서 웨이스트챔버(510)를 채우고, 웨이스트챔버(510)에 워싱액이 채워지면 22번의 좁은 미세유로(550)에 의해 압이 걸리면서 상기 워싱액에 이어 흘러가는 핵산(흡수챔버(200)에서 저해제가 흡착되고 흡수챔버(200)에서 토출되는 핵산)은 23번 측으로 흐르게 된다. 상기 23번으로 토출된 핵산은 반대편의 24번으로 나와서 25번을 통해 핵산챔버(300)로 유입되어 추출된다. 사용자는 26번을 통해 추출된 핵산을 파이펫(330) 등을 이용하여 포집할 수 있다. The washing liquid introduced into No. 21 flows downward and enters the waste collection and nucleic acid separation chamber (500). As described above, the washing liquid first flows downward through the washing liquid collection channel (520) to fill the waste chamber (510), and when the waste chamber (510) is filled with the washing liquid, the nucleic acid (nucleic acid to which the inhibitor is adsorbed in the absorption chamber (200) and which is discharged from the absorption chamber (200)) flowing following the washing liquid flows toward No. 23 as pressure is applied by the narrow microchannel (550) of No. 22. The nucleic acid discharged through No. 23 exits through No. 24 on the opposite side and flows into the nucleic acid chamber (300) through No. 25 to be extracted. The user can capture the nucleic acid extracted through No. 26 using a pipette (330), etc.
- 흡수챔버의 작용 및 효과에 대한 실험적 검증 - Experimental verification of the function and effectiveness of the absorption chamber
시료에 저해제(Inhibitor)가 포함되지 않은 경우, 핵산을 극성을 갖는 레진(수지)층을 통과시킨 후 PCR을 수행한 결과, 종래 용해버퍼를 이용하여 마련된 Direct Lysis Buffer(DLB)을 PCR 수행하는 경우와 적어도 하나의 흡수제(제1,2,3 챔버 중 적어도 하나만을 포함하는 흡수챔버를 구성할 수 있음)을 통과시킨 후 PCR을 수행하는 경우에 특정 염기 서열 검출을 위한 PCR 사이클의 반복횟수에 대한 영향이 미비함을 확인하였다. 상기 PCR 사이클이라 함은, 다음의 3단계를 1사이클로 정의하도록 한다. 상기 3단계는, 1) 이중 가닥의 DNA를 포함하는 샘플 용액을 특정 온도, 예를 들어 약 95℃로 가열하여 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 2) 상기 변성 단계 이후 샘플 용액에 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 단일 가닥의 DNA의 특정 염기 서열에 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 3) 상기 어닐링 단계 이후 샘플 용액을 DNA 중합효소의 활성온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장(또는 증폭) 단계(extension step)를 의미한다. PCR은 특정 염기 서열의 검출이 가능할 정도로, 상기 3단계를 수차례 반복하여 특정 염기 서열을 갖는 타겟 핵산을 기하급수적으로 증폭한다. 아래 표1에서 CT값이 29.56이라고 함은 상기 반복횟수가 평균 29.56임을 의미한다. 이러한 실험결과로부터, 핵산은 약한 음극을 띠고 있으나, 음이온교환수지, 킬레이트수자, 양이온교환수지를 각각 통과시켜 PCR을 수행한 경우 및 이들 흡수제를 3단으로 구성하여 3단 챔버를 통과시킨 경우에 있어서, 특정 유전자의 검출이 가능하도록 하는 PCR 사이클의 반복 횟수가 종래와 차이가 미비하여, 핵산이 상기 수지층에 의해 영향을 받지 않는 것을 확인하였다. When the sample does not contain an inhibitor, and the nucleic acid is passed through a polar resin layer and then PCR is performed, it was confirmed that the effect on the number of PCR cycles for detecting a specific base sequence is minimal when performing PCR using Direct Lysis Buffer (DLB) prepared using a conventional lysis buffer and when performing PCR after passing through at least one absorbent (an absorption chamber including at least one of the first, second, and third chambers can be configured). The above PCR cycle is defined as the following three steps as one cycle. The above three steps mean: 1) a denaturing step of heating a sample solution containing double-stranded DNA to a specific temperature, for example, about 95°C, to separate the double-stranded DNA into single-stranded DNA; 2) an annealing step of providing an oligonucleotide primer having a sequence complementary to a specific base sequence to be amplified in the sample solution after the denaturing step, and cooling the solution together with the separated single-stranded DNA to a specific temperature, for example, 55°C, to bind the primer to the specific base sequence of the single-stranded DNA to form a partial DNA-primer complex; and 3) an extension (or amplification) step of forming double-stranded DNA based on the primer of the partial DNA-primer complex by maintaining the sample solution at an active temperature of DNA polymerase, for example, 72°C, after the annealing step, by DNA polymerase. PCR exponentially amplifies target nucleic acids having a specific base sequence by repeating the above three steps several times to the extent that the detection of a specific base sequence is possible. In Table 1 below, the CT value of 29.56 means that the average number of repetitions is 29.56. From these experimental results, it was confirmed that although the nucleic acid has a weak cathode, when PCR was performed by passing it through an anion exchange resin, a chelating resin, and a cation exchange resin respectively, and when these absorbents were configured in three stages and passed through a three-stage chamber, the number of repetitions of the PCR cycle that enables the detection of a specific gene was only slightly different from the prior art, and thus the nucleic acid was not affected by the resin layer.
그리고, 시료에 저해제가 포함되어 있는 경우, 아래 표2에 도시된 바와 같이, 종래 용해버퍼를 이용하여 준비된 시료는 저해제가 포함되어 있으므로 PCR을 위한 상기 3단계를 수행하여도 저해제로 인하여 특정 염기 서열의 증폭이 이루어지 않았다. 그러나, 표2에 보듯이 상기 시료를 음이온교환수지, 킬레이트수지, 및 양이온교환수지를 통과시킨 후 PCR을 위한 3단계를 반복 수행한 결과, 특정 염기 서열이 검출 가능한 수준으로 증폭되는 것으로 확인하였다. 특히, 상측에서 하측으로 음이온교환수지, 킬레이트수지, 및 양이온교환수지를 포함하는 레진층으로 흡수챔버를 3단 챔버로 구성한 경우에 특정 염기 서열 검출을 위한 PCR 사이클 반복 횟수가 가장 짧은 것으로 확인하였다. 즉, 3단 수지층을 순차적으로 통과하도록 흡수챔버를 구성한 경우에 신속하여 특정 염기 서열의 증폭이 완료될 수 있다. And, when the sample contains an inhibitor, as shown in Table 2 below, the sample prepared using the conventional dissolution buffer contained an inhibitor, so even if the above three steps for PCR were performed, the amplification of a specific base sequence was not achieved due to the inhibitor. However, as shown in Table 2, when the sample was passed through an anion exchange resin, a chelating resin, and a cation exchange resin and the three steps for PCR were repeated, it was confirmed that a specific base sequence was amplified to a detectable level. In particular, when the absorption chamber was configured as a three-stage chamber with resin layers including an anion exchange resin, a chelating resin, and a cation exchange resin from the upper side to the lower side, it was confirmed that the number of PCR cycle repetitions for detecting a specific base sequence was the shortest. That is, when the absorption chamber is configured to sequentially pass through the three-stage resin layers, the amplification of a specific base sequence can be completed quickly.
본 실시예에 따르면, 상기 흡수챔버(200)는, 음극을 띠는 음이온교환수지, 킬레이트수지, 양극을 띠는 양이온교환수지를 포함하는 제1,2,3 흡수챔버(210,220,230)가 순차적으로 배치된다. 다른 실시예에 있어서, 상기 흡수챔버(200)는 상기 제1,2,3 흡수챔버(210,220,230) 중 적어도 하나를 선택하여 이루어질 수 있다. 즉, 적어도 하나, 두 개 또는 세 개의 층의 조합으로 이루어질 수 있다. According to the present embodiment, the absorption chamber (200) is sequentially arranged with first, second, and third absorption chambers (210, 220, 230) including a cathode-bearing anion exchange resin, a chelate resin, and a cathode-bearing cation exchange resin. In another embodiment, the absorption chamber (200) may be formed by selecting at least one of the first, second, and third absorption chambers (210, 220, 230). That is, the absorption chamber may be formed by a combination of at least one, two, or three layers.
본 발명 실시예에 따르면, 제1,2,3 흡수챔버(210,220,230)에 포함된 구형 레진 입자로 이루어지는 상기 음이온교환수지, 상기 킬리이트수지, 및 상기 양이온교환수지의 부피비율은 실질적으로 1:1:1로 이루어진다. 또한, 상기 시료가 흡수챔버의 내부를 관통하는 유속은 15㎕/sec 이하로 조절된다. 상기 시료가 흡수챔버의 내부를 관통하는 유속이 15㎕/sec 이하로 조절되어, 흡수챔버의 하부로 토출되는 핵산의 유량이 초당 15㎕ 이하로 조절되고, 시료가 제1,2,3 흡수챔버(210,220,230)를 지나면서 구형 입자의 흡수제에 저해재가 충분히 흡수될 수 있도록 한다. 핵산의 토출 유량이 초당 15㎕ 초과하는 경우, 시료의 이동 속도가 빨라져 저해제가 충분히 흡수되지 못한다. According to an embodiment of the present invention, the volume ratio of the anion exchange resin, the chelate resin, and the cation exchange resin formed of spherical resin particles included in the first, second, and third absorption chambers (210, 220, and 230) is substantially 1:1:1. In addition, the flow rate of the sample penetrating the inside of the absorption chamber is adjusted to 15 μl/sec or less. Since the flow rate of the sample penetrating the inside of the absorption chamber is adjusted to 15 μl/sec or less, the flow rate of nucleic acid discharged to the lower part of the absorption chamber is adjusted to 15 μl per second or less, and the inhibitor can be sufficiently absorbed into the absorbent of the spherical particles while the sample passes through the first, second, and third absorption chambers (210, 220, and 230). When the flow rate of the nucleic acid discharged exceeds 15 μl per second, the movement speed of the sample becomes fast, so that the inhibitor cannot be sufficiently absorbed.
본 발명 실시예에 따르면, 핵산챔버(300)에 수집되는 핵산의 양은 투입챔버(100)에 투입된 핵산의 양과 실질적으로 동일하게 확보될 수 있다. 예컨대, 상기 생물학적 시료가 500㎕가 주입되면, 시료에 포함된 저해제가 제거되고 실질적으로 흡수챔버(200)의 하부로 토출되는 유량은 거의 500㎕로 유지되며, 그 내부에는 저해제가 제거되고 핵산만이 포함된 상태로 획득된다. 이는 핵산만이 포함된 시료의 확보 유량을 종래보다 월등히 향상시킨다. According to an embodiment of the present invention, the amount of nucleic acid collected in the nucleic acid chamber (300) can be secured substantially the same as the amount of nucleic acid injected into the injection chamber (100). For example, when 500 μl of the biological sample is injected, the inhibitor contained in the sample is removed and the flow rate substantially discharged to the lower part of the absorption chamber (200) is maintained at approximately 500 μl, and the inside is obtained in a state where the inhibitor is removed and only the nucleic acid is contained. This significantly improves the secured flow rate of the sample containing only the nucleic acid compared to the prior art.
이처럼 본 발명 실시예에 따른, PCR 검사를 위한 핵산 추출용 양면칩, 이를 포함하는 카트리지, 및 핵산추출장치는, 추가적인 장비를 사용하지 않고 단일한 칩 내에서 생물학적 시료를 이동시키면서, 상기 생물학적 시료로부터 이물질을 효과적으로 제거하고, 핵산과 버퍼를 용이하게 분리하여, 핵산을 신속하고 용이하게 추출해 낼 수 있는 효과를 제공한다. 또한, 본 발명은 핵산 분리를 위해서 원심분리기 등과 같은 추가적인 장비의 사용을 배제함으로써 현장으로의 휴대 및 이동이 간편하고, 사용자의 편리성을 향상시킬 수 있다. In this way, the double-sided chip for nucleic acid extraction for PCR testing, the cartridge including the same, and the nucleic acid extraction device according to the embodiment of the present invention effectively remove foreign substances from the biological sample while moving the biological sample within a single chip without using additional equipment, and easily separate the nucleic acid and buffer, thereby providing the effect of quickly and easily extracting the nucleic acid. In addition, the present invention excludes the use of additional equipment such as a centrifuge for nucleic acid separation, so that it is easy to carry and move to the site, and can improve the convenience of the user.
이상, 본 발명을 바람직한 실시예들을 들어 상세하게 설명하였으나, 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다.Above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications can be provided within a scope that does not depart from the scope of the present invention.
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20230095489 | 2023-07-21 | ||
KR10-2023-0095489 | 2023-07-21 | ||
KR10-2024-0095534 | 2024-07-19 | ||
KR1020240095534A KR20250015979A (en) | 2023-07-21 | 2024-07-19 | Double-sided chip for extracting nucleic acids for PCR test from biological samples |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025023649A1 true WO2025023649A1 (en) | 2025-01-30 |
Family
ID=94375640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/010464 WO2025023649A1 (en) | 2023-07-21 | 2024-07-19 | Double-sided chip for nucleic acid extraction for pcr test, cartridge comprising same, and nucleic acid extraction device using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025023649A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020019060A1 (en) * | 1999-05-28 | 2002-02-14 | Cepheid | Device for analyzing a fluid sample |
US20130302787A1 (en) * | 2012-05-08 | 2013-11-14 | Northwestern University | Cartridge for use in an automated system for isolating an analyte from a sample, and methods of use |
JP2016507237A (en) * | 2013-02-11 | 2016-03-10 | エピスタム リミテッド | Sample preparation paper cartridge |
KR102177634B1 (en) * | 2018-02-05 | 2020-11-11 | 주식회사 진시스템 | A preprocessing kit for molecular diagnosis |
KR20220002071A (en) * | 2020-06-30 | 2022-01-06 | 삼성전자주식회사 | Microfluidic chip, apparatus and method for detecting biomolecule |
-
2024
- 2024-07-19 WO PCT/KR2024/010464 patent/WO2025023649A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020019060A1 (en) * | 1999-05-28 | 2002-02-14 | Cepheid | Device for analyzing a fluid sample |
US20130302787A1 (en) * | 2012-05-08 | 2013-11-14 | Northwestern University | Cartridge for use in an automated system for isolating an analyte from a sample, and methods of use |
JP2016507237A (en) * | 2013-02-11 | 2016-03-10 | エピスタム リミテッド | Sample preparation paper cartridge |
KR102177634B1 (en) * | 2018-02-05 | 2020-11-11 | 주식회사 진시스템 | A preprocessing kit for molecular diagnosis |
KR20220002071A (en) * | 2020-06-30 | 2022-01-06 | 삼성전자주식회사 | Microfluidic chip, apparatus and method for detecting biomolecule |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101213022B (en) | Cartridge for automated medical diagnostics | |
CN101203312B (en) | Cartridge, system and method for automated medical diagnostics | |
EP3027319B1 (en) | A fluidic cartridge and method for processing a liquid sample | |
AU2009201529B2 (en) | Apparatus For Polynucleotide Detection and Quantitation | |
WO2013180495A1 (en) | Multichannel device for downwardly injecting fluid, apparatus for extracting nucleic acid comprising same, and method for extracting nucleic acid by using same | |
WO2014058251A1 (en) | Sample treatment apparatus and automatic analysis apparatus comprising same | |
CN111500675A (en) | One-stop full-automatic closed nucleic acid extraction and real-time fluorescence PCR test combined kit | |
US20150210999A1 (en) | Pre-processing/electrophoresis integrated cartridge, pre-processing integrated capillary electrophoresis device, and pre-processing integrated capillary electrophoresis method | |
US9795968B2 (en) | Multi-chamber nucleic acid amplification and detection device | |
CN107427836A (en) | The instrument of diagnostic test is performed for fluid cartridge | |
KR20240013129A (en) | Analyte detection cartridge and method of using the same | |
CN105734045A (en) | Quick multi-flux blood sample DNA extraction method based on micro-fluidic chip | |
JP2006132965A (en) | Biochemical reaction cartridge and biochemical treatment device system | |
JP2010538672A (en) | Method, apparatus and molecular biology kit for extracting amplified genetic material | |
CN113564044B (en) | Nucleic acid detection device and nucleic acid detection method | |
CN212293607U (en) | One-stop fully automatic closed nucleic acid extraction and real-time fluorescent PCR test combined kit | |
WO2019039911A9 (en) | Sample analysis chip, sample analysis device containing same, and cartridge mounted on sample analysis chip | |
WO2025023649A1 (en) | Double-sided chip for nucleic acid extraction for pcr test, cartridge comprising same, and nucleic acid extraction device using same | |
WO2025023651A1 (en) | Double-sided chip for nucleic acid extraction for pcr test, cartridge comprising same, and nucleic acid extraction device using same | |
WO2025023652A1 (en) | Double-sided chip for nucleic acid extraction for pcr test, cartridge comprising same, and nucleic acid extraction device using same | |
CN117925909B (en) | Micro-fluidic chip kit for rapidly detecting nucleic acid based on isothermal amplification of recombinase | |
KR20250015979A (en) | Double-sided chip for extracting nucleic acids for PCR test from biological samples | |
EP4286509A1 (en) | Nucleic acid detection apparatus and nucleic acid detection method | |
WO2024262682A1 (en) | Apparatus and method for isolating nucleic acid | |
CN115491297A (en) | A multi-layer microfluidic chip integrating nucleic acid extraction, purification and digital detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24845951 Country of ref document: EP Kind code of ref document: A1 |