[go: up one dir, main page]

WO2025023152A1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
WO2025023152A1
WO2025023152A1 PCT/JP2024/025830 JP2024025830W WO2025023152A1 WO 2025023152 A1 WO2025023152 A1 WO 2025023152A1 JP 2024025830 W JP2024025830 W JP 2024025830W WO 2025023152 A1 WO2025023152 A1 WO 2025023152A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
styrene
mass
storage modulus
Prior art date
Application number
PCT/JP2024/025830
Other languages
French (fr)
Japanese (ja)
Inventor
有利 日笠
Original Assignee
積水フーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水フーラー株式会社 filed Critical 積水フーラー株式会社
Publication of WO2025023152A1 publication Critical patent/WO2025023152A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a thermoplastic resin composition.
  • absorbent articles including sanitary materials such as disposable diapers and sanitary napkins, have come into widespread use. These absorbent articles use laminates made of stretchable materials to prevent them from slipping off when worn.
  • a well-known elastic material used in laminates is rubber thread, which is made from natural rubber or synthetic polymers in the form of threads. Rubber thread exhibits good stress when stretched, making it effective in preventing absorbent articles from slipping off when worn.
  • a stretch film containing an olefin-based elastomer and an inorganic filler has been proposed as a stretchable film that is used in sanitary products, sporting goods, medical products, etc. and exhibits stretchability and breathability (see Patent Document 1).
  • Patent Document 1 does not fully consider how to improve extensibility, and there is room for improvement.
  • the elastic members used in the sanitary materials are required to have sufficient extensibility.
  • Patent Document 1 does not fully consider the prevention of deterioration in elastic recovery.
  • sanitary materials such as disposable diapers are worn, the elastic members used in the sanitary materials are stretched. Therefore, it is required that the elastic members are prevented from decreasing in elastic recovery even when held in a stretched state.
  • Patent Document 1 has the problem that the stress retention when stretched at high temperatures is insufficient.
  • the present invention aims to provide a thermoplastic resin composition capable of forming an elastic member having excellent extensibility and elastic recovery, and excellent stress maintenance when stretched at high temperatures.
  • thermoplastic resin composition containing a thermoplastic resin (A) and a plasticizer (B) in which the thermoplastic elastomer (A) contains a styrene-based block copolymer, the melt index and storage modulus G' are within a specific range, the loss tangent tan ⁇ (loss modulus/storage modulus) has at least one peak each in the low temperature range of -50 to 0°C and the high temperature range of 60 to 120°C, and D1, which is the tan ⁇ peak value in the low temperature range, is greater than D2, which is the tan ⁇ peak value in the high temperature range, thereby completing the present invention.
  • thermoplastic resin composition comprising a thermoplastic elastomer (A) and a plasticizer (B),
  • the thermoplastic elastomer (A) contains a styrene-based block copolymer,
  • the melt index measured by Method A in accordance with JIS K7210 under conditions of 190°C and 2.16 kg or 230°C and 2.16 kg is 0.1 to 100 g/10 min;
  • the storage modulus G' at 25°C measured under the following measurement conditions is 2.5 x 105 to 1.0 x 107 Pa;
  • the loss tangent tan ⁇ (loss modulus/storage modulus) obtained by measuring the storage modulus G' has at least one peak each in a low temperature range of -50 to 0°C and a high temperature range of 60 to 120°C, D1, which is a tan ⁇ peak value in the low temperature region, is greater than D2, which is a tan ⁇ peak value in the high temperature region;
  • a thermoplastic resin composition comprising a
  • thermoplastic resin composition according to Item 1 wherein the styrene-based block copolymer is a hydrogenated styrene-based block copolymer. 3.
  • the thermoplastic resin composition according to item 1 or 2 wherein the amount of styrene derived from the styrene-based block copolymer contained in the thermoplastic resin composition is 30 to 50 mass% based on 100 mass% of the thermoplastic resin composition.
  • 4. The thermoplastic resin composition according to any one of Items 1 to 3, wherein the content of the thermoplastic elastomer (A) is 50 to 85% by mass, based on 100% by mass of the thermoplastic resin composition. 5.
  • thermoplastic resin composition according to any one of items 1 to 4, wherein the ratio (D1/D2) of D1 to D2 is greater than 1 and less than or equal to 15. 6.
  • thermoplastic resin composition of the present invention can be used to form elastic members that have excellent stretchability and elastic recovery, and that are excellent in maintaining stress when stretched at high temperatures.
  • thermoplastic resin composition of the present invention has excellent extensibility and stretch recovery properties, and is excellent in stress maintenance when stretched at high temperatures, making it possible to combine all of these properties.
  • thermoplastic resin composition of the present invention makes it possible to form an elastic member that has excellent stress retention during stretching in the above-mentioned thin film state.
  • thermoplastic resin composition of the present invention will be described below.
  • high temperature means a temperature about the same as human body temperature, that is, about 35 to 42°C, preferably about 35.5 to 41.5°C, more preferably about 36 to 41°C, and particularly preferably 40°C.
  • Heating also means bringing the temperature to within the above range.
  • room temperature and "normal temperature” refer to 23°C.
  • the thermoplastic resin composition of the present invention has a melt index of 0.1 to 100 g/10 min, measured by Method A in accordance with JIS K7210 under conditions of 190°C and 2.16 kg or 230°C and 2.16 kg. If the melt index is less than 0.1 g/10 min, the stress during extension or the stress maintenance during extension at high temperatures is insufficient. If the melt index exceeds 100 g/10 min, the extensibility and stretch recovery are insufficient.
  • the melt index is preferably 1 to 95 g/10 min, and more preferably 5 to 90 g/10 min.
  • the melt index of the thermoplastic resin composition is measured by the method described in the Examples below.
  • the melt index is measured under conditions of (1) 190°C and 2.16 kg, or (2) 230°C and 2.16 kg, and either of the conditions that allows measurement is adopted.
  • the thermoplastic resin composition of the present invention has a storage modulus G' of 2.5 x 10 5 to 1.0 x 10 7 Pa at 25°C measured under the following measurement conditions. If the storage modulus G' is less than 2.5 x 10 5 Pa, the stress during elongation is insufficient. If the storage modulus G' exceeds 1.0 x 10 7 Pa, the stretch recovery is insufficient.
  • the storage modulus G' is preferably 3.0 x 10 5 to 9.5 x 10 6 Pa, and more preferably 4.0 x 10 5 to 9.0 x 10 6 Pa.
  • the storage modulus G' of the thermoplastic resin composition is measured in detail by the method described in the Examples below.
  • the thermoplastic resin composition of the present invention has at least one peak in the loss tangent tan ⁇ (loss modulus/storage modulus) obtained by measuring the storage modulus G' in the low temperature range of -50 to 0°C and in the high temperature range of 60 to 120°C, and the tan ⁇ peak value D1 in the low temperature range is greater than the tan ⁇ peak value D2 in the high temperature range. If the thermoplastic resin composition of the present invention does not have at least one peak in the high temperature range and in the low temperature range, or if D1 is equal to or less than D2, the stress retention during elongation at high temperatures or the stretch recovery is poor.
  • the ratio of D1 to D2 is preferably greater than 1 and equal to or less than 15, and more preferably 1.5 to 10.
  • thermoplastic resin composition The tan ⁇ , D1, and D2 of the thermoplastic resin composition are measured by the method described in the examples below.
  • the thermoplastic elastomer (A) includes a styrene-based block copolymer.
  • the styrene-based block copolymer is not particularly limited as long as it is a styrene-based block copolymer used in a thermoplastic resin composition, and examples thereof include styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S), styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-butylene-butadiene-styrene copolymer (SBBS), styrene-ethylene-propylene-styrene copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene copolymer (SEEPS), and styrene-ethylene-butylene-olymer.
  • SEB/S-S
  • styrene-ethylene-butylene/styrene-styrene copolymer SEB/S-S
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • SBBS styrene-butadiene-styrene copolymer
  • SEPS styrene-ethylene-propylene-styrene copolymer
  • SEB/S-S styrene-ethylene-butylene/styrene-styrene copolymer
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • SEBS styrene-ethylene-butylene/styrene-styrene copolymer
  • the above styrene-based block copolymers may be used alone or in combination of two or more.
  • SEB/S-S styrene-ethylene-butylene/styrene-styrene copolymer
  • SEB/S-S styrene-ethylene-butylene/styrene-styrene copolymer
  • thermoplastic resin composition containing a styrene-ethylene-butylene/styrene-styrene copolymer can achieve both good extensibility and good stretch recovery.
  • the method for preparing the styrene-ethylene-butylene/styrene-styrene copolymer is not particularly limited, and examples thereof include the method described in U.S. Patent No. 7,169,848.
  • styrene-ethylene-butylene/styrene-styrene copolymer examples include A1537, A1536, and A1535 manufactured by Kraton Polymers.
  • the above-mentioned styrene-ethylene-butylene-styrene copolymer is a copolymer in which the terminal styrene units form the endblock phase and the ethylene-butylene units form the midblock phase. Furthermore, when a copolymer in which the midblock phase is hydrogenated ethylene-butylene units is used, the polarity difference with the styrene units in the endblock phase becomes more pronounced, and the styrene units in the endblock phase become stronger compared to a copolymer in which the midblock phase is not hydrogenated. As a result, the stretch recovery of the thermoplastic resin composition can be further improved. Furthermore, when the midblock phase is hydrogenated, a thermoplastic resin composition with even better heat stability can be provided.
  • styrene-ethylene-butylene-styrene copolymer commercially available products can be used.
  • examples of commercially available products include G1653 manufactured by Kraton Polymers and Tuftec H1043 manufactured by Asahi Kasei Corporation.
  • the styrene content of the styrene-based block copolymer is preferably 30 to 75 mass%, more preferably 35 to 70 mass%, and even more preferably 40 to 65 mass%, assuming the styrene-based block copolymer to be 100 mass%.
  • the stress retention rate during extension at high temperatures of the elastic member formed using the thermoplastic resin composition is further improved.
  • the upper limit of the styrene content within the above range, hardening of the thermoplastic resin composition is further suppressed, and the extensibility of the elastic member is further improved.
  • styrene content of a styrene-based block copolymer refers to the content (mass%) of styrene blocks in the styrene-based block copolymer.
  • the method for calculating the styrene content in the styrene-based block copolymer in this specification is not particularly limited, and examples include methods using proton nuclear magnetic resonance spectroscopy or infrared spectroscopy in accordance with JIS K6239.
  • the amount of styrene derived from the styrene-based block copolymer contained in the thermoplastic resin composition of the present invention is preferably 25 to 60 mass%, more preferably 30 to 50 mass%, and more preferably 35 to 45 mass%, based on 100 mass% of the thermoplastic resin composition.
  • the styrene-based block copolymer may be used alone or in a mixture of two or more types.
  • a styrene-based block copolymer having a high styrene content and a styrene-based block copolymer having a low styrene content may be used in a mixture.
  • the styrene-based block copolymer is preferably a hydrogenated styrene-based block copolymer.
  • the styrene-based block copolymer is preferably a hydrogenated product of a styrene-based block copolymer, and such a hydrogenated product of a styrene-based block copolymer is also called a hydrogenated styrene-based block copolymer.
  • a hydrogenated styrene-based block copolymer is a block copolymer obtained by block copolymerizing a vinyl aromatic hydrocarbon with a conjugated diene compound, and hydrogenating all or a part of the blocks based on the conjugated diene compound in the resulting block copolymer.
  • the vinyl aromatic hydrocarbons are aromatic hydrocarbon compounds having a vinyl group.
  • Specific examples of vinyl aromatic hydrocarbons include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene, and vinylanthracene, with styrene being preferred among these.
  • the vinyl aromatic hydrocarbons may be used alone or in combination of two or more.
  • the above-mentioned conjugated diene compound is a diolefin compound having at least one pair of conjugated double bonds.
  • Specific examples of conjugated diene compounds include 1,3-butadiene, 2-methyl-1,3-butadiene (or isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene, and among these, 1,3-butadiene and 2-methyl-1,3-butadiene are preferred.
  • the conjugated diene compounds may be used alone or in combination of two or more.
  • the hydrogenation ratio in a hydrogenated styrene-based block copolymer is indicated by the "hydrogenation ratio.”
  • the “hydrogenation ratio" of a styrene-based block copolymer refers to the ratio of ethylenically unsaturated double bonds that have been hydrogenated and converted to saturated hydrocarbon bonds, based on the total number of ethylenically unsaturated double bonds contained in the block based on the conjugated diene compound.
  • the hydrogenation ratio can be measured by an infrared spectrophotometer, a nuclear magnetic resonance apparatus, or the like.
  • the hydrogenated styrene-based block copolymer may be a partially hydrogenated or fully hydrogenated product. Of these, a fully hydrogenated product is preferred. By using a fully hydrogenated styrene-based block copolymer, the heat stability of the thermoplastic resin composition is further improved.
  • the hydrogenation rate of the styrene-based block copolymer is preferably about 100%.
  • the content of the styrene-based block copolymer in the thermoplastic resin composition of the present invention is preferably 45 to 85 mass%, more preferably 50 to 85 mass%, and even more preferably 55 to 80 mass%, based on 100 mass% of the thermoplastic resin composition.
  • thermoplastic resin composition of the present invention contains a plasticizer (B).
  • the plasticizer (B) is preferably liquid at 23° C.
  • the term "liquid” refers to a state exhibiting fluidity.
  • the pour point of such a plasticizer (B) is preferably 23° C. or lower, more preferably 10° C. or lower.
  • pour point is a value measured using a method conforming to JIS K2269.
  • the plasticizer (B) is not particularly limited, and examples thereof include paraffin-based process oil, naphthene-based process oil, aromatic process oil, liquid paraffin oil, etc.
  • paraffin-based process oil, naphthene-based process oil, and liquid paraffin oil are preferred, and paraffin-based process oil and naphthene-based process oil are more preferred.
  • paraffin process oil is more preferred.
  • paraffin-based process oils can be used.
  • examples of commercially available products include PS-32 and PW-32 manufactured by Idemitsu Kosan Co., Ltd.
  • naphthenic process oils can be used.
  • examples of commercially available products include KN-4010 manufactured by Petro China, CALSOL 550 manufactured by Calumet Specialty Products Partners, Diana Fresia N28 manufactured by Idemitsu Kosan, Diana Fresia U46 manufactured by Idemitsu Kosan, and Nyflex 222B manufactured by Nynas.
  • liquid paraffin oil commercially available products
  • examples of commercially available products include P-100 manufactured by MORESCO and Kaydol manufactured by Sonneborn.
  • the above plasticizer (B) may be used alone or in a mixture of two or more types.
  • the content of plasticizer (B) in the thermoplastic resin composition of the present invention is preferably 10 to 55 mass%, and more preferably 15 to 45 mass%, based on 100 mass% of the thermoplastic resin composition.
  • thermoplastic resin composition of the present invention preferably further contains a hydrocarbon resin (C).
  • the hydrocarbon resin (C) is a component that acts as a tackifier or an endblock resin.
  • the above-mentioned hydrocarbon resin (C) is a hydrocarbon resin other than the thermoplastic elastomer (A) and the plasticizer (B).
  • the hydrocarbon resin (C) preferably does not contain the styrene-based block copolymer described in the above-mentioned thermoplastic elastomer (A), and further preferably does not contain a polyolefin-based copolymer, a polyacrylic-based copolymer, a polyamide-based copolymer, a polyester-based copolymer, or a polyurethane-based copolymer.
  • examples of the hydrocarbon resin (C) include tackifier resins, aromatic hydrocarbon resins, etc.
  • Tackifying resins include natural rosin, modified rosin, glycerol ester of natural rosin, glycerol ester of modified rosin, pentaerythritol ester of natural rosin, pentaerythritol ester of modified rosin, copolymer of natural terpene, three-dimensional polymer of natural terpene, hydrogenated derivative of copolymer of natural terpene, terpene resin, hydrogenated derivative of phenol-based modified terpene resin, petroleum resin such as C5 petroleum resin, C9 petroleum resin, C5C9 petroleum resin, dicyclopentadiene petroleum resin, and partially hydrogenated petroleum resin and fully hydrogenated petroleum resin obtained by adding hydrogen to these petroleum resins.
  • tackifying resins petroleum resin, partially hydrogenated petroleum resin, and fully hydrogenated petroleum resin are preferred, and partially hydrogenated petroleum resin and fully hydrogenated petroleum resin are more preferred, in terms of excellent odor and thermal stability of the thermoplastic resin composition. These tackifying resins may be used alone or in combination of two or more.
  • Aromatic hydrocarbon resins are resins that act as endblock resins for the resin components that form the thermoplastic resin composition.
  • aromatic hydrocarbon resin there are no particular limitations on the aromatic hydrocarbon resin, and for example, an oligomer of a vinyl aromatic hydrocarbon can be used.
  • vinyl aromatic hydrocarbons that form the oligomer include aromatic hydrocarbon compounds having a vinyl group.
  • vinyl aromatic hydrocarbons that form oligomers include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene, and vinylanthracene, and among these, styrene and ⁇ -methylstyrene are preferred.
  • the content of the hydrocarbon resin (C) is preferably 0.1 to 35 mass%, more preferably 0.5 to 30 mass%, and even more preferably 5 to 30 mass%, based on 100% of the thermoplastic resin composition.
  • thermoplastic resin composition of the present invention may contain other additives to the extent that the object of the present invention is not essentially hindered.
  • other additives include antioxidants, ultraviolet absorbers, photopolymerization initiators, liquid rubbers, and fine particle fillers.
  • Antioxidants include 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, 2,2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 2,4-bis(octylthiomethyl)-o-cresol, 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, 2,4-di-t-amyl-6-[1-(3,5-di-t-amyl-2-hydroxyphenyl)
  • antioxidant include hindered phenol-based antioxidants such as 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)]acrylate, tetrakis[methylene-3-(3,5-d
  • the content of the antioxidant in the thermoplastic resin composition of the present invention is preferably 0.01 to 2 mass%, more preferably 0.05 to 1.5 mass%, and even more preferably 0.1 to 1 mass%, based on 100 mass% of the thermoplastic resin composition. If the content of the antioxidant is 0.01 mass% or more, the thermal stability of the thermoplastic resin composition is further improved. If the content of the antioxidant is 2 mass% or less, the odor of the thermoplastic resin composition is further reduced.
  • ultraviolet absorbers examples include benzotriazole-based ultraviolet absorbers such as 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-t-butylphenyl)benzotriazole, and 2-(2'-hydroxy-3',5'-di-t-butylphenyl)-5-chlorobenzotriazole; benzophenone-based ultraviolet absorbers such as 2-hydroxy-4-methoxybenzophenone; salicylic acid ester-based ultraviolet absorbers; cyanoacrylate-based ultraviolet absorbers; and hindered amine-based light stabilizers.
  • the ultraviolet absorbers may be used alone or in combination of two or more.
  • the content of the ultraviolet absorber in the thermoplastic resin composition of the present invention is preferably 0.01 to 2 mass%, more preferably 0.05 to 1.5 mass%, and even more preferably 0.1 to 1 mass%, based on 100 mass% of the thermoplastic resin composition. If the content of the ultraviolet absorber is 0.01 mass% or more, the weather resistance of the thermoplastic resin composition is improved. If the content of the ultraviolet absorber is 2 mass% or less, the odor of the thermoplastic resin composition is further reduced.
  • thermoplastic resin composition of the present invention contains a styrene-based block copolymer having a reactive polystyrene-based hard block in the molecule as the styrene-based block copolymer (A)
  • the thermoplastic resin composition can be further irradiated with light such as ultraviolet light to react the reactive polystyrene-based hard block and crosslink the molecules, thereby adjusting the properties such as dynamic viscoelasticity of the thermoplastic resin composition.
  • the irradiation intensity of the ultraviolet light is preferably about 50 to 1,000 mW/cm 2
  • the integrated light amount is preferably about 1,000 to 15,000 mJ/cm 2 , and may be appropriately adjusted to obtain the desired properties.
  • the photopolymerization initiator may be used alone or in combination of two or more types.
  • Liquid rubbers include liquid polybutene, liquid polybutadiene, liquid polyisoprene, and hydrogenated resins thereof. Liquid rubbers may be used alone or in combination of two or more types.
  • the content of liquid rubber in the thermoplastic resin composition of the present invention is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, and even more preferably 3 to 10% by mass, based on 100% by mass of the thermoplastic resin composition.
  • the content of liquid rubber is 1% by mass or more, the thermoplastic resin composition becomes flexible and the extensibility is further improved.
  • the content of liquid rubber is 20% by mass or less, the thermoplastic resin composition does not become too soft, and the elastic recovery of the elastic member is further improved.
  • the particulate filler is not particularly limited, and examples thereof include calcium carbonate, kaolin, talc, titanium oxide, mica, and styrene beads.
  • the particulate filler may be used alone or in combination of two or more types.
  • thermoplastic resin composition of the present invention can be produced by a known method, for example, by feeding the thermoplastic elastomer (A), the plasticizer (B), and various additives such as the hydrocarbon resin (C) as required, into a kneader heated to a temperature of 160 to 260°C, preferably 180 to 230°C, and melt-kneading them while heating.
  • the above-mentioned kneading machine is not particularly limited, and examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a Brabender, a kneader, etc.
  • the above melt kneading may be performed, for example, by (1) dry-blending all of the components constituting the thermoplastic resin composition in advance using a mixer such as a Dalton mixer, a tumbler, or a V-blender, and then kneading them all at once; or (2) kneading the other components except for the plasticizer (B) in advance, and then adding a predetermined amount of the plasticizer (B) to the kneader using a side feeder or the like. Either method may be used.
  • a mixer such as a Dalton mixer, a tumbler, or a V-blender
  • thermoplastic resin composition of the present invention is generally solid in the temperature range of 0 to 60°C, particularly at room temperature of 23°C, and exhibits elasticity, so elastic members formed using the thermoplastic resin composition of the present invention can be used for a variety of purposes.
  • thermoplastic resin composition of the present invention are not particularly limited, and examples thereof include absorbent articles including sanitary materials, hospital gowns, masks, etc.
  • sanitary materials include disposable diapers, sanitary napkins, etc.
  • Elastic member of the present invention is an elastic member made of the above-mentioned thermoplastic resin composition.
  • the elastic member formed using the thermoplastic resin composition of the present invention becomes an elastic member that is excellent in stretchability and stretch recovery, and excellent in stress maintenance when stretched at high temperatures.
  • the stress of the elastic member at double extension is preferably 0.4 N/mm2 or more, more preferably 0.8 N/mm2 or more .
  • the lower limit of the stress of the elastic member at double extension is within the above range, the sanitary material is further prevented from slipping off when worn.
  • the upper limit of the stress of the elastic member at double extension may be, for example, 3.0 N/mm2 or less, or 2.0 N/mm2 or less .
  • the stress of the elastic member when extended twice may be less than 0.4 N/ mm2 .
  • the stress of the elastic member when extended twice is preferably less than 0.4 N/ mm2 , more preferably 0.3 N/mm2 or less , and even more preferably 0.2 N/mm2 or less .
  • the lower limit of the stress of the elastic member when extended twice is not particularly limited, and is about 1.0 ⁇ 10-3 N/mm2.
  • the stress of the elastic member when stretched twice is measured using the method described in the examples below.
  • the permanent set (stretch recovery) of the elastic member is preferably 55% or more, more preferably 70% or more, and even more preferably 80% or more. If the lower limit of the permanent set of the elastic member is within the above range, the elastic recovery after stretching of the elastic member is further improved.
  • the upper limit of the permanent set of the elastic member is not particularly limited, and may be 99%, 98%, etc.
  • the permanent strain of the elastic member is measured using the method described in the Examples below.
  • the thickness of the elastic member is not particularly limited, and is preferably 1 to 100 ⁇ m, more preferably 10 to 80 ⁇ m, and even more preferably 30 to 70 ⁇ m. If the lower limit of the thickness of the elastic member is within the above range, the stress and elastic recovery rate of the elastic member will be further improved. If the upper limit of the thickness of the elastic member is within the above range, the texture of the elastic member will be further improved.
  • the elastic member of the present invention can be manufactured from the thermoplastic resin composition of the present invention described above.
  • the elastic member of the present invention can be made into a suitable form depending on the application, for example, a film, a strand, a nonwoven fabric, a strip, a fiber, etc.
  • thermoplastic polymer composition there are no particular limitations on the method for producing an elastic member from a thermoplastic polymer composition, and general molding and processing methods suitable for various shapes can be used.
  • the elastic member of the present invention is, for example, a film, strand or strip, it can be molded using a single screw extruder or a twin screw extruder.
  • the temperature of the thermoplastic resin composition when producing the elastic member of the present invention is not particularly limited, but is generally preferably 160 to 300°C, more preferably 170 to 290°C.
  • the uses of the elastic member of the present invention are not particularly limited, and can be used, for example, in absorbent articles including sanitary materials, hospital gowns, masks, etc.
  • Specific examples of the sanitary materials include disposable diapers and sanitary napkins.
  • Thermoplastic resin (A) [Hydrogenated styrene block copolymer] ⁇ A1537 Styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) A1537 (styrene content 60% by mass) manufactured by Kraton Polymers ⁇ A1535 Styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) A1535 (styrene content 57% by mass) manufactured by Kraton Polymers A1536 Styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) A1536 (styrene content 41% by mass) manufactured by Kraton Polymers ⁇ G1653 Styrene-ethylene-butylene-styrene (SEBS) G1653 (styrene content 30% by mass) manufactured by Kraton Polymers
  • Hydrocarbon resin (C) ⁇ C-100L C5 Hydrocarbon Resin: Synthomer's Eastotac C-100L ⁇ SA120 ⁇ -Methylstyrene resin Kraton SYLVARES SA120
  • Antioxidants -Phenol-based antioxidant: Evernox 10, manufactured by Japan Specialty Chemicals
  • thermoplastic resin composition 5 g was dissolved in 15 g of methylcyclohexane to prepare a methylcyclohexane solution containing 25% by mass of the thermoplastic resin composition.
  • methylcyclohexane solution was applied onto a release-treated PET film using an applicator with a width of 70 mm and a gap of 400 ⁇ m, and the film was left to stand in an explosion-proof oven at 80 ° C for 2 minutes to thoroughly dry the methylcyclohexane.
  • the film thickness of the test piece (film) was confirmed after being removed from the oven and thoroughly cooled to room temperature.
  • the film thickness was adjusted to 50 ⁇ m by appropriately adjusting the solution concentration and / or the applicator gap.
  • a laminate was prepared by laminating a PET film that had been subjected to a release treatment, and pressing the film at room temperature. The obtained laminate was stored for 24 hours at 23 ° C and a relative humidity of 50% to prepare a test piece.
  • thermoplastic resin composition The properties and characteristics of the prepared thermoplastic resin composition and test pieces were evaluated using the following methods.
  • melt index The melt index was measured by Method A in accordance with JIS K7210. The measurement was performed under conditions of (1) 190°C and 2.16 kg, or (2) 230°C and 2.16 kg, and either one of the conditions that allowed measurement was adopted.
  • thermoplastic resin composition (Storage modulus G' and tan ⁇ peak value at 25°C) 1 g of the thermoplastic resin composition was dissolved in 20 to 30 g of methylcyclohexane to prepare a methylcyclohexane solution of the thermoplastic resin composition having a fluidity sufficient to be handled with a dropper or the like. The methylcyclohexane solution was then poured into a shallow polyethylene cup and dried in a vacuum drying oven set at 50°C to obtain a sheet-like solid of the thermoplastic resin composition having a thickness of about 1 to 2 mm. The obtained thermoplastic resin composition was removed from the polyethylene cup and allowed to stand at 23°C for 24 hours to prepare a sample for dynamic viscoelasticity measurement.
  • the sample was heated from -60 to 190°C at 5°C/min in a rotational shear mode at a frequency of 1 Hz, and dynamic viscoelasticity measurement (heating process) was performed under the condition of a strain of 0.05% using a dynamic viscoelasticity measuring device.
  • the measured value of the storage modulus G' at 25°C was taken as the storage modulus G' at 25°C.
  • the loss tangent tan ⁇ (loss modulus G"/storage modulus G') was calculated from the measured storage modulus G' and loss modulus G".
  • tan ⁇ The value of tan ⁇ at a temperature where tan ⁇ was maximum between the low temperature range of -50 to 0°C and the high temperature range of 60 to 120°C was recorded and taken as the maximum value of tan ⁇ .
  • a rotational rheometer product name "DHR10" manufactured by TA Instruments Co., Ltd. can be mentioned.
  • the test piece (width (MD) 50 mm, length (CD) 70 mm, thickness 50 ⁇ m) was fixed at both ends in the coating direction with a jig so that the direction (CD direction) perpendicular to the longitudinal direction (coating direction (MD) of the thermoplastic resin composition) was located at the top and bottom of a tensile tester with a jig distance of 50 mm, and pulled in the vertical direction at a tensile speed of 500 mm/min until the test piece broke.
  • the travel distance of the jig until the test piece broke was measured, and the value of the breaking elongation was calculated based on the following formula, and the extensibility was evaluated according to the following evaluation criteria.
  • test piece width (MD direction)
  • a tensile tester with a jig distance of 50 mm, so that the direction perpendicular to the longitudinal direction (coating direction of the thermoplastic resin composition (MD direction)) and the direction perpendicular to the CD direction were positioned at the top and bottom.
  • the test piece 50 mm in length (CD direction), 70 mm in length, and 50 ⁇ m in thickness) was fixed with a jig and pulled in the vertical direction at a tensile speed of 500 mm/min until the strain displacement of the test piece reached 200%.
  • the test piece was stretched to a strain displacement of 200% and then returned to the initial position in 1 minute.
  • test piece width (MD direction) 25 mm, length (CD direction) 50 mm, thickness 50 ⁇ m
  • a test piece width (MD direction) 25 mm, length (CD direction) 50 mm, thickness 50 ⁇ m
  • a jig to a tensile tester with a jig distance set to 25 mm so that the direction (CD direction) perpendicular to the longitudinal direction (coating direction (MD direction) of the thermoplastic resin composition) was located up and down, and the test piece was pulled in the vertical direction at a tensile speed of 100 mm / min to a point where the displacement of the test piece was 100%.
  • This state was maintained for 1 hour, and the change in test force was measured.
  • Stress retention rate (%)] (Test force after 1 hour (N) / Initial test force (N)) x 100 ⁇ : Stress retention rate is 80% or more. ⁇ : Stress retention rate is 60% or more and less than 80%. ⁇ : Stress retention rate is 50% or more and less than 60%. ⁇ : Stress retention rate is less than 50%.
  • test piece (Stress at 2x elongation) A test piece (width (MD direction) 50 mm, length (CD direction) 70 mm, thickness 50 ⁇ m) was fixed with a jig to a tensile tester with a jig distance set to 50 mm so that the direction (CD direction) perpendicular to the longitudinal direction (coating direction of thermoplastic resin composition (MD direction)) was located up and down, and the test piece was pulled in the vertical direction at a tensile speed of 500 mm / min to a point where the strain displacement of the test piece was 200%. Then, it was returned to the initial position at a speed of 500 mm / min.
  • the process of pulling to a point where the strain displacement was 200% and returning to the initial position was defined as one cycle, and two cycles were repeated for the same test piece.
  • the stress value at the point where the strain displacement was 100% during the first cycle of tension was recorded and was taken as the stress at 2 times elongation (N / mm 2 ).
  • the stress at 2-fold extension is 0.8 N/mm2 or more .
  • the stress at 2-fold extension is 0.4 N/mm2 or more and less than 0.8 N/mm2.
  • the stress at 2 -fold extension is less than 0.4 N/ mm2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a thermoplastic resin composition from which it is possible to form a stretch elastic member that has excellent extensibility and expansion/contraction recovery, and excellent in stress maintainability at the time of extension at a high temperature. The present invention provides a thermoplastic resin composition that contains a thermoplastic elastomer (A) and a plasticizing agent (B), and that is characterized in that the thermoplastic elastomer (A): includes a styrene-based block copolymer; has a melt index of 0.1-100 g/10 min as measured by method-A in compliance with JIS K7210 under a condition of 190°C and 2.16 kg or under a condition of 230°C and 2.16 kg; has a storage modulus G' of 2.5×105 Pa to 1.0×107 Pa at 25°C as measured by the following measuring condition; has at least one peak, of loss tangent tanδ (loss modulus/storage modulus) obtained through measurement of the storage modulus G', in each of a low temperature range of -50°C to 0°C and a high temperature range of 60-120°C; and results in D1, which is the tanδ peak value in the low temperature range, greater than D2, which is the tanδ peak value in the high temperature range. (Storage modulus G' measuring condition) Starting temperature: -60°C, ending temperature: 190°C, temperature elevation rate: 5°C/min., measurement frequency: 1 Hz, distortion: 0.05%

Description

熱可塑性樹脂組成物Thermoplastic resin composition

 本発明は、熱可塑性樹脂組成物に関する。 The present invention relates to a thermoplastic resin composition.

 近年、紙おむつや生理用ナプキン等の衛生材料を含む吸収性物品が広く使用されている。これらの吸収性物品には、着用時のずれ落ち防止のために、伸縮性を有する部材で構成された積層体が用いられている。 In recent years, absorbent articles, including sanitary materials such as disposable diapers and sanitary napkins, have come into widespread use. These absorbent articles use laminates made of stretchable materials to prevent them from slipping off when worn.

 積層体に用いられる伸縮部材に、天然ゴムや合成高分子を糸状にした糸ゴムが知られている。糸ゴムは伸張時に良好な応力を示すため吸収性物品の着用時のずれ落ち防止に効果的である。 A well-known elastic material used in laminates is rubber thread, which is made from natural rubber or synthetic polymers in the form of threads. Rubber thread exhibits good stress when stretched, making it effective in preventing absorbent articles from slipping off when worn.

 また、衛生用品、スポーツ用品、医療用品等として用いられ、伸縮性、通気性を示す伸縮性フィルムとして、オレフィン系エラストマーと無機充填剤とを含有する伸縮フィルムが提案されている(特許文献1参照)。 In addition, a stretch film containing an olefin-based elastomer and an inorganic filler has been proposed as a stretchable film that is used in sanitary products, sporting goods, medical products, etc. and exhibits stretchability and breathability (see Patent Document 1).

特開2022-108630号公報JP 2022-108630 A

 しかしながら、特許文献1では、伸張性の向上について十分に検討されておらず、改善の余地がある。紙おむつ等の衛生材料が着用される際は、衛生材料に用いられる伸縮部材には十分な伸張性が要求される。 However, Patent Document 1 does not fully consider how to improve extensibility, and there is room for improvement. When sanitary materials such as disposable diapers are worn, the elastic members used in the sanitary materials are required to have sufficient extensibility.

 また、特許文献1では、伸縮回復性の低下の抑制についても十分に検討されていない。紙おむつ等の衛生材料が着用される際は、衛生材料に用いられる伸縮部材は延伸されることとなる。そのため、伸縮部材では、伸張された状態で保持されても、伸縮回復性の低下が抑制されていることが要求される。 Furthermore, Patent Document 1 does not fully consider the prevention of deterioration in elastic recovery. When sanitary materials such as disposable diapers are worn, the elastic members used in the sanitary materials are stretched. Therefore, it is required that the elastic members are prevented from decreasing in elastic recovery even when held in a stretched state.

 また、紙おむつ等の衛生材料が着用される際は、体温に近い温度で長時間保持されるため、伸縮部材では、加温された状態で伸張されて保持されても、応力の緩和が低減されており、高温での伸張時の応力維持性が優れていることが要求される。特許文献1では、高温での伸張時の応力維持性が十分でないという問題がある。 In addition, when sanitary materials such as disposable diapers are worn, they are kept at a temperature close to body temperature for a long period of time. Therefore, even if the elastic material is stretched and held in a heated state, stress relaxation is reduced, and it is required that the material has excellent stress retention when stretched at high temperatures. Patent Document 1 has the problem that the stress retention when stretched at high temperatures is insufficient.

 本発明は上記事情に鑑み、伸張性、及び、伸縮回復性に優れ、高温での伸張時の応力維持性に優れた伸縮部材を形成することができる熱可塑性樹脂組成物を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a thermoplastic resin composition capable of forming an elastic member having excellent extensibility and elastic recovery, and excellent stress maintenance when stretched at high temperatures.

 本発明者は上記目的を達成すべく鋭意検討を重ねた結果、熱可塑性樹脂(A)と、可塑剤(B)とを含む熱可塑性樹脂組成物において、熱可塑性エラストマー(A)がスチレン系ブロック共重合体を含み、メルトインデックス、及び、貯蔵弾性率G'が特定の範囲であり、損失正接tanδ(損失弾性率/貯蔵弾性率)が、-50~0℃の低温領域、及び、60~120℃の高温領域において少なくとも1つずつピークを有し、低温領域におけるtanδピーク値であるD1が、前記高温領域におけるtanδピーク値であるD2よりも大きい構成とすることで、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of extensive research conducted by the inventors to achieve the above object, it was discovered that the above object can be achieved by configuring a thermoplastic resin composition containing a thermoplastic resin (A) and a plasticizer (B) in which the thermoplastic elastomer (A) contains a styrene-based block copolymer, the melt index and storage modulus G' are within a specific range, the loss tangent tan δ (loss modulus/storage modulus) has at least one peak each in the low temperature range of -50 to 0°C and the high temperature range of 60 to 120°C, and D1, which is the tan δ peak value in the low temperature range, is greater than D2, which is the tan δ peak value in the high temperature range, thereby completing the present invention.

 即ち、本発明は、下記の熱可塑性樹脂組成物に関する。
1.熱可塑性エラストマー(A)と、可塑剤(B)とを含む熱可塑性樹脂組成物であって、
 前記熱可塑性エラストマー(A)は、スチレン系ブロック共重合体を含み、
 JIS K7210に準拠したA法により、190℃、2.16kgの条件下、又は、230℃、2.16kgの条件下で測定したメルトインデックスが0.1~100g/10minであり、
 下記測定条件により測定した25℃における貯蔵弾性率G'が2.5×10~1.0×10Paであり、
 前記貯蔵弾性率G’の測定により得られる損失正接tanδ(損失弾性率/貯蔵弾性率)が、-50~0℃の低温領域、及び、60~120℃の高温領域において少なくとも1つずつピークを有し、
 前記低温領域におけるtanδピーク値であるD1が、前記高温領域におけるtanδピーク値であるD2よりも大きい、
ことを特徴とする熱可塑性樹脂組成物。
(貯蔵弾性率G'の測定条件)
 開始温度-60℃、終了温度190℃、昇温速度5℃/分、測定周波数1Hz、ひずみ0.05%
2.前記スチレン系ブロック共重合体は、スチレン系ブロック共重合体の水素添加物である、項1に記載の熱可塑性樹脂組成物。
3.前記熱可塑性樹脂組成物中に含まれる前記スチレン系ブロック共重合体由来のスチレン量は、前記熱可塑性樹脂組成物を100質量%として、30~50質量%である、項1又は2に記載の熱可塑性樹脂組成物。
4.前記熱可塑性エラストマー(A)の含有量は、前記熱可塑性樹脂組成物を100質量%として、50~85質量%である、項1~3のいずれかに記載の熱可塑性樹脂組成物。
5.前記D1と、前記D2との比(D1/D2)が1よりも大きく15以下である、項1~4のいずれかに記載の熱可塑性樹脂組成物。
6.更に、炭化水素樹脂(C)を含み、前記炭化水素樹脂(C)の含有量は、前記熱可塑性樹脂組成物を100%として、0.5~30質量%である、項1~5のいずれかに記載の熱可塑性樹脂組成物。
7.項1~6のいずれかに記載の熱可塑性樹脂組成物からなる伸縮部材。
That is, the present invention relates to the following thermoplastic resin composition.
1. A thermoplastic resin composition comprising a thermoplastic elastomer (A) and a plasticizer (B),
The thermoplastic elastomer (A) contains a styrene-based block copolymer,
The melt index measured by Method A in accordance with JIS K7210 under conditions of 190°C and 2.16 kg or 230°C and 2.16 kg is 0.1 to 100 g/10 min;
The storage modulus G' at 25°C measured under the following measurement conditions is 2.5 x 105 to 1.0 x 107 Pa;
The loss tangent tan δ (loss modulus/storage modulus) obtained by measuring the storage modulus G' has at least one peak each in a low temperature range of -50 to 0°C and a high temperature range of 60 to 120°C,
D1, which is a tan δ peak value in the low temperature region, is greater than D2, which is a tan δ peak value in the high temperature region;
A thermoplastic resin composition comprising:
(Measurement conditions for storage modulus G')
Starting temperature -60°C, ending temperature 190°C, heating rate 5°C/min, measuring frequency 1Hz, strain 0.05%
2. The thermoplastic resin composition according to Item 1, wherein the styrene-based block copolymer is a hydrogenated styrene-based block copolymer.
3. The thermoplastic resin composition according to item 1 or 2, wherein the amount of styrene derived from the styrene-based block copolymer contained in the thermoplastic resin composition is 30 to 50 mass% based on 100 mass% of the thermoplastic resin composition.
4. The thermoplastic resin composition according to any one of Items 1 to 3, wherein the content of the thermoplastic elastomer (A) is 50 to 85% by mass, based on 100% by mass of the thermoplastic resin composition.
5. The thermoplastic resin composition according to any one of items 1 to 4, wherein the ratio (D1/D2) of D1 to D2 is greater than 1 and less than or equal to 15.
6. The thermoplastic resin composition according to any one of Items 1 to 5, further comprising a hydrocarbon resin (C), the content of which is 0.5 to 30 mass% relative to 100% of the thermoplastic resin composition.
7. An elastic member made of the thermoplastic resin composition according to any one of items 1 to 6.

 本発明の熱可塑性樹脂組成物は、伸張性、及び、伸縮回復性に優れ、高温での伸張時の応力維持性に優れた伸縮部材を形成することができる。 The thermoplastic resin composition of the present invention can be used to form elastic members that have excellent stretchability and elastic recovery, and that are excellent in maintaining stress when stretched at high temperatures.

1.熱可塑性樹脂組成物
 本発明の熱可塑性樹脂組成物は、熱可塑性エラストマー(A)と、可塑剤(B)とを含み、前記熱可塑性エラストマー(A)は、スチレン系ブロック共重合体を含み、190℃、2.16kgの条件下でA法、又は、230℃、2.16kgの条件下でA法の測定方法により測定したメルトインデックスが0.1~100g/10minであり、特定の測定条件により測定した25℃における貯蔵弾性率G'が2.5×10~1.0×10Paであり、前記貯蔵委弾性率G’の測定により得られる損失正接tanδ(損失弾性率/貯蔵弾性率)が、-50~0℃の低温領域、及び、60~120℃の高温領域において少なくとも1つずつピークを有し、前記低温領域におけるtanδピーク値であるD1が、前記高温領域におけるtanδピーク値であるD2よりも大きい熱可塑性樹脂組成物である。本発明の熱可塑性樹脂組成物は、上記構成を備えることにより、伸張性、及び、伸縮回復性に優れ、高温での伸張時の応力維持性に優れており、これらの特性を全て兼ね備えることが可能となっている。
The thermoplastic resin composition of the present invention comprises a thermoplastic elastomer (A) and a plasticizer (B), the thermoplastic elastomer (A) comprising a styrene-based block copolymer, a melt index of 0.1 to 100 g/10 min measured by method A under conditions of 190° C. and 2.16 kg or method A under conditions of 230° C. and 2.16 kg, a storage modulus G' at 25° C. measured under specific measurement conditions of 2.5×10 5 to 1.0×10 7 Pa, and a loss tangent tan δ (loss modulus/storage modulus) obtained by measuring the storage modulus G' has at least one peak each in a low temperature region of -50 to 0° C. and a high temperature region of 60 to 120° C., and D1, which is a peak value of tan δ in the low temperature region, is greater than D2, which is a peak value of tan δ in the high temperature region. By virtue of having the above-described configuration, the thermoplastic resin composition of the present invention has excellent extensibility and stretch recovery properties, and is excellent in stress maintenance when stretched at high temperatures, making it possible to combine all of these properties.

 また、近年の環境への配慮から、資源の削減が重要視されており、上述の伸縮部材も薄膜化が必要となっている。伸縮部材には、50μm程度の薄膜化された状態で、伸張されて保持されても、応力の緩和が低減されており、伸張時の応力維持性が優れていることが要求される。本発明の熱可塑性樹脂組成物によれば、上述のような薄膜化された状態での伸張時の応力維持性に優れた伸縮部材を形成することができる。 Furthermore, in light of recent environmental considerations, emphasis has been placed on reducing resource consumption, and the above-mentioned elastic members also need to be made thinner. Elastic members are required to have excellent stress retention during stretching, with reduced stress relaxation even when stretched and held in a thin film of about 50 μm. The thermoplastic resin composition of the present invention makes it possible to form an elastic member that has excellent stress retention during stretching in the above-mentioned thin film state.

 以下、本発明の熱可塑性樹脂組成物について説明する。 The thermoplastic resin composition of the present invention will be described below.

 本明細書において「高温」とは、人の体温程度の温度を意味しており、35~42℃程度、好ましくは35.5~41.5℃程度、より好ましくは36~41℃程度、特に好ましくは40℃の温度を意味する。また、「加温」とは、上記範囲の温度とすることを意味する。 In this specification, "high temperature" means a temperature about the same as human body temperature, that is, about 35 to 42°C, preferably about 35.5 to 41.5°C, more preferably about 36 to 41°C, and particularly preferably 40°C. "Heating" also means bringing the temperature to within the above range.

 本明細書において「室温」、「常温」とは、23℃を意味する。 In this specification, "room temperature" and "normal temperature" refer to 23°C.

 本発明の熱可塑性樹脂組成物は、JIS K7210に準拠したA法により、190℃、2.16kgの条件下、又は、230℃、2.16kgの条件下で測定したメルトインデックスが0.1~100g/10minである。メルトインデックスが0.1g/10min未満であると伸張時の応力、又は、高温での伸張時の応力維持性が十分でない。また、メルトインデックスが100g/10minを超えると、伸張性、及び、伸縮回復性が十分でない。上記メルトインデックスは、1~95g/10minが好ましく、5~90g/10minがより好ましい。 The thermoplastic resin composition of the present invention has a melt index of 0.1 to 100 g/10 min, measured by Method A in accordance with JIS K7210 under conditions of 190°C and 2.16 kg or 230°C and 2.16 kg. If the melt index is less than 0.1 g/10 min, the stress during extension or the stress maintenance during extension at high temperatures is insufficient. If the melt index exceeds 100 g/10 min, the extensibility and stretch recovery are insufficient. The melt index is preferably 1 to 95 g/10 min, and more preferably 5 to 90 g/10 min.

 上記熱可塑性樹脂組成物のメルトインデックスは、後述の実施例に記載の方法により測定する。なお、メルトインデックスの測定は、(1)190℃、2.16kgの条件下、又は、(2)230℃、2.16kgの条件下で行い、どちらか一方の測定が可能な方の条件を採用する。 The melt index of the thermoplastic resin composition is measured by the method described in the Examples below. The melt index is measured under conditions of (1) 190°C and 2.16 kg, or (2) 230°C and 2.16 kg, and either of the conditions that allows measurement is adopted.

 本発明の熱可塑性樹脂組成物は、下記測定条件により測定した25℃における貯蔵弾性率G'が2.5×10~1.0×10Paである。貯蔵弾性率G'が2.5×10Pa未満であると、伸張時の応力が十分でない。また、貯蔵弾性率G'が1.0×10Paを超えると、伸縮回復性が十分でない。上記貯蔵弾性率G'は、3.0×10~9.5×10Paが好ましく、4.0×10~9.0×10Paがより好ましい。 The thermoplastic resin composition of the present invention has a storage modulus G' of 2.5 x 10 5 to 1.0 x 10 7 Pa at 25°C measured under the following measurement conditions. If the storage modulus G' is less than 2.5 x 10 5 Pa, the stress during elongation is insufficient. If the storage modulus G' exceeds 1.0 x 10 7 Pa, the stretch recovery is insufficient. The storage modulus G' is preferably 3.0 x 10 5 to 9.5 x 10 6 Pa, and more preferably 4.0 x 10 5 to 9.0 x 10 6 Pa.

(貯蔵弾性率G'の測定条件)
 開始温度-60℃、終了温度190℃、昇温速度5℃/分、測定周波数1Hz、ひずみ0.05%
(Measurement conditions for storage modulus G')
Starting temperature -60°C, ending temperature 190°C, heating rate 5°C/min, measuring frequency 1Hz, strain 0.05%

 なお、上記熱可塑性樹脂組成物の貯蔵弾性率G'は、詳細には、後述の実施例に記載の方法により測定する。  The storage modulus G' of the thermoplastic resin composition is measured in detail by the method described in the Examples below.

 本発明の熱可塑性樹脂組成物は、上記貯蔵弾性率G’の測定により得られる損失正接tanδ(損失弾性率/貯蔵弾性率)が、-50~0℃の低温領域、及び、60~120℃の高温領域において少なくとも1つずつピークを有し、上記低温領域におけるtanδピーク値であるD1が、上記高温領域におけるtanδピーク値であるD2よりも大きい。本発明の熱可塑性樹脂組成物が上記高温領域、及び、上記低温領域において少なくとも1つずつピークを有しないか、又は、上記D1がD2以下であると、高温での伸張時の応力維持性、又は、伸縮回復性が劣る。 The thermoplastic resin composition of the present invention has at least one peak in the loss tangent tan δ (loss modulus/storage modulus) obtained by measuring the storage modulus G' in the low temperature range of -50 to 0°C and in the high temperature range of 60 to 120°C, and the tan δ peak value D1 in the low temperature range is greater than the tan δ peak value D2 in the high temperature range. If the thermoplastic resin composition of the present invention does not have at least one peak in the high temperature range and in the low temperature range, or if D1 is equal to or less than D2, the stress retention during elongation at high temperatures or the stretch recovery is poor.

 上記D1と、上記D2との比(D1/D2)は、1よりも大きく15以下が好ましく、1.5~10であることがより好ましい。D1/D2が上記範囲であることにより、本発明の熱可塑性樹脂組成物の高温での伸張時の応力維持性、及び、伸縮回復性がより向上する。 The ratio of D1 to D2 (D1/D2) is preferably greater than 1 and equal to or less than 15, and more preferably 1.5 to 10. By having D1/D2 in the above range, the thermoplastic resin composition of the present invention is further improved in stress retention during elongation at high temperatures and in stretch recovery.

 なお、上記熱可塑性樹脂組成物のtanδ、D1及びD2は、後述の実施例に記載の方法により測定する。  The tan δ, D1, and D2 of the thermoplastic resin composition are measured by the method described in the examples below.

(熱可塑性エラストマー(A))
 熱可塑性エラストマー(A)は、スチレン系ブロック共重合体を含む。スチレン系ブロック共重合体としては、熱可塑性樹脂組成物に用いられるスチレン系ブロック共重合体であれば特に限定されず、スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、スチレン-ブチレン-ブタジエン-スチレン共重合体(SBBS)、スチレン-エチレン-プロピレン-スチレン共重合体(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレン共重合体(SEEPS)、スチレン-エチレン-ブチレン-オレフィン結晶共重合体(SEBC)等が挙げられる。これらの中でも、より一層伸張性、及び、伸縮回復性に優れ、且つ、より一層高温での伸張時の応力維持性に優れる点で、スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、スチレン-ブチレン-ブタジエン-スチレン共重合体(SBBS)、スチレン-エチレン-プロピレン-スチレン共重合体(SEPS)が好ましく、スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)がより好ましく、スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S)が更に好ましい。
(Thermoplastic elastomer (A))
The thermoplastic elastomer (A) includes a styrene-based block copolymer. The styrene-based block copolymer is not particularly limited as long as it is a styrene-based block copolymer used in a thermoplastic resin composition, and examples thereof include styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S), styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-butylene-butadiene-styrene copolymer (SBBS), styrene-ethylene-propylene-styrene copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene copolymer (SEEPS), and styrene-ethylene-butylene-olefin crystalline copolymer (SEBC). Among these, in terms of being even more excellent in extensibility and elasticity recovery, and even more excellent in stress maintenance during extension at high temperatures, styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S), styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-butylene-butadiene-styrene copolymer (SBBS), and styrene-ethylene-propylene-styrene copolymer (SEPS) are preferred, styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) and styrene-ethylene-butylene-styrene copolymer (SEBS) are more preferred, and styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) is even more preferred.

 上記スチレン系ブロック共重合体は、一種単独で用いてもよいし、二種以上を混合して用いてもよい。 The above styrene-based block copolymers may be used alone or in combination of two or more.

 上記スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S)は、末端のスチレン単位がエンドブロック相となり、エチレン-ブチレン単位がミッドブロック相となるスチレン-エチレン-ブチレン-スチレン共重合体において、ミッドブロック相にもスチレンが分散されている共重合体である。ミッドブロック相にスチレンが分散されている共重合体を用いることで、スチレン系ブロック共重合体の全体のスチレン含有量が多くなっても、スチレン系ブロック共重合体が硬くなりすぎず、良好な伸張性を示すため、スチレン-エチレン-ブチレン/スチレン-スチレン共重合体を含む熱可塑性樹脂組成物では、良好な伸張性と、良好な伸縮回復性とを両立することができる。 The above-mentioned styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) is a styrene-ethylene-butylene-styrene copolymer in which the terminal styrene units form the end block phase and the ethylene-butylene units form the midblock phase, with styrene also dispersed in the midblock phase. By using a copolymer in which styrene is dispersed in the midblock phase, even if the overall styrene content of the styrene-based block copolymer is high, the styrene-based block copolymer does not become too hard and exhibits good extensibility, so that a thermoplastic resin composition containing a styrene-ethylene-butylene/styrene-styrene copolymer can achieve both good extensibility and good stretch recovery.

 スチレン-エチレン-ブチレン/スチレン-スチレン共重合体を調製する方法としては特に限定されず、例えば、米国特許第7,169,848号に記載の方法が挙げられる。 The method for preparing the styrene-ethylene-butylene/styrene-styrene copolymer is not particularly limited, and examples thereof include the method described in U.S. Patent No. 7,169,848.

 スチレン-エチレン-ブチレン/スチレン-スチレン共重合体としては、市販されている製品を用いることができる。市販品としては、クレイトンポリマー社製A1537、A1536、A1535等が挙げられる。 As the styrene-ethylene-butylene/styrene-styrene copolymer, commercially available products can be used. Examples of commercially available products include A1537, A1536, and A1535 manufactured by Kraton Polymers.

 上記スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)は、末端のスチレン単位がエンドブロック相となり、エチレン-ブチレン単位がミッドブロック相となる共重合体である。また、ミッドブロック相が水素添加されたエチレン-ブチレン単位である共重合体を用いると、エンドブロック相のスチレン単位との極性差がより顕著になり、水素添加されていないミッドブロック相の共重合体と比較して、よりエンドブロック相のスチレン単位が強固となる。結果として、熱可塑性樹脂組成物の伸縮回復性をより一層向上させることができる。さらに、ミッドブロック相が水素添加されていると、より一層加熱安定性に優れた熱可塑性樹脂組成物を提供することができる。 The above-mentioned styrene-ethylene-butylene-styrene copolymer (SEBS) is a copolymer in which the terminal styrene units form the endblock phase and the ethylene-butylene units form the midblock phase. Furthermore, when a copolymer in which the midblock phase is hydrogenated ethylene-butylene units is used, the polarity difference with the styrene units in the endblock phase becomes more pronounced, and the styrene units in the endblock phase become stronger compared to a copolymer in which the midblock phase is not hydrogenated. As a result, the stretch recovery of the thermoplastic resin composition can be further improved. Furthermore, when the midblock phase is hydrogenated, a thermoplastic resin composition with even better heat stability can be provided.

 スチレン-エチレン-ブチレン-スチレン共重合体としては市販されている製品を用いることができる。市販品としては、クレイトンポリマー社製G1653、旭化成社製タフテックH1043等が挙げられる。 As the styrene-ethylene-butylene-styrene copolymer, commercially available products can be used. Examples of commercially available products include G1653 manufactured by Kraton Polymers and Tuftec H1043 manufactured by Asahi Kasei Corporation.

 スチレン系ブロック共重合体のスチレン含有量は、当該スチレン系ブロック共重合体を100質量%として30~75質量%が好ましく、35~70質量%がより好ましく、40~65質量%が更に好ましい。スチレン含有量の下限が上記範囲であることにより、熱可塑性樹脂組成物を用いて形成した伸縮部材の高温での伸張時の応力維持率がより向上する。スチレン含有量の上限が上記範囲であることにより、熱可塑性樹脂組成物の硬化がより抑制され、伸縮部材の伸張性がより向上する。 The styrene content of the styrene-based block copolymer is preferably 30 to 75 mass%, more preferably 35 to 70 mass%, and even more preferably 40 to 65 mass%, assuming the styrene-based block copolymer to be 100 mass%. By setting the lower limit of the styrene content within the above range, the stress retention rate during extension at high temperatures of the elastic member formed using the thermoplastic resin composition is further improved. By setting the upper limit of the styrene content within the above range, hardening of the thermoplastic resin composition is further suppressed, and the extensibility of the elastic member is further improved.

 なお、本明細書において、スチレン系ブロック共重合体の「スチレン含有量」とは、スチレン系ブロック共重合体中のスチレンブロックの含有割合(質量%)をいう。 In this specification, the "styrene content" of a styrene-based block copolymer refers to the content (mass%) of styrene blocks in the styrene-based block copolymer.

 また、本明細書における、スチレン系ブロック共重合体中のスチレン含有量の算出方法は特に限定されず、例えば、JIS K6239に準じたプロトン核磁気共鳴法や赤外分光法を用いる方法が挙げられる。 In addition, the method for calculating the styrene content in the styrene-based block copolymer in this specification is not particularly limited, and examples include methods using proton nuclear magnetic resonance spectroscopy or infrared spectroscopy in accordance with JIS K6239.

 本発明の熱可塑性樹脂組成物中に含まれるスチレン系ブロック共重合体由来のスチレン量は、熱可塑性樹脂組成物を100質量%として、25~60質量%が好ましく、30~50質量%がより好ましく、35~45質量%がより好ましい。上記スチレン量の下限が上記範囲であることにより、熱可塑性樹脂組成物を用いて形成した伸縮部材の高温での伸張時の応力維持率がより向上する。上記スチレン量の上限が上記範囲であることにより、熱可塑性樹脂組成物の硬化がより抑制され、伸縮部材の伸張性がより向上する。 The amount of styrene derived from the styrene-based block copolymer contained in the thermoplastic resin composition of the present invention is preferably 25 to 60 mass%, more preferably 30 to 50 mass%, and more preferably 35 to 45 mass%, based on 100 mass% of the thermoplastic resin composition. By setting the lower limit of the styrene amount within the above range, the stress retention rate during extension at high temperatures of the elastic member formed using the thermoplastic resin composition is further improved. By setting the upper limit of the styrene amount within the above range, hardening of the thermoplastic resin composition is further suppressed, and the extensibility of the elastic member is further improved.

 スチレン系ブロック共重合体は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。例えば、スチレン含有量が高いスチレン系ブロック共重合体と、スチレン含有量が低いスチレン系ブロック共重合体とを混合して用いてもよい。 The styrene-based block copolymer may be used alone or in a mixture of two or more types. For example, a styrene-based block copolymer having a high styrene content and a styrene-based block copolymer having a low styrene content may be used in a mixture.

 スチレン系ブロック共重合体は、水素添加されたスチレン系ブロック共重合体であることが好ましい。すなわち、スチレン系ブロック共重合体は、スチレン系ブロック共重合体の水素添加物であることが好ましく、このようなスチレン系ブロック共重合体の水素添加物は、水素添加スチレン系ブロック共重合体とも称される。水素添加されたスチレン系ブロック共重合体は、より具体的には、ビニル系芳香族炭化水素と共役ジエン化合物とをブロック共重合し、得られたブロック共重合体における共役ジエン化合物に基づくブロックの全部又は一部が水素添加されたブロック共重合体である。 The styrene-based block copolymer is preferably a hydrogenated styrene-based block copolymer. In other words, the styrene-based block copolymer is preferably a hydrogenated product of a styrene-based block copolymer, and such a hydrogenated product of a styrene-based block copolymer is also called a hydrogenated styrene-based block copolymer. More specifically, a hydrogenated styrene-based block copolymer is a block copolymer obtained by block copolymerizing a vinyl aromatic hydrocarbon with a conjugated diene compound, and hydrogenating all or a part of the blocks based on the conjugated diene compound in the resulting block copolymer.

 上記ビニル系芳香族炭化水素は、ビニル基を有する芳香族炭化水素化合物である。ビニル系芳香族炭化水素としては、具体的には、スチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、1,3-ジメチルスチレン、α-メチルスチレン、ビニルナフタレン、ビニルアントラセンなどが挙げられ、これらの中でもスチレンが好ましい。ビニル系芳香族炭化水素は、一種単独で用いられてもよいし、二種以上が混合されて用いられてもよい。 The vinyl aromatic hydrocarbons are aromatic hydrocarbon compounds having a vinyl group. Specific examples of vinyl aromatic hydrocarbons include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, α-methylstyrene, vinylnaphthalene, and vinylanthracene, with styrene being preferred among these. The vinyl aromatic hydrocarbons may be used alone or in combination of two or more.

 上記共役ジエン化合物は、少なくとも一対の共役二重結合を有するジオレフィン化合物である。共役ジエン化合物としては、具体的には、1,3-ブタジエン、2-メチル-1,3-ブタジエン(又はイソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどが挙げられ、これらの中でも1,3-ブタジエン、2-メチル-1,3-ブタジエンが好ましい。共役ジエン化合物は、単独で用いられてもよいし、二種以上が併用されて用いられてもよい。 The above-mentioned conjugated diene compound is a diolefin compound having at least one pair of conjugated double bonds. Specific examples of conjugated diene compounds include 1,3-butadiene, 2-methyl-1,3-butadiene (or isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene, and among these, 1,3-butadiene and 2-methyl-1,3-butadiene are preferred. The conjugated diene compounds may be used alone or in combination of two or more.

 本明細書において、水素添加されたスチレン系ブロック共重合体における水素添加された割合は、「水素添加率」で示される。スチレン系ブロック共重合体の「水素添加率」とは、共役ジエン化合物に基づくブロックに含まれる全エチレン性不飽和二重結合を基準とし、その中で、水素添加されて飽和炭化水素結合に転換されたエチレン性不飽和二重結合の割合をいう。水素添加率は、赤外分光光度計及び核磁器共鳴装置等によって測定することができる。 In this specification, the hydrogenation ratio in a hydrogenated styrene-based block copolymer is indicated by the "hydrogenation ratio." The "hydrogenation ratio" of a styrene-based block copolymer refers to the ratio of ethylenically unsaturated double bonds that have been hydrogenated and converted to saturated hydrocarbon bonds, based on the total number of ethylenically unsaturated double bonds contained in the block based on the conjugated diene compound. The hydrogenation ratio can be measured by an infrared spectrophotometer, a nuclear magnetic resonance apparatus, or the like.

 上記水素添加されたスチレン系ブロック共重合体は、部分水添、及び完全水添の水素添加物を用いることができる。中でも、完全水添の水素添加物であることが好ましい。スチレン系ブロック共重合体が完全水添であることにより、熱可塑性樹脂組成物の加熱安定性がより一層向上する。スチレン系ブロック共重合体の水素添加率は、100%程度であることが好ましい。 The hydrogenated styrene-based block copolymer may be a partially hydrogenated or fully hydrogenated product. Of these, a fully hydrogenated product is preferred. By using a fully hydrogenated styrene-based block copolymer, the heat stability of the thermoplastic resin composition is further improved. The hydrogenation rate of the styrene-based block copolymer is preferably about 100%.

 本発明の熱可塑性樹脂組成物中のスチレン系ブロック共重合体の含有量は、熱可塑性樹脂組成物を100質量%として、45~85質量%が好ましく、50~85質量%がより好ましく、55~80質量%が更に好ましい。スチレン系ブロック共重合体の含有量が上記範囲であることにより、本発明の熱可塑性樹脂組成物を用いて形成した伸縮部材の高温での伸張時の応力維持性が、より一層向上する。 The content of the styrene-based block copolymer in the thermoplastic resin composition of the present invention is preferably 45 to 85 mass%, more preferably 50 to 85 mass%, and even more preferably 55 to 80 mass%, based on 100 mass% of the thermoplastic resin composition. By having the content of the styrene-based block copolymer in the above range, the stress retention during extension at high temperatures of the elastic member formed using the thermoplastic resin composition of the present invention is further improved.

(可塑剤(B))
 本発明の熱可塑性樹脂組成物は、可塑剤(B)を含有する。可塑剤(B)は、23℃で液状であることが好ましい。なお、本明細書において「液状」とは、流動性を示す状態のことをいう。このような可塑剤(B)の流動点は、23℃以下が好ましく、10℃以下がより好ましい。
(Plasticizer (B))
The thermoplastic resin composition of the present invention contains a plasticizer (B). The plasticizer (B) is preferably liquid at 23° C. In this specification, the term "liquid" refers to a state exhibiting fluidity. The pour point of such a plasticizer (B) is preferably 23° C. or lower, more preferably 10° C. or lower.

 本明細書において、流動点は、JIS K2269に準拠した測定方法により測定される値である。 In this specification, pour point is a value measured using a method conforming to JIS K2269.

 可塑剤(B)としては特に限定されず、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、流動パラフィンオイル等が挙げられる。なかでも、加熱安定性が優れる観点から、パラフィン系プロセスオイル、ナフテン系プロセスオイル、及び流動パラフィンオイルが好ましく、パラフィン系プロセスオイル、ナフテン系プロセスオイルがより好ましい。また、熱可塑性樹脂組成物を用いて形成した伸縮部材の高温での伸張時の応力維持性がより一層向上する観点から、パラフィンプロセスオイルがより好ましい。 The plasticizer (B) is not particularly limited, and examples thereof include paraffin-based process oil, naphthene-based process oil, aromatic process oil, liquid paraffin oil, etc. Among them, from the viewpoint of excellent heat stability, paraffin-based process oil, naphthene-based process oil, and liquid paraffin oil are preferred, and paraffin-based process oil and naphthene-based process oil are more preferred. Furthermore, from the viewpoint of further improving the stress maintenance during extension at high temperatures of the elastic member formed using the thermoplastic resin composition, paraffin process oil is more preferred.

 パラフィン系プロセスオイルとしては、市販品を用いることができる。市販品としては、例えば、出光興産社製PS-32、PW-32等が挙げられる。 Commercially available paraffin-based process oils can be used. Examples of commercially available products include PS-32 and PW-32 manufactured by Idemitsu Kosan Co., Ltd.

 ナフテン系プロセスオイルとしては、市販品を用いることができる。市販品としては、例えば、Petro China社製 KN-4010、Calumet Speciality Products Partners社製 CALSOL 550、出光興産社製 ダイアナフレシアN28、出光興産社製 ダイアナフレシアU46、Nynas社製 Nyflex222B等が挙げられる。 Commercially available naphthenic process oils can be used. Examples of commercially available products include KN-4010 manufactured by Petro China, CALSOL 550 manufactured by Calumet Specialty Products Partners, Diana Fresia N28 manufactured by Idemitsu Kosan, Diana Fresia U46 manufactured by Idemitsu Kosan, and Nyflex 222B manufactured by Nynas.

 流動パラフィンオイルとしては、市販品を用いることができる。市販品としては、MORESCO社製P-100、Sonneborn社製Kaydol等が挙げられる。 As liquid paraffin oil, commercially available products can be used. Examples of commercially available products include P-100 manufactured by MORESCO and Kaydol manufactured by Sonneborn.

 上記可塑剤(B)は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The above plasticizer (B) may be used alone or in a mixture of two or more types.

 本発明の熱可塑性樹脂組成物中の可塑剤(B)の含有量は、熱可塑性樹脂組成物を100質量%として、10~55質量%が好ましく、15~45質量%がより好ましい。可塑剤(B)の含有量の上限が上記範囲であることにより、熱可塑性樹脂組成物を用いて形成した伸縮部材の高温での伸張時の応力維持性がより一層向上する。可塑剤(B)の含有量の下限が上記範囲であることにより、熱可塑性樹脂組成物がより一層柔軟になり、熱可塑性樹脂組成物の伸張性がより一層向上する。 The content of plasticizer (B) in the thermoplastic resin composition of the present invention is preferably 10 to 55 mass%, and more preferably 15 to 45 mass%, based on 100 mass% of the thermoplastic resin composition. By setting the upper limit of the content of plasticizer (B) within the above range, the stress maintenance during extension at high temperatures of the elastic member formed using the thermoplastic resin composition is further improved. By setting the lower limit of the content of plasticizer (B) within the above range, the thermoplastic resin composition becomes even more flexible, and the extensibility of the thermoplastic resin composition is further improved.

(炭化水素樹脂(C))
 本発明の熱可塑性樹脂組成物は、更に、炭化水素樹脂(C)を含有することが好ましい。炭化水素樹脂(C)は、粘着付与剤又はエンドブロック樹脂としての作用を示す成分である。炭化水素樹脂(C)を含有することにより、本発明の熱可塑性樹脂組成物の伸張時の応力、及び、高温での伸張時の応力維持性がより一層向上する。
(Hydrocarbon Resin (C))
The thermoplastic resin composition of the present invention preferably further contains a hydrocarbon resin (C). The hydrocarbon resin (C) is a component that acts as a tackifier or an endblock resin. By containing the hydrocarbon resin (C), the stress during extension of the thermoplastic resin composition of the present invention and the stress maintenance during extension at high temperatures are further improved.

 上記炭化水素樹脂(C)は、熱可塑性エラストマー(A)及び可塑剤(B)以外の炭化水素樹脂である。炭化水素樹脂(C)は、上記熱可塑性エラストマー(A)において記載のスチレン系ブロック共重合体を含まないことが好ましく、更に、ポリオレフィン系共重合体、ポリアクリル系共重合体、ポリアミド系共重合体、ポリエステル系共重合体、ポリウレタン系共重合体を含まないことが好ましい。炭化水素樹脂(C)としては、より具体的には、粘着付与樹脂、芳香族系炭化水素樹脂等が挙げられる。 The above-mentioned hydrocarbon resin (C) is a hydrocarbon resin other than the thermoplastic elastomer (A) and the plasticizer (B). The hydrocarbon resin (C) preferably does not contain the styrene-based block copolymer described in the above-mentioned thermoplastic elastomer (A), and further preferably does not contain a polyolefin-based copolymer, a polyacrylic-based copolymer, a polyamide-based copolymer, a polyester-based copolymer, or a polyurethane-based copolymer. More specifically, examples of the hydrocarbon resin (C) include tackifier resins, aromatic hydrocarbon resins, etc.

 粘着付与樹脂としては、天然ロジン、変性ロジン、天然ロジンのグリセロールエステル、変性ロジンのグリセロールエステル、天然ロジンのペンタエリスリトールエステル、変性ロジンのペンタエリスリトールエステル、天然テルペンのコポリマー、天然テルペンの三次元ポリマー、天然テルペンのコポリマーの水素化誘導体、テルペン樹脂、フェノール系変性テルペン樹脂の水素化誘導体、C5系石油樹脂、C9系石油樹脂、C5C9系石油樹脂、ジシクロペンタジエン系石油樹脂等の石油樹脂、また、それら石油樹脂に水素を添加した部分水添石油樹脂、完全水添石油樹脂等が挙げられる。粘着付与樹脂としては、熱可塑性樹脂組成物の臭気、熱安定性に優れている点で、石油樹脂、部分水添石油樹脂、及び完全水添石油樹脂が好ましく、部分水添石油樹脂、及び完全水添石油樹脂がより好ましい。これら粘着付与樹脂は1種単独で用いてもよいし、2種以上を混合して用いてもよい。 Tackifying resins include natural rosin, modified rosin, glycerol ester of natural rosin, glycerol ester of modified rosin, pentaerythritol ester of natural rosin, pentaerythritol ester of modified rosin, copolymer of natural terpene, three-dimensional polymer of natural terpene, hydrogenated derivative of copolymer of natural terpene, terpene resin, hydrogenated derivative of phenol-based modified terpene resin, petroleum resin such as C5 petroleum resin, C9 petroleum resin, C5C9 petroleum resin, dicyclopentadiene petroleum resin, and partially hydrogenated petroleum resin and fully hydrogenated petroleum resin obtained by adding hydrogen to these petroleum resins. As tackifying resins, petroleum resin, partially hydrogenated petroleum resin, and fully hydrogenated petroleum resin are preferred, and partially hydrogenated petroleum resin and fully hydrogenated petroleum resin are more preferred, in terms of excellent odor and thermal stability of the thermoplastic resin composition. These tackifying resins may be used alone or in combination of two or more.

 芳香族系炭化水素樹脂は、熱可塑性樹脂組成物を形成する樹脂成分のエンドブロック樹脂としての作用を示す樹脂である。芳香族系炭化水素樹脂としては特に限定されず、例えば、ビニル系芳香族炭化水素のオリゴマーを用いることができる。当該オリゴマーを形成するビニル系芳香族炭化水素としては、ビニル基を有する芳香族炭化水素化合物が挙げられる。オリゴマーを形成するビニル系芳香族炭化水素としては、具体的には、スチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、1,3-ジメチルスチレン、α-メチルスチレン、ビニルナフタレン、ビニルアントラセンなどが挙げられ、これらの中でもスチレン、α-メチルスチレンが好ましい。 Aromatic hydrocarbon resins are resins that act as endblock resins for the resin components that form the thermoplastic resin composition. There are no particular limitations on the aromatic hydrocarbon resin, and for example, an oligomer of a vinyl aromatic hydrocarbon can be used. Examples of vinyl aromatic hydrocarbons that form the oligomer include aromatic hydrocarbon compounds having a vinyl group. Specific examples of vinyl aromatic hydrocarbons that form oligomers include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, α-methylstyrene, vinylnaphthalene, and vinylanthracene, and among these, styrene and α-methylstyrene are preferred.

 炭化水素樹脂(C)の含有量は、熱可塑性樹脂組成物を100%として、0.1~35質量%が好ましく、0.5~30質量%がより好ましく、5~30質量%が更に好ましい。 The content of the hydrocarbon resin (C) is preferably 0.1 to 35 mass%, more preferably 0.5 to 30 mass%, and even more preferably 5 to 30 mass%, based on 100% of the thermoplastic resin composition.

(他の添加剤)
 本発明の熱可塑性樹脂組成物は、本発明の目的を本質的に妨げない範囲で、他の添加剤を含有していてもよい。上記他の添加剤としては、酸化防止剤、紫外線吸収剤、光重合開始剤、液状ゴム、微粒子充填剤等が挙げられる。
(Other Additives)
The thermoplastic resin composition of the present invention may contain other additives to the extent that the object of the present invention is not essentially hindered. Examples of the other additives include antioxidants, ultraviolet absorbers, photopolymerization initiators, liquid rubbers, and fine particle fillers.

 酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(4'-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)プロピオネート、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,4-ビス(オクチルチオメチル)-o-クレゾール、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルべンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-〔1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル〕フェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ぺンチルフェニル)]アクリレート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン等のヒンダードフェノール系酸化防止剤;ジラウリルチオジプロピオネート、ラウリルステアリルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)等のイオウ系酸化防止剤;トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト等のリン系酸化防止剤等が挙げられる。酸化防止剤は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 Antioxidants include 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, 2,2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 2,4-bis(octylthiomethyl)-o-cresol, 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, 2,4-di-t-amyl-6-[1-(3,5-di-t-amyl-2-hydroxyphenyl) Examples of the antioxidant include hindered phenol-based antioxidants such as 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)]acrylate, tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane; sulfur-based antioxidants such as dilauryl thiodipropionate, lauryl stearyl thiodipropionate, and pentaerythritol tetrakis(3-lauryl thiopropionate); and phosphorus-based antioxidants such as tris(nonylphenyl)phosphite and tris(2,4-di-t-butylphenyl)phosphite. The antioxidants may be used alone or in combination of two or more.

 本発明の熱可塑性樹脂組成物中の酸化防止剤の含有量としては、熱可塑性樹脂組成物を100質量%として、0.01~2質量%が好ましく、0.05~1.5質量%がより好ましく、0.1~1質量%が更に好ましい。酸化防止剤の含有量が0.01質量%以上であると、熱可塑性樹脂組成物の熱安定性がより一層向上する。酸化防止剤の含有量が2質量%以下であると、熱可塑性樹脂組成物の臭気がより低減される。 The content of the antioxidant in the thermoplastic resin composition of the present invention is preferably 0.01 to 2 mass%, more preferably 0.05 to 1.5 mass%, and even more preferably 0.1 to 1 mass%, based on 100 mass% of the thermoplastic resin composition. If the content of the antioxidant is 0.01 mass% or more, the thermal stability of the thermoplastic resin composition is further improved. If the content of the antioxidant is 2 mass% or less, the odor of the thermoplastic resin composition is further reduced.

 紫外線吸収剤としては、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-t-ブチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2-ヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;サリチル酸エステル系紫外線吸収剤;シアノアクリレート系紫外線吸収剤;ヒンダードアミン系光安定剤が挙げられる。紫外線吸収剤は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of ultraviolet absorbers include benzotriazole-based ultraviolet absorbers such as 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-t-butylphenyl)benzotriazole, and 2-(2'-hydroxy-3',5'-di-t-butylphenyl)-5-chlorobenzotriazole; benzophenone-based ultraviolet absorbers such as 2-hydroxy-4-methoxybenzophenone; salicylic acid ester-based ultraviolet absorbers; cyanoacrylate-based ultraviolet absorbers; and hindered amine-based light stabilizers. The ultraviolet absorbers may be used alone or in combination of two or more.

 本発明の熱可塑性樹脂組成物中の紫外線吸収剤の含有量としては、熱可塑性樹脂組成物を100質量%として、0.01~2質量%が好ましく、0.05~1.5質量%がより好ましく、0.1~1質量%が更に好ましい。紫外線吸収剤の含有量が0.01質量%以上であると、熱可塑性樹脂組成物の耐候性が向上する。紫外線吸収剤の含有量が2質量%以下であると、熱可塑性樹脂組成物の臭気がより低減される。 The content of the ultraviolet absorber in the thermoplastic resin composition of the present invention is preferably 0.01 to 2 mass%, more preferably 0.05 to 1.5 mass%, and even more preferably 0.1 to 1 mass%, based on 100 mass% of the thermoplastic resin composition. If the content of the ultraviolet absorber is 0.01 mass% or more, the weather resistance of the thermoplastic resin composition is improved. If the content of the ultraviolet absorber is 2 mass% or less, the odor of the thermoplastic resin composition is further reduced.

 光重合開始剤としては、紫外線重合開始剤等が挙げられる。本発明の熱可塑性樹脂組成物がスチレン系ブロック共重合体(A)として、分子内に反応性ポリスチレン系ハードブロックを有するスチレン系ブロック共重合体を含有する場合、更に、光重合開始剤を含有することで、熱可塑性樹脂組成物に紫外線等の光を照射して反応性ポリスチレン系ハードブロックを反応させ、分子を架橋させて、熱可塑性樹脂組成物の動的粘弾性等の性状を調整することができる。熱可塑性樹脂組成物に紫外線を照射する場合、紫外線の照射強度は50~1,000mW/cm程度が好ましく、また、積算光量は1,000~15,000mJ/cm程度が好ましく、所望の性状にするために適宜調整すればよい。光重合開始剤は1種単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of the photopolymerization initiator include ultraviolet polymerization initiators. When the thermoplastic resin composition of the present invention contains a styrene-based block copolymer having a reactive polystyrene-based hard block in the molecule as the styrene-based block copolymer (A), the thermoplastic resin composition can be further irradiated with light such as ultraviolet light to react the reactive polystyrene-based hard block and crosslink the molecules, thereby adjusting the properties such as dynamic viscoelasticity of the thermoplastic resin composition. When the thermoplastic resin composition is irradiated with ultraviolet light, the irradiation intensity of the ultraviolet light is preferably about 50 to 1,000 mW/cm 2 , and the integrated light amount is preferably about 1,000 to 15,000 mJ/cm 2 , and may be appropriately adjusted to obtain the desired properties. The photopolymerization initiator may be used alone or in combination of two or more types.

 液状ゴムとしては、液状ポリブテン、液状ポリブタジエン、液状ポリイソプレン及びこれらの水添樹脂が挙げられる。液状ゴムは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 Liquid rubbers include liquid polybutene, liquid polybutadiene, liquid polyisoprene, and hydrogenated resins thereof. Liquid rubbers may be used alone or in combination of two or more types.

 本発明の熱可塑性樹脂組成物中の液状ゴムの含有量は、熱可塑性樹脂組成物を100質量%として、1~20質量%が好ましく2~15質量%がより好ましく3~10質量%が更に好ましい。液状ゴムの含有量が1質量%以上であると、熱可塑性樹脂組成物が柔軟になり、伸張性がより一層向上する。液状ゴムの含有量が20質量%以下であると、熱可塑性樹脂組成物が柔らかくなりすぎず、伸縮部材の伸縮回復性がより一層向上する。 The content of liquid rubber in the thermoplastic resin composition of the present invention is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, and even more preferably 3 to 10% by mass, based on 100% by mass of the thermoplastic resin composition. When the content of liquid rubber is 1% by mass or more, the thermoplastic resin composition becomes flexible and the extensibility is further improved. When the content of liquid rubber is 20% by mass or less, the thermoplastic resin composition does not become too soft, and the elastic recovery of the elastic member is further improved.

 微粒子充填剤としては、特に限定されず、例えば、炭酸カルシウム、カオリン、タルク、酸化チタン、雲母、スチレンビーズ等が挙げられる。微粒子充填剤は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The particulate filler is not particularly limited, and examples thereof include calcium carbonate, kaolin, talc, titanium oxide, mica, and styrene beads. The particulate filler may be used alone or in combination of two or more types.

2.熱可塑性樹脂組成物の製造方法
 本発明の熱可塑性樹脂組成物は公知の方法で製造することができる。例えば、熱可塑性エラストマー(A)、可塑剤(B)、必要に応じて炭化水素樹脂(C)等の各種添加剤等を、160~260℃、好ましくは180~230℃の温度に加熱した混練機へ投入し、加熱しながら溶融混練することによって製造される。
2. Method for Producing Thermoplastic Resin Composition The thermoplastic resin composition of the present invention can be produced by a known method, for example, by feeding the thermoplastic elastomer (A), the plasticizer (B), and various additives such as the hydrocarbon resin (C) as required, into a kneader heated to a temperature of 160 to 260°C, preferably 180 to 230°C, and melt-kneading them while heating.

 上記混練機としては特に限定されず、例えば、一軸押出機、二軸押出機、バンバリーミキサー、ブラベンダー、ニーダー等が挙げられる。 The above-mentioned kneading machine is not particularly limited, and examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a Brabender, a kneader, etc.

 上記溶融混練に際しては、例えば、(1)熱可塑性樹脂組成物を構成する全ての成分を、混練する前にダルトンミキサー、タンブラー、Vブレンダーの様な混合機を用いて予めドライブレンドしておき、一括混練する方法;(2)可塑剤(B)を除く他の成分を予め混練した後、サイドフィーダー等を用いて混練機内に所定量の可塑剤(B)を添加する方法等が挙げられ、いずれの方法を採用してもよい。 The above melt kneading may be performed, for example, by (1) dry-blending all of the components constituting the thermoplastic resin composition in advance using a mixer such as a Dalton mixer, a tumbler, or a V-blender, and then kneading them all at once; or (2) kneading the other components except for the plasticizer (B) in advance, and then adding a predetermined amount of the plasticizer (B) to the kneader using a side feeder or the like. Either method may be used.

 本発明の熱可塑性樹脂組成物は、通常0~60℃の温度範囲、特に23℃の常温で固体であり、伸縮性を示すため、本発明の熱可塑性樹脂組成物を用いて形成された伸縮部材は、様々な用途に用いることができる。 The thermoplastic resin composition of the present invention is generally solid in the temperature range of 0 to 60°C, particularly at room temperature of 23°C, and exhibits elasticity, so elastic members formed using the thermoplastic resin composition of the present invention can be used for a variety of purposes.

 本発明の熱可塑性樹脂組成物の用途としては特に限定されず、例えば、衛生材料を含む吸収性物品、病院用ガウン、マスク等が挙げられる。上記衛生材料としては、具体的には、紙おむつ、生理用ナプキン等が挙げられる。 The uses of the thermoplastic resin composition of the present invention are not particularly limited, and examples thereof include absorbent articles including sanitary materials, hospital gowns, masks, etc. Specific examples of the sanitary materials include disposable diapers, sanitary napkins, etc.

3.伸縮部材
 本発明の伸縮部材は、上記熱可塑性樹脂組成物からなる伸縮部材である。本発明の伸縮部材は、上述の本発明の熱可塑性樹脂組成物からなる構成とすることにより、当該本発明の熱可塑性樹脂組成物を用いて形成された伸縮部材が、伸張性、及び、伸縮回復性に優れ、高温での伸張時の応力維持性に優れた伸縮部材となる。
3. Elastic member The elastic member of the present invention is an elastic member made of the above-mentioned thermoplastic resin composition. By configuring the elastic member of the present invention to be made of the above-mentioned thermoplastic resin composition of the present invention, the elastic member formed using the thermoplastic resin composition of the present invention becomes an elastic member that is excellent in stretchability and stretch recovery, and excellent in stress maintenance when stretched at high temperatures.

 伸縮部材の2倍伸張時応力は、0.4N/mm以上が好ましく、0.8N/mm以上がより好ましい。伸縮部材の2倍伸長時応力の下限が上記範囲であると、衛生材料着用時のずれ落ちがより一層抑制される。また、伸縮部材の2倍伸張時応力の上限は特に限定されず、例えば、3.0N/mm以下、2.0N/mm以下であってもよい。 The stress of the elastic member at double extension is preferably 0.4 N/mm2 or more, more preferably 0.8 N/mm2 or more . When the lower limit of the stress of the elastic member at double extension is within the above range, the sanitary material is further prevented from slipping off when worn. There is no particular limit to the upper limit of the stress of the elastic member at double extension, and it may be, for example, 3.0 N/mm2 or less, or 2.0 N/mm2 or less .

 伸縮部材の2倍伸張時応力は、0.4N/mm未満であってもよい。伸縮部部材の2倍伸長時応力が0.4N/mm未満である場合、後述する衛生材等以外の他の用途に好適に用いることができる。この場合、伸縮部材の2倍伸長時応力は、0.4N/mm未満が好ましく、0.3N/mm以下がより好ましく、0.2N/mm 以下が更に好ましい。また、この場合の伸縮部材の2倍伸長時応力の下限は特に限定されず、1.0×10-3N/mm 程度である。 The stress of the elastic member when extended twice may be less than 0.4 N/ mm2 . When the stress of the elastic member when extended twice is less than 0.4 N/ mm2 , it can be suitably used for applications other than sanitary materials and the like described below. In this case, the stress of the elastic member when extended twice is preferably less than 0.4 N/ mm2 , more preferably 0.3 N/mm2 or less , and even more preferably 0.2 N/mm2 or less . In this case, the lower limit of the stress of the elastic member when extended twice is not particularly limited, and is about 1.0× 10-3 N/mm2.

 伸縮部材の2倍伸張時応力は、後述の実施例に記載の方法により測定する。 The stress of the elastic member when stretched twice is measured using the method described in the examples below.

 伸縮部材の永久歪(伸縮回復性)は、55%以上が好ましく、70%以上がより好ましく、80%以上が更に好ましい。伸縮部材の永久歪みの下限が上記範囲であると、伸縮部材の伸張後の伸縮回復性がより一層向上する。また、伸縮部材の永久歪の上限は特に限定されず、99%、98%等であってもよい。 The permanent set (stretch recovery) of the elastic member is preferably 55% or more, more preferably 70% or more, and even more preferably 80% or more. If the lower limit of the permanent set of the elastic member is within the above range, the elastic recovery after stretching of the elastic member is further improved. In addition, the upper limit of the permanent set of the elastic member is not particularly limited, and may be 99%, 98%, etc.

 伸縮部材の永久歪は、後述の実施例に記載の方法により測定する。 The permanent strain of the elastic member is measured using the method described in the Examples below.

 伸縮部材の厚みは特に限定されず、1~100μmが好ましく、10~80μmがより好ましく、30~70μmが更に好ましい。伸縮部材の厚みの下限が上記範囲であると、伸縮部材の応力、伸縮回復率がより一層向上する。伸縮部材の厚みの上限が上記範囲であると、伸縮部材の風合いがより一層向上する。 The thickness of the elastic member is not particularly limited, and is preferably 1 to 100 μm, more preferably 10 to 80 μm, and even more preferably 30 to 70 μm. If the lower limit of the thickness of the elastic member is within the above range, the stress and elastic recovery rate of the elastic member will be further improved. If the upper limit of the thickness of the elastic member is within the above range, the texture of the elastic member will be further improved.

 本発明の伸縮部材は、上述の本発明の熱可塑性樹脂組成物から製造することができる。本発明の伸縮部材は、例えば、フィルム、ストランド、不織布、帯状体、繊維等、用途に応じて、それぞれに適した形態にすることができる。 The elastic member of the present invention can be manufactured from the thermoplastic resin composition of the present invention described above. The elastic member of the present invention can be made into a suitable form depending on the application, for example, a film, a strand, a nonwoven fabric, a strip, a fiber, etc.

 熱可塑性重合体組成物から伸縮部材を製造する方法としては特に制限されず、各種の形態に応じた一般的な成形加工方法を好適に使用できる。 There are no particular limitations on the method for producing an elastic member from a thermoplastic polymer composition, and general molding and processing methods suitable for various shapes can be used.

 本発明の伸縮部材が、例えば、フィルム、ストランドまたは帯状体である場合は、一軸押出成形機、又は、二軸押出成形機を用いて成形することができる。 When the elastic member of the present invention is, for example, a film, strand or strip, it can be molded using a single screw extruder or a twin screw extruder.

 本発明の伸縮部材を製造する際の熱可塑性樹脂組成物の温度は特に限定されず、一般に160~300℃が好ましく、170~290℃がより好ましい。 The temperature of the thermoplastic resin composition when producing the elastic member of the present invention is not particularly limited, but is generally preferably 160 to 300°C, more preferably 170 to 290°C.

本発明の伸縮部材の用途としては特に限定されず、例えば、衛生材料を含む吸収性物品、病院用ガウン、マスク等に用いることができる。上記衛生材料としては、具体的には、紙おむつ、生理用ナプキン等が挙げられる。 The uses of the elastic member of the present invention are not particularly limited, and can be used, for example, in absorbent articles including sanitary materials, hospital gowns, masks, etc. Specific examples of the sanitary materials include disposable diapers and sanitary napkins.

 以下、本発明の実施例について説明する。本発明は、下記の実施例に限定されない。 The following describes examples of the present invention. The present invention is not limited to the following examples.

 なお、実施例及び比較例で用いた原料は以下のとおりである。 The raw materials used in the examples and comparative examples are as follows:

熱可塑性樹脂(A)
[水素添加スチレン系ブロック共重合体]
・A1537
 スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S) クレイトンポリマー社製 A1537(スチレン含有量60質量%)
・A1535
 スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S) クレイトンポリマー社製 A1535(スチレン含有量57質量%)
・A1536
 スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S) クレイトンポリマー社製 A1536(スチレン含有量41質量%)
・G1653
 スチレン-エチレン-ブチレン-スチレン(SEBS) クレイトンポリマー社製 G1653(スチレン含有量30質量%)
・MD6951
 スチレン-エチレン-ブチレン/スチレン-スチレン共重合体(SEB/S-S) クレイトンポリマー社製 MD6951(スチレン含有量34質量%)
・H1043
 スチレン-エチレン-ブチレン-スチレン(SEBS)共重合体 旭化成社製 タフテックH1043(スチレン含有量67質量%)
Thermoplastic resin (A)
[Hydrogenated styrene block copolymer]
・A1537
Styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) A1537 (styrene content 60% by mass) manufactured by Kraton Polymers
・A1535
Styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) A1535 (styrene content 57% by mass) manufactured by Kraton Polymers
A1536
Styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) A1536 (styrene content 41% by mass) manufactured by Kraton Polymers
・G1653
Styrene-ethylene-butylene-styrene (SEBS) G1653 (styrene content 30% by mass) manufactured by Kraton Polymers
MD6951
Styrene-ethylene-butylene/styrene-styrene copolymer (SEB/S-S) Kraton Polymers MD6951 (styrene content 34% by mass)
・H1043
Styrene-ethylene-butylene-styrene (SEBS) copolymer: Tuftec H1043 (styrene content 67% by mass), manufactured by Asahi Kasei Corporation

可塑剤(B)
・PS-32
 パラフィンオイル 出光興産社製 PS-32
Plasticizer (B)
・PS-32
Paraffin oil Idemitsu Kosan PS-32

炭化水素樹脂(C)
・C-100L
 C5炭化水素樹脂 synthomer社製 Eastotac C-100L
・SA120
 α-メチルスチレン樹脂 Kraton社製 SYLVARES SA120
Hydrocarbon resin (C)
・C-100L
C5 Hydrocarbon Resin: Synthomer's Eastotac C-100L
・SA120
α-Methylstyrene resin Kraton SYLVARES SA120

添加剤
[酸化防止剤]
・フェノール系酸化防止剤 日本スペシャリティケミカルズ社製 Evernox10
Additives [Antioxidants]
-Phenol-based antioxidant: Evernox 10, manufactured by Japan Specialty Chemicals

(実施例及び比較例)
 上述した原料を、それぞれ表1に示した配合量でダルトンミキサー中に投入し、ドライブレンドした。次いで、二軸押出機にて190℃で溶融混錬し、ストランド状の熱可塑性樹脂組成物を調製した。
Examples and Comparative Examples
The above-mentioned raw materials were charged into a Dalton mixer in the amounts shown in Table 1 and dry-blended. Then, the mixture was melt-kneaded at 190° C. in a twin-screw extruder to prepare a strand-shaped thermoplastic resin composition.

(試験片(伸縮部材)の調製)
 熱可塑性樹脂組成物5gを15gのメチルシクロヘキサンに溶解させて、熱可塑性樹脂組成物の含有量が25質量%のメチルシクロヘキサン溶液を調製した。次いで、離型処理されたPETフィルム上に幅70mm、ギャップ400μmのアプリケーターを用いてメチルシクロヘキサン溶液を塗工し、80℃の防爆オーブンに2分間静置して、メチルシクロヘキサンを十分に乾燥させた。次いで、オーブンから取り出し、十分に室温まで冷却した試験片(フィルム)の膜厚を確認した。所定の膜厚とならなかった場合は、適宜溶液濃度及び/又はアプリケーターのギャップを調整することにより、フィルムの膜厚を50μmに調整した。次いで、別途用意した、離型処理が施されたPETフィルムを積層し、室温下で圧着させることにより積層体を作成した。得られた積層体を23℃、相対湿度50%雰囲気下で24時間保管し、試験片を調製した。
(Preparation of test specimen (elastic member))
5 g of the thermoplastic resin composition was dissolved in 15 g of methylcyclohexane to prepare a methylcyclohexane solution containing 25% by mass of the thermoplastic resin composition. Next, the methylcyclohexane solution was applied onto a release-treated PET film using an applicator with a width of 70 mm and a gap of 400 μm, and the film was left to stand in an explosion-proof oven at 80 ° C for 2 minutes to thoroughly dry the methylcyclohexane. Next, the film thickness of the test piece (film) was confirmed after being removed from the oven and thoroughly cooled to room temperature. If the predetermined film thickness was not achieved, the film thickness was adjusted to 50 μm by appropriately adjusting the solution concentration and / or the applicator gap. Next, a laminate was prepared by laminating a PET film that had been subjected to a release treatment, and pressing the film at room temperature. The obtained laminate was stored for 24 hours at 23 ° C and a relative humidity of 50% to prepare a test piece.

 調製した熱可塑性樹脂組成物、及び、試験片を用いて、以下の方法により性状、及び、特性を評価した。 The properties and characteristics of the prepared thermoplastic resin composition and test pieces were evaluated using the following methods.

性状
(メルトインデックス(MI))
 JIS K7210に準拠したA法により、メルトインデックスを測定した。なお、測定は、(1)190℃、2.16kgの条件下、又は、(2)230℃、2.16kgの条件下で行い、どちらか一方の測定が可能な方の条件を採用した。
Properties (Melt Index (MI))
The melt index was measured by Method A in accordance with JIS K7210. The measurement was performed under conditions of (1) 190°C and 2.16 kg, or (2) 230°C and 2.16 kg, and either one of the conditions that allowed measurement was adopted.

(25℃における貯蔵弾性率G'、tanδピーク値)
 熱可塑性樹脂組成物1gを20~30gのメチルシクロヘキサンへ溶解させて、スポイト等で取扱いできる程度の流動性をもった熱可塑性樹脂組成物のメチルシクロヘキサン溶液を調整した。次いで、浅型のポリエチレン製カップへメチルシクロヘキサン溶液を注ぎ、50℃に設定された真空乾燥オーブンにて乾燥させ、1~2mm程度の厚みをもった熱可塑性樹脂組成物のシート状固形物を得た。得られた熱可塑性樹脂組成物をポリエチレン製カップから取り出し、23℃にて24時間静置して、動的粘弾性測定用のサンプルを作製した。当該サンプルについて、動的粘弾性測定装置を用いて、周波数1Hzにて回転せん断モードで-60から190℃まで5℃/分の条件で昇温して、ひずみ0.05%の条件で動的粘弾性測定(昇温過程)を行った。貯蔵弾性率G’の25℃での測定値を、25℃における貯蔵弾性率G’とした。また、測定された貯蔵弾性率G’及び損失弾性率G”から、損失正接tanδ(損失弾性率G”/貯蔵弾性率G’)を算出した。-50~0℃の低温領域、及び、60~120℃の高温領域の間にあるtanδが極大となる温度におけるtanδの値を記録し、tanδ極大値とした。なお、動的粘弾性測定装置としては、例えば、ティーエーインスツルメント社製ローテェーショナルレオメーター(商品名「DHR10」)などが挙げられる。
(Storage modulus G' and tan δ peak value at 25°C)
1 g of the thermoplastic resin composition was dissolved in 20 to 30 g of methylcyclohexane to prepare a methylcyclohexane solution of the thermoplastic resin composition having a fluidity sufficient to be handled with a dropper or the like. The methylcyclohexane solution was then poured into a shallow polyethylene cup and dried in a vacuum drying oven set at 50°C to obtain a sheet-like solid of the thermoplastic resin composition having a thickness of about 1 to 2 mm. The obtained thermoplastic resin composition was removed from the polyethylene cup and allowed to stand at 23°C for 24 hours to prepare a sample for dynamic viscoelasticity measurement. The sample was heated from -60 to 190°C at 5°C/min in a rotational shear mode at a frequency of 1 Hz, and dynamic viscoelasticity measurement (heating process) was performed under the condition of a strain of 0.05% using a dynamic viscoelasticity measuring device. The measured value of the storage modulus G' at 25°C was taken as the storage modulus G' at 25°C. Further, the loss tangent tan δ (loss modulus G"/storage modulus G') was calculated from the measured storage modulus G' and loss modulus G". The value of tan δ at a temperature where tan δ was maximum between the low temperature range of -50 to 0°C and the high temperature range of 60 to 120°C was recorded and taken as the maximum value of tan δ. Note that, as an example of a dynamic viscoelasticity measuring device, a rotational rheometer (product name "DHR10") manufactured by TA Instruments Co., Ltd. can be mentioned.

評価
(破断伸び(伸張性))
 治具間を50mmに設定した引張り試験機へ、長手方向(熱可塑性樹脂組成物の塗布方向(MD方向))と垂直な方向(CD方向)が上下に位置するよう試験片(幅(MD方向)50mm、長さ(CD方向)70mm、厚み50μm)の塗布方向の両端を治具で固定し、引張速度500mm/分で上下方向に、試験片が破断するまで引張った。試験片が破断するまでの治具の移動距離を測定し、下記式に基づいて破断伸びの値を算出し、下記評価基準に従って伸張性を評価した。なお、評価が△以上であれば実使用において問題ないと評価される。
[破断伸び(%)]=(試験片が破断するまでの治具の移動距離(mm)/初期治具間距離(mm))×100
〇:破断伸びが600%以上である
△:破断伸びが500%以上600%未満である
×:破断伸びが500%未満である
Evaluation (Elongation at break (stretchability))
The test piece (width (MD) 50 mm, length (CD) 70 mm, thickness 50 μm) was fixed at both ends in the coating direction with a jig so that the direction (CD direction) perpendicular to the longitudinal direction (coating direction (MD) of the thermoplastic resin composition) was located at the top and bottom of a tensile tester with a jig distance of 50 mm, and pulled in the vertical direction at a tensile speed of 500 mm/min until the test piece broke. The travel distance of the jig until the test piece broke was measured, and the value of the breaking elongation was calculated based on the following formula, and the extensibility was evaluated according to the following evaluation criteria. If the evaluation was △ or higher, it was evaluated as having no problem in practical use.
[Elongation at break (%)] = (distance traveled by the jig until the test piece breaks (mm) / initial jig distance (mm)) x 100
◯: The breaking elongation is 600% or more. △: The breaking elongation is 500% or more and less than 600%. ×: The breaking elongation is less than 500%.

(永久歪(伸縮回復性))
 治具間を50mmに設定した引張り試験機へ、長手方向(熱可塑性樹脂組成物の塗布方向(MD方向))と垂直な方向(CD方向)が上下に位置するよう試験片(幅(MD方向)50mm、長さ(CD方向)70mm、厚み50μm)を治具で固定し、引張速度500mm/分で試験片の歪み変位が200%となる点まで上下方向に引張った。次いで、速度500mm/分で初期の位置に戻した。歪み変位200%まで引張り、その後初期の位置に戻す工程を1サイクルとし、同一試験片について2サイクル繰り返した。1サイクル目の引張り時の積分値と2サイクル目の引張り時の積分値から、下記式に基づいて永久歪みの値を算出して、下記評価基準に従って伸縮回復性を評価した。なお、評価が△以上であれば実使用において問題ないと評価される。
[永久歪み(%)]=
[(2サイクル目の積分値(J))/(1サイクル目の積分値(J))]×100
◎:永久歪みが90%以上である
〇:永久歪みが80%以上90%未満である
△:永久歪みが70%以上80%未満である
×:永久歪みが70%未満である
(Permanent strain (stretch recovery))
The test piece (width (MD direction)) was placed on a tensile tester with a jig distance of 50 mm, so that the direction perpendicular to the longitudinal direction (coating direction of the thermoplastic resin composition (MD direction)) and the direction perpendicular to the CD direction were positioned at the top and bottom. The test piece (50 mm in length (CD direction), 70 mm in length, and 50 μm in thickness) was fixed with a jig and pulled in the vertical direction at a tensile speed of 500 mm/min until the strain displacement of the test piece reached 200%. The test piece was stretched to a strain displacement of 200% and then returned to the initial position in 1 minute. This process constitutes one cycle, and two cycles were repeated for the same test piece. The integral value during the first cycle and the second cycle were The permanent set was calculated from the integral value of the tension according to the following formula, and the stretch recovery was evaluated according to the following evaluation criteria. do.
[Permanent set (%)] =
[(Integral value of the second cycle (J))/(Integral value of the first cycle (J))]×100
◎: Permanent distortion is 90% or more. ◯: Permanent distortion is 80% or more and less than 90%. △: Permanent distortion is 70% or more and less than 80%. ×: Permanent distortion is less than 70%.

(応力維持率(高温での伸張時の応力維持性))
 40℃の環境下で、治具間を25mmに設定した引張り試験機へ、長手方向(熱可塑性樹脂組成物の塗布方向(MD方向))と垂直な方向(CD方向)が上下に位置するよう試験片(幅(MD方向)25mm、長さ(CD方向)50mm、厚み50μm)を治具で固定し、引張速度100mm/分で試験片の変位が100%となる点まで上下方向に引張った。この状態で1時間維持し、試験力の変化を測定した。試験力の最大値を初期試験力とし、1時間後の試験力の測定値から、下記式に基づいて応力維持率を算出して、下記評価基準に従って高温での伸張時の応力維持性を評価した。なお、評価が△以上であれば実使用において問題ないと評価される。
[応力維持率(%)]=(1時間後の試験力(N)/初期試験力(N))×100
◎:応力維持率が80%以上である
〇:応力維持率が60%以上80%未満である
△:応力維持率が50%以上60%未満である
×:応力維持率が50%未満である
(Stress retention rate (stress retention during elongation at high temperatures))
In an environment of 40 ° C., a test piece (width (MD direction) 25 mm, length (CD direction) 50 mm, thickness 50 μm) was fixed with a jig to a tensile tester with a jig distance set to 25 mm so that the direction (CD direction) perpendicular to the longitudinal direction (coating direction (MD direction) of the thermoplastic resin composition) was located up and down, and the test piece was pulled in the vertical direction at a tensile speed of 100 mm / min to a point where the displacement of the test piece was 100%. This state was maintained for 1 hour, and the change in test force was measured. The maximum value of the test force was taken as the initial test force, and the stress retention rate was calculated based on the following formula from the measured value of the test force after 1 hour, and the stress retention during elongation at high temperatures was evaluated according to the following evaluation criteria. In addition, if the evaluation is △ or higher, it is evaluated that there is no problem in practical use.
[Stress retention rate (%)] = (Test force after 1 hour (N) / Initial test force (N)) x 100
⊚: Stress retention rate is 80% or more. ◯: Stress retention rate is 60% or more and less than 80%. △: Stress retention rate is 50% or more and less than 60%. ×: Stress retention rate is less than 50%.

(2倍伸張時応力)
 治具間を50mmに設定した引張り試験機へ、長手方向(熱可塑性樹脂組成物の塗布方向(MD方向))と垂直な方向(CD方向)が上下に位置するよう試験片(幅(MD方向)50mm、長さ(CD方向)70mm、厚み50μm)を治具で固定し、引張速度500mm/分で試験片の歪み変位が200%となる点まで上下方向に引張った。次いで、速度500mm/分で初期の位置まで戻した。歪み変位が200%となる点まで引張り、初期の位置まで戻す工程を1サイクルとして、同一の試験片について2サイクル繰返した。1サイクル目の引張り時において歪み変位が100%となる点における応力の値を記録し、2倍伸長時応力(N/mm)とした。なお、評価が△以上であれば実使用において問題ないと評価される。
〇:2倍伸張時応力が0.8N/mm以上である
△:2倍伸張時応力が0.4N/mm以上0.8N/mm未満である
×:2倍伸張時応力が0.4N/mm未満である
(Stress at 2x elongation)
A test piece (width (MD direction) 50 mm, length (CD direction) 70 mm, thickness 50 μm) was fixed with a jig to a tensile tester with a jig distance set to 50 mm so that the direction (CD direction) perpendicular to the longitudinal direction (coating direction of thermoplastic resin composition (MD direction)) was located up and down, and the test piece was pulled in the vertical direction at a tensile speed of 500 mm / min to a point where the strain displacement of the test piece was 200%. Then, it was returned to the initial position at a speed of 500 mm / min. The process of pulling to a point where the strain displacement was 200% and returning to the initial position was defined as one cycle, and two cycles were repeated for the same test piece. The stress value at the point where the strain displacement was 100% during the first cycle of tension was recorded and was taken as the stress at 2 times elongation (N / mm 2 ). In addition, if the evaluation is △ or higher, it is evaluated that there is no problem in practical use.
◯: The stress at 2-fold extension is 0.8 N/mm2 or more . △: The stress at 2-fold extension is 0.4 N/mm2 or more and less than 0.8 N/mm2. ×: The stress at 2 -fold extension is less than 0.4 N/ mm2.

 結果を表1に示す。 The results are shown in Table 1.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (7)

 熱可塑性エラストマー(A)と、可塑剤(B)とを含む熱可塑性樹脂組成物であって、 前記熱可塑性エラストマー(A)は、スチレン系ブロック共重合体を含み、
 JIS K7210に準拠したA法により、190℃、2.16kgの条件下、又は、230℃、2.16kgの条件下で測定したメルトインデックスが0.1~100g/10minであり、
 下記測定条件により測定した25℃における貯蔵弾性率G'が2.5×10~1.0×10Paであり、
 前記貯蔵弾性率G’の測定により得られる損失正接tanδ(損失弾性率/貯蔵弾性率)が、-50~0℃の低温領域、及び、60~120℃の高温領域において少なくとも1つずつピークを有し、
 前記低温領域におけるtanδピーク値であるD1が、前記高温領域におけるtanδピーク値であるD2よりも大きい、
ことを特徴とする熱可塑性樹脂組成物。
(貯蔵弾性率G'の測定条件)
 開始温度-60℃、終了温度190℃、昇温速度5℃/分、測定周波数1Hz、ひずみ0.05%
A thermoplastic resin composition comprising a thermoplastic elastomer (A) and a plasticizer (B), wherein the thermoplastic elastomer (A) comprises a styrene-based block copolymer,
The melt index measured by Method A in accordance with JIS K7210 under conditions of 190°C and 2.16 kg or 230°C and 2.16 kg is 0.1 to 100 g/10 min;
The storage modulus G' at 25°C measured under the following measurement conditions is 2.5 x 105 to 1.0 x 107 Pa;
The loss tangent tan δ (loss modulus/storage modulus) obtained by measuring the storage modulus G' has at least one peak each in a low temperature range of -50 to 0°C and a high temperature range of 60 to 120°C,
D1, which is a tan δ peak value in the low temperature region, is greater than D2, which is a tan δ peak value in the high temperature region;
A thermoplastic resin composition comprising:
(Measurement conditions for storage modulus G')
Starting temperature -60°C, ending temperature 190°C, heating rate 5°C/min, measuring frequency 1Hz, strain 0.05%
 前記スチレン系ブロック共重合体は、スチレン系ブロック共重合体の水素添加物である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the styrene-based block copolymer is a hydrogenated styrene-based block copolymer.  前記熱可塑性樹脂組成物中に含まれる前記スチレン系ブロック共重合体由来のスチレン量は、前記熱可塑性樹脂組成物を100質量%として、30~50質量%である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the amount of styrene derived from the styrene-based block copolymer contained in the thermoplastic resin composition is 30 to 50 mass % relative to 100 mass % of the thermoplastic resin composition.  前記熱可塑性エラストマー(A)の含有量は、前記熱可塑性樹脂組成物を100質量%として、50~85質量%である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the content of the thermoplastic elastomer (A) is 50 to 85 mass % relative to 100 mass % of the thermoplastic resin composition.  前記D1と、前記D2との比(D1/D2)が1よりも大きく15以下である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the ratio of D1 to D2 (D1/D2) is greater than 1 and less than or equal to 15.  更に、炭化水素樹脂(C)を含み、前記炭化水素樹脂(C)の含有量は、前記熱可塑性樹脂組成物を100%として、0.5~30質量%である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, further comprising a hydrocarbon resin (C), the content of which is 0.5 to 30 mass % relative to the thermoplastic resin composition being 100%.  請求項1~6のいずれかに記載の熱可塑性樹脂組成物からなる伸縮部材。 An elastic member made of a thermoplastic resin composition according to any one of claims 1 to 6.
PCT/JP2024/025830 2023-07-21 2024-07-18 Thermoplastic resin composition WO2025023152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-119034 2023-07-21
JP2023119034 2023-07-21

Publications (1)

Publication Number Publication Date
WO2025023152A1 true WO2025023152A1 (en) 2025-01-30

Family

ID=94374395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/025830 WO2025023152A1 (en) 2023-07-21 2024-07-18 Thermoplastic resin composition

Country Status (1)

Country Link
WO (1) WO2025023152A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135927A1 (en) * 2010-04-28 2011-11-03 アロン化成株式会社 Elastomer composition and stopper for medical container
JP2012021103A (en) * 2010-07-16 2012-02-02 Toyo Adl Corp Resin composition, and laminate and image-formed material using the same
WO2015178259A1 (en) * 2014-05-19 2015-11-26 旭化成ケミカルズ株式会社 Hydrogenated block copolymer composition and adhesive composition
WO2020110921A1 (en) * 2018-11-28 2020-06-04 積水フーラー株式会社 Hot melt composition
JP2020534386A (en) * 2017-09-22 2020-11-26 ダウ グローバル テクノロジーズ エルエルシー Compositions and multilayer films for recloseable packaging
JP2021107483A (en) * 2019-12-27 2021-07-29 アイカ工業株式会社 Hot-melt composition
JP2022046049A (en) * 2020-09-10 2022-03-23 積水フーラー株式会社 Hot-melt composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135927A1 (en) * 2010-04-28 2011-11-03 アロン化成株式会社 Elastomer composition and stopper for medical container
JP2012021103A (en) * 2010-07-16 2012-02-02 Toyo Adl Corp Resin composition, and laminate and image-formed material using the same
WO2015178259A1 (en) * 2014-05-19 2015-11-26 旭化成ケミカルズ株式会社 Hydrogenated block copolymer composition and adhesive composition
JP2020534386A (en) * 2017-09-22 2020-11-26 ダウ グローバル テクノロジーズ エルエルシー Compositions and multilayer films for recloseable packaging
WO2020110921A1 (en) * 2018-11-28 2020-06-04 積水フーラー株式会社 Hot melt composition
JP2021107483A (en) * 2019-12-27 2021-07-29 アイカ工業株式会社 Hot-melt composition
JP2022046049A (en) * 2020-09-10 2022-03-23 積水フーラー株式会社 Hot-melt composition

Similar Documents

Publication Publication Date Title
JP6812049B2 (en) Hot melt composition
JP7559177B2 (en) Hot Melt Composition
CN111655786B (en) Stretchable hot melt composition
AU2012217900B2 (en) Elastomeric formulations useful in films and sheets
JP6716705B2 (en) Hot melt adhesive and stretchable laminate
JP6704283B2 (en) Adhesive composition
EP3147328A1 (en) Hydrogenated block copolymer composition and adhesive composition
TW201546157A (en) Block copolymer crumb and adhesive composition
JP7610940B2 (en) Hot Melt Composition
WO2025023152A1 (en) Thermoplastic resin composition
WO2023195539A1 (en) Hot melt composition
JP2021046540A (en) Hot melt composition
JP7573388B2 (en) Elastic hot melt composition
JP2001064445A (en) Externally adding type anti tacking agent and rubber or thermoplastic elastomer comprising the same
JP7005063B1 (en) Hot melt adhesive
JP2023152939A (en) Ultraviolet crosslinkable hot-melt composition and stretchable member
JP7235251B2 (en) Method for manufacturing elastic laminate
JP7646324B2 (en) Hot melt composition and fibrous member
CA2159930C (en) Adhesive composition and process and apparatus therefor
CN118382681A (en) Hot melt adhesive composition having styrene block copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24845529

Country of ref document: EP

Kind code of ref document: A1